zig/lib/std/Build/Fuzz/WebServer.zig
Andrew Kelley 2d005827b8 make lowest stack an internal libfuzzer detail
This value is useful to help determine run uniqueness in the face of
recursion, however it is not valuable to expose to the fuzzing UI.
2024-09-11 13:41:29 -07:00

698 lines
26 KiB
Zig

const builtin = @import("builtin");
const std = @import("../../std.zig");
const Allocator = std.mem.Allocator;
const Build = std.Build;
const Step = std.Build.Step;
const Coverage = std.debug.Coverage;
const abi = std.Build.Fuzz.abi;
const log = std.log;
const assert = std.debug.assert;
const Cache = std.Build.Cache;
const Path = Cache.Path;
const WebServer = @This();
gpa: Allocator,
global_cache_directory: Build.Cache.Directory,
zig_lib_directory: Build.Cache.Directory,
zig_exe_path: []const u8,
listen_address: std.net.Address,
fuzz_run_steps: []const *Step.Run,
/// Messages from fuzz workers. Protected by mutex.
msg_queue: std.ArrayListUnmanaged(Msg),
/// Protects `msg_queue` only.
mutex: std.Thread.Mutex,
/// Signaled when there is a message in `msg_queue`.
condition: std.Thread.Condition,
coverage_files: std.AutoArrayHashMapUnmanaged(u64, CoverageMap),
/// Protects `coverage_files` only.
coverage_mutex: std.Thread.Mutex,
/// Signaled when `coverage_files` changes.
coverage_condition: std.Thread.Condition,
const fuzzer_bin_name = "fuzzer";
const fuzzer_arch_os_abi = "wasm32-freestanding";
const fuzzer_cpu_features = "baseline+atomics+bulk_memory+multivalue+mutable_globals+nontrapping_fptoint+reference_types+sign_ext";
const CoverageMap = struct {
mapped_memory: []align(std.mem.page_size) const u8,
coverage: Coverage,
source_locations: []Coverage.SourceLocation,
/// Elements are indexes into `source_locations` pointing to the unit tests that are being fuzz tested.
entry_points: std.ArrayListUnmanaged(u32),
fn deinit(cm: *CoverageMap, gpa: Allocator) void {
std.posix.munmap(cm.mapped_memory);
cm.coverage.deinit(gpa);
cm.* = undefined;
}
};
const Msg = union(enum) {
coverage: struct {
id: u64,
run: *Step.Run,
},
entry_point: struct {
coverage_id: u64,
addr: u64,
},
};
pub fn run(ws: *WebServer) void {
var http_server = ws.listen_address.listen(.{
.reuse_address = true,
}) catch |err| {
log.err("failed to listen to port {d}: {s}", .{ ws.listen_address.in.getPort(), @errorName(err) });
return;
};
const port = http_server.listen_address.in.getPort();
log.info("web interface listening at http://127.0.0.1:{d}/", .{port});
if (ws.listen_address.in.getPort() == 0)
log.info("hint: pass --port {d} to use this same port next time", .{port});
while (true) {
const connection = http_server.accept() catch |err| {
log.err("failed to accept connection: {s}", .{@errorName(err)});
return;
};
_ = std.Thread.spawn(.{}, accept, .{ ws, connection }) catch |err| {
log.err("unable to spawn connection thread: {s}", .{@errorName(err)});
connection.stream.close();
continue;
};
}
}
fn accept(ws: *WebServer, connection: std.net.Server.Connection) void {
defer connection.stream.close();
var read_buffer: [0x4000]u8 = undefined;
var server = std.http.Server.init(connection, &read_buffer);
var web_socket: std.http.WebSocket = undefined;
var send_buffer: [0x4000]u8 = undefined;
var ws_recv_buffer: [0x4000]u8 align(4) = undefined;
while (server.state == .ready) {
var request = server.receiveHead() catch |err| switch (err) {
error.HttpConnectionClosing => return,
else => {
log.err("closing http connection: {s}", .{@errorName(err)});
return;
},
};
if (web_socket.init(&request, &send_buffer, &ws_recv_buffer) catch |err| {
log.err("initializing web socket: {s}", .{@errorName(err)});
return;
}) {
serveWebSocket(ws, &web_socket) catch |err| {
log.err("unable to serve web socket connection: {s}", .{@errorName(err)});
return;
};
} else {
serveRequest(ws, &request) catch |err| switch (err) {
error.AlreadyReported => return,
else => |e| {
log.err("unable to serve {s}: {s}", .{ request.head.target, @errorName(e) });
return;
},
};
}
}
}
fn serveRequest(ws: *WebServer, request: *std.http.Server.Request) !void {
if (std.mem.eql(u8, request.head.target, "/") or
std.mem.eql(u8, request.head.target, "/debug") or
std.mem.eql(u8, request.head.target, "/debug/"))
{
try serveFile(ws, request, "fuzzer/web/index.html", "text/html");
} else if (std.mem.eql(u8, request.head.target, "/main.js") or
std.mem.eql(u8, request.head.target, "/debug/main.js"))
{
try serveFile(ws, request, "fuzzer/web/main.js", "application/javascript");
} else if (std.mem.eql(u8, request.head.target, "/main.wasm")) {
try serveWasm(ws, request, .ReleaseFast);
} else if (std.mem.eql(u8, request.head.target, "/debug/main.wasm")) {
try serveWasm(ws, request, .Debug);
} else if (std.mem.eql(u8, request.head.target, "/sources.tar") or
std.mem.eql(u8, request.head.target, "/debug/sources.tar"))
{
try serveSourcesTar(ws, request);
} else {
try request.respond("not found", .{
.status = .not_found,
.extra_headers = &.{
.{ .name = "content-type", .value = "text/plain" },
},
});
}
}
fn serveFile(
ws: *WebServer,
request: *std.http.Server.Request,
name: []const u8,
content_type: []const u8,
) !void {
const gpa = ws.gpa;
// The desired API is actually sendfile, which will require enhancing std.http.Server.
// We load the file with every request so that the user can make changes to the file
// and refresh the HTML page without restarting this server.
const file_contents = ws.zig_lib_directory.handle.readFileAlloc(gpa, name, 10 * 1024 * 1024) catch |err| {
log.err("failed to read '{}{s}': {s}", .{ ws.zig_lib_directory, name, @errorName(err) });
return error.AlreadyReported;
};
defer gpa.free(file_contents);
try request.respond(file_contents, .{
.extra_headers = &.{
.{ .name = "content-type", .value = content_type },
cache_control_header,
},
});
}
fn serveWasm(
ws: *WebServer,
request: *std.http.Server.Request,
optimize_mode: std.builtin.OptimizeMode,
) !void {
const gpa = ws.gpa;
var arena_instance = std.heap.ArenaAllocator.init(gpa);
defer arena_instance.deinit();
const arena = arena_instance.allocator();
// Do the compilation every request, so that the user can edit the files
// and see the changes without restarting the server.
const wasm_base_path = try buildWasmBinary(ws, arena, optimize_mode);
const bin_name = try std.zig.binNameAlloc(arena, .{
.root_name = fuzzer_bin_name,
.target = std.zig.system.resolveTargetQuery(std.Build.parseTargetQuery(.{
.arch_os_abi = fuzzer_arch_os_abi,
.cpu_features = fuzzer_cpu_features,
}) catch unreachable) catch unreachable,
.output_mode = .Exe,
});
// std.http.Server does not have a sendfile API yet.
const bin_path = try wasm_base_path.join(arena, bin_name);
const file_contents = try bin_path.root_dir.handle.readFileAlloc(gpa, bin_path.sub_path, 10 * 1024 * 1024);
defer gpa.free(file_contents);
try request.respond(file_contents, .{
.extra_headers = &.{
.{ .name = "content-type", .value = "application/wasm" },
cache_control_header,
},
});
}
fn buildWasmBinary(
ws: *WebServer,
arena: Allocator,
optimize_mode: std.builtin.OptimizeMode,
) !Path {
const gpa = ws.gpa;
const main_src_path: Build.Cache.Path = .{
.root_dir = ws.zig_lib_directory,
.sub_path = "fuzzer/web/main.zig",
};
const walk_src_path: Build.Cache.Path = .{
.root_dir = ws.zig_lib_directory,
.sub_path = "docs/wasm/Walk.zig",
};
const html_render_src_path: Build.Cache.Path = .{
.root_dir = ws.zig_lib_directory,
.sub_path = "docs/wasm/html_render.zig",
};
var argv: std.ArrayListUnmanaged([]const u8) = .{};
try argv.appendSlice(arena, &.{
ws.zig_exe_path, "build-exe", //
"-fno-entry", //
"-O", @tagName(optimize_mode), //
"-target", fuzzer_arch_os_abi, //
"-mcpu", fuzzer_cpu_features, //
"--cache-dir", ws.global_cache_directory.path orelse ".", //
"--global-cache-dir", ws.global_cache_directory.path orelse ".", //
"--name", fuzzer_bin_name, //
"-rdynamic", //
"-fsingle-threaded", //
"--dep", "Walk", //
"--dep", "html_render", //
try std.fmt.allocPrint(arena, "-Mroot={}", .{main_src_path}), //
try std.fmt.allocPrint(arena, "-MWalk={}", .{walk_src_path}), //
"--dep", "Walk", //
try std.fmt.allocPrint(arena, "-Mhtml_render={}", .{html_render_src_path}), //
"--listen=-",
});
var child = std.process.Child.init(argv.items, gpa);
child.stdin_behavior = .Pipe;
child.stdout_behavior = .Pipe;
child.stderr_behavior = .Pipe;
try child.spawn();
var poller = std.io.poll(gpa, enum { stdout, stderr }, .{
.stdout = child.stdout.?,
.stderr = child.stderr.?,
});
defer poller.deinit();
try sendMessage(child.stdin.?, .update);
try sendMessage(child.stdin.?, .exit);
const Header = std.zig.Server.Message.Header;
var result: ?Path = null;
var result_error_bundle = std.zig.ErrorBundle.empty;
const stdout = poller.fifo(.stdout);
poll: while (true) {
while (stdout.readableLength() < @sizeOf(Header)) {
if (!(try poller.poll())) break :poll;
}
const header = stdout.reader().readStruct(Header) catch unreachable;
while (stdout.readableLength() < header.bytes_len) {
if (!(try poller.poll())) break :poll;
}
const body = stdout.readableSliceOfLen(header.bytes_len);
switch (header.tag) {
.zig_version => {
if (!std.mem.eql(u8, builtin.zig_version_string, body)) {
return error.ZigProtocolVersionMismatch;
}
},
.error_bundle => {
const EbHdr = std.zig.Server.Message.ErrorBundle;
const eb_hdr = @as(*align(1) const EbHdr, @ptrCast(body));
const extra_bytes =
body[@sizeOf(EbHdr)..][0 .. @sizeOf(u32) * eb_hdr.extra_len];
const string_bytes =
body[@sizeOf(EbHdr) + extra_bytes.len ..][0..eb_hdr.string_bytes_len];
// TODO: use @ptrCast when the compiler supports it
const unaligned_extra = std.mem.bytesAsSlice(u32, extra_bytes);
const extra_array = try arena.alloc(u32, unaligned_extra.len);
@memcpy(extra_array, unaligned_extra);
result_error_bundle = .{
.string_bytes = try arena.dupe(u8, string_bytes),
.extra = extra_array,
};
},
.emit_digest => {
const EmitDigest = std.zig.Server.Message.EmitDigest;
const ebp_hdr = @as(*align(1) const EmitDigest, @ptrCast(body));
if (!ebp_hdr.flags.cache_hit) {
log.info("source changes detected; rebuilt wasm component", .{});
}
const digest = body[@sizeOf(EmitDigest)..][0..Cache.bin_digest_len];
result = .{
.root_dir = ws.global_cache_directory,
.sub_path = try arena.dupe(u8, "o" ++ std.fs.path.sep_str ++ Cache.binToHex(digest.*)),
};
},
else => {}, // ignore other messages
}
stdout.discard(body.len);
}
const stderr = poller.fifo(.stderr);
if (stderr.readableLength() > 0) {
const owned_stderr = try stderr.toOwnedSlice();
defer gpa.free(owned_stderr);
std.debug.print("{s}", .{owned_stderr});
}
// Send EOF to stdin.
child.stdin.?.close();
child.stdin = null;
switch (try child.wait()) {
.Exited => |code| {
if (code != 0) {
log.err(
"the following command exited with error code {d}:\n{s}",
.{ code, try Build.Step.allocPrintCmd(arena, null, argv.items) },
);
return error.WasmCompilationFailed;
}
},
.Signal, .Stopped, .Unknown => {
log.err(
"the following command terminated unexpectedly:\n{s}",
.{try Build.Step.allocPrintCmd(arena, null, argv.items)},
);
return error.WasmCompilationFailed;
},
}
if (result_error_bundle.errorMessageCount() > 0) {
const color = std.zig.Color.auto;
result_error_bundle.renderToStdErr(color.renderOptions());
log.err("the following command failed with {d} compilation errors:\n{s}", .{
result_error_bundle.errorMessageCount(),
try Build.Step.allocPrintCmd(arena, null, argv.items),
});
return error.WasmCompilationFailed;
}
return result orelse {
log.err("child process failed to report result\n{s}", .{
try Build.Step.allocPrintCmd(arena, null, argv.items),
});
return error.WasmCompilationFailed;
};
}
fn sendMessage(file: std.fs.File, tag: std.zig.Client.Message.Tag) !void {
const header: std.zig.Client.Message.Header = .{
.tag = tag,
.bytes_len = 0,
};
try file.writeAll(std.mem.asBytes(&header));
}
fn serveWebSocket(ws: *WebServer, web_socket: *std.http.WebSocket) !void {
ws.coverage_mutex.lock();
defer ws.coverage_mutex.unlock();
// On first connection, the client needs all the coverage information
// so that subsequent updates can contain only the updated bits.
var prev_unique_runs: usize = 0;
var prev_entry_points: usize = 0;
try sendCoverageContext(ws, web_socket, &prev_unique_runs, &prev_entry_points);
while (true) {
ws.coverage_condition.timedWait(&ws.coverage_mutex, std.time.ns_per_ms * 500) catch {};
try sendCoverageContext(ws, web_socket, &prev_unique_runs, &prev_entry_points);
}
}
fn sendCoverageContext(
ws: *WebServer,
web_socket: *std.http.WebSocket,
prev_unique_runs: *usize,
prev_entry_points: *usize,
) !void {
const coverage_maps = ws.coverage_files.values();
if (coverage_maps.len == 0) return;
// TODO: make each events URL correspond to one coverage map
const coverage_map = &coverage_maps[0];
const cov_header: *const abi.SeenPcsHeader = @ptrCast(coverage_map.mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
const seen_pcs = cov_header.seenBits();
const n_runs = @atomicLoad(usize, &cov_header.n_runs, .monotonic);
const unique_runs = @atomicLoad(usize, &cov_header.unique_runs, .monotonic);
if (prev_unique_runs.* != unique_runs) {
// There has been an update.
if (prev_unique_runs.* == 0) {
// We need to send initial context.
const header: abi.SourceIndexHeader = .{
.flags = .{},
.directories_len = @intCast(coverage_map.coverage.directories.entries.len),
.files_len = @intCast(coverage_map.coverage.files.entries.len),
.source_locations_len = @intCast(coverage_map.source_locations.len),
.string_bytes_len = @intCast(coverage_map.coverage.string_bytes.items.len),
};
const iovecs: [5]std.posix.iovec_const = .{
makeIov(std.mem.asBytes(&header)),
makeIov(std.mem.sliceAsBytes(coverage_map.coverage.directories.keys())),
makeIov(std.mem.sliceAsBytes(coverage_map.coverage.files.keys())),
makeIov(std.mem.sliceAsBytes(coverage_map.source_locations)),
makeIov(coverage_map.coverage.string_bytes.items),
};
try web_socket.writeMessagev(&iovecs, .binary);
}
const header: abi.CoverageUpdateHeader = .{
.n_runs = n_runs,
.unique_runs = unique_runs,
};
const iovecs: [2]std.posix.iovec_const = .{
makeIov(std.mem.asBytes(&header)),
makeIov(std.mem.sliceAsBytes(seen_pcs)),
};
try web_socket.writeMessagev(&iovecs, .binary);
prev_unique_runs.* = unique_runs;
}
if (prev_entry_points.* != coverage_map.entry_points.items.len) {
const header: abi.EntryPointHeader = .{
.flags = .{
.locs_len = @intCast(coverage_map.entry_points.items.len),
},
};
const iovecs: [2]std.posix.iovec_const = .{
makeIov(std.mem.asBytes(&header)),
makeIov(std.mem.sliceAsBytes(coverage_map.entry_points.items)),
};
try web_socket.writeMessagev(&iovecs, .binary);
prev_entry_points.* = coverage_map.entry_points.items.len;
}
}
fn serveSourcesTar(ws: *WebServer, request: *std.http.Server.Request) !void {
const gpa = ws.gpa;
var arena_instance = std.heap.ArenaAllocator.init(gpa);
defer arena_instance.deinit();
const arena = arena_instance.allocator();
var send_buffer: [0x4000]u8 = undefined;
var response = request.respondStreaming(.{
.send_buffer = &send_buffer,
.respond_options = .{
.extra_headers = &.{
.{ .name = "content-type", .value = "application/x-tar" },
cache_control_header,
},
},
});
const DedupeTable = std.ArrayHashMapUnmanaged(Build.Cache.Path, void, Build.Cache.Path.TableAdapter, false);
var dedupe_table: DedupeTable = .{};
defer dedupe_table.deinit(gpa);
for (ws.fuzz_run_steps) |run_step| {
const compile_step_inputs = run_step.producer.?.step.inputs.table;
for (compile_step_inputs.keys(), compile_step_inputs.values()) |dir_path, *file_list| {
try dedupe_table.ensureUnusedCapacity(gpa, file_list.items.len);
for (file_list.items) |sub_path| {
// Special file "." means the entire directory.
if (std.mem.eql(u8, sub_path, ".")) continue;
const joined_path = try dir_path.join(arena, sub_path);
_ = dedupe_table.getOrPutAssumeCapacity(joined_path);
}
}
}
const deduped_paths = dedupe_table.keys();
const SortContext = struct {
pub fn lessThan(this: @This(), lhs: Build.Cache.Path, rhs: Build.Cache.Path) bool {
_ = this;
return switch (std.mem.order(u8, lhs.root_dir.path orelse ".", rhs.root_dir.path orelse ".")) {
.lt => true,
.gt => false,
.eq => std.mem.lessThan(u8, lhs.sub_path, rhs.sub_path),
};
}
};
std.mem.sortUnstable(Build.Cache.Path, deduped_paths, SortContext{}, SortContext.lessThan);
var cwd_cache: ?[]const u8 = null;
var archiver = std.tar.writer(response.writer());
for (deduped_paths) |joined_path| {
var file = joined_path.root_dir.handle.openFile(joined_path.sub_path, .{}) catch |err| {
log.err("failed to open {}: {s}", .{ joined_path, @errorName(err) });
continue;
};
defer file.close();
archiver.prefix = joined_path.root_dir.path orelse try memoizedCwd(arena, &cwd_cache);
try archiver.writeFile(joined_path.sub_path, file);
}
// intentionally omitting the pointless trailer
//try archiver.finish();
try response.end();
}
fn memoizedCwd(arena: Allocator, opt_ptr: *?[]const u8) ![]const u8 {
if (opt_ptr.*) |cached| return cached;
const result = try std.process.getCwdAlloc(arena);
opt_ptr.* = result;
return result;
}
const cache_control_header: std.http.Header = .{
.name = "cache-control",
.value = "max-age=0, must-revalidate",
};
pub fn coverageRun(ws: *WebServer) void {
ws.mutex.lock();
defer ws.mutex.unlock();
while (true) {
ws.condition.wait(&ws.mutex);
for (ws.msg_queue.items) |msg| switch (msg) {
.coverage => |coverage| prepareTables(ws, coverage.run, coverage.id) catch |err| switch (err) {
error.AlreadyReported => continue,
else => |e| log.err("failed to prepare code coverage tables: {s}", .{@errorName(e)}),
},
.entry_point => |entry_point| addEntryPoint(ws, entry_point.coverage_id, entry_point.addr) catch |err| switch (err) {
error.AlreadyReported => continue,
else => |e| log.err("failed to prepare code coverage tables: {s}", .{@errorName(e)}),
},
};
ws.msg_queue.clearRetainingCapacity();
}
}
fn prepareTables(
ws: *WebServer,
run_step: *Step.Run,
coverage_id: u64,
) error{ OutOfMemory, AlreadyReported }!void {
const gpa = ws.gpa;
ws.coverage_mutex.lock();
defer ws.coverage_mutex.unlock();
const gop = try ws.coverage_files.getOrPut(gpa, coverage_id);
if (gop.found_existing) {
// We are fuzzing the same executable with multiple threads.
// Perhaps the same unit test; perhaps a different one. In any
// case, since the coverage file is the same, we only have to
// notice changes to that one file in order to learn coverage for
// this particular executable.
return;
}
errdefer _ = ws.coverage_files.pop();
gop.value_ptr.* = .{
.coverage = std.debug.Coverage.init,
.mapped_memory = undefined, // populated below
.source_locations = undefined, // populated below
.entry_points = .{},
};
errdefer gop.value_ptr.coverage.deinit(gpa);
const rebuilt_exe_path = run_step.rebuilt_executable.?;
var debug_info = std.debug.Info.load(gpa, rebuilt_exe_path, &gop.value_ptr.coverage) catch |err| {
log.err("step '{s}': failed to load debug information for '{}': {s}", .{
run_step.step.name, rebuilt_exe_path, @errorName(err),
});
return error.AlreadyReported;
};
defer debug_info.deinit(gpa);
const coverage_file_path: Build.Cache.Path = .{
.root_dir = run_step.step.owner.cache_root,
.sub_path = "v/" ++ std.fmt.hex(coverage_id),
};
var coverage_file = coverage_file_path.root_dir.handle.openFile(coverage_file_path.sub_path, .{}) catch |err| {
log.err("step '{s}': failed to load coverage file '{}': {s}", .{
run_step.step.name, coverage_file_path, @errorName(err),
});
return error.AlreadyReported;
};
defer coverage_file.close();
const file_size = coverage_file.getEndPos() catch |err| {
log.err("unable to check len of coverage file '{}': {s}", .{ coverage_file_path, @errorName(err) });
return error.AlreadyReported;
};
const mapped_memory = std.posix.mmap(
null,
file_size,
std.posix.PROT.READ,
.{ .TYPE = .SHARED },
coverage_file.handle,
0,
) catch |err| {
log.err("failed to map coverage file '{}': {s}", .{ coverage_file_path, @errorName(err) });
return error.AlreadyReported;
};
gop.value_ptr.mapped_memory = mapped_memory;
const header: *const abi.SeenPcsHeader = @ptrCast(mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
const pcs = header.pcAddrs();
const source_locations = try gpa.alloc(Coverage.SourceLocation, pcs.len);
errdefer gpa.free(source_locations);
// Unfortunately the PCs array that LLVM gives us from the 8-bit PC
// counters feature is not sorted.
var sorted_pcs: std.MultiArrayList(struct { pc: u64, index: u32, sl: Coverage.SourceLocation }) = .{};
defer sorted_pcs.deinit(gpa);
try sorted_pcs.resize(gpa, pcs.len);
@memcpy(sorted_pcs.items(.pc), pcs);
for (sorted_pcs.items(.index), 0..) |*v, i| v.* = @intCast(i);
sorted_pcs.sortUnstable(struct {
addrs: []const u64,
pub fn lessThan(ctx: @This(), a_index: usize, b_index: usize) bool {
return ctx.addrs[a_index] < ctx.addrs[b_index];
}
}{ .addrs = sorted_pcs.items(.pc) });
debug_info.resolveAddresses(gpa, sorted_pcs.items(.pc), sorted_pcs.items(.sl)) catch |err| {
log.err("failed to resolve addresses to source locations: {s}", .{@errorName(err)});
return error.AlreadyReported;
};
for (sorted_pcs.items(.index), sorted_pcs.items(.sl)) |i, sl| source_locations[i] = sl;
gop.value_ptr.source_locations = source_locations;
ws.coverage_condition.broadcast();
}
fn addEntryPoint(ws: *WebServer, coverage_id: u64, addr: u64) error{ AlreadyReported, OutOfMemory }!void {
ws.coverage_mutex.lock();
defer ws.coverage_mutex.unlock();
const coverage_map = ws.coverage_files.getPtr(coverage_id).?;
const header: *const abi.SeenPcsHeader = @ptrCast(coverage_map.mapped_memory[0..@sizeOf(abi.SeenPcsHeader)]);
const pcs = header.pcAddrs();
// Since this pcs list is unsorted, we must linear scan for the best index.
const index = i: {
var best: usize = 0;
for (pcs[1..], 1..) |elem_addr, i| {
if (elem_addr == addr) break :i i;
if (elem_addr > addr) continue;
if (elem_addr > pcs[best]) best = i;
}
break :i best;
};
if (index >= pcs.len) {
log.err("unable to find unit test entry address 0x{x} in source locations (range: 0x{x} to 0x{x})", .{
addr, pcs[0], pcs[pcs.len - 1],
});
return error.AlreadyReported;
}
if (false) {
const sl = coverage_map.source_locations[index];
const file_name = coverage_map.coverage.stringAt(coverage_map.coverage.fileAt(sl.file).basename);
log.debug("server found entry point for 0x{x} at {s}:{d}:{d} - index {d} between {x} and {x}", .{
addr, file_name, sl.line, sl.column, index, pcs[index - 1], pcs[index + 1],
});
}
const gpa = ws.gpa;
try coverage_map.entry_points.append(gpa, @intCast(index));
}
fn makeIov(s: []const u8) std.posix.iovec_const {
return .{
.base = s.ptr,
.len = s.len,
};
}