I think of lerp() as a way to change coordinate systems, essentially
remapping the input numberline onto a shifted+rescaled numberline. In
my mind the full numberline is remapped, not just the 0-1 segment.
An example of how this is useful: in a game, you can write:
`myPos = lerp(pos0, pos1, easeOutBack(u))`
for some `u` that changes from 0 to 1 over time.
(see https://easings.net/#easeOutBack)
This will animate `myPos` between `pos0` and `pos1`, overshooting the
goal position `pos1` in a nicely-animated way.
`easeOutBack(float)->float` is a pure function that overshoots 1,
and by combining it with `lerp()` we can remap coordinates in other
coordinate systems, making them overshoot in the same way.
However, this overshooting is only possible because `easeOutBack(t)`
sometimes exceeds the range 0-1 (e.g. `easeOutBack(0.5)` is 1.0877),
which is not allowed by the current `math.lerp` implementation.
This commit removes the asserts that prevented this use-case. Now, any
value can be inputted for t. For example, `lerp(10,20, 2.0)` will now
return 30, instead of throwing an assert error.