mirror of
https://github.com/ziglang/zig.git
synced 2025-12-27 16:43:07 +00:00
There are two main ways in which a value can be stored: "Direct", as it will be operated on as an immediate value, and "indirect", as it is stored in memory. Some types need a different representation here: Bools, for example, are opaque in SPIR-V, and so these need to have a different representation in memory. The bool operations are not easily interchangable with integer operations, though, so they need to be OpTypeBool as immediate value.
1954 lines
85 KiB
Zig
1954 lines
85 KiB
Zig
const std = @import("std");
|
|
const Allocator = std.mem.Allocator;
|
|
const Target = std.Target;
|
|
const log = std.log.scoped(.codegen);
|
|
const assert = std.debug.assert;
|
|
|
|
const Module = @import("../Module.zig");
|
|
const Decl = Module.Decl;
|
|
const Type = @import("../type.zig").Type;
|
|
const Value = @import("../value.zig").Value;
|
|
const LazySrcLoc = Module.LazySrcLoc;
|
|
const Air = @import("../Air.zig");
|
|
const Zir = @import("../Zir.zig");
|
|
const Liveness = @import("../Liveness.zig");
|
|
|
|
const spec = @import("spirv/spec.zig");
|
|
const Opcode = spec.Opcode;
|
|
const Word = spec.Word;
|
|
const IdRef = spec.IdRef;
|
|
const IdResult = spec.IdResult;
|
|
const IdResultType = spec.IdResultType;
|
|
|
|
const SpvModule = @import("spirv/Module.zig");
|
|
const SpvSection = @import("spirv/Section.zig");
|
|
const SpvType = @import("spirv/type.zig").Type;
|
|
const SpvAssembler = @import("spirv/Assembler.zig");
|
|
|
|
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
|
|
|
|
const IncomingBlock = struct {
|
|
src_label_id: IdRef,
|
|
break_value_id: IdRef,
|
|
};
|
|
|
|
pub const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct {
|
|
label_id: IdRef,
|
|
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
|
|
});
|
|
|
|
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
|
pub const DeclGen = struct {
|
|
/// A general-purpose allocator that can be used for any allocations for this DeclGen.
|
|
gpa: Allocator,
|
|
|
|
/// The Zig module that we are generating decls for.
|
|
module: *Module,
|
|
|
|
/// The SPIR-V module that instructions should be emitted into.
|
|
spv: *SpvModule,
|
|
|
|
/// The decl we are currently generating code for.
|
|
decl_index: Decl.Index,
|
|
|
|
/// The intermediate code of the declaration we are currently generating. Note: If
|
|
/// the declaration is not a function, this value will be undefined!
|
|
air: Air,
|
|
|
|
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
|
|
/// Note: If the declaration is not a function, this value will be undefined!
|
|
liveness: Liveness,
|
|
|
|
ids: *const std.AutoHashMap(Decl.Index, IdResult),
|
|
|
|
/// An array of function argument result-ids. Each index corresponds with the
|
|
/// function argument of the same index.
|
|
args: std.ArrayListUnmanaged(IdRef) = .{},
|
|
|
|
/// A counter to keep track of how many `arg` instructions we've seen yet.
|
|
next_arg_index: u32,
|
|
|
|
/// A map keeping track of which instruction generated which result-id.
|
|
inst_results: InstMap = .{},
|
|
|
|
/// We need to keep track of result ids for block labels, as well as the 'incoming'
|
|
/// blocks for a block.
|
|
blocks: BlockMap = .{},
|
|
|
|
/// The label of the SPIR-V block we are currently generating.
|
|
current_block_label_id: IdRef,
|
|
|
|
/// The code (prologue and body) for the function we are currently generating code for.
|
|
func: SpvModule.Fn = .{},
|
|
|
|
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
|
|
/// Memory is owned by `module.gpa`.
|
|
error_msg: ?*Module.ErrorMsg,
|
|
|
|
/// Possible errors the `genDecl` function may return.
|
|
const Error = error{ CodegenFail, OutOfMemory };
|
|
|
|
/// This structure is used to return information about a type typically used for
|
|
/// arithmetic operations. These types may either be integers, floats, or a vector
|
|
/// of these. Most scalar operations also work on vectors, so we can easily represent
|
|
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
|
|
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
|
|
const ArithmeticTypeInfo = struct {
|
|
/// A classification of the inner type.
|
|
const Class = enum {
|
|
/// A boolean.
|
|
bool,
|
|
|
|
/// A regular, **native**, integer.
|
|
/// This is only returned when the backend supports this int as a native type (when
|
|
/// the relevant capability is enabled).
|
|
integer,
|
|
|
|
/// A regular float. These are all required to be natively supported. Floating points
|
|
/// for which the relevant capability is not enabled are not emulated.
|
|
float,
|
|
|
|
/// An integer of a 'strange' size (which' bit size is not the same as its backing
|
|
/// type. **Note**: this may **also** include power-of-2 integers for which the
|
|
/// relevant capability is not enabled), but still within the limits of the largest
|
|
/// natively supported integer type.
|
|
strange_integer,
|
|
|
|
/// An integer with more bits than the largest natively supported integer type.
|
|
composite_integer,
|
|
};
|
|
|
|
/// The number of bits in the inner type.
|
|
/// This is the actual number of bits of the type, not the size of the backing integer.
|
|
bits: u16,
|
|
|
|
/// Whether the type is a vector.
|
|
is_vector: bool,
|
|
|
|
/// Whether the inner type is signed. Only relevant for integers.
|
|
signedness: std.builtin.Signedness,
|
|
|
|
/// A classification of the inner type. These scenarios
|
|
/// will all have to be handled slightly different.
|
|
class: Class,
|
|
};
|
|
|
|
/// Data can be lowered into in two basic representations: indirect, which is when
|
|
/// a type is stored in memory, and direct, which is how a type is stored when its
|
|
/// a direct SPIR-V value.
|
|
const Repr = enum {
|
|
/// A SPIR-V value as it would be used in operations.
|
|
direct,
|
|
/// A SPIR-V value as it is stored in memory.
|
|
indirect,
|
|
};
|
|
|
|
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
|
|
/// only set when `gen` is called.
|
|
pub fn init(
|
|
allocator: Allocator,
|
|
module: *Module,
|
|
spv: *SpvModule,
|
|
ids: *const std.AutoHashMap(Decl.Index, IdResult),
|
|
) DeclGen {
|
|
return .{
|
|
.gpa = allocator,
|
|
.module = module,
|
|
.spv = spv,
|
|
.decl_index = undefined,
|
|
.air = undefined,
|
|
.liveness = undefined,
|
|
.ids = ids,
|
|
.next_arg_index = undefined,
|
|
.current_block_label_id = undefined,
|
|
.error_msg = undefined,
|
|
};
|
|
}
|
|
|
|
/// Generate the code for `decl`. If a reportable error occurred during code generation,
|
|
/// a message is returned by this function. Callee owns the memory. If this function
|
|
/// returns such a reportable error, it is valid to be called again for a different decl.
|
|
pub fn gen(self: *DeclGen, decl_index: Decl.Index, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
|
|
// Reset internal resources, we don't want to re-allocate these.
|
|
self.decl_index = decl_index;
|
|
self.air = air;
|
|
self.liveness = liveness;
|
|
self.args.items.len = 0;
|
|
self.next_arg_index = 0;
|
|
self.inst_results.clearRetainingCapacity();
|
|
self.blocks.clearRetainingCapacity();
|
|
self.current_block_label_id = undefined;
|
|
self.func.reset();
|
|
self.error_msg = null;
|
|
|
|
self.genDecl() catch |err| switch (err) {
|
|
error.CodegenFail => return self.error_msg,
|
|
else => |others| {
|
|
// There might be an error that happened *after* self.error_msg
|
|
// was already allocated, so be sure to free it.
|
|
if (self.error_msg) |error_msg| {
|
|
error_msg.deinit(self.module.gpa);
|
|
}
|
|
return others;
|
|
},
|
|
};
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Free resources owned by the DeclGen.
|
|
pub fn deinit(self: *DeclGen) void {
|
|
self.args.deinit(self.gpa);
|
|
self.inst_results.deinit(self.gpa);
|
|
self.blocks.deinit(self.gpa);
|
|
self.func.deinit(self.gpa);
|
|
}
|
|
|
|
/// Return the target which we are currently compiling for.
|
|
pub fn getTarget(self: *DeclGen) std.Target {
|
|
return self.module.getTarget();
|
|
}
|
|
|
|
pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
@setCold(true);
|
|
const src = LazySrcLoc.nodeOffset(0);
|
|
const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index));
|
|
assert(self.error_msg == null);
|
|
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
|
|
return error.CodegenFail;
|
|
}
|
|
|
|
pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
|
|
return self.fail("TODO (SPIR-V): " ++ format, args);
|
|
}
|
|
|
|
/// Fetch the result-id for a previously generated instruction or constant.
|
|
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
|
|
if (self.air.value(inst)) |val| {
|
|
return self.genConstant(self.air.typeOf(inst), val, .direct);
|
|
}
|
|
const index = Air.refToIndex(inst).?;
|
|
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
|
|
}
|
|
|
|
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
|
|
/// block we are currently generating.
|
|
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
|
|
/// keep track of the previous block.
|
|
fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void {
|
|
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id });
|
|
self.current_block_label_id = label_id;
|
|
}
|
|
|
|
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
|
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
|
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
|
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
|
/// that size. In this case, multiple elements of the largest type should be used.
|
|
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
|
/// The result is valid to be used with OpTypeInt.
|
|
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
|
|
/// TODO: Should the result of this function be cached?
|
|
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
|
|
const target = self.getTarget();
|
|
|
|
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
|
|
assert(bits != 0);
|
|
|
|
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
|
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
|
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
|
.{ .bits = 8, .feature = .Int8 },
|
|
.{ .bits = 16, .feature = .Int16 },
|
|
.{ .bits = 32, .feature = null },
|
|
.{ .bits = 64, .feature = .Int64 },
|
|
};
|
|
|
|
for (ints) |int| {
|
|
const has_feature = if (int.feature) |feature|
|
|
Target.spirv.featureSetHas(target.cpu.features, feature)
|
|
else
|
|
true;
|
|
|
|
if (bits <= int.bits and has_feature) {
|
|
return int.bits;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
|
/// the Int64 capability is enabled).
|
|
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
|
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
|
/// is no way of knowing whether those are actually supported.
|
|
/// TODO: Maybe this should be cached?
|
|
fn largestSupportedIntBits(self: *DeclGen) u16 {
|
|
const target = self.getTarget();
|
|
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
|
|
64
|
|
else
|
|
32;
|
|
}
|
|
|
|
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
|
/// arrays of largestSupportedIntBits().
|
|
/// Asserts `ty` is an integer.
|
|
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
|
|
return self.backingIntBits(ty) == null;
|
|
}
|
|
|
|
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
|
|
const target = self.getTarget();
|
|
return switch (ty.zigTypeTag()) {
|
|
.Bool => ArithmeticTypeInfo{
|
|
.bits = 1, // Doesn't matter for this class.
|
|
.is_vector = false,
|
|
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
|
.class = .bool,
|
|
},
|
|
.Float => ArithmeticTypeInfo{
|
|
.bits = ty.floatBits(target),
|
|
.is_vector = false,
|
|
.signedness = .signed, // Technically, but doesn't matter for this class.
|
|
.class = .float,
|
|
},
|
|
.Int => blk: {
|
|
const int_info = ty.intInfo(target);
|
|
// TODO: Maybe it's useful to also return this value.
|
|
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
|
break :blk ArithmeticTypeInfo{
|
|
.bits = int_info.bits,
|
|
.is_vector = false,
|
|
.signedness = int_info.signedness,
|
|
.class = if (maybe_backing_bits) |backing_bits|
|
|
if (backing_bits == int_info.bits)
|
|
ArithmeticTypeInfo.Class.integer
|
|
else
|
|
ArithmeticTypeInfo.Class.strange_integer
|
|
else
|
|
.composite_integer,
|
|
};
|
|
},
|
|
// As of yet, there is no vector support in the self-hosted compiler.
|
|
.Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}),
|
|
// TODO: For which types is this the case?
|
|
else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmtDebug()}),
|
|
};
|
|
}
|
|
|
|
fn constInt(self: *DeclGen, ty_ref: SpvType.Ref, value: anytype) !IdRef {
|
|
const ty = self.spv.typeRefType(ty_ref);
|
|
const ty_id = self.typeId(ty_ref);
|
|
|
|
const literal: spec.LiteralContextDependentNumber = switch (ty.intSignedness()) {
|
|
.signed => switch (ty.intFloatBits()) {
|
|
1...32 => .{ .int32 = @intCast(i32, value) },
|
|
33...64 => .{ .int64 = @intCast(i64, value) },
|
|
else => unreachable, // TODO: composite integer literals
|
|
},
|
|
.unsigned => switch (ty.intFloatBits()) {
|
|
1...32 => .{ .uint32 = @intCast(u32, value) },
|
|
33...64 => .{ .uint64 = @intCast(u64, value) },
|
|
else => unreachable,
|
|
},
|
|
};
|
|
|
|
return try self.spv.emitConstant(ty_id, literal);
|
|
}
|
|
|
|
/// Generate a constant representing `val`.
|
|
/// TODO: Deduplication?
|
|
fn genConstant(self: *DeclGen, ty: Type, val: Value, repr: Repr) Error!IdRef {
|
|
if (ty.zigTypeTag() == .Fn) {
|
|
const fn_decl_index = switch (val.tag()) {
|
|
.extern_fn => val.castTag(.extern_fn).?.data.owner_decl,
|
|
.function => val.castTag(.function).?.data.owner_decl,
|
|
else => unreachable,
|
|
};
|
|
const decl = self.module.declPtr(fn_decl_index);
|
|
self.module.markDeclAlive(decl);
|
|
return self.ids.get(fn_decl_index).?;
|
|
}
|
|
|
|
const target = self.getTarget();
|
|
const section = &self.spv.sections.types_globals_constants;
|
|
const result_ty_ref = try self.resolveType(ty, repr);
|
|
const result_ty_id = self.typeId(result_ty_ref);
|
|
|
|
if (val.isUndef()) {
|
|
const result_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = result_ty_id, .id_result = result_id });
|
|
return result_id;
|
|
}
|
|
|
|
switch (ty.zigTypeTag()) {
|
|
.Int => {
|
|
const int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt(target)) else val.toUnsignedInt(target);
|
|
return self.constInt(result_ty_ref, int_bits);
|
|
},
|
|
.Bool => switch (repr) {
|
|
.direct => {
|
|
const result_id = self.spv.allocId();
|
|
const operands = .{ .id_result_type = result_ty_id, .id_result = result_id };
|
|
if (val.toBool()) {
|
|
try section.emit(self.spv.gpa, .OpConstantTrue, operands);
|
|
} else {
|
|
try section.emit(self.spv.gpa, .OpConstantFalse, operands);
|
|
}
|
|
return result_id;
|
|
},
|
|
.indirect => return try self.constInt(result_ty_ref, @boolToInt(val.toBool())),
|
|
},
|
|
.Float => {
|
|
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
|
|
// would have exited at resolveTypeId(ty).
|
|
const literal: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
|
|
// Prevent upcasting to f32 by bitcasting and writing as a uint32.
|
|
16 => .{ .uint32 = @bitCast(u16, val.toFloat(f16)) },
|
|
32 => .{ .float32 = val.toFloat(f32) },
|
|
64 => .{ .float64 = val.toFloat(f64) },
|
|
128 => unreachable, // Filtered out in the call to resolveTypeId.
|
|
// TODO: Insert case for long double when the layout for that is determined?
|
|
else => unreachable,
|
|
};
|
|
|
|
return try self.spv.emitConstant(result_ty_id, literal);
|
|
},
|
|
.Array => switch (val.tag()) {
|
|
.aggregate => { // todo: combine with Vector
|
|
const elem_vals = val.castTag(.aggregate).?.data;
|
|
const elem_ty = ty.elemType();
|
|
const len = @intCast(u32, ty.arrayLenIncludingSentinel()); // TODO: limit spir-v to 32 bit arrays in a more elegant way.
|
|
const constituents = try self.spv.gpa.alloc(IdRef, len);
|
|
defer self.spv.gpa.free(constituents);
|
|
for (elem_vals[0..len], 0..) |elem_val, i| {
|
|
constituents[i] = try self.genConstant(elem_ty, elem_val, repr);
|
|
}
|
|
const result_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpConstantComposite, .{
|
|
.id_result_type = result_ty_id,
|
|
.id_result = result_id,
|
|
.constituents = constituents,
|
|
});
|
|
return result_id;
|
|
},
|
|
.repeated => {
|
|
const elem_val = val.castTag(.repeated).?.data;
|
|
const elem_ty = ty.elemType();
|
|
const len = @intCast(u32, ty.arrayLenIncludingSentinel()); // TODO: limit spir-v to 32 bit arrays in a more elegant way.
|
|
const constituents = try self.spv.gpa.alloc(IdRef, len);
|
|
defer self.spv.gpa.free(constituents);
|
|
|
|
const elem_val_id = try self.genConstant(elem_ty, elem_val, repr);
|
|
for (constituents[0..len]) |*elem| {
|
|
elem.* = elem_val_id;
|
|
}
|
|
if (ty.sentinel()) |sentinel| {
|
|
constituents[len] = try self.genConstant(elem_ty, sentinel, repr);
|
|
}
|
|
const result_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpConstantComposite, .{
|
|
.id_result_type = result_ty_id,
|
|
.id_result = result_id,
|
|
.constituents = constituents,
|
|
});
|
|
return result_id;
|
|
},
|
|
else => return self.todo("array constant with tag {s}", .{@tagName(val.tag())}),
|
|
},
|
|
.Vector => switch (val.tag()) {
|
|
.aggregate => {
|
|
const elem_vals = val.castTag(.aggregate).?.data;
|
|
const vector_len = @intCast(usize, ty.vectorLen());
|
|
const elem_ty = ty.elemType();
|
|
|
|
const elem_refs = try self.gpa.alloc(IdRef, vector_len);
|
|
defer self.gpa.free(elem_refs);
|
|
for (elem_refs, 0..) |*elem, i| {
|
|
elem.* = try self.genConstant(elem_ty, elem_vals[i], repr);
|
|
}
|
|
const result_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpConstantComposite, .{
|
|
.id_result_type = result_ty_id,
|
|
.id_result = result_id,
|
|
.constituents = elem_refs,
|
|
});
|
|
return result_id;
|
|
},
|
|
else => return self.todo("vector constant with tag {s}", .{@tagName(val.tag())}),
|
|
},
|
|
.Enum => {
|
|
var int_buffer: Value.Payload.U64 = undefined;
|
|
const int_val = val.enumToInt(ty, &int_buffer).toUnsignedInt(target); // TODO: composite integer constants
|
|
return self.constInt(result_ty_ref, int_val);
|
|
},
|
|
.Struct => {
|
|
const constituents = if (ty.isSimpleTupleOrAnonStruct()) blk: {
|
|
const tuple = ty.tupleFields();
|
|
const constituents = try self.spv.gpa.alloc(IdRef, tuple.types.len);
|
|
errdefer self.spv.gpa.free(constituents);
|
|
|
|
var member_index: usize = 0;
|
|
for (tuple.types, 0..) |field_ty, i| {
|
|
const field_val = tuple.values[i];
|
|
if (field_val.tag() != .unreachable_value or !field_ty.hasRuntimeBits()) continue;
|
|
constituents[member_index] = try self.genConstant(field_ty, field_val, repr);
|
|
member_index += 1;
|
|
}
|
|
|
|
break :blk constituents[0..member_index];
|
|
} else blk: {
|
|
const struct_ty = ty.castTag(.@"struct").?.data;
|
|
|
|
if (struct_ty.layout == .Packed) {
|
|
return self.todo("packed struct constants", .{});
|
|
}
|
|
|
|
const field_vals = val.castTag(.aggregate).?.data;
|
|
const constituents = try self.spv.gpa.alloc(IdRef, struct_ty.fields.count());
|
|
errdefer self.spv.gpa.free(constituents);
|
|
var member_index: usize = 0;
|
|
for (struct_ty.fields.values(), 0..) |field, i| {
|
|
if (field.is_comptime or !field.ty.hasRuntimeBits()) continue;
|
|
constituents[member_index] = try self.genConstant(field.ty, field_vals[i], repr);
|
|
member_index += 1;
|
|
}
|
|
|
|
break :blk constituents[0..member_index];
|
|
};
|
|
defer self.spv.gpa.free(constituents);
|
|
|
|
const result_id = self.spv.allocId();
|
|
try section.emit(self.spv.gpa, .OpConstantComposite, .{
|
|
.id_result_type = result_ty_id,
|
|
.id_result = result_id,
|
|
.constituents = constituents,
|
|
});
|
|
return result_id;
|
|
},
|
|
.Void => unreachable,
|
|
.Fn => unreachable,
|
|
else => return self.todo("constant generation of type {s}: {}", .{ @tagName(ty.zigTypeTag()), ty.fmtDebug() }),
|
|
}
|
|
}
|
|
|
|
/// Turn a Zig type into a SPIR-V Type, and return its type result-id.
|
|
fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
|
|
const type_ref = try self.resolveType(ty, .direct);
|
|
return self.typeId(type_ref);
|
|
}
|
|
|
|
fn typeId(self: *DeclGen, ty_ref: SpvType.Ref) IdRef {
|
|
return self.spv.typeId(ty_ref);
|
|
}
|
|
|
|
/// Create an integer type suitable for storing at least 'bits' bits.
|
|
fn intType(self: *DeclGen, signedness: std.builtin.Signedness, bits: u16) !SpvType.Ref {
|
|
const backing_bits = self.backingIntBits(bits) orelse {
|
|
// TODO: Integers too big for any native type are represented as "composite integers":
|
|
// An array of largestSupportedIntBits.
|
|
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
|
|
};
|
|
|
|
return try self.spv.resolveType(try SpvType.int(self.spv.arena, signedness, backing_bits));
|
|
}
|
|
|
|
/// Create an integer type that represents 'usize'.
|
|
fn sizeType(self: *DeclGen) !SpvType.Ref {
|
|
return try self.intType(.unsigned, self.getTarget().cpu.arch.ptrBitWidth());
|
|
}
|
|
|
|
/// Construct a simple struct type which consists of some members, and no decorations.
|
|
/// `members` lifetime only needs to last for this function as it is copied.
|
|
fn simpleStructType(self: *DeclGen, members: []const SpvType.Payload.Struct.Member) !SpvType.Ref {
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Struct);
|
|
payload.* = .{
|
|
.members = try self.spv.arena.dupe(SpvType.Payload.Struct.Member, members),
|
|
.decorations = .{},
|
|
};
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
}
|
|
|
|
fn simpleStructTypeId(self: *DeclGen, members: []const SpvType.Payload.Struct.Member) !IdResultType {
|
|
const type_ref = try self.simpleStructType(members);
|
|
return self.typeId(type_ref);
|
|
}
|
|
|
|
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
|
|
fn resolveType(self: *DeclGen, ty: Type, repr: Repr) Error!SpvType.Ref {
|
|
const target = self.getTarget();
|
|
switch (ty.zigTypeTag()) {
|
|
.Void, .NoReturn => return try self.spv.resolveType(SpvType.initTag(.void)),
|
|
.Bool => switch (repr) {
|
|
.direct => return try self.spv.resolveType(SpvType.initTag(.bool)),
|
|
// SPIR-V booleans are opaque, which is fine for operations, but they cant be stored.
|
|
// This function returns the *stored* type, for values directly we convert this into a bool when
|
|
// it is loaded, and convert it back to this type when stored.
|
|
.indirect => return try self.intType(.unsigned, 1),
|
|
},
|
|
.Int => {
|
|
const int_info = ty.intInfo(target);
|
|
return try self.intType(int_info.signedness, int_info.bits);
|
|
},
|
|
.Enum => {
|
|
var buffer: Type.Payload.Bits = undefined;
|
|
const tag_ty = ty.intTagType(&buffer);
|
|
return self.resolveType(tag_ty, repr);
|
|
},
|
|
.Float => {
|
|
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
|
// so if the float is not supported, just return an error.
|
|
const bits = ty.floatBits(target);
|
|
const supported = switch (bits) {
|
|
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
|
|
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
|
32 => true,
|
|
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
|
|
else => false,
|
|
};
|
|
|
|
if (!supported) {
|
|
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
|
}
|
|
|
|
return try self.spv.resolveType(SpvType.float(bits));
|
|
},
|
|
.Array => {
|
|
const elem_ty = ty.childType();
|
|
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel()) orelse {
|
|
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel()});
|
|
};
|
|
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Array);
|
|
payload.* = .{
|
|
.element_type = try self.resolveType(elem_ty, repr),
|
|
.length = total_len,
|
|
};
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
},
|
|
.Fn => {
|
|
// TODO: Put this somewhere in Sema.zig
|
|
if (ty.fnIsVarArgs())
|
|
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
|
|
|
|
// TODO: Parameter passing convention etc.
|
|
|
|
const param_types = try self.spv.arena.alloc(SpvType.Ref, ty.fnParamLen());
|
|
for (param_types, 0..) |*param, i| {
|
|
param.* = try self.resolveType(ty.fnParamType(i), .direct);
|
|
}
|
|
|
|
const return_type = try self.resolveType(ty.fnReturnType(), .direct);
|
|
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Function);
|
|
payload.* = .{ .return_type = return_type, .parameters = param_types };
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
},
|
|
.Pointer => {
|
|
const ptr_info = ty.ptrInfo().data;
|
|
|
|
const ptr_payload = try self.spv.arena.create(SpvType.Payload.Pointer);
|
|
ptr_payload.* = .{
|
|
.storage_class = spirvStorageClass(ptr_info.@"addrspace"),
|
|
.child_type = try self.resolveType(ptr_info.pointee_type, .indirect),
|
|
// Note: only available in Kernels!
|
|
.alignment = ty.ptrAlignment(target) * 8,
|
|
};
|
|
const ptr_ty_id = try self.spv.resolveType(SpvType.initPayload(&ptr_payload.base));
|
|
|
|
if (ptr_info.size != .Slice) {
|
|
return ptr_ty_id;
|
|
}
|
|
|
|
return try self.simpleStructType(&.{
|
|
.{ .ty = ptr_ty_id, .name = "ptr" },
|
|
.{ .ty = try self.sizeType(), .name = "len" },
|
|
});
|
|
},
|
|
.Vector => {
|
|
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
|
|
// which work on them), so simply use those.
|
|
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
|
|
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
|
|
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
|
|
// is adequate at all for this.
|
|
|
|
// TODO: Properly verify sizes and child type.
|
|
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Vector);
|
|
payload.* = .{
|
|
.component_type = try self.resolveType(ty.elemType(), repr),
|
|
.component_count = @intCast(u32, ty.vectorLen()),
|
|
};
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
},
|
|
.Struct => {
|
|
if (ty.isSimpleTupleOrAnonStruct()) {
|
|
const tuple = ty.tupleFields();
|
|
const members = try self.spv.arena.alloc(SpvType.Payload.Struct.Member, tuple.types.len);
|
|
var member_index: u32 = 0;
|
|
for (tuple.types, 0..) |field_ty, i| {
|
|
const field_val = tuple.values[i];
|
|
if (field_val.tag() != .unreachable_value or !field_ty.hasRuntimeBitsIgnoreComptime()) continue;
|
|
members[member_index] = .{
|
|
.ty = try self.resolveType(field_ty, repr),
|
|
};
|
|
member_index += 1;
|
|
}
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Struct);
|
|
payload.* = .{
|
|
.members = members[0..member_index],
|
|
};
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
}
|
|
|
|
const struct_ty = ty.castTag(.@"struct").?.data;
|
|
|
|
if (struct_ty.layout == .Packed) {
|
|
return try self.resolveType(struct_ty.backing_int_ty, repr);
|
|
}
|
|
|
|
const members = try self.spv.arena.alloc(SpvType.Payload.Struct.Member, struct_ty.fields.count());
|
|
var member_index: usize = 0;
|
|
for (struct_ty.fields.values(), 0..) |field, i| {
|
|
if (field.is_comptime or !field.ty.hasRuntimeBits()) continue;
|
|
|
|
members[member_index] = .{
|
|
.ty = try self.resolveType(field.ty, repr),
|
|
.name = struct_ty.fields.keys()[i],
|
|
};
|
|
member_index += 1;
|
|
}
|
|
|
|
const name = try struct_ty.getFullyQualifiedName(self.module);
|
|
defer self.module.gpa.free(name);
|
|
|
|
const payload = try self.spv.arena.create(SpvType.Payload.Struct);
|
|
payload.* = .{
|
|
.members = members[0..member_index],
|
|
.name = try self.spv.arena.dupe(u8, name),
|
|
};
|
|
return try self.spv.resolveType(SpvType.initPayload(&payload.base));
|
|
},
|
|
.Null,
|
|
.Undefined,
|
|
.EnumLiteral,
|
|
.ComptimeFloat,
|
|
.ComptimeInt,
|
|
.Type,
|
|
=> unreachable, // Must be comptime.
|
|
|
|
else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
|
|
}
|
|
}
|
|
|
|
fn spirvStorageClass(as: std.builtin.AddressSpace) spec.StorageClass {
|
|
return switch (as) {
|
|
.generic => .Generic, // TODO: Disallow?
|
|
.gs, .fs, .ss => unreachable,
|
|
.shared => .Workgroup,
|
|
.local => .Private,
|
|
.global, .param, .constant, .flash, .flash1, .flash2, .flash3, .flash4, .flash5 => unreachable,
|
|
};
|
|
}
|
|
|
|
fn genDecl(self: *DeclGen) !void {
|
|
const result_id = self.ids.get(self.decl_index).?;
|
|
const decl = self.module.declPtr(self.decl_index);
|
|
|
|
if (decl.val.castTag(.function)) |_| {
|
|
assert(decl.ty.zigTypeTag() == .Fn);
|
|
const prototype_id = try self.resolveTypeId(decl.ty);
|
|
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
|
|
.id_result_type = try self.resolveTypeId(decl.ty.fnReturnType()),
|
|
.id_result = result_id,
|
|
.function_control = .{}, // TODO: We can set inline here if the type requires it.
|
|
.function_type = prototype_id,
|
|
});
|
|
|
|
const params = decl.ty.fnParamLen();
|
|
var i: usize = 0;
|
|
|
|
try self.args.ensureUnusedCapacity(self.gpa, params);
|
|
while (i < params) : (i += 1) {
|
|
const param_type_id = try self.resolveTypeId(decl.ty.fnParamType(i));
|
|
const arg_result_id = self.spv.allocId();
|
|
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
|
|
.id_result_type = param_type_id,
|
|
.id_result = arg_result_id,
|
|
});
|
|
self.args.appendAssumeCapacity(arg_result_id);
|
|
}
|
|
|
|
// TODO: This could probably be done in a better way...
|
|
const root_block_id = self.spv.allocId();
|
|
|
|
// The root block of a function declaration should appear before OpVariable instructions,
|
|
// so it is generated into the function's prologue.
|
|
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
|
|
.id_result = root_block_id,
|
|
});
|
|
self.current_block_label_id = root_block_id;
|
|
|
|
const main_body = self.air.getMainBody();
|
|
try self.genBody(main_body);
|
|
|
|
// Append the actual code into the functions section.
|
|
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
|
|
try self.spv.addFunction(self.func);
|
|
|
|
const fqn = try decl.getFullyQualifiedName(self.module);
|
|
defer self.module.gpa.free(fqn);
|
|
|
|
try self.spv.sections.debug_names.emit(self.gpa, .OpName, .{
|
|
.target = result_id,
|
|
.name = fqn,
|
|
});
|
|
} else {
|
|
// TODO
|
|
// return self.todo("generate decl type {}", .{decl.ty.zigTypeTag()});
|
|
}
|
|
}
|
|
|
|
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
|
|
for (body) |inst| {
|
|
try self.genInst(inst);
|
|
}
|
|
}
|
|
|
|
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const air_tags = self.air.instructions.items(.tag);
|
|
const maybe_result_id: ?IdRef = switch (air_tags[inst]) {
|
|
// zig fmt: off
|
|
.add, .addwrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd, true),
|
|
.sub, .subwrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub, true),
|
|
.mul, .mulwrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul, true),
|
|
|
|
.div_float,
|
|
.div_float_optimized,
|
|
// TODO: Check that this is the right operation.
|
|
.div_trunc,
|
|
.div_trunc_optimized,
|
|
=> try self.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv, false),
|
|
// TODO: Check if this is the right operation
|
|
// TODO: Make airArithOp for rem not emit a mask for the LHS.
|
|
.rem,
|
|
.rem_optimized,
|
|
=> try self.airArithOp(inst, .OpFRem, .OpSRem, .OpSRem, false),
|
|
|
|
.add_with_overflow => try self.airOverflowArithOp(inst),
|
|
|
|
.shuffle => try self.airShuffle(inst),
|
|
|
|
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
|
|
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
|
|
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
|
|
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
|
|
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
|
|
|
|
.shl => try self.airShift(inst, .OpShiftLeftLogical),
|
|
|
|
.bitcast => try self.airBitcast(inst),
|
|
.intcast => try self.airIntcast(inst),
|
|
.not => try self.airNot(inst),
|
|
|
|
.slice_ptr => try self.airSliceField(inst, 0),
|
|
.slice_len => try self.airSliceField(inst, 1),
|
|
.slice_elem_ptr => try self.airSliceElemPtr(inst),
|
|
.slice_elem_val => try self.airSliceElemVal(inst),
|
|
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
|
|
|
|
.struct_field_val => try self.airStructFieldVal(inst),
|
|
|
|
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
|
|
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
|
|
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
|
|
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
|
|
|
|
.cmp_eq => try self.airCmp(inst, .OpFOrdEqual, .OpLogicalEqual, .OpIEqual),
|
|
.cmp_neq => try self.airCmp(inst, .OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual),
|
|
.cmp_gt => try self.airCmp(inst, .OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan),
|
|
.cmp_gte => try self.airCmp(inst, .OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual),
|
|
.cmp_lt => try self.airCmp(inst, .OpFOrdLessThan, .OpSLessThan, .OpULessThan),
|
|
.cmp_lte => try self.airCmp(inst, .OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual),
|
|
|
|
.arg => self.airArg(),
|
|
.alloc => try self.airAlloc(inst),
|
|
// TODO: We probably need to have a special implementation of this for the C abi.
|
|
.ret_ptr => try self.airAlloc(inst),
|
|
.block => try self.airBlock(inst),
|
|
|
|
.load => try self.airLoad(inst),
|
|
.store => return self.airStore(inst),
|
|
|
|
.br => return self.airBr(inst),
|
|
.breakpoint => return,
|
|
.cond_br => return self.airCondBr(inst),
|
|
.constant => unreachable,
|
|
.const_ty => unreachable,
|
|
.dbg_stmt => return self.airDbgStmt(inst),
|
|
.loop => return self.airLoop(inst),
|
|
.ret => return self.airRet(inst),
|
|
.ret_load => return self.airRetLoad(inst),
|
|
.switch_br => return self.airSwitchBr(inst),
|
|
.unreach => return self.airUnreach(),
|
|
|
|
.assembly => try self.airAssembly(inst),
|
|
|
|
.call => try self.airCall(inst, .auto),
|
|
.call_always_tail => try self.airCall(inst, .always_tail),
|
|
.call_never_tail => try self.airCall(inst, .never_tail),
|
|
.call_never_inline => try self.airCall(inst, .never_inline),
|
|
|
|
.dbg_var_ptr => return,
|
|
.dbg_var_val => return,
|
|
.dbg_block_begin => return,
|
|
.dbg_block_end => return,
|
|
// zig fmt: on
|
|
|
|
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
|
|
};
|
|
|
|
const result_id = maybe_result_id orelse return;
|
|
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
|
|
}
|
|
|
|
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst));
|
|
try self.func.body.emit(self.spv.gpa, opcode, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.operand_1 = lhs_id,
|
|
.operand_2 = rhs_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airShift(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const lhs_id = try self.resolve(bin_op.lhs);
|
|
const rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst));
|
|
|
|
// the shift and the base must be the same type in SPIR-V, but in Zig the shift is a smaller int.
|
|
const shift_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = shift_id,
|
|
.unsigned_value = rhs_id,
|
|
});
|
|
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, opcode, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.base = lhs_id,
|
|
.shift = shift_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn maskStrangeInt(self: *DeclGen, ty_ref: SpvType.Ref, value_id: IdRef, bits: u16) !IdRef {
|
|
const mask_value = if (bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @intCast(u6, bits)) - 1;
|
|
const result_id = self.spv.allocId();
|
|
const mask_id = try self.constInt(ty_ref, mask_value);
|
|
try self.func.body.emit(self.spv.gpa, .OpBitwiseAnd, .{
|
|
.id_result_type = self.typeId(ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = value_id,
|
|
.operand_2 = mask_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airArithOp(
|
|
self: *DeclGen,
|
|
inst: Air.Inst.Index,
|
|
comptime fop: Opcode,
|
|
comptime sop: Opcode,
|
|
comptime uop: Opcode,
|
|
/// true if this operation holds under modular arithmetic.
|
|
comptime modular: bool,
|
|
) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
|
|
// the result to be the same as the LHS and RHS, which matches SPIR-V.
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
var lhs_id = try self.resolve(bin_op.lhs);
|
|
var rhs_id = try self.resolve(bin_op.rhs);
|
|
|
|
const result_ty_ref = try self.resolveType(ty, .direct);
|
|
|
|
assert(self.air.typeOf(bin_op.lhs).eql(ty, self.module));
|
|
assert(self.air.typeOf(bin_op.rhs).eql(ty, self.module));
|
|
|
|
// Binary operations are generally applicable to both scalar and vector operations
|
|
// in SPIR-V, but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.todo("binary operations for composite integers", .{});
|
|
},
|
|
.strange_integer => blk: {
|
|
if (!modular) {
|
|
lhs_id = try self.maskStrangeInt(result_ty_ref, lhs_id, info.bits);
|
|
rhs_id = try self.maskStrangeInt(result_ty_ref, rhs_id, info.bits);
|
|
}
|
|
break :blk switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
};
|
|
},
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
.float => 0,
|
|
.bool => unreachable,
|
|
};
|
|
|
|
const result_id = self.spv.allocId();
|
|
const operands = .{
|
|
.id_result_type = self.typeId(result_ty_ref),
|
|
.id_result = result_id,
|
|
.operand_1 = lhs_id,
|
|
.operand_2 = rhs_id,
|
|
};
|
|
|
|
switch (opcode_index) {
|
|
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
|
|
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
|
|
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
|
|
else => unreachable,
|
|
}
|
|
// TODO: Trap on overflow? Probably going to be annoying.
|
|
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airOverflowArithOp(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const lhs = try self.resolve(extra.lhs);
|
|
const rhs = try self.resolve(extra.rhs);
|
|
|
|
const operand_ty = self.air.typeOf(extra.lhs);
|
|
const result_ty = self.air.typeOfIndex(inst);
|
|
|
|
const info = try self.arithmeticTypeInfo(operand_ty);
|
|
switch (info.class) {
|
|
.composite_integer => return self.todo("overflow ops for composite integers", .{}),
|
|
.strange_integer => return self.todo("overflow ops for strange integers", .{}),
|
|
.integer => {},
|
|
.float, .bool => unreachable,
|
|
}
|
|
|
|
const operand_ty_id = try self.resolveTypeId(operand_ty);
|
|
const result_type_id = try self.resolveTypeId(result_ty);
|
|
|
|
const overflow_member_ty = try self.intType(.unsigned, info.bits);
|
|
const overflow_member_ty_id = self.typeId(overflow_member_ty);
|
|
|
|
const op_result_id = blk: {
|
|
// Construct the SPIR-V result type.
|
|
// It is almost the same as the zig one, except that the fields must be the same type
|
|
// and they must be unsigned.
|
|
const overflow_result_ty = try self.simpleStructTypeId(&.{
|
|
.{ .ty = overflow_member_ty, .name = "res" },
|
|
.{ .ty = overflow_member_ty, .name = "ov" },
|
|
});
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpIAddCarry, .{
|
|
.id_result_type = overflow_result_ty,
|
|
.id_result = result_id,
|
|
.operand_1 = lhs,
|
|
.operand_2 = rhs,
|
|
});
|
|
break :blk result_id;
|
|
};
|
|
|
|
// Now convert the SPIR-V flavor result into a Zig-flavor result.
|
|
// First, extract the two fields.
|
|
const unsigned_result = try self.extractField(overflow_member_ty_id, op_result_id, 0);
|
|
const overflow = try self.extractField(overflow_member_ty_id, op_result_id, 1);
|
|
|
|
// We need to convert the results to the types that Zig expects here.
|
|
// The `result` is the same type except unsigned, so we can just bitcast that.
|
|
const result = try self.bitcast(operand_ty_id, unsigned_result);
|
|
|
|
// The overflow needs to be converted into whatever is used to represent it in Zig.
|
|
const casted_overflow = blk: {
|
|
const ov_ty = result_ty.tupleFields().types[1];
|
|
const ov_ty_id = try self.resolveTypeId(ov_ty);
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
|
|
.id_result_type = ov_ty_id,
|
|
.id_result = result_id,
|
|
.unsigned_value = overflow,
|
|
});
|
|
break :blk result_id;
|
|
};
|
|
|
|
// TODO: If copying this function for borrow, make sure to convert -1 to 1 as appropriate.
|
|
|
|
// Finally, construct the Zig type.
|
|
// Layout is result, overflow.
|
|
const result_id = self.spv.allocId();
|
|
const constituents = [_]IdRef{ result, casted_overflow };
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.constituents = &constituents,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
|
|
const a = try self.resolve(extra.a);
|
|
const b = try self.resolve(extra.b);
|
|
const mask = self.air.values[extra.mask];
|
|
const mask_len = extra.mask_len;
|
|
const a_len = self.air.typeOf(extra.a).vectorLen();
|
|
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(ty);
|
|
// Similar to LLVM, SPIR-V uses indices larger than the length of the first vector
|
|
// to index into the second vector.
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len);
|
|
self.func.body.writeOperand(spec.IdResultType, result_type_id);
|
|
self.func.body.writeOperand(spec.IdResult, result_id);
|
|
self.func.body.writeOperand(spec.IdRef, a);
|
|
self.func.body.writeOperand(spec.IdRef, b);
|
|
|
|
var i: usize = 0;
|
|
while (i < mask_len) : (i += 1) {
|
|
var buf: Value.ElemValueBuffer = undefined;
|
|
const elem = mask.elemValueBuffer(self.module, i, &buf);
|
|
if (elem.isUndef()) {
|
|
self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF);
|
|
} else {
|
|
const int = elem.toSignedInt(self.getTarget());
|
|
const unsigned = if (int >= 0) @intCast(u32, int) else @intCast(u32, ~int + a_len);
|
|
self.func.body.writeOperand(spec.LiteralInteger, unsigned);
|
|
}
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airCmp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
var lhs_id = try self.resolve(bin_op.lhs);
|
|
var rhs_id = try self.resolve(bin_op.rhs);
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
|
|
const op_ty = self.air.typeOf(bin_op.lhs);
|
|
assert(op_ty.eql(self.air.typeOf(bin_op.rhs), self.module));
|
|
|
|
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
|
|
// but int and float versions of operations require different opcodes.
|
|
const info = try self.arithmeticTypeInfo(op_ty);
|
|
|
|
const opcode_index: usize = switch (info.class) {
|
|
.composite_integer => {
|
|
return self.todo("binary operations for composite integers", .{});
|
|
},
|
|
.float => 0,
|
|
.bool => 1,
|
|
.strange_integer => blk: {
|
|
const op_ty_ref = try self.resolveType(op_ty, .direct);
|
|
lhs_id = try self.maskStrangeInt(op_ty_ref, lhs_id, info.bits);
|
|
rhs_id = try self.maskStrangeInt(op_ty_ref, rhs_id, info.bits);
|
|
break :blk switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
};
|
|
},
|
|
.integer => switch (info.signedness) {
|
|
.signed => @as(usize, 1),
|
|
.unsigned => @as(usize, 2),
|
|
},
|
|
};
|
|
|
|
const operands = .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.operand_1 = lhs_id,
|
|
.operand_2 = rhs_id,
|
|
};
|
|
|
|
switch (opcode_index) {
|
|
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
|
|
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
|
|
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
|
|
else => unreachable,
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn bitcast(self: *DeclGen, target_type_id: IdResultType, value_id: IdRef) !IdRef {
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
|
.id_result_type = target_type_id,
|
|
.id_result = result_id,
|
|
.operand = value_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airBitcast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst));
|
|
return try self.bitcast(result_type_id, operand_id);
|
|
}
|
|
|
|
fn airIntcast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const dest_ty = self.air.typeOfIndex(inst);
|
|
const dest_info = try self.arithmeticTypeInfo(dest_ty);
|
|
const dest_ty_id = try self.resolveTypeId(dest_ty);
|
|
|
|
const result_id = self.spv.allocId();
|
|
switch (dest_info.signedness) {
|
|
.signed => try self.func.body.emit(self.spv.gpa, .OpSConvert, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.signed_value = operand_id,
|
|
}),
|
|
.unsigned => try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
|
|
.id_result_type = dest_ty_id,
|
|
.id_result = result_id,
|
|
.unsigned_value = operand_id,
|
|
}),
|
|
}
|
|
return result_id;
|
|
}
|
|
|
|
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const operand_id = try self.resolve(ty_op.operand);
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(Type.initTag(.bool));
|
|
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.operand = operand_id,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn extractField(self: *DeclGen, result_ty: IdResultType, object: IdRef, field: u32) !IdRef {
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]u32{field};
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
|
.id_result_type = result_ty,
|
|
.id_result = result_id,
|
|
.composite = object,
|
|
.indexes = &indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airSliceField(self: *DeclGen, inst: Air.Inst.Index, field: u32) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
return try self.extractField(
|
|
try self.resolveTypeId(self.air.typeOfIndex(inst)),
|
|
try self.resolve(ty_op.operand),
|
|
field,
|
|
);
|
|
}
|
|
|
|
fn airSliceElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const slice_ty = self.air.typeOf(bin_op.lhs);
|
|
if (!slice_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null;
|
|
|
|
const slice = try self.resolve(bin_op.lhs);
|
|
const index = try self.resolve(bin_op.rhs);
|
|
|
|
const spv_ptr_ty = try self.resolveTypeId(self.air.typeOfIndex(inst));
|
|
|
|
const slice_ptr = blk: {
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
|
.id_result_type = spv_ptr_ty,
|
|
.id_result = result_id,
|
|
.composite = slice,
|
|
.indexes = &.{0},
|
|
});
|
|
break :blk result_id;
|
|
};
|
|
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]IdRef{index};
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = spv_ptr_ty,
|
|
.id_result = result_id,
|
|
.base = slice_ptr,
|
|
.indexes = &indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airSliceElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const slice_ty = self.air.typeOf(bin_op.lhs);
|
|
if (!slice_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null;
|
|
|
|
const slice = try self.resolve(bin_op.lhs);
|
|
const index = try self.resolve(bin_op.rhs);
|
|
|
|
var slice_buf: Type.SlicePtrFieldTypeBuffer = undefined;
|
|
const ptr_ty_id = try self.resolveTypeId(slice_ty.slicePtrFieldType(&slice_buf));
|
|
|
|
const slice_ptr = blk: {
|
|
const result_id = self.spv.allocId();
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
|
.id_result_type = ptr_ty_id,
|
|
.id_result = result_id,
|
|
.composite = slice,
|
|
.indexes = &.{0},
|
|
});
|
|
break :blk result_id;
|
|
};
|
|
|
|
const elem_ptr = blk: {
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]IdRef{index};
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = ptr_ty_id,
|
|
.id_result = result_id,
|
|
.base = slice_ptr,
|
|
.indexes = &indexes,
|
|
});
|
|
break :blk result_id;
|
|
};
|
|
|
|
return try self.load(slice_ty, elem_ptr);
|
|
}
|
|
|
|
fn airPtrElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const result_ty = self.air.typeOfIndex(inst);
|
|
const elem_ty = ptr_ty.childType();
|
|
// TODO: Make this return a null ptr or something
|
|
if (!elem_ty.hasRuntimeBitsIgnoreComptime()) return null;
|
|
|
|
const result_type_id = try self.resolveTypeId(result_ty);
|
|
const base_ptr = try self.resolve(bin_op.lhs);
|
|
const rhs = try self.resolve(bin_op.rhs);
|
|
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]IdRef{rhs};
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.base = base_ptr,
|
|
.indexes = &indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airStructFieldVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
|
|
|
|
const struct_ty = self.air.typeOf(struct_field.struct_operand);
|
|
const object = try self.resolve(struct_field.struct_operand);
|
|
const field_index = struct_field.field_index;
|
|
const field_ty = struct_ty.structFieldType(field_index);
|
|
const field_ty_id = try self.resolveTypeId(field_ty);
|
|
|
|
if (!field_ty.hasRuntimeBitsIgnoreComptime()) return null;
|
|
|
|
assert(struct_ty.zigTypeTag() == .Struct); // Cannot do unions yet.
|
|
|
|
const result_id = self.spv.allocId();
|
|
const indexes = [_]u32{field_index};
|
|
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
|
.id_result_type = field_ty_id,
|
|
.id_result = result_id,
|
|
.composite = object,
|
|
.indexes = &indexes,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn structFieldPtr(
|
|
self: *DeclGen,
|
|
result_ptr_ty: Type,
|
|
object_ptr_ty: Type,
|
|
object_ptr: IdRef,
|
|
field_index: u32,
|
|
) !?IdRef {
|
|
const object_ty = object_ptr_ty.childType();
|
|
switch (object_ty.zigTypeTag()) {
|
|
.Struct => switch (object_ty.containerLayout()) {
|
|
.Packed => unreachable, // TODO
|
|
else => {
|
|
const u32_ty_id = self.typeId(try self.intType(.unsigned, 32));
|
|
const field_index_id = try self.spv.emitConstant(u32_ty_id, .{ .uint32 = field_index });
|
|
const result_id = self.spv.allocId();
|
|
const result_type_id = try self.resolveTypeId(result_ptr_ty);
|
|
const indexes = [_]IdRef{field_index_id};
|
|
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.base = object_ptr,
|
|
.indexes = &indexes,
|
|
});
|
|
return result_id;
|
|
},
|
|
},
|
|
else => unreachable, // TODO
|
|
}
|
|
}
|
|
|
|
fn airStructFieldPtrIndex(self: *DeclGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const struct_ptr = try self.resolve(ty_op.operand);
|
|
const struct_ptr_ty = self.air.typeOf(ty_op.operand);
|
|
const result_ptr_ty = self.air.typeOfIndex(inst);
|
|
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
|
|
}
|
|
|
|
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
if (self.liveness.isUnused(inst)) return null;
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const result_type_id = try self.resolveTypeId(ty);
|
|
const result_id = self.spv.allocId();
|
|
|
|
// Rather than generating into code here, we're just going to generate directly into the functions section so that
|
|
// variable declarations appear in the first block of the function.
|
|
const storage_class = spirvStorageClass(ty.ptrAddressSpace());
|
|
const section = if (storage_class == .Function or storage_class == .Generic)
|
|
&self.func.prologue
|
|
else
|
|
&self.spv.sections.types_globals_constants;
|
|
|
|
try section.emit(self.spv.gpa, .OpVariable, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.storage_class = storage_class,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airArg(self: *DeclGen) IdRef {
|
|
defer self.next_arg_index += 1;
|
|
return self.args.items[self.next_arg_index];
|
|
}
|
|
|
|
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
// In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
|
|
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
|
|
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
|
|
// ir.Block in a different SPIR-V block.
|
|
|
|
const label_id = self.spv.allocId();
|
|
|
|
// 4 chosen as arbitrary initial capacity.
|
|
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.gpa, 4);
|
|
|
|
try self.blocks.putNoClobber(self.gpa, inst, .{
|
|
.label_id = label_id,
|
|
.incoming_blocks = &incoming_blocks,
|
|
});
|
|
defer {
|
|
assert(self.blocks.remove(inst));
|
|
incoming_blocks.deinit(self.gpa);
|
|
}
|
|
|
|
const ty = self.air.typeOfIndex(inst);
|
|
const inst_datas = self.air.instructions.items(.data);
|
|
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
|
|
const body = self.air.extra[extra.end..][0..extra.data.body_len];
|
|
|
|
try self.genBody(body);
|
|
try self.beginSpvBlock(label_id);
|
|
|
|
// If this block didn't produce a value, simply return here.
|
|
if (!ty.hasRuntimeBitsIgnoreComptime())
|
|
return null;
|
|
|
|
// Combine the result from the blocks using the Phi instruction.
|
|
|
|
const result_id = self.spv.allocId();
|
|
|
|
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
|
|
// are not allowed to be created from a phi node, and throw an error for those.
|
|
const result_type_id = try self.resolveTypeId(ty);
|
|
_ = result_type_id;
|
|
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
|
|
|
|
for (incoming_blocks.items) |incoming| {
|
|
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id });
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
|
|
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const br = self.air.instructions.items(.data)[inst].br;
|
|
const block = self.blocks.get(br.block_inst).?;
|
|
const operand_ty = self.air.typeOf(br.operand);
|
|
|
|
if (operand_ty.hasRuntimeBits()) {
|
|
const operand_id = try self.resolve(br.operand);
|
|
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
|
|
try block.incoming_blocks.append(self.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
|
|
}
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id });
|
|
}
|
|
|
|
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
|
|
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
|
|
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
|
|
const condition_id = try self.resolve(pl_op.operand);
|
|
|
|
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
|
|
const then_label_id = self.spv.allocId();
|
|
const else_label_id = self.spv.allocId();
|
|
|
|
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
|
|
// but i don't know if those will always resolve to the same block.
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
|
.condition = condition_id,
|
|
.true_label = then_label_id,
|
|
.false_label = else_label_id,
|
|
});
|
|
|
|
try self.beginSpvBlock(then_label_id);
|
|
try self.genBody(then_body);
|
|
try self.beginSpvBlock(else_label_id);
|
|
try self.genBody(else_body);
|
|
}
|
|
|
|
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
|
|
const src_fname_id = try self.spv.resolveSourceFileName(self.module.declPtr(self.decl_index));
|
|
try self.func.body.emit(self.spv.gpa, .OpLine, .{
|
|
.file = src_fname_id,
|
|
.line = dbg_stmt.line,
|
|
.column = dbg_stmt.column,
|
|
});
|
|
}
|
|
|
|
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
|
|
const ptr_ty = self.air.typeOf(ty_op.operand);
|
|
const operand = try self.resolve(ty_op.operand);
|
|
if (!ptr_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null;
|
|
|
|
return try self.load(ptr_ty, operand);
|
|
}
|
|
|
|
fn load(self: *DeclGen, ptr_ty: Type, ptr: IdRef) !IdRef {
|
|
const value_ty = ptr_ty.childType();
|
|
const result_type_id = try self.resolveTypeId(value_ty);
|
|
const result_id = self.spv.allocId();
|
|
const access = spec.MemoryAccess.Extended{
|
|
.Volatile = ptr_ty.isVolatilePtr(),
|
|
};
|
|
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
|
.id_result_type = result_type_id,
|
|
.id_result = result_id,
|
|
.pointer = ptr,
|
|
.memory_access = access,
|
|
});
|
|
return result_id;
|
|
}
|
|
|
|
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
|
|
const ptr_ty = self.air.typeOf(bin_op.lhs);
|
|
const ptr = try self.resolve(bin_op.lhs);
|
|
const value = try self.resolve(bin_op.rhs);
|
|
|
|
try self.store(ptr_ty, ptr, value);
|
|
}
|
|
|
|
fn store(self: *DeclGen, ptr_ty: Type, ptr: IdRef, value: IdRef) !void {
|
|
const access = spec.MemoryAccess.Extended{
|
|
.Volatile = ptr_ty.isVolatilePtr(),
|
|
};
|
|
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
|
.pointer = ptr,
|
|
.object = value,
|
|
.memory_access = access,
|
|
});
|
|
}
|
|
|
|
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
|
const body = self.air.extra[loop.end..][0..loop.data.body_len];
|
|
const loop_label_id = self.spv.allocId();
|
|
|
|
// Jump to the loop entry point
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
|
|
|
|
// TODO: Look into OpLoopMerge.
|
|
try self.beginSpvBlock(loop_label_id);
|
|
try self.genBody(body);
|
|
|
|
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
|
|
}
|
|
|
|
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const operand = self.air.instructions.items(.data)[inst].un_op;
|
|
const operand_ty = self.air.typeOf(operand);
|
|
if (operand_ty.hasRuntimeBits()) {
|
|
const operand_id = try self.resolve(operand);
|
|
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
|
|
} else {
|
|
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
|
}
|
|
}
|
|
|
|
fn airRetLoad(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const un_op = self.air.instructions.items(.data)[inst].un_op;
|
|
const ptr_ty = self.air.typeOf(un_op);
|
|
const ret_ty = ptr_ty.childType();
|
|
|
|
if (!ret_ty.hasRuntimeBitsIgnoreComptime()) {
|
|
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
|
return;
|
|
}
|
|
|
|
const ptr = try self.resolve(un_op);
|
|
const value = try self.load(ptr_ty, ptr);
|
|
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
|
|
.value = value,
|
|
});
|
|
}
|
|
|
|
fn airSwitchBr(self: *DeclGen, inst: Air.Inst.Index) !void {
|
|
const target = self.getTarget();
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const cond = try self.resolve(pl_op.operand);
|
|
const cond_ty = self.air.typeOf(pl_op.operand);
|
|
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
|
|
|
|
const cond_words: u32 = switch (cond_ty.zigTypeTag()) {
|
|
.Int => blk: {
|
|
const bits = cond_ty.intInfo(target).bits;
|
|
const backing_bits = self.backingIntBits(bits) orelse {
|
|
return self.todo("implement composite int switch", .{});
|
|
};
|
|
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
|
|
},
|
|
.Enum => blk: {
|
|
var buffer: Type.Payload.Bits = undefined;
|
|
const int_ty = cond_ty.intTagType(&buffer);
|
|
const int_info = int_ty.intInfo(target);
|
|
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
|
return self.todo("implement composite int switch", .{});
|
|
};
|
|
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
|
|
},
|
|
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag())}), // TODO: Figure out which types apply here, and work around them as we can only do integers.
|
|
};
|
|
|
|
const num_cases = switch_br.data.cases_len;
|
|
|
|
// Compute the total number of arms that we need.
|
|
// Zig switches are grouped by condition, so we need to loop through all of them
|
|
const num_conditions = blk: {
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
var num_conditions: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
num_conditions += case.data.items_len;
|
|
}
|
|
break :blk num_conditions;
|
|
};
|
|
|
|
// First, pre-allocate the labels for the cases.
|
|
const first_case_label = self.spv.allocIds(num_cases);
|
|
// We always need the default case - if zig has none, we will generate unreachable there.
|
|
const default = self.spv.allocId();
|
|
|
|
// Emit the instruction before generating the blocks.
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
|
|
self.func.body.writeOperand(IdRef, cond);
|
|
self.func.body.writeOperand(IdRef, default);
|
|
|
|
// Emit each of the cases
|
|
{
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
// SPIR-V needs a literal here, which' width depends on the case condition.
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const items = @ptrCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]);
|
|
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
|
|
const label = IdRef{ .id = first_case_label.id + case_i };
|
|
|
|
for (items) |item| {
|
|
const value = self.air.value(item) orelse {
|
|
return self.todo("switch on runtime value???", .{});
|
|
};
|
|
const int_val = switch (cond_ty.zigTypeTag()) {
|
|
.Int => if (cond_ty.isSignedInt()) @bitCast(u64, value.toSignedInt(target)) else value.toUnsignedInt(target),
|
|
.Enum => blk: {
|
|
var int_buffer: Value.Payload.U64 = undefined;
|
|
// TODO: figure out of cond_ty is correct (something with enum literals)
|
|
break :blk value.enumToInt(cond_ty, &int_buffer).toUnsignedInt(target); // TODO: composite integer constants
|
|
},
|
|
else => unreachable,
|
|
};
|
|
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
|
|
1 => .{ .uint32 = @intCast(u32, int_val) },
|
|
2 => .{ .uint64 = int_val },
|
|
else => unreachable,
|
|
};
|
|
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
|
|
self.func.body.writeOperand(IdRef, label);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now, finally, we can start emitting each of the cases.
|
|
var extra_index: usize = switch_br.end;
|
|
var case_i: u32 = 0;
|
|
while (case_i < num_cases) : (case_i += 1) {
|
|
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
|
|
const items = @ptrCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]);
|
|
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
|
|
extra_index = case.end + case.data.items_len + case_body.len;
|
|
|
|
const label = IdResult{ .id = first_case_label.id + case_i };
|
|
|
|
try self.beginSpvBlock(label);
|
|
try self.genBody(case_body);
|
|
}
|
|
|
|
const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len];
|
|
try self.beginSpvBlock(default);
|
|
if (else_body.len != 0) {
|
|
try self.genBody(else_body);
|
|
} else {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
}
|
|
|
|
fn airUnreach(self: *DeclGen) !void {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
|
|
fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
|
|
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
|
|
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
|
|
|
|
const is_volatile = @truncate(u1, extra.data.flags >> 31) != 0;
|
|
const clobbers_len = @truncate(u31, extra.data.flags);
|
|
|
|
if (!is_volatile and self.liveness.isUnused(inst)) return null;
|
|
|
|
var extra_i: usize = extra.end;
|
|
const outputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.outputs_len]);
|
|
extra_i += outputs.len;
|
|
const inputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.inputs_len]);
|
|
extra_i += inputs.len;
|
|
|
|
if (outputs.len > 1) {
|
|
return self.todo("implement inline asm with more than 1 output", .{});
|
|
}
|
|
|
|
var output_extra_i = extra_i;
|
|
for (outputs) |output| {
|
|
if (output != .none) {
|
|
return self.todo("implement inline asm with non-returned output", .{});
|
|
}
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
// TODO: Record output and use it somewhere.
|
|
}
|
|
|
|
var input_extra_i = extra_i;
|
|
for (inputs) |input| {
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
|
const constraint = std.mem.sliceTo(extra_bytes, 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
// TODO: Record input and use it somewhere.
|
|
_ = input;
|
|
}
|
|
|
|
{
|
|
var clobber_i: u32 = 0;
|
|
while (clobber_i < clobbers_len) : (clobber_i += 1) {
|
|
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
|
extra_i += clobber.len / 4 + 1;
|
|
// TODO: Record clobber and use it somewhere.
|
|
}
|
|
}
|
|
|
|
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
|
|
|
|
var as = SpvAssembler{
|
|
.gpa = self.gpa,
|
|
.src = asm_source,
|
|
.spv = self.spv,
|
|
.func = &self.func,
|
|
};
|
|
defer as.deinit();
|
|
|
|
for (inputs) |input| {
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
|
|
const constraint = std.mem.sliceTo(extra_bytes, 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
// This equation accounts for the fact that even if we have exactly 4 bytes
|
|
// for the string, we still use the next u32 for the null terminator.
|
|
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
const value = try self.resolve(input);
|
|
try as.value_map.put(as.gpa, name, .{ .value = value });
|
|
}
|
|
|
|
as.assemble() catch |err| switch (err) {
|
|
error.AssembleFail => {
|
|
// TODO: For now the compiler only supports a single error message per decl,
|
|
// so to translate the possible multiple errors from the assembler, emit
|
|
// them as notes here.
|
|
// TODO: Translate proper error locations.
|
|
assert(as.errors.items.len != 0);
|
|
assert(self.error_msg == null);
|
|
const loc = LazySrcLoc.nodeOffset(0);
|
|
const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index));
|
|
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
|
|
const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len);
|
|
|
|
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
|
|
{
|
|
errdefer self.module.gpa.free(notes);
|
|
var i: usize = 0;
|
|
errdefer for (notes[0..i]) |*note| {
|
|
note.deinit(self.module.gpa);
|
|
};
|
|
|
|
while (i < as.errors.items.len) : (i += 1) {
|
|
notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
|
|
}
|
|
}
|
|
self.error_msg.?.notes = notes;
|
|
return error.CodegenFail;
|
|
},
|
|
else => |others| return others,
|
|
};
|
|
|
|
for (outputs) |output| {
|
|
_ = output;
|
|
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
|
|
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
|
|
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
|
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
|
|
|
const result = as.value_map.get(name) orelse return {
|
|
return self.fail("invalid asm output '{s}'", .{name});
|
|
};
|
|
|
|
switch (result) {
|
|
.just_declared, .unresolved_forward_reference => unreachable,
|
|
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
|
|
.value => |ref| return ref,
|
|
}
|
|
|
|
// TODO: Multiple results
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
fn airCall(self: *DeclGen, inst: Air.Inst.Index, modifier: std.builtin.CallOptions.Modifier) !?IdRef {
|
|
_ = modifier;
|
|
|
|
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
|
|
const extra = self.air.extraData(Air.Call, pl_op.payload);
|
|
const args = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra.end..][0..extra.data.args_len]);
|
|
const callee_ty = self.air.typeOf(pl_op.operand);
|
|
const zig_fn_ty = switch (callee_ty.zigTypeTag()) {
|
|
.Fn => callee_ty,
|
|
.Pointer => return self.fail("cannot call function pointers", .{}),
|
|
else => unreachable,
|
|
};
|
|
const fn_info = zig_fn_ty.fnInfo();
|
|
const return_type = fn_info.return_type;
|
|
|
|
const result_type_id = try self.resolveTypeId(return_type);
|
|
const result_id = self.spv.allocId();
|
|
const callee_id = try self.resolve(pl_op.operand);
|
|
|
|
try self.func.body.emitRaw(self.spv.gpa, .OpFunctionCall, 3 + args.len);
|
|
self.func.body.writeOperand(spec.IdResultType, result_type_id);
|
|
self.func.body.writeOperand(spec.IdResult, result_id);
|
|
self.func.body.writeOperand(spec.IdRef, callee_id);
|
|
|
|
for (args) |arg| {
|
|
const arg_id = try self.resolve(arg);
|
|
const arg_ty = self.air.typeOf(arg);
|
|
if (!arg_ty.hasRuntimeBitsIgnoreComptime()) continue;
|
|
|
|
self.func.body.writeOperand(spec.IdRef, arg_id);
|
|
}
|
|
|
|
if (return_type.isNoReturn()) {
|
|
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
|
}
|
|
|
|
if (self.liveness.isUnused(inst) or !return_type.hasRuntimeBitsIgnoreComptime()) {
|
|
return null;
|
|
}
|
|
|
|
return result_id;
|
|
}
|
|
};
|