zig/lib/std/target.zig
Andrew Kelley 0f016b368d
support -mcpu=baseline, both in stage1 and stage2
See e381a42de9c0f0c5439a926b0ac99026a0373f49 for more details.
This is set up so that if we wish to make "baseline" depend on the
OS in the future, it is possible to do that.
2020-02-20 18:31:17 -05:00

1290 lines
40 KiB
Zig

const std = @import("std.zig");
const mem = std.mem;
const builtin = std.builtin;
/// TODO Nearly all the functions in this namespace would be
/// better off if https://github.com/ziglang/zig/issues/425
/// was solved.
pub const Target = union(enum) {
Native: void,
Cross: Cross,
pub const Os = enum {
freestanding,
ananas,
cloudabi,
dragonfly,
freebsd,
fuchsia,
ios,
kfreebsd,
linux,
lv2,
macosx,
netbsd,
openbsd,
solaris,
windows,
haiku,
minix,
rtems,
nacl,
cnk,
aix,
cuda,
nvcl,
amdhsa,
ps4,
elfiamcu,
tvos,
watchos,
mesa3d,
contiki,
amdpal,
hermit,
hurd,
wasi,
emscripten,
uefi,
other,
pub fn parse(text: []const u8) !Os {
const info = @typeInfo(Os);
inline for (info.Enum.fields) |field| {
if (mem.eql(u8, text, field.name)) {
return @field(Os, field.name);
}
}
return error.UnknownOperatingSystem;
}
};
pub const aarch64 = @import("target/aarch64.zig");
pub const amdgpu = @import("target/amdgpu.zig");
pub const arm = @import("target/arm.zig");
pub const avr = @import("target/avr.zig");
pub const bpf = @import("target/bpf.zig");
pub const hexagon = @import("target/hexagon.zig");
pub const mips = @import("target/mips.zig");
pub const msp430 = @import("target/msp430.zig");
pub const nvptx = @import("target/nvptx.zig");
pub const powerpc = @import("target/powerpc.zig");
pub const riscv = @import("target/riscv.zig");
pub const sparc = @import("target/sparc.zig");
pub const systemz = @import("target/systemz.zig");
pub const wasm = @import("target/wasm.zig");
pub const x86 = @import("target/x86.zig");
pub const Abi = enum {
none,
gnu,
gnuabin32,
gnuabi64,
gnueabi,
gnueabihf,
gnux32,
code16,
eabi,
eabihf,
elfv1,
elfv2,
android,
musl,
musleabi,
musleabihf,
msvc,
itanium,
cygnus,
coreclr,
simulator,
macabi,
pub fn default(arch: Cpu.Arch, target_os: Os) Abi {
switch (arch) {
.wasm32, .wasm64 => return .musl,
else => {},
}
switch (target_os) {
.freestanding,
.ananas,
.cloudabi,
.dragonfly,
.lv2,
.solaris,
.haiku,
.minix,
.rtems,
.nacl,
.cnk,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.mesa3d,
.contiki,
.amdpal,
.hermit,
.other,
=> return .eabi,
.openbsd,
.macosx,
.freebsd,
.ios,
.tvos,
.watchos,
.fuchsia,
.kfreebsd,
.netbsd,
.hurd,
=> return .gnu,
.windows,
.uefi,
=> return .msvc,
.linux,
.wasi,
.emscripten,
=> return .musl,
}
}
pub fn parse(text: []const u8) !Abi {
const info = @typeInfo(Abi);
inline for (info.Enum.fields) |field| {
if (mem.eql(u8, text, field.name)) {
return @field(Abi, field.name);
}
}
return error.UnknownApplicationBinaryInterface;
}
};
pub const ObjectFormat = enum {
unknown,
coff,
elf,
macho,
wasm,
};
pub const SubSystem = enum {
Console,
Windows,
Posix,
Native,
EfiApplication,
EfiBootServiceDriver,
EfiRom,
EfiRuntimeDriver,
};
pub const Cross = struct {
cpu: Cpu,
os: Os,
abi: Abi,
};
pub const Cpu = struct {
/// Architecture
arch: Arch,
/// The CPU model to target. It has a set of features
/// which are overridden with the `features` field.
model: *const Model,
/// An explicit list of the entire CPU feature set. It may differ from the specific CPU model's features.
features: Feature.Set,
pub const Feature = struct {
/// The bit index into `Set`. Has a default value of `undefined` because the canonical
/// structures are populated via comptime logic.
index: Set.Index = undefined,
/// Has a default value of `undefined` because the canonical
/// structures are populated via comptime logic.
name: []const u8 = undefined,
/// If this corresponds to an LLVM-recognized feature, this will be populated;
/// otherwise null.
llvm_name: ?[:0]const u8,
/// Human-friendly UTF-8 text.
description: []const u8,
/// Sparse `Set` of features this depends on.
dependencies: Set,
/// A bit set of all the features.
pub const Set = struct {
ints: [usize_count]usize,
pub const needed_bit_count = 154;
pub const byte_count = (needed_bit_count + 7) / 8;
pub const usize_count = (byte_count + (@sizeOf(usize) - 1)) / @sizeOf(usize);
pub const Index = std.math.Log2Int(@IntType(false, usize_count * @bitSizeOf(usize)));
pub const ShiftInt = std.math.Log2Int(usize);
pub const empty = Set{ .ints = [1]usize{0} ** usize_count };
pub fn empty_workaround() Set {
return Set{ .ints = [1]usize{0} ** usize_count };
}
pub fn isEnabled(set: Set, arch_feature_index: Index) bool {
const usize_index = arch_feature_index / @bitSizeOf(usize);
const bit_index = @intCast(ShiftInt, arch_feature_index % @bitSizeOf(usize));
return (set.ints[usize_index] & (@as(usize, 1) << bit_index)) != 0;
}
/// Adds the specified feature but not its dependencies.
pub fn addFeature(set: *Set, arch_feature_index: Index) void {
const usize_index = arch_feature_index / @bitSizeOf(usize);
const bit_index = @intCast(ShiftInt, arch_feature_index % @bitSizeOf(usize));
set.ints[usize_index] |= @as(usize, 1) << bit_index;
}
/// Adds the specified feature set but not its dependencies.
pub fn addFeatureSet(set: *Set, other_set: Set) void {
set.ints = @as(@Vector(usize_count, usize), set.ints) |
@as(@Vector(usize_count, usize), other_set.ints);
}
/// Removes the specified feature but not its dependents.
pub fn removeFeature(set: *Set, arch_feature_index: Index) void {
const usize_index = arch_feature_index / @bitSizeOf(usize);
const bit_index = @intCast(ShiftInt, arch_feature_index % @bitSizeOf(usize));
set.ints[usize_index] &= ~(@as(usize, 1) << bit_index);
}
pub fn populateDependencies(set: *Set, all_features_list: []const Cpu.Feature) void {
@setEvalBranchQuota(1000000);
var old = set.ints;
while (true) {
for (all_features_list) |feature, index_usize| {
const index = @intCast(Index, index_usize);
if (set.isEnabled(index)) {
set.addFeatureSet(feature.dependencies);
}
}
const nothing_changed = mem.eql(usize, &old, &set.ints);
if (nothing_changed) return;
old = set.ints;
}
}
pub fn asBytes(set: *const Set) *const [byte_count]u8 {
return @ptrCast(*const [byte_count]u8, &set.ints);
}
pub fn eql(set: Set, other: Set) bool {
return mem.eql(usize, &set.ints, &other.ints);
}
};
pub fn feature_set_fns(comptime F: type) type {
return struct {
/// Populates only the feature bits specified.
pub fn featureSet(features: []const F) Set {
var x = Set.empty_workaround(); // TODO remove empty_workaround
for (features) |feature| {
x.addFeature(@enumToInt(feature));
}
return x;
}
pub fn featureSetHas(set: Set, feature: F) bool {
return set.isEnabled(@enumToInt(feature));
}
};
}
};
pub const Arch = enum {
arm,
armeb,
aarch64,
aarch64_be,
aarch64_32,
arc,
avr,
bpfel,
bpfeb,
hexagon,
mips,
mipsel,
mips64,
mips64el,
msp430,
powerpc,
powerpc64,
powerpc64le,
r600,
amdgcn,
riscv32,
riscv64,
sparc,
sparcv9,
sparcel,
s390x,
tce,
tcele,
thumb,
thumbeb,
i386,
x86_64,
xcore,
nvptx,
nvptx64,
le32,
le64,
amdil,
amdil64,
hsail,
hsail64,
spir,
spir64,
kalimba,
shave,
lanai,
wasm32,
wasm64,
renderscript32,
renderscript64,
pub fn isARM(arch: Arch) bool {
return switch (arch) {
.arm, .armeb => true,
else => false,
};
}
pub fn isThumb(arch: Arch) bool {
return switch (arch) {
.thumb, .thumbeb => true,
else => false,
};
}
pub fn isWasm(arch: Arch) bool {
return switch (arch) {
.wasm32, .wasm64 => true,
else => false,
};
}
pub fn isRISCV(arch: Arch) bool {
return switch (arch) {
.riscv32, .riscv64 => true,
else => false,
};
}
pub fn isMIPS(arch: Arch) bool {
return switch (arch) {
.mips, .mipsel, .mips64, .mips64el => true,
else => false,
};
}
pub fn parseCpuModel(arch: Arch, cpu_name: []const u8) !*const Cpu.Model {
for (arch.allCpuModels()) |cpu| {
if (mem.eql(u8, cpu_name, cpu.name)) {
return cpu;
}
}
return error.UnknownCpu;
}
pub fn toElfMachine(arch: Arch) std.elf.EM {
return switch (arch) {
.avr => ._AVR,
.msp430 => ._MSP430,
.arc => ._ARC,
.arm => ._ARM,
.armeb => ._ARM,
.hexagon => ._HEXAGON,
.le32 => ._NONE,
.mips => ._MIPS,
.mipsel => ._MIPS_RS3_LE,
.powerpc => ._PPC,
.r600 => ._NONE,
.riscv32 => ._RISCV,
.sparc => ._SPARC,
.sparcel => ._SPARC,
.tce => ._NONE,
.tcele => ._NONE,
.thumb => ._ARM,
.thumbeb => ._ARM,
.i386 => ._386,
.xcore => ._XCORE,
.nvptx => ._NONE,
.amdil => ._NONE,
.hsail => ._NONE,
.spir => ._NONE,
.kalimba => ._CSR_KALIMBA,
.shave => ._NONE,
.lanai => ._LANAI,
.wasm32 => ._NONE,
.renderscript32 => ._NONE,
.aarch64_32 => ._AARCH64,
.aarch64 => ._AARCH64,
.aarch64_be => ._AARCH64,
.mips64 => ._MIPS,
.mips64el => ._MIPS_RS3_LE,
.powerpc64 => ._PPC64,
.powerpc64le => ._PPC64,
.riscv64 => ._RISCV,
.x86_64 => ._X86_64,
.nvptx64 => ._NONE,
.le64 => ._NONE,
.amdil64 => ._NONE,
.hsail64 => ._NONE,
.spir64 => ._NONE,
.wasm64 => ._NONE,
.renderscript64 => ._NONE,
.amdgcn => ._NONE,
.bpfel => ._BPF,
.bpfeb => ._BPF,
.sparcv9 => ._SPARCV9,
.s390x => ._S390,
};
}
pub fn endian(arch: Arch) builtin.Endian {
return switch (arch) {
.avr,
.arm,
.aarch64_32,
.aarch64,
.amdgcn,
.amdil,
.amdil64,
.bpfel,
.hexagon,
.hsail,
.hsail64,
.kalimba,
.le32,
.le64,
.mipsel,
.mips64el,
.msp430,
.nvptx,
.nvptx64,
.sparcel,
.tcele,
.powerpc64le,
.r600,
.riscv32,
.riscv64,
.i386,
.x86_64,
.wasm32,
.wasm64,
.xcore,
.thumb,
.spir,
.spir64,
.renderscript32,
.renderscript64,
.shave,
=> .Little,
.arc,
.armeb,
.aarch64_be,
.bpfeb,
.mips,
.mips64,
.powerpc,
.powerpc64,
.thumbeb,
.sparc,
.sparcv9,
.tce,
.lanai,
.s390x,
=> .Big,
};
}
/// Returns a name that matches the lib/std/target/* directory name.
pub fn genericName(arch: Arch) []const u8 {
return switch (arch) {
.arm, .armeb, .thumb, .thumbeb => "arm",
.aarch64, .aarch64_be, .aarch64_32 => "aarch64",
.avr => "avr",
.bpfel, .bpfeb => "bpf",
.hexagon => "hexagon",
.mips, .mipsel, .mips64, .mips64el => "mips",
.msp430 => "msp430",
.powerpc, .powerpc64, .powerpc64le => "powerpc",
.amdgcn => "amdgpu",
.riscv32, .riscv64 => "riscv",
.sparc, .sparcv9, .sparcel => "sparc",
.s390x => "systemz",
.i386, .x86_64 => "x86",
.nvptx, .nvptx64 => "nvptx",
.wasm32, .wasm64 => "wasm",
else => @tagName(arch),
};
}
/// All CPU features Zig is aware of, sorted lexicographically by name.
pub fn allFeaturesList(arch: Arch) []const Cpu.Feature {
return switch (arch) {
.arm, .armeb, .thumb, .thumbeb => &arm.all_features,
.aarch64, .aarch64_be, .aarch64_32 => &aarch64.all_features,
.avr => &avr.all_features,
.bpfel, .bpfeb => &bpf.all_features,
.hexagon => &hexagon.all_features,
.mips, .mipsel, .mips64, .mips64el => &mips.all_features,
.msp430 => &msp430.all_features,
.powerpc, .powerpc64, .powerpc64le => &powerpc.all_features,
.amdgcn => &amdgpu.all_features,
.riscv32, .riscv64 => &riscv.all_features,
.sparc, .sparcv9, .sparcel => &sparc.all_features,
.s390x => &systemz.all_features,
.i386, .x86_64 => &x86.all_features,
.nvptx, .nvptx64 => &nvptx.all_features,
.wasm32, .wasm64 => &wasm.all_features,
else => &[0]Cpu.Feature{},
};
}
/// All processors Zig is aware of, sorted lexicographically by name.
pub fn allCpuModels(arch: Arch) []const *const Cpu.Model {
return switch (arch) {
.arm, .armeb, .thumb, .thumbeb => arm.all_cpus,
.aarch64, .aarch64_be, .aarch64_32 => aarch64.all_cpus,
.avr => avr.all_cpus,
.bpfel, .bpfeb => bpf.all_cpus,
.hexagon => hexagon.all_cpus,
.mips, .mipsel, .mips64, .mips64el => mips.all_cpus,
.msp430 => msp430.all_cpus,
.powerpc, .powerpc64, .powerpc64le => powerpc.all_cpus,
.amdgcn => amdgpu.all_cpus,
.riscv32, .riscv64 => riscv.all_cpus,
.sparc, .sparcv9, .sparcel => sparc.all_cpus,
.s390x => systemz.all_cpus,
.i386, .x86_64 => x86.all_cpus,
.nvptx, .nvptx64 => nvptx.all_cpus,
.wasm32, .wasm64 => wasm.all_cpus,
else => &[0]*const Model{},
};
}
pub fn parse(text: []const u8) !Arch {
const info = @typeInfo(Arch);
inline for (info.Enum.fields) |field| {
if (mem.eql(u8, text, field.name)) {
return @as(Arch, @field(Arch, field.name));
}
}
return error.UnknownArchitecture;
}
};
pub const Model = struct {
name: []const u8,
llvm_name: ?[:0]const u8,
features: Feature.Set,
pub fn toCpu(model: *const Model, arch: Arch) Cpu {
var features = model.features;
features.populateDependencies(arch.allFeaturesList());
return .{
.arch = arch,
.model = model,
.features = features,
};
}
};
/// The "default" set of CPU features for cross-compiling. A conservative set
/// of features that is expected to be supported on most available hardware.
pub fn baseline(arch: Arch) Cpu {
const S = struct {
const generic_model = Model{
.name = "generic",
.llvm_name = null,
.features = Cpu.Feature.Set.empty,
};
};
const model = switch (arch) {
.arm, .armeb, .thumb, .thumbeb => &arm.cpu.baseline,
.aarch64, .aarch64_be, .aarch64_32 => &aarch64.cpu.generic,
.avr => &avr.cpu.avr1,
.bpfel, .bpfeb => &bpf.cpu.generic,
.hexagon => &hexagon.cpu.generic,
.mips, .mipsel => &mips.cpu.mips32,
.mips64, .mips64el => &mips.cpu.mips64,
.msp430 => &msp430.cpu.generic,
.powerpc, .powerpc64, .powerpc64le => &powerpc.cpu.generic,
.amdgcn => &amdgpu.cpu.generic,
.riscv32 => &riscv.cpu.baseline_rv32,
.riscv64 => &riscv.cpu.baseline_rv64,
.sparc, .sparcv9, .sparcel => &sparc.cpu.generic,
.s390x => &systemz.cpu.generic,
.i386 => &x86.cpu.pentium4,
.x86_64 => &x86.cpu.x86_64,
.nvptx, .nvptx64 => &nvptx.cpu.sm_20,
.wasm32, .wasm64 => &wasm.cpu.generic,
else => &S.generic_model,
};
return model.toCpu(arch);
}
};
pub const current = Target{
.Cross = Cross{
.cpu = builtin.cpu,
.os = builtin.os,
.abi = builtin.abi,
},
};
pub const stack_align = 16;
pub fn zigTriple(self: Target, allocator: *mem.Allocator) ![]u8 {
return std.fmt.allocPrint(allocator, "{}-{}-{}", .{
@tagName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
});
}
/// Returned slice must be freed by the caller.
pub fn vcpkgTriplet(allocator: *mem.Allocator, target: Target, linkage: std.build.VcpkgLinkage) ![]const u8 {
const arch = switch (target.getArch()) {
.i386 => "x86",
.x86_64 => "x64",
.arm,
.armeb,
.thumb,
.thumbeb,
.aarch64_32,
=> "arm",
.aarch64,
.aarch64_be,
=> "arm64",
else => return error.VcpkgNoSuchArchitecture,
};
const os = switch (target.getOs()) {
.windows => "windows",
.linux => "linux",
.macosx => "macos",
else => return error.VcpkgNoSuchOs,
};
if (linkage == .Static) {
return try mem.join(allocator, "-", &[_][]const u8{ arch, os, "static" });
} else {
return try mem.join(allocator, "-", &[_][]const u8{ arch, os });
}
}
pub fn allocDescription(self: Target, allocator: *mem.Allocator) ![]u8 {
// TODO is there anything else worthy of the description that is not
// already captured in the triple?
return self.zigTriple(allocator);
}
pub fn zigTripleNoSubArch(self: Target, allocator: *mem.Allocator) ![]u8 {
return std.fmt.allocPrint(allocator, "{}-{}-{}", .{
@tagName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
});
}
pub fn linuxTriple(self: Target, allocator: *mem.Allocator) ![]u8 {
return std.fmt.allocPrint(allocator, "{}-{}-{}", .{
@tagName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
});
}
pub const ParseOptions = struct {
/// This is sometimes called a "triple". It looks roughly like this:
/// riscv64-linux-gnu
/// The fields are, respectively:
/// * CPU Architecture
/// * Operating System
/// * C ABI (optional)
arch_os_abi: []const u8,
/// Looks like "name+a+b-c-d+e", where "name" is a CPU Model name, "a", "b", and "e"
/// are examples of CPU features to add to the set, and "c" and "d" are examples of CPU features
/// to remove from the set.
cpu_features: []const u8 = "baseline",
};
pub fn parse(args: ParseOptions) !Target {
var it = mem.separate(args.arch_os_abi, "-");
const arch_name = it.next() orelse return error.MissingArchitecture;
const os_name = it.next() orelse return error.MissingOperatingSystem;
const abi_name = it.next();
if (it.next() != null) return error.UnexpectedExtraField;
const arch = try Cpu.Arch.parse(arch_name);
const os = try Os.parse(os_name);
const abi = if (abi_name) |n| try Abi.parse(n) else Abi.default(arch, os);
const all_features = arch.allFeaturesList();
var index: usize = 0;
while (index < args.cpu_features.len and
args.cpu_features[index] != '+' and
args.cpu_features[index] != '-')
{
index += 1;
}
const cpu_name = args.cpu_features[0..index];
const cpu: Cpu = if (mem.eql(u8, cpu_name, "baseline")) Cpu.baseline(arch) else blk: {
const cpu_model = try arch.parseCpuModel(cpu_name);
var set = cpu_model.features;
while (index < args.cpu_features.len) {
const op = args.cpu_features[index];
index += 1;
const start = index;
while (index < args.cpu_features.len and
args.cpu_features[index] != '+' and
args.cpu_features[index] != '-')
{
index += 1;
}
const feature_name = args.cpu_features[start..index];
for (all_features) |feature, feat_index_usize| {
const feat_index = @intCast(Cpu.Feature.Set.Index, feat_index_usize);
if (mem.eql(u8, feature_name, feature.name)) {
switch (op) {
'+' => set.addFeature(feat_index),
'-' => set.removeFeature(feat_index),
else => unreachable,
}
break;
}
} else {
return error.UnknownCpuFeature;
}
}
set.populateDependencies(all_features);
break :blk .{
.arch = arch,
.model = cpu_model,
.features = set,
};
};
var cross = Cross{
.cpu = cpu,
.os = os,
.abi = abi,
};
return Target{ .Cross = cross };
}
pub fn oFileExt(self: Target) []const u8 {
return switch (self.getAbi()) {
.msvc => ".obj",
else => ".o",
};
}
pub fn exeFileExt(self: Target) []const u8 {
if (self.isWindows()) {
return ".exe";
} else if (self.isUefi()) {
return ".efi";
} else if (self.isWasm()) {
return ".wasm";
} else {
return "";
}
}
pub fn staticLibSuffix(self: Target) []const u8 {
if (self.isWasm()) {
return ".wasm";
}
switch (self.getAbi()) {
.msvc => return ".lib",
else => return ".a",
}
}
pub fn dynamicLibSuffix(self: Target) []const u8 {
if (self.isDarwin()) {
return ".dylib";
}
switch (self.getOs()) {
.windows => return ".dll",
else => return ".so",
}
}
pub fn libPrefix(self: Target) []const u8 {
if (self.isWasm()) {
return "";
}
switch (self.getAbi()) {
.msvc => return "",
else => return "lib",
}
}
pub fn getOs(self: Target) Os {
return switch (self) {
.Native => builtin.os,
.Cross => |t| t.os,
};
}
pub fn getCpu(self: Target) Cpu {
return switch (self) {
.Native => builtin.cpu,
.Cross => |cross| cross.cpu,
};
}
pub fn getArch(self: Target) Cpu.Arch {
return self.getCpu().arch;
}
pub fn getAbi(self: Target) Abi {
switch (self) {
.Native => return builtin.abi,
.Cross => |t| return t.abi,
}
}
pub fn getObjectFormat(self: Target) ObjectFormat {
switch (self) {
.Native => return @import("builtin").object_format,
.Cross => blk: {
if (self.isWindows() or self.isUefi()) {
return .coff;
} else if (self.isDarwin()) {
return .macho;
}
if (self.isWasm()) {
return .wasm;
}
return .elf;
},
}
}
pub fn isMinGW(self: Target) bool {
return self.isWindows() and self.isGnu();
}
pub fn isGnu(self: Target) bool {
return switch (self.getAbi()) {
.gnu, .gnuabin32, .gnuabi64, .gnueabi, .gnueabihf, .gnux32 => true,
else => false,
};
}
pub fn isMusl(self: Target) bool {
return switch (self.getAbi()) {
.musl, .musleabi, .musleabihf => true,
else => false,
};
}
pub fn isDarwin(self: Target) bool {
return switch (self.getOs()) {
.ios, .macosx, .watchos, .tvos => true,
else => false,
};
}
pub fn isWindows(self: Target) bool {
return switch (self.getOs()) {
.windows => true,
else => false,
};
}
pub fn isLinux(self: Target) bool {
return switch (self.getOs()) {
.linux => true,
else => false,
};
}
pub fn isAndroid(self: Target) bool {
return switch (self.getAbi()) {
.android => true,
else => false,
};
}
pub fn isDragonFlyBSD(self: Target) bool {
return switch (self.getOs()) {
.dragonfly => true,
else => false,
};
}
pub fn isUefi(self: Target) bool {
return switch (self.getOs()) {
.uefi => true,
else => false,
};
}
pub fn isWasm(self: Target) bool {
return switch (self.getArch()) {
.wasm32, .wasm64 => true,
else => false,
};
}
pub fn isFreeBSD(self: Target) bool {
return switch (self.getOs()) {
.freebsd => true,
else => false,
};
}
pub fn isNetBSD(self: Target) bool {
return switch (self.getOs()) {
.netbsd => true,
else => false,
};
}
pub fn wantSharedLibSymLinks(self: Target) bool {
return !self.isWindows();
}
pub fn osRequiresLibC(self: Target) bool {
return self.isDarwin() or self.isFreeBSD() or self.isNetBSD();
}
pub fn getArchPtrBitWidth(self: Target) u32 {
switch (self.getArch()) {
.avr,
.msp430,
=> return 16,
.arc,
.arm,
.armeb,
.hexagon,
.le32,
.mips,
.mipsel,
.powerpc,
.r600,
.riscv32,
.sparc,
.sparcel,
.tce,
.tcele,
.thumb,
.thumbeb,
.i386,
.xcore,
.nvptx,
.amdil,
.hsail,
.spir,
.kalimba,
.shave,
.lanai,
.wasm32,
.renderscript32,
.aarch64_32,
=> return 32,
.aarch64,
.aarch64_be,
.mips64,
.mips64el,
.powerpc64,
.powerpc64le,
.riscv64,
.x86_64,
.nvptx64,
.le64,
.amdil64,
.hsail64,
.spir64,
.wasm64,
.renderscript64,
.amdgcn,
.bpfel,
.bpfeb,
.sparcv9,
.s390x,
=> return 64,
}
}
pub fn supportsNewStackCall(self: Target) bool {
return !self.isWasm();
}
pub const Executor = union(enum) {
native,
qemu: []const u8,
wine: []const u8,
wasmtime: []const u8,
unavailable,
};
pub fn getExternalExecutor(self: Target) Executor {
if (@as(@TagType(Target), self) == .Native) return .native;
// If the target OS matches the host OS, we can use QEMU to emulate a foreign architecture.
if (self.getOs() == builtin.os) {
return switch (self.getArch()) {
.aarch64 => Executor{ .qemu = "qemu-aarch64" },
.aarch64_be => Executor{ .qemu = "qemu-aarch64_be" },
.arm => Executor{ .qemu = "qemu-arm" },
.armeb => Executor{ .qemu = "qemu-armeb" },
.i386 => Executor{ .qemu = "qemu-i386" },
.mips => Executor{ .qemu = "qemu-mips" },
.mipsel => Executor{ .qemu = "qemu-mipsel" },
.mips64 => Executor{ .qemu = "qemu-mips64" },
.mips64el => Executor{ .qemu = "qemu-mips64el" },
.powerpc => Executor{ .qemu = "qemu-ppc" },
.powerpc64 => Executor{ .qemu = "qemu-ppc64" },
.powerpc64le => Executor{ .qemu = "qemu-ppc64le" },
.riscv32 => Executor{ .qemu = "qemu-riscv32" },
.riscv64 => Executor{ .qemu = "qemu-riscv64" },
.s390x => Executor{ .qemu = "qemu-s390x" },
.sparc => Executor{ .qemu = "qemu-sparc" },
.x86_64 => Executor{ .qemu = "qemu-x86_64" },
else => return .unavailable,
};
}
if (self.isWindows()) {
switch (self.getArchPtrBitWidth()) {
32 => return Executor{ .wine = "wine" },
64 => return Executor{ .wine = "wine64" },
else => return .unavailable,
}
}
if (self.getOs() == .wasi) {
switch (self.getArchPtrBitWidth()) {
32 => return Executor{ .wasmtime = "wasmtime" },
else => return .unavailable,
}
}
return .unavailable;
}
pub const FloatAbi = enum {
hard,
soft,
soft_fp,
};
pub fn getFloatAbi(self: Target) FloatAbi {
return switch (self.getAbi()) {
.gnueabihf,
.eabihf,
.musleabihf,
=> .hard,
else => .soft,
};
}
pub fn hasDynamicLinker(self: Target) bool {
switch (self.getArch()) {
.wasm32,
.wasm64,
=> return false,
else => {},
}
switch (self.getOs()) {
.freestanding,
.ios,
.tvos,
.watchos,
.macosx,
.uefi,
.windows,
.emscripten,
.other,
=> return false,
else => return true,
}
}
/// Caller owns returned memory.
pub fn getStandardDynamicLinkerPath(
self: Target,
allocator: *mem.Allocator,
) error{
OutOfMemory,
UnknownDynamicLinkerPath,
TargetHasNoDynamicLinker,
}![:0]u8 {
const a = allocator;
if (self.isAndroid()) {
return mem.dupeZ(a, u8, if (self.getArchPtrBitWidth() == 64)
"/system/bin/linker64"
else
"/system/bin/linker");
}
if (self.isMusl()) {
var result = try std.Buffer.init(allocator, "/lib/ld-musl-");
defer result.deinit();
var is_arm = false;
switch (self.getArch()) {
.arm, .thumb => {
try result.append("arm");
is_arm = true;
},
.armeb, .thumbeb => {
try result.append("armeb");
is_arm = true;
},
else => |arch| try result.append(@tagName(arch)),
}
if (is_arm and self.getFloatAbi() == .hard) {
try result.append("hf");
}
try result.append(".so.1");
return result.toOwnedSlice();
}
switch (self.getOs()) {
.freebsd => return mem.dupeZ(a, u8, "/libexec/ld-elf.so.1"),
.netbsd => return mem.dupeZ(a, u8, "/libexec/ld.elf_so"),
.dragonfly => return mem.dupeZ(a, u8, "/libexec/ld-elf.so.2"),
.linux => switch (self.getArch()) {
.i386,
.sparc,
.sparcel,
=> return mem.dupeZ(a, u8, "/lib/ld-linux.so.2"),
.aarch64 => return mem.dupeZ(a, u8, "/lib/ld-linux-aarch64.so.1"),
.aarch64_be => return mem.dupeZ(a, u8, "/lib/ld-linux-aarch64_be.so.1"),
.aarch64_32 => return mem.dupeZ(a, u8, "/lib/ld-linux-aarch64_32.so.1"),
.arm,
.armeb,
.thumb,
.thumbeb,
=> return mem.dupeZ(a, u8, switch (self.getFloatAbi()) {
.hard => "/lib/ld-linux-armhf.so.3",
else => "/lib/ld-linux.so.3",
}),
.mips,
.mipsel,
.mips64,
.mips64el,
=> return error.UnknownDynamicLinkerPath,
.powerpc => return mem.dupeZ(a, u8, "/lib/ld.so.1"),
.powerpc64, .powerpc64le => return mem.dupeZ(a, u8, "/lib64/ld64.so.2"),
.s390x => return mem.dupeZ(a, u8, "/lib64/ld64.so.1"),
.sparcv9 => return mem.dupeZ(a, u8, "/lib64/ld-linux.so.2"),
.x86_64 => return mem.dupeZ(a, u8, switch (self.getAbi()) {
.gnux32 => "/libx32/ld-linux-x32.so.2",
else => "/lib64/ld-linux-x86-64.so.2",
}),
.riscv32 => return mem.dupeZ(a, u8, "/lib/ld-linux-riscv32-ilp32.so.1"),
.riscv64 => return mem.dupeZ(a, u8, "/lib/ld-linux-riscv64-lp64.so.1"),
.wasm32,
.wasm64,
=> return error.TargetHasNoDynamicLinker,
.arc,
.avr,
.bpfel,
.bpfeb,
.hexagon,
.msp430,
.r600,
.amdgcn,
.tce,
.tcele,
.xcore,
.nvptx,
.nvptx64,
.le32,
.le64,
.amdil,
.amdil64,
.hsail,
.hsail64,
.spir,
.spir64,
.kalimba,
.shave,
.lanai,
.renderscript32,
.renderscript64,
=> return error.UnknownDynamicLinkerPath,
},
.freestanding,
.ios,
.tvos,
.watchos,
.macosx,
.uefi,
.windows,
.emscripten,
.other,
=> return error.TargetHasNoDynamicLinker,
else => return error.UnknownDynamicLinkerPath,
}
}
};
test "Target.parse" {
{
const target = (try Target.parse(.{
.arch_os_abi = "x86_64-linux-gnu",
.cpu = "x86_64-sse-sse2-avx-cx8",
})).Cross;
std.testing.expect(target.os == .linux);
std.testing.expect(target.abi == .gnu);
std.testing.expect(target.cpu.arch == .x86_64);
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .sse));
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .avx));
std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .cx8));
std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .cmov));
std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .fxsr));
}
{
const target = (try Target.parse(.{
.arch_os_abi = "arm-linux-musleabihf",
.cpu = "generic+v8a",
})).Cross;
std.testing.expect(target.os == .linux);
std.testing.expect(target.abi == .musleabihf);
std.testing.expect(target.cpu.arch == .arm);
std.testing.expect(target.cpu.model == &Target.arm.cpu.generic);
std.testing.expect(Target.arm.featureSetHas(target.cpu.features, .v8a));
}
}