mirror of
https://github.com/ziglang/zig.git
synced 2025-12-07 06:43:07 +00:00
When exporting math functions for Windows, we provide weak exports of 'l' variants rather than weak aliases. We still use aliases on other operating systems so that the 'l' variants have one less jump instruction in this case.
225 lines
5.8 KiB
Zig
225 lines
5.8 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c
|
|
|
|
const std = @import("std");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
pub fn __exph(a: f16) callconv(.C) f16 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f16, expf(a));
|
|
}
|
|
|
|
pub fn expf(x_: f32) callconv(.C) f32 {
|
|
const half = [_]f32{ 0.5, -0.5 };
|
|
const ln2hi = 6.9314575195e-1;
|
|
const ln2lo = 1.4286067653e-6;
|
|
const invln2 = 1.4426950216e+0;
|
|
const P1 = 1.6666625440e-1;
|
|
const P2 = -2.7667332906e-3;
|
|
|
|
var x = x_;
|
|
var hx = @bitCast(u32, x);
|
|
const sign = @intCast(i32, hx >> 31);
|
|
hx &= 0x7FFFFFFF;
|
|
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
}
|
|
|
|
// |x| >= -87.33655 or nan
|
|
if (hx >= 0x42AEAC50) {
|
|
// nan
|
|
if (hx > 0x7F800000) {
|
|
return x;
|
|
}
|
|
// x >= 88.722839
|
|
if (hx >= 0x42b17218 and sign == 0) {
|
|
return x * 0x1.0p127;
|
|
}
|
|
if (sign != 0) {
|
|
math.doNotOptimizeAway(-0x1.0p-149 / x); // overflow
|
|
// x <= -103.972084
|
|
if (hx >= 0x42CFF1B5) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
var k: i32 = undefined;
|
|
var hi: f32 = undefined;
|
|
var lo: f32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3EB17218) {
|
|
// |x| > 1.5 * ln2
|
|
if (hx > 0x3F851592) {
|
|
k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
|
|
} else {
|
|
k = 1 - sign - sign;
|
|
}
|
|
|
|
const fk = @intToFloat(f32, k);
|
|
hi = x - fk * ln2hi;
|
|
lo = fk * ln2lo;
|
|
x = hi - lo;
|
|
}
|
|
// |x| > 2^(-14)
|
|
else if (hx > 0x39000000) {
|
|
k = 0;
|
|
hi = x;
|
|
lo = 0;
|
|
} else {
|
|
math.doNotOptimizeAway(0x1.0p127 + x); // inexact
|
|
return 1 + x;
|
|
}
|
|
|
|
const xx = x * x;
|
|
const c = x - xx * (P1 + xx * P2);
|
|
const y = 1 + (x * c / (2 - c) - lo + hi);
|
|
|
|
if (k == 0) {
|
|
return y;
|
|
} else {
|
|
return math.scalbn(y, k);
|
|
}
|
|
}
|
|
|
|
pub fn exp(x_: f64) callconv(.C) f64 {
|
|
const half = [_]f64{ 0.5, -0.5 };
|
|
const ln2hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2lo: f64 = 1.90821492927058770002e-10;
|
|
const invln2: f64 = 1.44269504088896338700e+00;
|
|
const P1: f64 = 1.66666666666666019037e-01;
|
|
const P2: f64 = -2.77777777770155933842e-03;
|
|
const P3: f64 = 6.61375632143793436117e-05;
|
|
const P4: f64 = -1.65339022054652515390e-06;
|
|
const P5: f64 = 4.13813679705723846039e-08;
|
|
|
|
var x = x_;
|
|
var ux = @bitCast(u64, x);
|
|
var hx = ux >> 32;
|
|
const sign = @intCast(i32, hx >> 31);
|
|
hx &= 0x7FFFFFFF;
|
|
|
|
if (math.isNan(x)) {
|
|
return x;
|
|
}
|
|
|
|
// |x| >= 708.39 or nan
|
|
if (hx >= 0x4086232B) {
|
|
// nan
|
|
if (hx > 0x7FF00000) {
|
|
return x;
|
|
}
|
|
if (x > 709.782712893383973096) {
|
|
// overflow if x != inf
|
|
if (!math.isInf(x)) {
|
|
math.raiseOverflow();
|
|
}
|
|
return math.inf(f64);
|
|
}
|
|
if (x < -708.39641853226410622) {
|
|
// underflow if x != -inf
|
|
// math.doNotOptimizeAway(@as(f32, -0x1.0p-149 / x));
|
|
if (x < -745.13321910194110842) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// argument reduction
|
|
var k: i32 = undefined;
|
|
var hi: f64 = undefined;
|
|
var lo: f64 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3FD62E42) {
|
|
// |x| >= 1.5 * ln2
|
|
if (hx > 0x3FF0A2B2) {
|
|
k = @floatToInt(i32, invln2 * x + half[@intCast(usize, sign)]);
|
|
} else {
|
|
k = 1 - sign - sign;
|
|
}
|
|
|
|
const dk = @intToFloat(f64, k);
|
|
hi = x - dk * ln2hi;
|
|
lo = dk * ln2lo;
|
|
x = hi - lo;
|
|
}
|
|
// |x| > 2^(-28)
|
|
else if (hx > 0x3E300000) {
|
|
k = 0;
|
|
hi = x;
|
|
lo = 0;
|
|
} else {
|
|
// inexact if x != 0
|
|
// math.doNotOptimizeAway(0x1.0p1023 + x);
|
|
return 1 + x;
|
|
}
|
|
|
|
const xx = x * x;
|
|
const c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
|
|
const y = 1 + (x * c / (2 - c) - lo + hi);
|
|
|
|
if (k == 0) {
|
|
return y;
|
|
} else {
|
|
return math.scalbn(y, k);
|
|
}
|
|
}
|
|
|
|
pub fn __expx(a: f80) callconv(.C) f80 {
|
|
// TODO: more efficient implementation
|
|
return @floatCast(f80, expq(a));
|
|
}
|
|
|
|
pub fn expq(a: f128) callconv(.C) f128 {
|
|
// TODO: more correct implementation
|
|
return exp(@floatCast(f64, a));
|
|
}
|
|
|
|
pub fn expl(x: c_longdouble) callconv(.C) c_longdouble {
|
|
switch (@typeInfo(c_longdouble).Float.bits) {
|
|
16 => return __exph(x),
|
|
32 => return expf(x),
|
|
64 => return exp(x),
|
|
80 => return __expx(x),
|
|
128 => return expq(x),
|
|
else => @compileError("unreachable"),
|
|
}
|
|
}
|
|
|
|
test "exp32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(expf(0.0) == 1.0);
|
|
try expect(math.approxEqAbs(f32, expf(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(0.2), 1.221403, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(0.8923), 2.440737, epsilon));
|
|
try expect(math.approxEqAbs(f32, expf(1.5), 4.481689, epsilon));
|
|
}
|
|
|
|
test "exp64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(exp(0.0) == 1.0);
|
|
try expect(math.approxEqAbs(f64, exp(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(0.2), 1.221403, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(0.8923), 2.440737, epsilon));
|
|
try expect(math.approxEqAbs(f64, exp(1.5), 4.481689, epsilon));
|
|
}
|
|
|
|
test "exp32.special" {
|
|
try expect(math.isPositiveInf(expf(math.inf(f32))));
|
|
try expect(math.isNan(expf(math.nan(f32))));
|
|
}
|
|
|
|
test "exp64.special" {
|
|
try expect(math.isPositiveInf(exp(math.inf(f64))));
|
|
try expect(math.isNan(exp(math.nan(f64))));
|
|
}
|