mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
Our key pair creation API was ugly and inconsistent between ecdsa keys and other keys. The same `generate()` function can now be used to generate key pairs, and that function cannot fail. For deterministic keys, a `generateDeterministic()` function is available for all key types. Fix comments and compilation of the benchmark by the way. Fixes #21002
189 lines
8.5 KiB
Zig
189 lines
8.5 KiB
Zig
const std = @import("std");
|
|
const crypto = std.crypto;
|
|
const mem = std.mem;
|
|
const fmt = std.fmt;
|
|
|
|
const Sha512 = crypto.hash.sha2.Sha512;
|
|
|
|
const EncodingError = crypto.errors.EncodingError;
|
|
const IdentityElementError = crypto.errors.IdentityElementError;
|
|
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;
|
|
|
|
/// X25519 DH function.
|
|
pub const X25519 = struct {
|
|
/// The underlying elliptic curve.
|
|
pub const Curve = @import("curve25519.zig").Curve25519;
|
|
/// Length (in bytes) of a secret key.
|
|
pub const secret_length = 32;
|
|
/// Length (in bytes) of a public key.
|
|
pub const public_length = 32;
|
|
/// Length (in bytes) of the output of the DH function.
|
|
pub const shared_length = 32;
|
|
/// Seed (for key pair creation) length in bytes.
|
|
pub const seed_length = 32;
|
|
|
|
/// An X25519 key pair.
|
|
pub const KeyPair = struct {
|
|
/// Public part.
|
|
public_key: [public_length]u8,
|
|
/// Secret part.
|
|
secret_key: [secret_length]u8,
|
|
|
|
/// Deterministically derive a key pair from a cryptograpically secure secret seed.
|
|
///
|
|
/// Except in tests, applications should generally call `generate()` instead of this function.
|
|
pub fn generateDeterministic(seed: [seed_length]u8) IdentityElementError!KeyPair {
|
|
const kp = KeyPair{
|
|
.public_key = try X25519.recoverPublicKey(seed),
|
|
.secret_key = seed,
|
|
};
|
|
return kp;
|
|
}
|
|
|
|
/// Generate a new, random key pair.
|
|
pub fn generate() KeyPair {
|
|
var random_seed: [seed_length]u8 = undefined;
|
|
while (true) {
|
|
crypto.random.bytes(&random_seed);
|
|
return generateDeterministic(random_seed) catch {
|
|
@branchHint(.unlikely);
|
|
continue;
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Create a key pair from an Ed25519 key pair
|
|
pub fn fromEd25519(ed25519_key_pair: crypto.sign.Ed25519.KeyPair) (IdentityElementError || EncodingError)!KeyPair {
|
|
const seed = ed25519_key_pair.secret_key.seed();
|
|
var az: [Sha512.digest_length]u8 = undefined;
|
|
Sha512.hash(&seed, &az, .{});
|
|
var sk = az[0..32].*;
|
|
Curve.scalar.clamp(&sk);
|
|
const pk = try publicKeyFromEd25519(ed25519_key_pair.public_key);
|
|
return KeyPair{
|
|
.public_key = pk,
|
|
.secret_key = sk,
|
|
};
|
|
}
|
|
};
|
|
|
|
/// Compute the public key for a given private key.
|
|
pub fn recoverPublicKey(secret_key: [secret_length]u8) IdentityElementError![public_length]u8 {
|
|
const q = try Curve.basePoint.clampedMul(secret_key);
|
|
return q.toBytes();
|
|
}
|
|
|
|
/// Compute the X25519 equivalent to an Ed25519 public eky.
|
|
pub fn publicKeyFromEd25519(ed25519_public_key: crypto.sign.Ed25519.PublicKey) (IdentityElementError || EncodingError)![public_length]u8 {
|
|
const pk_ed = try crypto.ecc.Edwards25519.fromBytes(ed25519_public_key.bytes);
|
|
const pk = try Curve.fromEdwards25519(pk_ed);
|
|
return pk.toBytes();
|
|
}
|
|
|
|
/// Compute the scalar product of a public key and a secret scalar.
|
|
/// Note that the output should not be used as a shared secret without
|
|
/// hashing it first.
|
|
pub fn scalarmult(secret_key: [secret_length]u8, public_key: [public_length]u8) IdentityElementError![shared_length]u8 {
|
|
const q = try Curve.fromBytes(public_key).clampedMul(secret_key);
|
|
return q.toBytes();
|
|
}
|
|
};
|
|
|
|
const htest = @import("../test.zig");
|
|
|
|
test "public key calculation from secret key" {
|
|
var sk: [32]u8 = undefined;
|
|
var pk_expected: [32]u8 = undefined;
|
|
_ = try fmt.hexToBytes(sk[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
|
|
_ = try fmt.hexToBytes(pk_expected[0..], "f1814f0e8ff1043d8a44d25babff3cedcae6c22c3edaa48f857ae70de2baae50");
|
|
const pk_calculated = try X25519.recoverPublicKey(sk);
|
|
try std.testing.expectEqual(pk_calculated, pk_expected);
|
|
}
|
|
|
|
test "rfc7748 vector1" {
|
|
const secret_key = [32]u8{ 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4 };
|
|
const public_key = [32]u8{ 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c };
|
|
|
|
const expected_output = [32]u8{ 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52 };
|
|
|
|
const output = try X25519.scalarmult(secret_key, public_key);
|
|
try std.testing.expectEqual(output, expected_output);
|
|
}
|
|
|
|
test "rfc7748 vector2" {
|
|
const secret_key = [32]u8{ 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d };
|
|
const public_key = [32]u8{ 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93 };
|
|
|
|
const expected_output = [32]u8{ 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57 };
|
|
|
|
const output = try X25519.scalarmult(secret_key, public_key);
|
|
try std.testing.expectEqual(output, expected_output);
|
|
}
|
|
|
|
test "rfc7748 one iteration" {
|
|
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
const expected_output = [32]u8{ 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35, 0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b, 0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae, 0x30, 0x79 };
|
|
|
|
var k: [32]u8 = initial_value;
|
|
var u: [32]u8 = initial_value;
|
|
|
|
var i: usize = 0;
|
|
while (i < 1) : (i += 1) {
|
|
const output = try X25519.scalarmult(k, u);
|
|
u = k;
|
|
k = output;
|
|
}
|
|
|
|
try std.testing.expectEqual(k, expected_output);
|
|
}
|
|
|
|
test "rfc7748 1,000 iterations" {
|
|
// These iteration tests are slow so we always skip them. Results have been verified.
|
|
if (true) {
|
|
return error.SkipZigTest;
|
|
}
|
|
|
|
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
const expected_output = [32]u8{ 0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55, 0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f, 0x4d, 0x3c, 0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87, 0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51 };
|
|
|
|
var k: [32]u8 = initial_value.*;
|
|
var u: [32]u8 = initial_value.*;
|
|
|
|
var i: usize = 0;
|
|
while (i < 1000) : (i += 1) {
|
|
const output = try X25519.scalarmult(&k, &u);
|
|
u = k;
|
|
k = output;
|
|
}
|
|
|
|
try std.testing.expectEqual(k, expected_output);
|
|
}
|
|
|
|
test "rfc7748 1,000,000 iterations" {
|
|
if (true) {
|
|
return error.SkipZigTest;
|
|
}
|
|
|
|
const initial_value = [32]u8{ 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
const expected_output = [32]u8{ 0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd, 0x86, 0x44, 0x97, 0x29, 0x7e, 0x57, 0x5e, 0x6f, 0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf, 0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24 };
|
|
|
|
var k: [32]u8 = initial_value.*;
|
|
var u: [32]u8 = initial_value.*;
|
|
|
|
var i: usize = 0;
|
|
while (i < 1000000) : (i += 1) {
|
|
const output = try X25519.scalarmult(&k, &u);
|
|
u = k;
|
|
k = output;
|
|
}
|
|
|
|
try std.testing.expectEqual(k[0..], expected_output);
|
|
}
|
|
|
|
test "edwards25519 -> curve25519 map" {
|
|
const ed_kp = try crypto.sign.Ed25519.KeyPair.generateDeterministic([_]u8{0x42} ** 32);
|
|
const mont_kp = try X25519.KeyPair.fromEd25519(ed_kp);
|
|
try htest.assertEqual("90e7595fc89e52fdfddce9c6a43d74dbf6047025ee0462d2d172e8b6a2841d6e", &mont_kp.secret_key);
|
|
try htest.assertEqual("cc4f2cdb695dd766f34118eb67b98652fed1d8bc49c330b119bbfa8a64989378", &mont_kp.public_key);
|
|
}
|