mirror of
https://github.com/ziglang/zig.git
synced 2025-12-07 06:43:07 +00:00
When exporting math functions for Windows, we provide weak exports of 'l' variants rather than weak aliases. We still use aliases on other operating systems so that the 'l' variants have one less jump instruction in this case.
152 lines
4.8 KiB
Zig
152 lines
4.8 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tanf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/tan.c
|
|
// https://golang.org/src/math/tan.go
|
|
|
|
const std = @import("std");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const kernel = @import("trig.zig");
|
|
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
|
|
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
|
|
|
|
pub fn __tanh(x: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, tanf(x));
|
|
}
|
|
|
|
pub fn tanf(x: f32) callconv(.C) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const t1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const t2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const t3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const t4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__tandf(x, false);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
|
|
return kernel.__tandf((if (sign) x + t1pio2 else x - t1pio2), true);
|
|
} else {
|
|
return kernel.__tandf((if (sign) x + t2pio2 else x - t2pio2), false);
|
|
}
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
|
|
return kernel.__tandf((if (sign) x + t3pio2 else x - t3pio2), true);
|
|
} else {
|
|
return kernel.__tandf((if (sign) x + t4pio2 else x - t4pio2), false);
|
|
}
|
|
}
|
|
|
|
// tan(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = rem_pio2f(x, &y);
|
|
return kernel.__tandf(y, n & 1 != 0);
|
|
}
|
|
|
|
pub fn tan(x: f64) callconv(.C) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e400000) { // |x| < 2**-27
|
|
// raise inexact if x!=0 and underflow if subnormal
|
|
math.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
|
|
return x;
|
|
}
|
|
return kernel.__tan(x, 0.0, false);
|
|
}
|
|
|
|
// tan(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = rem_pio2(x, &y);
|
|
return kernel.__tan(y[0], y[1], n & 1 != 0);
|
|
}
|
|
|
|
pub fn __tanx(x: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, tanq(x));
|
|
}
|
|
|
|
pub fn tanq(x: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return tan(@floatCast(f64, x));
|
|
}
|
|
|
|
pub fn tanl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __tanh(x),
|
|
32 => return tanf(x),
|
|
64 => return tan(x),
|
|
80 => return __tanx(x),
|
|
128 => return tanq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "tan" {
|
|
try expect(tan(@as(f32, 0.0)) == tanf(0.0));
|
|
try expect(tan(@as(f64, 0.0)) == tan(0.0));
|
|
}
|
|
|
|
test "tan32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, tanf(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanf(0.2), 0.202710, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanf(0.8923), 1.240422, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanf(1.5), 14.101420, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanf(37.45), -0.254397, epsilon));
|
|
try expect(math.approxEqAbs(f32, tanf(89.123), 2.285852, epsilon));
|
|
}
|
|
|
|
test "tan64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, tan(0.0), 0.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan(0.2), 0.202710, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan(0.8923), 1.240422, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan(1.5), 14.101420, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan(37.45), -0.254397, epsilon));
|
|
try expect(math.approxEqAbs(f64, tan(89.123), 2.2858376, epsilon));
|
|
}
|
|
|
|
test "tan32.special" {
|
|
try expect(tanf(0.0) == 0.0);
|
|
try expect(tanf(-0.0) == -0.0);
|
|
try expect(math.isNan(tanf(math.inf(f32))));
|
|
try expect(math.isNan(tanf(-math.inf(f32))));
|
|
try expect(math.isNan(tanf(math.nan(f32))));
|
|
}
|
|
|
|
test "tan64.special" {
|
|
try expect(tan(0.0) == 0.0);
|
|
try expect(tan(-0.0) == -0.0);
|
|
try expect(math.isNan(tan(math.inf(f64))));
|
|
try expect(math.isNan(tan(-math.inf(f64))));
|
|
try expect(math.isNan(tan(math.nan(f64))));
|
|
}
|