mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 06:13:07 +00:00
Gimli was a game changer. A permutation that is large enough to be used in sponge-like constructions, yet small enough to be compact to implement and fast on a wide range of platforms. And Gimli being part of the Zig standard library was awesome. But since then, Gimli entered the NIST Lightweight Cryptography Competition, competing againt other candidates sharing a similar set of properties. Unfortunately, Gimli didn't pass the 3rd round. There are no practical attacks against Gimli when used correctly, but NIST's decision means that Gimli is unlikely to ever get any traction. So, maybe the time has come to move Gimli from the standard library to another repository. We shouldn't do it without providing an alternative, though. And the best candidate for this is probably Xoodoo. Xoodoo is the core function of Xoodyak, one of the finalists of the NIST LWC competition, and the most direct competitor to Gimli. It is also a 384-bit permutation, so it can easily be used everywhere Gimli was used with no parameter changes. It is the building block of Xoodyak (for actual encryption and hashing) as well as Charm, that some Zig applications are already using. Like Gimli that it was heavily inspired from, it is compact and suitable for constrained environments. This change adds the Xoodoo permutation to std.crypto.core. The set of public functions includes everything required to later implement existing Xoodoo-based constructions. In order to prepare for the Gimli deprecation, the default CSPRNG was changed to a Xoodoo-based that works exactly the same way.
382 lines
16 KiB
Zig
382 lines
16 KiB
Zig
//! The engines provided here should be initialized from an external source.
|
|
//! For a thread-local cryptographically secure pseudo random number generator,
|
|
//! use `std.crypto.random`.
|
|
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
|
|
//! be faster and use substantially less stack space.
|
|
//!
|
|
//! TODO(tiehuis): Benchmark these against other reference implementations.
|
|
|
|
const std = @import("std.zig");
|
|
const builtin = @import("builtin");
|
|
const assert = std.debug.assert;
|
|
const mem = std.mem;
|
|
const math = std.math;
|
|
const ziggurat = @import("rand/ziggurat.zig");
|
|
const maxInt = std.math.maxInt;
|
|
|
|
/// Fast unbiased random numbers.
|
|
pub const DefaultPrng = Xoshiro256;
|
|
|
|
/// Cryptographically secure random numbers.
|
|
pub const DefaultCsprng = Xoodoo;
|
|
|
|
pub const Isaac64 = @import("rand/Isaac64.zig");
|
|
pub const Xoodoo = @import("rand/Xoodoo.zig");
|
|
pub const Pcg = @import("rand/Pcg.zig");
|
|
pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");
|
|
pub const Xoshiro256 = @import("rand/Xoshiro256.zig");
|
|
pub const Sfc64 = @import("rand/Sfc64.zig");
|
|
pub const RomuTrio = @import("rand/RomuTrio.zig");
|
|
|
|
pub const Random = struct {
|
|
ptr: *anyopaque,
|
|
fillFn: if (builtin.zig_backend == .stage1)
|
|
fn (ptr: *anyopaque, buf: []u8) void
|
|
else
|
|
*const fn (ptr: *anyopaque, buf: []u8) void,
|
|
|
|
pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
|
|
const Ptr = @TypeOf(pointer);
|
|
assert(@typeInfo(Ptr) == .Pointer); // Must be a pointer
|
|
assert(@typeInfo(Ptr).Pointer.size == .One); // Must be a single-item pointer
|
|
assert(@typeInfo(@typeInfo(Ptr).Pointer.child) == .Struct); // Must point to a struct
|
|
const gen = struct {
|
|
fn fill(ptr: *anyopaque, buf: []u8) void {
|
|
const alignment = @typeInfo(Ptr).Pointer.alignment;
|
|
const self = @ptrCast(Ptr, @alignCast(alignment, ptr));
|
|
fillFn(self, buf);
|
|
}
|
|
};
|
|
|
|
return .{
|
|
.ptr = pointer,
|
|
.fillFn = gen.fill,
|
|
};
|
|
}
|
|
|
|
/// Read random bytes into the specified buffer until full.
|
|
pub fn bytes(r: Random, buf: []u8) void {
|
|
r.fillFn(r.ptr, buf);
|
|
}
|
|
|
|
pub fn boolean(r: Random) bool {
|
|
return r.int(u1) != 0;
|
|
}
|
|
|
|
/// Returns a random value from an enum, evenly distributed.
|
|
pub fn enumValue(r: Random, comptime EnumType: type) EnumType {
|
|
comptime assert(@typeInfo(EnumType) == .Enum);
|
|
|
|
// We won't use int -> enum casting because enum elements can have
|
|
// arbitrary values. Instead we'll randomly pick one of the type's values.
|
|
const values = std.enums.values(EnumType);
|
|
const index = r.uintLessThan(usize, values.len);
|
|
return values[index];
|
|
}
|
|
|
|
/// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
|
|
/// `i` is evenly distributed.
|
|
pub fn int(r: Random, comptime T: type) T {
|
|
const bits = @typeInfo(T).Int.bits;
|
|
const UnsignedT = std.meta.Int(.unsigned, bits);
|
|
const ByteAlignedT = std.meta.Int(.unsigned, @divTrunc(bits + 7, 8) * 8);
|
|
|
|
var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
|
|
r.bytes(rand_bytes[0..]);
|
|
|
|
// use LE instead of native endian for better portability maybe?
|
|
// TODO: endian portability is pointless if the underlying prng isn't endian portable.
|
|
// TODO: document the endian portability of this library.
|
|
const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
|
|
const unsigned_result = @truncate(UnsignedT, byte_aligned_result);
|
|
return @bitCast(T, unsigned_result);
|
|
}
|
|
|
|
/// Constant-time implementation off `uintLessThan`.
|
|
/// The results of this function may be biased.
|
|
pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
|
assert(0 < less_than);
|
|
if (bits <= 32) {
|
|
return @intCast(T, limitRangeBiased(u32, r.int(u32), less_than));
|
|
} else {
|
|
return @intCast(T, limitRangeBiased(u64, r.int(u64), less_than));
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
|
|
/// This function assumes that the underlying `fillFn` produces evenly distributed values.
|
|
/// Within this assumption, the runtime of this function is exponentially distributed.
|
|
/// If `fillFn` were backed by a true random generator,
|
|
/// the runtime of this function would technically be unbounded.
|
|
/// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
|
|
/// this function is guaranteed to return.
|
|
/// If you need deterministic runtime bounds, use `uintLessThanBiased`.
|
|
pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
|
|
assert(0 < less_than);
|
|
// Small is typically u32
|
|
const small_bits = @divTrunc(bits + 31, 32) * 32;
|
|
const Small = std.meta.Int(.unsigned, small_bits);
|
|
// Large is typically u64
|
|
const Large = std.meta.Int(.unsigned, small_bits * 2);
|
|
|
|
// adapted from:
|
|
// http://www.pcg-random.org/posts/bounded-rands.html
|
|
// "Lemire's (with an extra tweak from me)"
|
|
var x: Small = r.int(Small);
|
|
var m: Large = @as(Large, x) * @as(Large, less_than);
|
|
var l: Small = @truncate(Small, m);
|
|
if (l < less_than) {
|
|
var t: Small = -%less_than;
|
|
|
|
if (t >= less_than) {
|
|
t -= less_than;
|
|
if (t >= less_than) {
|
|
t %= less_than;
|
|
}
|
|
}
|
|
while (l < t) {
|
|
x = r.int(Small);
|
|
m = @as(Large, x) * @as(Large, less_than);
|
|
l = @truncate(Small, m);
|
|
}
|
|
}
|
|
return @intCast(T, m >> small_bits);
|
|
}
|
|
|
|
/// Constant-time implementation off `uintAtMost`.
|
|
/// The results of this function may be biased.
|
|
pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
|
|
assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
if (at_most == maxInt(T)) {
|
|
// have the full range
|
|
return r.int(T);
|
|
}
|
|
return r.uintLessThanBiased(T, at_most + 1);
|
|
}
|
|
|
|
/// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
|
|
assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
if (at_most == maxInt(T)) {
|
|
// have the full range
|
|
return r.int(T);
|
|
}
|
|
return r.uintLessThan(T, at_most + 1);
|
|
}
|
|
|
|
/// Constant-time implementation off `intRangeLessThan`.
|
|
/// The results of this function may be biased.
|
|
pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
|
|
assert(at_least < less_than);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @bitCast(UnsignedT, at_least);
|
|
const hi = @bitCast(UnsignedT, less_than);
|
|
const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
|
|
return @bitCast(T, result);
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintLessThanBiased(T, less_than - at_least);
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random integer `at_least <= i < less_than`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
|
|
assert(at_least < less_than);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @bitCast(UnsignedT, at_least);
|
|
const hi = @bitCast(UnsignedT, less_than);
|
|
const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
|
|
return @bitCast(T, result);
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintLessThan(T, less_than - at_least);
|
|
}
|
|
}
|
|
|
|
/// Constant-time implementation off `intRangeAtMostBiased`.
|
|
/// The results of this function may be biased.
|
|
pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
|
|
assert(at_least <= at_most);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @bitCast(UnsignedT, at_least);
|
|
const hi = @bitCast(UnsignedT, at_most);
|
|
const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
|
|
return @bitCast(T, result);
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintAtMostBiased(T, at_most - at_least);
|
|
}
|
|
}
|
|
|
|
/// Returns an evenly distributed random integer `at_least <= i <= at_most`.
|
|
/// See `uintLessThan`, which this function uses in most cases,
|
|
/// for commentary on the runtime of this function.
|
|
pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
|
|
assert(at_least <= at_most);
|
|
const info = @typeInfo(T).Int;
|
|
if (info.signedness == .signed) {
|
|
// Two's complement makes this math pretty easy.
|
|
const UnsignedT = std.meta.Int(.unsigned, info.bits);
|
|
const lo = @bitCast(UnsignedT, at_least);
|
|
const hi = @bitCast(UnsignedT, at_most);
|
|
const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
|
|
return @bitCast(T, result);
|
|
} else {
|
|
// The signed implementation would work fine, but we can use stricter arithmetic operators here.
|
|
return at_least + r.uintAtMost(T, at_most - at_least);
|
|
}
|
|
}
|
|
|
|
/// Return a floating point value evenly distributed in the range [0, 1).
|
|
pub fn float(r: Random, comptime T: type) T {
|
|
// Generate a uniformly random value for the mantissa.
|
|
// Then generate an exponentially biased random value for the exponent.
|
|
// This covers every possible value in the range.
|
|
switch (T) {
|
|
f32 => {
|
|
// Use 23 random bits for the mantissa, and the rest for the exponent.
|
|
// If all 41 bits are zero, generate additional random bits, until a
|
|
// set bit is found, or 126 bits have been generated.
|
|
const rand = r.int(u64);
|
|
var rand_lz = @clz(u64, rand);
|
|
if (rand_lz >= 41) {
|
|
// TODO: when #5177 or #489 is implemented,
|
|
// tell the compiler it is unlikely (1/2^41) to reach this point.
|
|
// (Same for the if branch and the f64 calculations below.)
|
|
rand_lz = 41 + @clz(u64, r.int(u64));
|
|
if (rand_lz == 41 + 64) {
|
|
// It is astronomically unlikely to reach this point.
|
|
rand_lz += @clz(u32, r.int(u32) | 0x7FF);
|
|
}
|
|
}
|
|
const mantissa = @truncate(u23, rand);
|
|
const exponent = @as(u32, 126 - rand_lz) << 23;
|
|
return @bitCast(f32, exponent | mantissa);
|
|
},
|
|
f64 => {
|
|
// Use 52 random bits for the mantissa, and the rest for the exponent.
|
|
// If all 12 bits are zero, generate additional random bits, until a
|
|
// set bit is found, or 1022 bits have been generated.
|
|
const rand = r.int(u64);
|
|
var rand_lz: u64 = @clz(u64, rand);
|
|
if (rand_lz >= 12) {
|
|
rand_lz = 12;
|
|
while (true) {
|
|
// It is astronomically unlikely for this loop to execute more than once.
|
|
const addl_rand_lz = @clz(u64, r.int(u64));
|
|
rand_lz += addl_rand_lz;
|
|
if (addl_rand_lz != 64) {
|
|
break;
|
|
}
|
|
if (rand_lz >= 1022) {
|
|
rand_lz = 1022;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
const mantissa = rand & 0xFFFFFFFFFFFFF;
|
|
const exponent = (1022 - rand_lz) << 52;
|
|
return @bitCast(f64, exponent | mantissa);
|
|
},
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Return a floating point value normally distributed with mean = 0, stddev = 1.
|
|
///
|
|
/// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
|
|
pub fn floatNorm(r: Random, comptime T: type) T {
|
|
const value = ziggurat.next_f64(r, ziggurat.NormDist);
|
|
switch (T) {
|
|
f32 => return @floatCast(f32, value),
|
|
f64 => return value,
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Return an exponentially distributed float with a rate parameter of 1.
|
|
///
|
|
/// To use a different rate parameter, use: floatExp(...) / desiredRate.
|
|
pub fn floatExp(r: Random, comptime T: type) T {
|
|
const value = ziggurat.next_f64(r, ziggurat.ExpDist);
|
|
switch (T) {
|
|
f32 => return @floatCast(f32, value),
|
|
f64 => return value,
|
|
else => @compileError("unknown floating point type"),
|
|
}
|
|
}
|
|
|
|
/// Shuffle a slice into a random order.
|
|
pub fn shuffle(r: Random, comptime T: type, buf: []T) void {
|
|
if (buf.len < 2) {
|
|
return;
|
|
}
|
|
|
|
var i: usize = 0;
|
|
while (i < buf.len - 1) : (i += 1) {
|
|
const j = r.intRangeLessThan(usize, i, buf.len);
|
|
mem.swap(T, &buf[i], &buf[j]);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Convert a random integer 0 <= random_int <= maxValue(T),
|
|
/// into an integer 0 <= result < less_than.
|
|
/// This function introduces a minor bias.
|
|
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
|
|
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
|
|
const bits = @typeInfo(T).Int.bits;
|
|
const T2 = std.meta.Int(.unsigned, bits * 2);
|
|
|
|
// adapted from:
|
|
// http://www.pcg-random.org/posts/bounded-rands.html
|
|
// "Integer Multiplication (Biased)"
|
|
var m: T2 = @as(T2, random_int) * @as(T2, less_than);
|
|
return @intCast(T, m >> bits);
|
|
}
|
|
|
|
// Generator to extend 64-bit seed values into longer sequences.
|
|
//
|
|
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
|
|
// is still plenty for practical purposes.
|
|
pub const SplitMix64 = struct {
|
|
s: u64,
|
|
|
|
pub fn init(seed: u64) SplitMix64 {
|
|
return SplitMix64{ .s = seed };
|
|
}
|
|
|
|
pub fn next(self: *SplitMix64) u64 {
|
|
self.s +%= 0x9e3779b97f4a7c15;
|
|
|
|
var z = self.s;
|
|
z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
|
|
z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
|
|
return z ^ (z >> 31);
|
|
}
|
|
};
|
|
|
|
test {
|
|
std.testing.refAllDecls(@This());
|
|
_ = @import("rand/test.zig");
|
|
}
|