zig/lib/std/fmt/parse_float/FloatInfo.zig
2024-07-14 11:19:34 +12:00

152 lines
5.9 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const std = @import("std");
const Self = @This();
// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
min_exponent_fast_path: comptime_int,
// Maximum exponent that for a fast path case, or `⌊(MANTISSA_EXPLICIT_BITS+1)/log2(5)⌋`
max_exponent_fast_path: comptime_int,
// Maximum exponent that can be represented for a disguised-fast path case.
// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_EXPLICIT_BITS+1)/log2(10)⌋`
max_exponent_fast_path_disguised: comptime_int,
// Maximum mantissa for the fast-path (`1 << 53` for f64).
max_mantissa_fast_path: comptime_int,
// Smallest decimal exponent for a non-zero value. Including subnormals.
smallest_power_of_ten: comptime_int,
// Largest decimal exponent for a non-infinite value.
largest_power_of_ten: comptime_int,
// The number of bits in the significand, *excluding* the hidden bit.
mantissa_explicit_bits: comptime_int,
// Minimum exponent value `-(1 << (EXP_BITS - 1)) + 1`.
minimum_exponent: comptime_int,
// Round-to-even only happens for negative values of q
// when q ≥ 4 in the 64-bit case and when q ≥ 17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^q. We must have that w < 2^64
// so (2m+1)×5^q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^q < 2^64
// (64-bit) and 2^24×5^q < 2^64 (32-bit). Hence we have 5^q < 2^11
// or q ≥ 4 (64-bit case) and 5^q < 2^40 or q ≥ 17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [4,23](in the 64-bit case) or q∈[17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
min_exponent_round_to_even: comptime_int,
max_exponent_round_to_even: comptime_int,
// Largest exponent value `(1 << EXP_BITS) - 1`.
infinite_power: comptime_int,
// Following should compute based on derived calculations where possible.
pub fn from(comptime T: type) Self {
return switch (T) {
f16 => .{
// Fast-Path
.min_exponent_fast_path = -4,
.max_exponent_fast_path = 4,
.max_exponent_fast_path_disguised = 7,
.max_mantissa_fast_path = 2 << std.math.floatMantissaBits(T),
// Slow + Eisel-Lemire
.mantissa_explicit_bits = std.math.floatFractionalBits(T),
.infinite_power = 0x1f,
// Eisel-Lemire
.smallest_power_of_ten = -26, // TODO: refine, fails one test
.largest_power_of_ten = 4,
.minimum_exponent = -15,
// w >= (2m+1) * 5^-q and w < 2^64
// => 2m+1 > 2^11
// => 2^11*5^-q < 2^64
// => 5^-q < 2^53
// => q >= -23
.min_exponent_round_to_even = -22,
.max_exponent_round_to_even = 5,
},
f32 => .{
// Fast-Path
.min_exponent_fast_path = -10,
.max_exponent_fast_path = 10,
.max_exponent_fast_path_disguised = 17,
.max_mantissa_fast_path = 2 << std.math.floatMantissaBits(T),
// Slow + Eisel-Lemire
.mantissa_explicit_bits = std.math.floatFractionalBits(T),
.infinite_power = 0xff,
// Eisel-Lemire
.smallest_power_of_ten = -65,
.largest_power_of_ten = 38,
.minimum_exponent = -127,
.min_exponent_round_to_even = -17,
.max_exponent_round_to_even = 10,
},
f64 => .{
// Fast-Path
.min_exponent_fast_path = -22,
.max_exponent_fast_path = 22,
.max_exponent_fast_path_disguised = 37,
.max_mantissa_fast_path = 2 << std.math.floatMantissaBits(T),
// Slow + Eisel-Lemire
.mantissa_explicit_bits = std.math.floatMantissaBits(T),
.infinite_power = 0x7ff,
// Eisel-Lemire
.smallest_power_of_ten = -342,
.largest_power_of_ten = 308,
.minimum_exponent = -1023,
.min_exponent_round_to_even = -4,
.max_exponent_round_to_even = 23,
},
f80 => .{
// Fast-Path
.min_exponent_fast_path = -27,
.max_exponent_fast_path = 27,
.max_exponent_fast_path_disguised = 46,
.max_mantissa_fast_path = 2 << std.math.floatMantissaBits(T),
// Slow + Eisel-Lemire
.mantissa_explicit_bits = std.math.floatFractionalBits(T),
.infinite_power = 0x7fff,
// Eisel-Lemire.
// NOTE: Not yet tested (no f80 eisel-lemire implementation)
.smallest_power_of_ten = -4966,
.largest_power_of_ten = 4932,
.minimum_exponent = -16382,
// 2^65 * 5^-q < 2^80
// 5^-q < 2^15
// => q >= -6
.min_exponent_round_to_even = -6,
.max_exponent_round_to_even = 28,
},
f128 => .{
// Fast-Path
.min_exponent_fast_path = -48,
.max_exponent_fast_path = 48,
.max_exponent_fast_path_disguised = 82,
.max_mantissa_fast_path = 2 << std.math.floatMantissaBits(T),
// Slow + Eisel-Lemire
.mantissa_explicit_bits = std.math.floatFractionalBits(T),
.infinite_power = 0x7fff,
// Eisel-Lemire.
// NOTE: Not yet tested (no f128 eisel-lemire implementation)
.smallest_power_of_ten = -4966,
.largest_power_of_ten = 4932,
.minimum_exponent = -16382,
// 2^113 * 5^-q < 2^128
// 5^-q < 2^15
// => q >= -6
.min_exponent_round_to_even = -6,
.max_exponent_round_to_even = 49,
},
else => unreachable,
};
}