zig/src/codegen/spirv.zig
Andrew Kelley 7f70c27e9d stage2: more division support
AIR:
 * div is renamed to div_trunc.
 * Add div_float, div_floor, div_exact.
   - Implemented in Sema and LLVM codegen. C backend has a stub.

Improvements to std.math.big.Int:
 * Add `eqZero` function to `Mutable`.
 * Fix incorrect results for `divFloor`.

Compiler-rt:
 * Add muloti4 to the stage2 section.
2021-10-21 19:05:26 -07:00

987 lines
44 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const Air = @import("../Air.zig");
const Liveness = @import("../Liveness.zig");
pub const Word = u32;
pub const ResultId = u32;
pub const TypeMap = std.HashMap(Type, u32, Type.HashContext64, std.hash_map.default_max_load_percentage);
pub const InstMap = std.AutoHashMap(Air.Inst.Index, ResultId);
const IncomingBlock = struct {
src_label_id: ResultId,
break_value_id: ResultId,
};
pub const BlockMap = std.AutoHashMap(Air.Inst.Index, struct {
label_id: ResultId,
incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock),
});
pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void {
const word_count: Word = arg_count + 1;
try code.append((word_count << 16) | @enumToInt(opcode));
}
pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void {
try writeOpcode(code, opcode, @intCast(u16, args.len));
try code.appendSlice(args);
}
pub fn writeInstructionWithString(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word, str: []const u8) !void {
// Str needs to be written zero-terminated, so we need to add one to the length.
const zero_terminated_len = str.len + 1;
const str_words = (zero_terminated_len + @sizeOf(Word) - 1) / @sizeOf(Word);
try writeOpcode(code, opcode, @intCast(u16, args.len + str_words));
try code.ensureUnusedCapacity(args.len + str_words);
code.appendSliceAssumeCapacity(args);
// TODO: Not actually sure whether this is correct for big-endian.
// See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#Literal
var i: usize = 0;
while (i < zero_terminated_len) : (i += @sizeOf(Word)) {
var word: Word = 0;
var j: usize = 0;
while (j < @sizeOf(Word) and i + j < str.len) : (j += 1) {
word |= @as(Word, str[i + j]) << @intCast(std.math.Log2Int(Word), j * std.meta.bitCount(u8));
}
code.appendAssumeCapacity(word);
}
}
/// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information.
/// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
/// of data which needs to be persistent over different calls to Decl code generation.
pub const SPIRVModule = struct {
/// A general-purpose allocator which may be used to allocate temporary resources required for compilation.
gpa: *Allocator,
/// The parent module.
module: *Module,
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
next_result_id: ResultId,
/// Code of the actual SPIR-V binary, divided into the relevant logical sections.
/// Note: To save some bytes, these could also be unmanaged, but since there is only one instance of SPIRVModule
/// and this removes some clutter in the rest of the backend, it's fine like this.
binary: struct {
/// OpCapability and OpExtension instructions (in that order).
capabilities_and_extensions: std.ArrayList(Word),
/// OpString, OpSourceExtension, OpSource, OpSourceContinued.
debug_strings: std.ArrayList(Word),
/// Type declaration instructions, constant instructions, global variable declarations, OpUndef instructions.
types_globals_constants: std.ArrayList(Word),
/// Regular functions.
fn_decls: std.ArrayList(Word),
},
/// Global type cache to reduce the amount of generated types.
types: TypeMap,
/// Cache for results of OpString instructions for module file names fed to OpSource.
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
file_names: std.StringHashMap(ResultId),
pub fn init(gpa: *Allocator, module: *Module) SPIRVModule {
return .{
.gpa = gpa,
.module = module,
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
.binary = .{
.capabilities_and_extensions = std.ArrayList(Word).init(gpa),
.debug_strings = std.ArrayList(Word).init(gpa),
.types_globals_constants = std.ArrayList(Word).init(gpa),
.fn_decls = std.ArrayList(Word).init(gpa),
},
.types = TypeMap.init(gpa),
.file_names = std.StringHashMap(ResultId).init(gpa),
};
}
pub fn deinit(self: *SPIRVModule) void {
self.file_names.deinit();
self.types.deinit();
self.binary.fn_decls.deinit();
self.binary.types_globals_constants.deinit();
self.binary.debug_strings.deinit();
self.binary.capabilities_and_extensions.deinit();
}
pub fn allocResultId(self: *SPIRVModule) Word {
defer self.next_result_id += 1;
return self.next_result_id;
}
pub fn resultIdBound(self: *SPIRVModule) Word {
return self.next_result_id;
}
fn resolveSourceFileName(self: *SPIRVModule, decl: *Decl) !ResultId {
const path = decl.getFileScope().sub_file_path;
const result = try self.file_names.getOrPut(path);
if (!result.found_existing) {
result.value_ptr.* = self.allocResultId();
try writeInstructionWithString(&self.binary.debug_strings, .OpString, &[_]Word{result.value_ptr.*}, path);
try writeInstruction(&self.binary.debug_strings, .OpSource, &[_]Word{
@enumToInt(spec.SourceLanguage.Unknown), // TODO: Register Zig source language.
0, // TODO: Zig version as u32?
result.value_ptr.*,
});
}
return result.value_ptr.*;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
/// The SPIR-V module code should be put in.
spv: *SPIRVModule,
air: Air,
liveness: Liveness,
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayList(ResultId),
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap,
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: BlockMap,
/// The label of the SPIR-V block we are currently generating.
current_block_label_id: ResultId,
/// The actual instructions for this function. We need to declare all locals in
/// the first block, and because we don't know which locals there are going to be,
/// we're just going to generate everything after the locals-section in this array.
/// Note: It will not contain OpFunction, OpFunctionParameter, OpVariable and the
/// initial OpLabel. These will be generated into spv.binary.fn_decls directly.
code: std.ArrayList(Word),
/// The decl we are currently generating code for.
decl: *Decl,
/// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Module.ErrorMsg,
/// Possible errors the `gen` function may return.
const Error = error{ AnalysisFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// Whether the type is a vector.
is_vector: bool,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Initialize the common resources of a DeclGen. Some fields are left uninitialized,
/// only set when `gen` is called.
pub fn init(spv: *SPIRVModule) DeclGen {
return .{
.spv = spv,
.air = undefined,
.liveness = undefined,
.args = std.ArrayList(ResultId).init(spv.gpa),
.next_arg_index = undefined,
.inst_results = InstMap.init(spv.gpa),
.blocks = BlockMap.init(spv.gpa),
.current_block_label_id = undefined,
.code = std.ArrayList(Word).init(spv.gpa),
.decl = undefined,
.error_msg = undefined,
};
}
/// Generate the code for `decl`. If a reportable error occurred during code generation,
/// a message is returned by this function. Callee owns the memory. If this function
/// returns such a reportable error, it is valid to be called again for a different decl.
pub fn gen(self: *DeclGen, decl: *Decl, air: Air, liveness: Liveness) !?*Module.ErrorMsg {
// Reset internal resources, we don't want to re-allocate these.
self.air = air;
self.liveness = liveness;
self.args.items.len = 0;
self.next_arg_index = 0;
self.inst_results.clearRetainingCapacity();
self.blocks.clearRetainingCapacity();
self.current_block_label_id = undefined;
self.code.items.len = 0;
self.decl = decl;
self.error_msg = null;
try self.genDecl();
return self.error_msg;
}
/// Free resources owned by the DeclGen.
pub fn deinit(self: *DeclGen) void {
self.args.deinit();
self.inst_results.deinit();
self.blocks.deinit();
self.code.deinit();
}
fn getTarget(self: *DeclGen) std.Target {
return self.spv.module.getTarget();
}
fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const src: LazySrcLoc = .{ .node_offset = 0 };
const src_loc = src.toSrcLoc(self.decl);
self.error_msg = try Module.ErrorMsg.create(self.spv.module.gpa, src_loc, format, args);
return error.AnalysisFail;
}
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !ResultId {
if (self.air.value(inst)) |val| {
return self.genConstant(self.air.typeOf(inst), val);
}
const index = Air.refToIndex(inst).?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
fn beginSPIRVBlock(self: *DeclGen, label_id: ResultId) !void {
try writeInstruction(&self.code, .OpLabel, &[_]Word{label_id});
self.current_block_label_id = label_id;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const target = self.getTarget();
return switch (ty.zigTypeTag()) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.is_vector = false,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = ty.floatBits(target),
.is_vector = false,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = ty.intInfo(target);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer };
},
// As of yet, there is no vector support in the self-hosted compiler.
.Vector => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
// TODO: For which types is this the case?
else => self.fail("TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
};
}
/// Generate a constant representing `val`.
/// TODO: Deduplication?
fn genConstant(self: *DeclGen, ty: Type, val: Value) Error!ResultId {
const target = self.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(ty);
if (val.isUndef()) {
try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id });
return result_id;
}
switch (ty.zigTypeTag()) {
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail("TODO: SPIR-V backend: implement composite int constants for {}", .{ty});
};
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
// might need to be updated.
assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();
// Mask the low bits which make up the actual integer. This is to make sure that negative values
// only use the actual bits of the type.
// TODO: Should this be the backing type bits or the actual type bits?
int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1;
switch (backing_bits) {
0 => unreachable,
1...32 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
}),
33...64 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
@truncate(u32, int_bits >> @bitSizeOf(u32)),
}),
else => unreachable, // backing_bits is bounded by largestSupportedIntBits.
}
},
.Bool => {
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id });
},
.Float => {
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
// would have exited at genType(ty).
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
switch (ty.floatBits(target)) {
16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }),
32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }),
64 => {
const float_bits = @bitCast(u64, val.toFloat(f64));
try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, float_bits),
@truncate(u32, float_bits >> @bitSizeOf(u32)),
});
},
128 => unreachable, // Filtered out in the call to genType.
// TODO: Insert case for long double when the layout for that is determined.
else => unreachable,
}
},
.Void => unreachable,
else => return self.fail("TODO: SPIR-V backend: constant generation of type {}", .{ty}),
}
return result_id;
}
fn genType(self: *DeclGen, ty: Type) Error!ResultId {
// We can't use getOrPut here so we can recursively generate types.
if (self.spv.types.get(ty)) |already_generated| {
return already_generated;
}
const target = self.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
switch (ty.zigTypeTag()) {
.Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}),
.Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}),
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail("TODO: SPIR-V backend: implement composite int {}", .{ty});
};
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
try writeInstruction(code, .OpTypeInt, &[_]Word{
result_id,
backing_bits,
switch (int_info.signedness) {
.unsigned => 0,
.signed => 1,
},
});
},
.Float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits });
},
.Fn => {
// We only support zig-calling-convention functions, no varargs.
if (ty.fnCallingConvention() != .Unspecified)
return self.fail("Unsupported calling convention for SPIR-V", .{});
if (ty.fnIsVarArgs())
return self.fail("VarArgs unsupported for SPIR-V", .{});
// In order to avoid a temporary here, first generate all the required types and then simply look them up
// when generating the function type.
const params = ty.fnParamLen();
var i: usize = 0;
while (i < params) : (i += 1) {
_ = try self.genType(ty.fnParamType(i));
}
const return_type_id = try self.genType(ty.fnReturnType());
// result id + result type id + parameter type ids.
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen()));
try code.appendSlice(&.{ result_id, return_type_id });
i = 0;
while (i < params) : (i += 1) {
const param_type_id = self.spv.types.get(ty.fnParamType(i)).?;
try code.append(param_type_id);
}
},
// When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType.
.Pointer => return self.fail("Cannot create pointer with unknown storage class", .{}),
.Vector => {
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
// which work on them), so simply use those.
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
// is adequate at all for this.
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
return self.fail("TODO: SPIR-V backend: implement type Vector", .{});
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be const or comptime.
.BoundFn => unreachable, // this type will be deleted from the language.
else => |tag| return self.fail("TODO: SPIR-V backend: implement type {}s", .{tag}),
}
try self.spv.types.putNoClobber(ty, result_id);
return result_id;
}
/// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
/// TODO: The result of this needs to be cached.
fn genPointerType(self: *DeclGen, ty: Type, storage_class: spec.StorageClass) !ResultId {
assert(ty.zigTypeTag() == .Pointer);
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
// TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
// if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
// These also relates to the pointer's address space.
const child_id = try self.genType(ty.elemType());
try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id });
return result_id;
}
fn genDecl(self: *DeclGen) !void {
const decl = self.decl;
const result_id = decl.fn_link.spirv.id;
if (decl.val.castTag(.function)) |_| {
assert(decl.ty.zigTypeTag() == .Fn);
const prototype_id = try self.genType(decl.ty);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{
self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
result_id,
@bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
prototype_id,
});
const params = decl.ty.fnParamLen();
var i: usize = 0;
try self.args.ensureTotalCapacity(params);
while (i < params) : (i += 1) {
const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?;
const arg_result_id = self.spv.allocResultId();
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id });
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocResultId();
// We need to generate the label directly in the fn_decls here because we're going to write the local variables after
// here. Since we're not generating in self.code, we're just going to bypass self.beginSPIRVBlock here.
try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id});
self.current_block_label_id = root_block_id;
const main_body = self.air.getMainBody();
try self.genBody(main_body);
// Append the actual code into the fn_decls section.
try self.spv.binary.fn_decls.appendSlice(self.code.items);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{});
} else {
return self.fail("TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
}
}
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
const air_tags = self.air.instructions.items(.tag);
const result_id = switch (air_tags[inst]) {
// zig fmt: off
.add, .addwrap => try self.airArithOp(inst, .{.OpFAdd, .OpIAdd, .OpIAdd}),
.sub, .subwrap => try self.airArithOp(inst, .{.OpFSub, .OpISub, .OpISub}),
.mul, .mulwrap => try self.airArithOp(inst, .{.OpFMul, .OpIMul, .OpIMul}),
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
.not => try self.airNot(inst),
.cmp_eq => try self.airCmp(inst, .{.OpFOrdEqual, .OpLogicalEqual, .OpIEqual}),
.cmp_neq => try self.airCmp(inst, .{.OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual}),
.cmp_gt => try self.airCmp(inst, .{.OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan}),
.cmp_gte => try self.airCmp(inst, .{.OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual}),
.cmp_lt => try self.airCmp(inst, .{.OpFOrdLessThan, .OpSLessThan, .OpULessThan}),
.cmp_lte => try self.airCmp(inst, .{.OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual}),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
.block => (try self.airBlock(inst)) orelse return,
.load => try self.airLoad(inst),
.br => return self.airBr(inst),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.constant => unreachable,
.dbg_stmt => return self.airDbgStmt(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.store => return self.airStore(inst),
.unreach => return self.airUnreach(),
// zig fmt: on
else => |tag| return self.fail("TODO: SPIR-V backend: implement AIR tag {s}", .{
@tagName(tag),
}),
};
try self.inst_results.putNoClobber(inst, result_id);
}
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, opcode: Opcode) !ResultId {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(self.air.typeOfIndex(inst));
try writeInstruction(&self.code, opcode, &[_]Word{
result_type_id, result_id, lhs_id, rhs_id,
});
return result_id;
}
fn airArithOp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
// the result to be the same as the LHS and RHS, which matches SPIR-V.
const ty = self.air.typeOfIndex(inst);
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(ty);
assert(self.air.typeOf(bin_op.lhs).eql(ty));
assert(self.air.typeOf(bin_op.rhs).eql(ty));
// Binary operations are generally applicable to both scalar and vector operations
// in SPIR-V, but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
},
.strange_integer => {
return self.fail("TODO: SPIR-V backend: binary operations for strange integers", .{});
},
.integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
.float => 0,
else => unreachable,
};
const opcode = ops[opcode_index];
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
return result_id;
}
fn airCmp(self: *DeclGen, inst: Air.Inst.Index, ops: [3]Opcode) !ResultId {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(Type.initTag(.bool));
const op_ty = self.air.typeOf(bin_op.lhs);
assert(op_ty.eql(self.air.typeOf(bin_op.rhs)));
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V,
// but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(op_ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.fail("TODO: SPIR-V backend: binary operations for composite integers", .{});
},
.strange_integer => {
return self.fail("TODO: SPIR-V backend: comparison for strange integers", .{});
},
.float => 0,
.bool => 1,
.integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
};
const opcode = ops[opcode_index];
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
return result_id;
}
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(Type.initTag(.bool));
const opcode: Opcode = .OpLogicalNot;
try writeInstruction(&self.code, opcode, &[_]Word{ result_type_id, result_id, operand_id });
return result_id;
}
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
const ty = self.air.typeOfIndex(inst);
const storage_class = spec.StorageClass.Function;
const result_type_id = try self.genPointerType(ty, storage_class);
const result_id = self.spv.allocResultId();
// Rather than generating into code here, we're just going to generate directly into the fn_decls section so that
// variable declarations appear in the first block of the function.
try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) });
return result_id;
}
fn airArg(self: *DeclGen) ResultId {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?ResultId {
// In IR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and
// "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up
// the current block by first generating the code of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const label_id = self.spv.allocResultId();
// 4 chosen as arbitrary initial capacity.
var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.spv.gpa, 4);
try self.blocks.putNoClobber(inst, .{
.label_id = label_id,
.incoming_blocks = &incoming_blocks,
});
defer {
assert(self.blocks.remove(inst));
incoming_blocks.deinit(self.spv.gpa);
}
const ty = self.air.typeOfIndex(inst);
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
try self.genBody(body);
try self.beginSPIRVBlock(label_id);
// If this block didn't produce a value, simply return here.
if (!ty.hasCodeGenBits())
return null;
// Combine the result from the blocks using the Phi instruction.
const result_id = self.spv.allocResultId();
// TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types
// are not allowed to be created from a phi node, and throw an error for those. For now, genType already throws
// an error for pointers.
const result_type_id = try self.genType(ty);
_ = result_type_id;
try writeOpcode(&self.code, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent...
for (incoming_blocks.items) |incoming| {
try self.code.appendSlice(&[_]Word{ incoming.break_value_id, incoming.src_label_id });
}
return result_id;
}
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const br = self.air.instructions.items(.data)[inst].br;
const block = self.blocks.get(br.block_inst).?;
const operand_ty = self.air.typeOf(br.operand);
if (operand_ty.hasCodeGenBits()) {
const operand_id = try self.resolve(br.operand);
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
try block.incoming_blocks.append(self.spv.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id });
}
try writeInstruction(&self.code, .OpBranch, &[_]Word{block.label_id});
}
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
const condition_id = try self.resolve(pl_op.operand);
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
const then_label_id = self.spv.allocResultId();
const else_label_id = self.spv.allocResultId();
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
// but i don't know if those will always resolve to the same block.
try writeInstruction(&self.code, .OpBranchConditional, &[_]Word{
condition_id,
then_label_id,
else_label_id,
});
try self.beginSPIRVBlock(then_label_id);
try self.genBody(then_body);
try self.beginSPIRVBlock(else_label_id);
try self.genBody(else_body);
}
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
const src_fname_id = try self.spv.resolveSourceFileName(self.decl);
try writeInstruction(&self.code, .OpLine, &[_]Word{ src_fname_id, dbg_stmt.line, dbg_stmt.column });
}
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !ResultId {
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const ty = self.air.typeOfIndex(inst);
const result_type_id = try self.genType(ty);
const result_id = self.spv.allocResultId();
const operands = if (ty.isVolatilePtr())
&[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
else
&[_]Word{ result_type_id, result_id, operand_id };
try writeInstruction(&self.code, .OpLoad, operands);
return result_id;
}
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[loop.end..][0..loop.data.body_len];
const loop_label_id = self.spv.allocResultId();
// Jump to the loop entry point
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
// TODO: Look into OpLoopMerge.
try self.beginSPIRVBlock(loop_label_id);
try self.genBody(body);
try writeInstruction(&self.code, .OpBranch, &[_]Word{loop_label_id});
}
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
const operand = self.air.instructions.items(.data)[inst].un_op;
const operand_ty = self.air.typeOf(operand);
if (operand_ty.hasCodeGenBits()) {
const operand_id = try self.resolve(operand);
try writeInstruction(&self.code, .OpReturnValue, &[_]Word{operand_id});
} else {
try writeInstruction(&self.code, .OpReturn, &[_]Word{});
}
}
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dst_ptr_id = try self.resolve(bin_op.lhs);
const src_val_id = try self.resolve(bin_op.rhs);
const lhs_ty = self.air.typeOf(bin_op.lhs);
const operands = if (lhs_ty.isVolatilePtr())
&[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{ .Volatile = true }) }
else
&[_]Word{ dst_ptr_id, src_val_id };
try writeInstruction(&self.code, .OpStore, operands);
}
fn airUnreach(self: *DeclGen) !void {
try writeInstruction(&self.code, .OpUnreachable, &[_]Word{});
}
};