zig/lib/std/rand/Isaac64.zig
Andrew Kelley 013efaf139 std: introduce a thread-local CSPRNG for general use
std.crypto.random

* cross platform, even freestanding
* can't fail. on initialization for some systems requires calling
  os.getrandom(), in which case there are rare but theoretically
  possible errors. The code panics in these cases, however the
  application may choose to override the default seed function and then
  handle the failure another way.
* thread-safe
* supports the full Random interface
* cryptographically secure
* no syscall required to initialize on Linux (AT_RANDOM)
* calls arc4random on systems that support it

`std.crypto.randomBytes` is removed in favor of `std.crypto.random.bytes`.

I moved some of the Random implementations into their own files in the
interest of organization.

stage2 no longer requires passing a RNG; instead it uses this API.

Closes #6704
2020-12-18 12:22:46 -07:00

211 lines
5.5 KiB
Zig

// SPDX-License-Identifier: MIT
// Copyright (c) 2015-2020 Zig Contributors
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
//! ISAAC64 - http://www.burtleburtle.net/bob/rand/isaacafa.html
//!
//! Follows the general idea of the implementation from here with a few shortcuts.
//! https://doc.rust-lang.org/rand/src/rand/prng/isaac64.rs.html
const std = @import("std");
const Random = std.rand.Random;
const mem = std.mem;
const Isaac64 = @This();
random: Random,
r: [256]u64,
m: [256]u64,
a: u64,
b: u64,
c: u64,
i: usize,
pub fn init(init_s: u64) Isaac64 {
var isaac = Isaac64{
.random = Random{ .fillFn = fill },
.r = undefined,
.m = undefined,
.a = undefined,
.b = undefined,
.c = undefined,
.i = undefined,
};
// seed == 0 => same result as the unseeded reference implementation
isaac.seed(init_s, 1);
return isaac;
}
fn step(self: *Isaac64, mix: u64, base: usize, comptime m1: usize, comptime m2: usize) void {
const x = self.m[base + m1];
self.a = mix +% self.m[base + m2];
const y = self.a +% self.b +% self.m[@intCast(usize, (x >> 3) % self.m.len)];
self.m[base + m1] = y;
self.b = x +% self.m[@intCast(usize, (y >> 11) % self.m.len)];
self.r[self.r.len - 1 - base - m1] = self.b;
}
fn refill(self: *Isaac64) void {
const midpoint = self.r.len / 2;
self.c +%= 1;
self.b +%= self.c;
{
var i: usize = 0;
while (i < midpoint) : (i += 4) {
self.step(~(self.a ^ (self.a << 21)), i + 0, 0, midpoint);
self.step(self.a ^ (self.a >> 5), i + 1, 0, midpoint);
self.step(self.a ^ (self.a << 12), i + 2, 0, midpoint);
self.step(self.a ^ (self.a >> 33), i + 3, 0, midpoint);
}
}
{
var i: usize = 0;
while (i < midpoint) : (i += 4) {
self.step(~(self.a ^ (self.a << 21)), i + 0, midpoint, 0);
self.step(self.a ^ (self.a >> 5), i + 1, midpoint, 0);
self.step(self.a ^ (self.a << 12), i + 2, midpoint, 0);
self.step(self.a ^ (self.a >> 33), i + 3, midpoint, 0);
}
}
self.i = 0;
}
fn next(self: *Isaac64) u64 {
if (self.i >= self.r.len) {
self.refill();
}
const value = self.r[self.i];
self.i += 1;
return value;
}
fn seed(self: *Isaac64, init_s: u64, comptime rounds: usize) void {
// We ignore the multi-pass requirement since we don't currently expose full access to
// seeding the self.m array completely.
mem.set(u64, self.m[0..], 0);
self.m[0] = init_s;
// prescrambled golden ratio constants
var a = [_]u64{
0x647c4677a2884b7c,
0xb9f8b322c73ac862,
0x8c0ea5053d4712a0,
0xb29b2e824a595524,
0x82f053db8355e0ce,
0x48fe4a0fa5a09315,
0xae985bf2cbfc89ed,
0x98f5704f6c44c0ab,
};
comptime var i: usize = 0;
inline while (i < rounds) : (i += 1) {
var j: usize = 0;
while (j < self.m.len) : (j += 8) {
comptime var x1: usize = 0;
inline while (x1 < 8) : (x1 += 1) {
a[x1] +%= self.m[j + x1];
}
a[0] -%= a[4];
a[5] ^= a[7] >> 9;
a[7] +%= a[0];
a[1] -%= a[5];
a[6] ^= a[0] << 9;
a[0] +%= a[1];
a[2] -%= a[6];
a[7] ^= a[1] >> 23;
a[1] +%= a[2];
a[3] -%= a[7];
a[0] ^= a[2] << 15;
a[2] +%= a[3];
a[4] -%= a[0];
a[1] ^= a[3] >> 14;
a[3] +%= a[4];
a[5] -%= a[1];
a[2] ^= a[4] << 20;
a[4] +%= a[5];
a[6] -%= a[2];
a[3] ^= a[5] >> 17;
a[5] +%= a[6];
a[7] -%= a[3];
a[4] ^= a[6] << 14;
a[6] +%= a[7];
comptime var x2: usize = 0;
inline while (x2 < 8) : (x2 += 1) {
self.m[j + x2] = a[x2];
}
}
}
mem.set(u64, self.r[0..], 0);
self.a = 0;
self.b = 0;
self.c = 0;
self.i = self.r.len; // trigger refill on first value
}
fn fill(r: *Random, buf: []u8) void {
const self = @fieldParentPtr(Isaac64, "random", r);
var i: usize = 0;
const aligned_len = buf.len - (buf.len & 7);
// Fill complete 64-byte segments
while (i < aligned_len) : (i += 8) {
var n = self.next();
comptime var j: usize = 0;
inline while (j < 8) : (j += 1) {
buf[i + j] = @truncate(u8, n);
n >>= 8;
}
}
// Fill trailing, ignoring excess (cut the stream).
if (i != buf.len) {
var n = self.next();
while (i < buf.len) : (i += 1) {
buf[i] = @truncate(u8, n);
n >>= 8;
}
}
}
test "isaac64 sequence" {
var r = Isaac64.init(0);
// from reference implementation
const seq = [_]u64{
0xf67dfba498e4937c,
0x84a5066a9204f380,
0xfee34bd5f5514dbb,
0x4d1664739b8f80d6,
0x8607459ab52a14aa,
0x0e78bc5a98529e49,
0xfe5332822ad13777,
0x556c27525e33d01a,
0x08643ca615f3149f,
0xd0771faf3cb04714,
0x30e86f68a37b008d,
0x3074ebc0488a3adf,
0x270645ea7a2790bc,
0x5601a0a8d3763c6a,
0x2f83071f53f325dd,
0xb9090f3d42d2d2ea,
};
for (seq) |s| {
std.testing.expect(s == r.next());
}
}