zig/lib/std/Thread/Condition.zig
cryptocode 531d5b213f
std: add Thread.Condition.timedWait (#11352)
* std: add Thread.Condition.timedWait

I needed the equivalent of `std::condition_variable::wait_for`, but it's missing in std.
This PR adds an implementation, following the status quo of using std.os.CLOCK.REALTIME in the pthread case (i.e. Futex)

A follow-up patch moving futex/condition stuff to monotonic clocks where available seems like a good idea.
This would involve conditionally exposing more functions and constants through std.c and std.os.
For instance, Chromium picks `pthread_cond_timedwait_relative_np` on macOS and `clock_gettime(CLOCK_MONOTONIC...)` on BSD's.

Tested on Windows 11, macOS 12.2.1 and Linux (with/without libc)

* Sleep in the single threaded case, handle timeout overflow in the Windows case and address a race condition in the AtomicCondition case.
2022-04-08 13:26:56 -05:00

412 lines
13 KiB
Zig

//! A condition provides a way for a kernel thread to block until it is signaled
//! to wake up. Spurious wakeups are possible.
//! This API supports static initialization and does not require deinitialization.
impl: Impl = .{},
const std = @import("../std.zig");
const builtin = @import("builtin");
const Condition = @This();
const windows = std.os.windows;
const linux = std.os.linux;
const Mutex = std.Thread.Mutex;
const assert = std.debug.assert;
const testing = std.testing;
pub fn wait(cond: *Condition, mutex: *Mutex) void {
cond.impl.wait(mutex);
}
pub fn timedWait(cond: *Condition, mutex: *Mutex, timeout_ns: u64) error{TimedOut}!void {
try cond.impl.timedWait(mutex, timeout_ns);
}
pub fn signal(cond: *Condition) void {
cond.impl.signal();
}
pub fn broadcast(cond: *Condition) void {
cond.impl.broadcast();
}
const Impl = if (builtin.single_threaded)
SingleThreadedCondition
else if (builtin.os.tag == .windows)
WindowsCondition
else if (std.Thread.use_pthreads)
PthreadCondition
else
AtomicCondition;
pub const SingleThreadedCondition = struct {
pub fn wait(cond: *SingleThreadedCondition, mutex: *Mutex) void {
_ = cond;
_ = mutex;
unreachable; // deadlock detected
}
pub fn timedWait(cond: *SingleThreadedCondition, mutex: *Mutex, timeout_ns: u64) error{TimedOut}!void {
_ = cond;
_ = mutex;
_ = timeout_ns;
std.time.sleep(timeout_ns);
return error.TimedOut;
}
pub fn signal(cond: *SingleThreadedCondition) void {
_ = cond;
}
pub fn broadcast(cond: *SingleThreadedCondition) void {
_ = cond;
}
};
pub const WindowsCondition = struct {
cond: windows.CONDITION_VARIABLE = windows.CONDITION_VARIABLE_INIT,
pub fn wait(cond: *WindowsCondition, mutex: *Mutex) void {
const rc = windows.kernel32.SleepConditionVariableSRW(
&cond.cond,
&mutex.impl.srwlock,
windows.INFINITE,
@as(windows.ULONG, 0),
);
assert(rc != windows.FALSE);
}
pub fn timedWait(cond: *WindowsCondition, mutex: *Mutex, timeout_ns: u64) error{TimedOut}!void {
var timeout_checked = std.math.cast(windows.DWORD, timeout_ns / std.time.ns_per_ms) catch overflow: {
break :overflow std.math.maxInt(windows.DWORD);
};
// Handle the case where timeout is INFINITE, otherwise SleepConditionVariableSRW's time-out never elapses
const timeout_overflowed = timeout_checked == windows.INFINITE;
timeout_checked -= @boolToInt(timeout_overflowed);
const rc = windows.kernel32.SleepConditionVariableSRW(
&cond.cond,
&mutex.impl.srwlock,
timeout_checked,
@as(windows.ULONG, 0),
);
if (rc == windows.FALSE and windows.kernel32.GetLastError() == windows.Win32Error.TIMEOUT) return error.TimedOut;
assert(rc != windows.FALSE);
}
pub fn signal(cond: *WindowsCondition) void {
windows.kernel32.WakeConditionVariable(&cond.cond);
}
pub fn broadcast(cond: *WindowsCondition) void {
windows.kernel32.WakeAllConditionVariable(&cond.cond);
}
};
pub const PthreadCondition = struct {
cond: std.c.pthread_cond_t = .{},
pub fn wait(cond: *PthreadCondition, mutex: *Mutex) void {
const rc = std.c.pthread_cond_wait(&cond.cond, &mutex.impl.pthread_mutex);
assert(rc == .SUCCESS);
}
pub fn timedWait(cond: *PthreadCondition, mutex: *Mutex, timeout_ns: u64) error{TimedOut}!void {
var ts: std.os.timespec = undefined;
std.os.clock_gettime(std.os.CLOCK.REALTIME, &ts) catch unreachable;
ts.tv_sec += @intCast(@TypeOf(ts.tv_sec), timeout_ns / std.time.ns_per_s);
ts.tv_nsec += @intCast(@TypeOf(ts.tv_nsec), timeout_ns % std.time.ns_per_s);
if (ts.tv_nsec >= std.time.ns_per_s) {
ts.tv_sec += 1;
ts.tv_nsec -= std.time.ns_per_s;
}
const rc = std.c.pthread_cond_timedwait(&cond.cond, &mutex.impl.pthread_mutex, &ts);
return switch (rc) {
.SUCCESS => {},
.TIMEDOUT => error.TimedOut,
else => unreachable,
};
}
pub fn signal(cond: *PthreadCondition) void {
const rc = std.c.pthread_cond_signal(&cond.cond);
assert(rc == .SUCCESS);
}
pub fn broadcast(cond: *PthreadCondition) void {
const rc = std.c.pthread_cond_broadcast(&cond.cond);
assert(rc == .SUCCESS);
}
};
pub const AtomicCondition = struct {
pending: bool = false,
queue_mutex: Mutex = .{},
queue_list: QueueList = .{},
pub const QueueList = std.SinglyLinkedList(QueueItem);
pub const QueueItem = struct {
futex: i32 = 0,
dequeued: bool = false,
fn wait(cond: *@This()) void {
while (@atomicLoad(i32, &cond.futex, .Acquire) == 0) {
switch (builtin.os.tag) {
.linux => {
switch (linux.getErrno(linux.futex_wait(
&cond.futex,
linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAIT,
0,
null,
))) {
.SUCCESS => {},
.INTR => {},
.AGAIN => {},
else => unreachable,
}
},
else => std.atomic.spinLoopHint(),
}
}
}
pub fn timedWait(cond: *@This(), timeout_ns: u64) error{TimedOut}!void {
const start_time = std.time.nanoTimestamp();
while (@atomicLoad(i32, &cond.futex, .Acquire) == 0) {
switch (builtin.os.tag) {
.linux => {
var ts: std.os.timespec = undefined;
ts.tv_sec = @intCast(@TypeOf(ts.tv_sec), timeout_ns / std.time.ns_per_s);
ts.tv_nsec = @intCast(@TypeOf(ts.tv_nsec), timeout_ns % std.time.ns_per_s);
switch (linux.getErrno(linux.futex_wait(
&cond.futex,
linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAIT,
0,
&ts,
))) {
.SUCCESS => {},
.INTR => {},
.AGAIN => {},
.TIMEDOUT => return error.TimedOut,
.INVAL => {}, // possibly timeout overflow
.FAULT => unreachable,
else => unreachable,
}
},
else => {
if (std.time.nanoTimestamp() - start_time >= timeout_ns) {
return error.TimedOut;
}
std.atomic.spinLoopHint();
},
}
}
}
fn notify(cond: *@This()) void {
@atomicStore(i32, &cond.futex, 1, .Release);
switch (builtin.os.tag) {
.linux => {
switch (linux.getErrno(linux.futex_wake(
&cond.futex,
linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAKE,
1,
))) {
.SUCCESS => {},
.FAULT => {},
else => unreachable,
}
},
else => {},
}
}
};
pub fn wait(cond: *AtomicCondition, mutex: *Mutex) void {
var waiter = QueueList.Node{ .data = .{} };
{
cond.queue_mutex.lock();
defer cond.queue_mutex.unlock();
cond.queue_list.prepend(&waiter);
@atomicStore(bool, &cond.pending, true, .SeqCst);
}
mutex.unlock();
waiter.data.wait();
mutex.lock();
}
pub fn timedWait(cond: *AtomicCondition, mutex: *Mutex, timeout_ns: u64) error{TimedOut}!void {
var waiter = QueueList.Node{ .data = .{} };
{
cond.queue_mutex.lock();
defer cond.queue_mutex.unlock();
cond.queue_list.prepend(&waiter);
@atomicStore(bool, &cond.pending, true, .SeqCst);
}
var timed_out = false;
mutex.unlock();
defer mutex.lock();
waiter.data.timedWait(timeout_ns) catch |err| switch (err) {
error.TimedOut => {
defer if (!timed_out) {
waiter.data.wait();
};
cond.queue_mutex.lock();
defer cond.queue_mutex.unlock();
if (!waiter.data.dequeued) {
timed_out = true;
cond.queue_list.remove(&waiter);
}
},
else => unreachable,
};
if (timed_out) {
return error.TimedOut;
}
}
pub fn signal(cond: *AtomicCondition) void {
if (@atomicLoad(bool, &cond.pending, .SeqCst) == false)
return;
const maybe_waiter = blk: {
cond.queue_mutex.lock();
defer cond.queue_mutex.unlock();
const maybe_waiter = cond.queue_list.popFirst();
if (maybe_waiter) |waiter| {
waiter.data.dequeued = true;
}
@atomicStore(bool, &cond.pending, cond.queue_list.first != null, .SeqCst);
break :blk maybe_waiter;
};
if (maybe_waiter) |waiter| {
waiter.data.notify();
}
}
pub fn broadcast(cond: *AtomicCondition) void {
if (@atomicLoad(bool, &cond.pending, .SeqCst) == false)
return;
@atomicStore(bool, &cond.pending, false, .SeqCst);
var waiters = blk: {
cond.queue_mutex.lock();
defer cond.queue_mutex.unlock();
const waiters = cond.queue_list;
var it = waiters.first;
while (it) |node| : (it = node.next) {
node.data.dequeued = true;
}
cond.queue_list = .{};
break :blk waiters;
};
while (waiters.popFirst()) |waiter| {
waiter.data.notify();
}
}
};
test "Thread.Condition" {
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const TestContext = struct {
cond: *Condition,
cond_main: *Condition,
mutex: *Mutex,
n: *i32,
fn worker(ctx: *@This()) void {
ctx.mutex.lock();
ctx.n.* += 1;
ctx.cond_main.signal();
ctx.cond.wait(ctx.mutex);
ctx.n.* -= 1;
ctx.cond_main.signal();
ctx.mutex.unlock();
}
};
const num_threads = 3;
var threads: [num_threads]std.Thread = undefined;
var cond = Condition{};
var cond_main = Condition{};
var mut = Mutex{};
var n: i32 = 0;
var ctx = TestContext{ .cond = &cond, .cond_main = &cond_main, .mutex = &mut, .n = &n };
mut.lock();
for (threads) |*t| t.* = try std.Thread.spawn(.{}, TestContext.worker, .{&ctx});
cond_main.wait(&mut);
while (n < num_threads) cond_main.wait(&mut);
cond.signal();
cond_main.wait(&mut);
try testing.expect(n == (num_threads - 1));
cond.broadcast();
while (n > 0) cond_main.wait(&mut);
try testing.expect(n == 0);
for (threads) |t| t.join();
}
test "Thread.Condition.timedWait" {
if (builtin.single_threaded) {
return error.SkipZigTest;
}
var cond = Condition{};
var mut = Mutex{};
// Expect a timeout, as the condition variable is never signaled
{
mut.lock();
defer mut.unlock();
try testing.expectError(error.TimedOut, cond.timedWait(&mut, 10 * std.time.ns_per_ms));
}
// Expect a signal before timeout
{
const TestContext = struct {
cond: *Condition,
mutex: *Mutex,
n: *u32,
fn worker(ctx: *@This()) void {
ctx.mutex.lock();
defer ctx.mutex.unlock();
ctx.n.* = 1;
ctx.cond.signal();
}
};
var n: u32 = 0;
var ctx = TestContext{ .cond = &cond, .mutex = &mut, .n = &n };
mut.lock();
var thread = try std.Thread.spawn(.{}, TestContext.worker, .{&ctx});
// Looped check to handle spurious wakeups
while (n != 1) try cond.timedWait(&mut, 500 * std.time.ns_per_ms);
mut.unlock();
try testing.expect(n == 1);
thread.join();
}
}