mirror of
https://github.com/ziglang/zig.git
synced 2025-12-11 16:53:06 +00:00
and rename std.io.BufferedWriter.writableSlice to writableSliceGreedy and make writableSlice and writableArray advance the buffer end position introduce std.io.BufferedWriter.writeSplatLimit but it's unimplemented
1870 lines
90 KiB
Zig
1870 lines
90 KiB
Zig
const builtin = @import("builtin");
|
|
const native_endian = builtin.cpu.arch.endian();
|
|
|
|
const std = @import("../../std.zig");
|
|
const tls = std.crypto.tls;
|
|
const Client = @This();
|
|
const net = std.net;
|
|
const mem = std.mem;
|
|
const crypto = std.crypto;
|
|
const assert = std.debug.assert;
|
|
const Certificate = std.crypto.Certificate;
|
|
|
|
const max_ciphertext_len = tls.max_ciphertext_len;
|
|
const hmacExpandLabel = tls.hmacExpandLabel;
|
|
const hkdfExpandLabel = tls.hkdfExpandLabel;
|
|
const int = tls.int;
|
|
const array = tls.array;
|
|
|
|
/// The encrypted stream from the server to the client. Bytes are pulled from
|
|
/// here via `reader`.
|
|
///
|
|
/// The buffer is asserted to have capacity at least `min_buffer_len`.
|
|
///
|
|
/// The size is enough to contain exactly one TLSCiphertext record.
|
|
/// This buffer is segmented into four parts:
|
|
/// 0. unused
|
|
/// 1. cleartext
|
|
/// 2. ciphertext
|
|
/// 3. unused
|
|
/// The fields `partial_cleartext_idx`, `partial_ciphertext_idx`, and
|
|
/// `partial_ciphertext_end` describe the span of the segments.
|
|
input: *std.io.BufferedReader,
|
|
/// The encrypted stream from the client to the server. Bytes are pushed here
|
|
/// via `writer`.
|
|
///
|
|
/// The buffer is asserted to have capacity at least `min_buffer_len`.
|
|
output: *std.io.BufferedWriter,
|
|
/// Cleartext received from the server here.
|
|
///
|
|
/// Its buffer aliases the buffer of `input`.
|
|
reader: std.io.BufferedReader,
|
|
/// Populated under various error conditions.
|
|
diagnostics: Diagnostics,
|
|
|
|
tls_version: tls.ProtocolVersion,
|
|
read_seq: u64,
|
|
write_seq: u64,
|
|
/// The starting index of cleartext bytes inside the input buffer.
|
|
partial_cleartext_idx: u15,
|
|
/// The ending index of cleartext bytes inside the input buffer as well
|
|
/// as the starting index of ciphertext bytes.
|
|
partial_ciphertext_idx: u15,
|
|
/// The ending index of ciphertext bytes inside the input buffer.
|
|
partial_ciphertext_end: u15,
|
|
/// When this is true, the stream may still not be at the end because there
|
|
/// may be data in the input buffer.
|
|
received_close_notify: bool,
|
|
/// By default, reaching the end-of-stream when reading from the server will
|
|
/// cause `error.TlsConnectionTruncated` to be returned, unless a close_notify
|
|
/// message has been received. By setting this flag to `true`, instead, the
|
|
/// end-of-stream will be forwarded to the application layer above TLS.
|
|
/// This makes the application vulnerable to truncation attacks unless the
|
|
/// application layer itself verifies that the amount of data received equals
|
|
/// the amount of data expected, such as HTTP with the Content-Length header.
|
|
allow_truncation_attacks: bool,
|
|
application_cipher: tls.ApplicationCipher,
|
|
/// If non-null, ssl secrets are logged to a stream. Creating such a log file
|
|
/// allows other programs with access to that file to decrypt all traffic over
|
|
/// this connection.
|
|
ssl_key_log: ?*SslKeyLog,
|
|
|
|
pub const Diagnostics = union(enum) {
|
|
/// Any `ReadFailure` and `WriteFailure` was due to `input` or `output`
|
|
/// returning the error, respectively.
|
|
transitive,
|
|
/// Populated on `error.TlsAlert`.
|
|
///
|
|
/// If this isn't a error alert, then it's a closure alert, which makes
|
|
/// no sense in a handshake.
|
|
alert: tls.AlertDescription,
|
|
};
|
|
|
|
pub const SslKeyLog = struct {
|
|
client_key_seq: u64,
|
|
server_key_seq: u64,
|
|
client_random: [32]u8,
|
|
writer: *std.io.BufferedWriter,
|
|
|
|
fn clientCounter(key_log: *@This()) u64 {
|
|
defer key_log.client_key_seq += 1;
|
|
return key_log.client_key_seq;
|
|
}
|
|
|
|
fn serverCounter(key_log: *@This()) u64 {
|
|
defer key_log.server_key_seq += 1;
|
|
return key_log.server_key_seq;
|
|
}
|
|
};
|
|
|
|
/// The `std.io.BufferedReader` and `std.io.BufferedWriter` supplied to `init`
|
|
/// each require a buffer capacity at least this amount.
|
|
pub const min_buffer_len = tls.max_ciphertext_record_len;
|
|
|
|
pub const Options = struct {
|
|
/// How to perform host verification of server certificates.
|
|
host: union(enum) {
|
|
/// No host verification is performed, which prevents a trusted connection from
|
|
/// being established.
|
|
no_verification,
|
|
/// Verify that the server certificate was issued for a given host.
|
|
explicit: []const u8,
|
|
},
|
|
/// How to verify the authenticity of server certificates.
|
|
ca: union(enum) {
|
|
/// No ca verification is performed, which prevents a trusted connection from
|
|
/// being established.
|
|
no_verification,
|
|
/// Verify that the server certificate is a valid self-signed certificate.
|
|
/// This provides no authorization guarantees, as anyone can create a
|
|
/// self-signed certificate.
|
|
self_signed,
|
|
/// Verify that the server certificate is authorized by a given ca bundle.
|
|
bundle: Certificate.Bundle,
|
|
},
|
|
/// If non-null, ssl secrets are logged to this stream. Creating such a log file allows
|
|
/// other programs with access to that file to decrypt all traffic over this connection.
|
|
ssl_key_log: ?*std.io.BufferedWriter = null,
|
|
};
|
|
|
|
const InitError = error{
|
|
//OutOfMemory,
|
|
WriteFailure,
|
|
ReadFailure,
|
|
InsufficientEntropy,
|
|
DiskQuota,
|
|
LockViolation,
|
|
NotOpenForWriting,
|
|
/// The alert description will be stored in `Options.Diagnostics.alert`.
|
|
TlsAlert,
|
|
TlsUnexpectedMessage,
|
|
TlsIllegalParameter,
|
|
TlsDecryptFailure,
|
|
TlsRecordOverflow,
|
|
TlsBadRecordMac,
|
|
CertificateFieldHasInvalidLength,
|
|
CertificateHostMismatch,
|
|
CertificatePublicKeyInvalid,
|
|
CertificateExpired,
|
|
CertificateFieldHasWrongDataType,
|
|
CertificateIssuerMismatch,
|
|
CertificateNotYetValid,
|
|
CertificateSignatureAlgorithmMismatch,
|
|
CertificateSignatureAlgorithmUnsupported,
|
|
CertificateSignatureInvalid,
|
|
CertificateSignatureInvalidLength,
|
|
CertificateSignatureNamedCurveUnsupported,
|
|
CertificateSignatureUnsupportedBitCount,
|
|
TlsCertificateNotVerified,
|
|
TlsBadSignatureScheme,
|
|
TlsBadRsaSignatureBitCount,
|
|
InvalidEncoding,
|
|
IdentityElement,
|
|
SignatureVerificationFailed,
|
|
TlsDecryptError,
|
|
TlsConnectionTruncated,
|
|
TlsDecodeError,
|
|
UnsupportedCertificateVersion,
|
|
CertificateTimeInvalid,
|
|
CertificateHasUnrecognizedObjectId,
|
|
CertificateHasInvalidBitString,
|
|
MessageTooLong,
|
|
NegativeIntoUnsigned,
|
|
TargetTooSmall,
|
|
BufferTooSmall,
|
|
InvalidSignature,
|
|
NotSquare,
|
|
NonCanonical,
|
|
WeakPublicKey,
|
|
};
|
|
|
|
/// Initiates a TLS handshake and establishes a TLSv1.2 or TLSv1.3 session.
|
|
///
|
|
/// `host` is only borrowed during this function call.
|
|
///
|
|
/// Both `input` and `output` are asserted to have buffer capacity at least
|
|
/// `min_buffer_len`.
|
|
pub fn init(
|
|
client: *Client,
|
|
input: *std.io.BufferedReader,
|
|
output: *std.io.BufferedWriter,
|
|
options: Options,
|
|
) InitError!void {
|
|
assert(input.storage.buffer.len >= min_buffer_len);
|
|
assert(output.buffer.len >= min_buffer_len);
|
|
client.diagnostics = .transient;
|
|
const host = switch (options.host) {
|
|
.no_verification => "",
|
|
.explicit => |host| host,
|
|
};
|
|
const host_len: u16 = @intCast(host.len);
|
|
|
|
var random_buffer: [176]u8 = undefined;
|
|
crypto.random.bytes(&random_buffer);
|
|
const client_hello_rand = random_buffer[0..32].*;
|
|
var key_seq: u64 = 0;
|
|
var server_hello_rand: [32]u8 = undefined;
|
|
const legacy_session_id = random_buffer[32..64].*;
|
|
|
|
var key_share = KeyShare.init(random_buffer[64..176].*) catch |err| switch (err) {
|
|
// Only possible to happen if the seed is all zeroes.
|
|
error.IdentityElement => return error.InsufficientEntropy,
|
|
};
|
|
|
|
const extensions_payload = tls.extension(.supported_versions, array(u8, tls.ProtocolVersion, .{
|
|
.tls_1_3,
|
|
.tls_1_2,
|
|
})) ++ tls.extension(.signature_algorithms, array(u16, tls.SignatureScheme, .{
|
|
.ecdsa_secp256r1_sha256,
|
|
.ecdsa_secp384r1_sha384,
|
|
.rsa_pkcs1_sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.rsa_pss_rsae_sha256,
|
|
.rsa_pss_rsae_sha384,
|
|
.rsa_pss_rsae_sha512,
|
|
.rsa_pss_pss_sha256,
|
|
.rsa_pss_pss_sha384,
|
|
.rsa_pss_pss_sha512,
|
|
.rsa_pkcs1_sha1,
|
|
.ed25519,
|
|
})) ++ tls.extension(.supported_groups, array(u16, tls.NamedGroup, .{
|
|
.x25519_ml_kem768,
|
|
.secp256r1,
|
|
.secp384r1,
|
|
.x25519,
|
|
})) ++ tls.extension(.psk_key_exchange_modes, array(u8, tls.PskKeyExchangeMode, .{
|
|
.psk_dhe_ke,
|
|
})) ++ tls.extension(.key_share, array(
|
|
u16,
|
|
u8,
|
|
int(u16, @intFromEnum(tls.NamedGroup.x25519_ml_kem768)) ++
|
|
array(u16, u8, key_share.ml_kem768_kp.public_key.toBytes() ++ key_share.x25519_kp.public_key) ++
|
|
int(u16, @intFromEnum(tls.NamedGroup.secp256r1)) ++
|
|
array(u16, u8, key_share.secp256r1_kp.public_key.toUncompressedSec1()) ++
|
|
int(u16, @intFromEnum(tls.NamedGroup.secp384r1)) ++
|
|
array(u16, u8, key_share.secp384r1_kp.public_key.toUncompressedSec1()) ++
|
|
int(u16, @intFromEnum(tls.NamedGroup.x25519)) ++
|
|
array(u16, u8, key_share.x25519_kp.public_key),
|
|
));
|
|
const server_name_extension = int(u16, @intFromEnum(tls.ExtensionType.server_name)) ++
|
|
int(u16, 2 + 1 + 2 + host_len) ++ // byte length of this extension payload
|
|
int(u16, 1 + 2 + host_len) ++ // server_name_list byte count
|
|
.{0x00} ++ // name_type
|
|
int(u16, host_len);
|
|
const server_name_extension_len = switch (options.host) {
|
|
.no_verification => 0,
|
|
.explicit => server_name_extension.len + host_len,
|
|
};
|
|
|
|
const extensions_header =
|
|
int(u16, @intCast(extensions_payload.len + server_name_extension_len)) ++
|
|
extensions_payload ++
|
|
server_name_extension;
|
|
|
|
const client_hello =
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
client_hello_rand ++
|
|
[1]u8{32} ++ legacy_session_id ++
|
|
cipher_suites ++
|
|
array(u8, tls.CompressionMethod, .{.null}) ++
|
|
extensions_header;
|
|
|
|
const out_handshake = .{@intFromEnum(tls.HandshakeType.client_hello)} ++
|
|
int(u24, @intCast(client_hello.len - server_name_extension.len + server_name_extension_len)) ++
|
|
client_hello;
|
|
|
|
const cleartext_header_buf = .{@intFromEnum(tls.ContentType.handshake)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_0)) ++
|
|
int(u16, @intCast(out_handshake.len - server_name_extension.len + server_name_extension_len)) ++
|
|
out_handshake;
|
|
const cleartext_header = switch (options.host) {
|
|
.no_verification => cleartext_header_buf[0 .. cleartext_header_buf.len - server_name_extension.len],
|
|
.explicit => &cleartext_header_buf,
|
|
};
|
|
|
|
{
|
|
var iovecs: [2][]const u8 = .{ cleartext_header, host };
|
|
try output.writevAll(iovecs[0..if (host.len == 0) 1 else 2]);
|
|
}
|
|
|
|
var tls_version: tls.ProtocolVersion = undefined;
|
|
// These are used for two purposes:
|
|
// * Detect whether a certificate is the first one presented, in which case
|
|
// we need to verify the host name.
|
|
var cert_index: usize = 0;
|
|
// * Flip back and forth between the two cleartext buffers in order to keep
|
|
// the previous certificate in memory so that it can be verified by the
|
|
// next one.
|
|
var cert_buf_index: usize = 0;
|
|
var write_seq: u64 = 0;
|
|
var read_seq: u64 = 0;
|
|
var prev_cert: Certificate.Parsed = undefined;
|
|
const CipherState = enum {
|
|
/// No cipher is in use
|
|
cleartext,
|
|
/// Handshake cipher is in use
|
|
handshake,
|
|
/// Application cipher is in use
|
|
application,
|
|
};
|
|
var pending_cipher_state: CipherState = .cleartext;
|
|
var cipher_state = pending_cipher_state;
|
|
const HandshakeState = enum {
|
|
/// In this state we expect only a server hello message.
|
|
hello,
|
|
/// In this state we expect only an encrypted_extensions message.
|
|
encrypted_extensions,
|
|
/// In this state we expect certificate handshake messages.
|
|
certificate,
|
|
/// In this state we expect certificate or certificate_verify messages.
|
|
/// certificate messages are ignored since the trust chain is already
|
|
/// established.
|
|
trust_chain_established,
|
|
/// In this state, we expect only the server_hello_done handshake message.
|
|
server_hello_done,
|
|
/// In this state, we expect only the finished handshake message.
|
|
finished,
|
|
};
|
|
var handshake_state: HandshakeState = .hello;
|
|
var handshake_cipher: tls.HandshakeCipher = undefined;
|
|
var main_cert_pub_key: CertificatePublicKey = undefined;
|
|
const now_sec = std.time.timestamp();
|
|
|
|
var cleartext_fragment_start: usize = 0;
|
|
var cleartext_fragment_end: usize = 0;
|
|
var cleartext_bufs: [2][tls.max_ciphertext_inner_record_len]u8 = undefined;
|
|
var handshake_buffer: [tls.max_ciphertext_record_len]u8 = undefined;
|
|
var d: tls.Decoder = .{ .buf = &handshake_buffer };
|
|
fragment: while (true) {
|
|
try d.readAtLeastOurAmt(input, tls.record_header_len);
|
|
const record_header = d.buf[d.idx..][0..tls.record_header_len];
|
|
const record_ct = d.decode(tls.ContentType);
|
|
d.skip(2); // legacy_version
|
|
const record_len = d.decode(u16);
|
|
try d.readAtLeast(input, record_len);
|
|
var record_decoder = try d.sub(record_len);
|
|
var ctd, const ct = content: switch (cipher_state) {
|
|
.cleartext => .{ record_decoder, record_ct },
|
|
.handshake => {
|
|
std.debug.assert(tls_version == .tls_1_3);
|
|
if (record_ct != .application_data) return error.TlsUnexpectedMessage;
|
|
try record_decoder.ensure(record_len);
|
|
const cleartext_buf = &cleartext_bufs[cert_buf_index % 2];
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| {
|
|
const pv = &p.version.tls_1_3;
|
|
const P = @TypeOf(p.*).A;
|
|
if (record_len < P.AEAD.tag_length) return error.TlsRecordOverflow;
|
|
const ciphertext = record_decoder.slice(record_len - P.AEAD.tag_length);
|
|
const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..];
|
|
if (ciphertext.len > cleartext_fragment_buf.len) return error.TlsRecordOverflow;
|
|
const cleartext = cleartext_fragment_buf[0..ciphertext.len];
|
|
const auth_tag = record_decoder.array(P.AEAD.tag_length).*;
|
|
const nonce = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @as([8]u8, @bitCast(big(read_seq)));
|
|
break :nonce @as(V, pv.server_handshake_iv) ^ operand;
|
|
};
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, record_header, nonce, pv.server_handshake_key) catch
|
|
return error.TlsBadRecordMac;
|
|
cleartext_fragment_end += std.mem.trimEnd(u8, cleartext, "\x00").len;
|
|
},
|
|
}
|
|
read_seq += 1;
|
|
cleartext_fragment_end -= 1;
|
|
const ct: tls.ContentType = @enumFromInt(cleartext_buf[cleartext_fragment_end]);
|
|
if (ct != .handshake) return error.TlsUnexpectedMessage;
|
|
break :content .{ tls.Decoder.fromTheirSlice(@constCast(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end])), ct };
|
|
},
|
|
.application => {
|
|
std.debug.assert(tls_version == .tls_1_2);
|
|
if (record_ct != .handshake) return error.TlsUnexpectedMessage;
|
|
try record_decoder.ensure(record_len);
|
|
const cleartext_buf = &cleartext_bufs[cert_buf_index % 2];
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| {
|
|
const pv = &p.version.tls_1_2;
|
|
const P = @TypeOf(p.*).A;
|
|
if (record_len < P.record_iv_length + P.mac_length) return error.TlsRecordOverflow;
|
|
const message_len: u16 = record_len - P.record_iv_length - P.mac_length;
|
|
const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..];
|
|
if (message_len > cleartext_fragment_buf.len) return error.TlsRecordOverflow;
|
|
const cleartext = cleartext_fragment_buf[0..message_len];
|
|
const ad = std.mem.toBytes(big(read_seq)) ++
|
|
record_header[0 .. 1 + 2] ++
|
|
std.mem.toBytes(big(message_len));
|
|
const record_iv = record_decoder.array(P.record_iv_length).*;
|
|
const masked_read_seq = read_seq &
|
|
comptime std.math.shl(u64, std.math.maxInt(u64), 8 * P.record_iv_length);
|
|
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @as([8]u8, @bitCast(big(masked_read_seq)));
|
|
break :nonce @as(V, pv.app_cipher.server_write_IV ++ record_iv) ^ operand;
|
|
};
|
|
const ciphertext = record_decoder.slice(message_len);
|
|
const auth_tag = record_decoder.array(P.mac_length);
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag.*, ad, nonce, pv.app_cipher.server_write_key) catch return error.TlsBadRecordMac;
|
|
cleartext_fragment_end += message_len;
|
|
},
|
|
}
|
|
read_seq += 1;
|
|
break :content .{ tls.Decoder.fromTheirSlice(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end]), record_ct };
|
|
},
|
|
};
|
|
switch (ct) {
|
|
.alert => {
|
|
ctd.ensure(2) catch continue :fragment;
|
|
const level = ctd.decode(tls.AlertLevel);
|
|
const desc = ctd.decode(tls.AlertDescription);
|
|
_ = level;
|
|
client.diagnostics = .{ .alert = desc };
|
|
return error.TlsAlert;
|
|
},
|
|
.change_cipher_spec => {
|
|
ctd.ensure(1) catch continue :fragment;
|
|
if (ctd.decode(tls.ChangeCipherSpecType) != .change_cipher_spec) return error.TlsIllegalParameter;
|
|
cipher_state = pending_cipher_state;
|
|
},
|
|
.handshake => while (true) {
|
|
ctd.ensure(4) catch continue :fragment;
|
|
const handshake_type = ctd.decode(tls.HandshakeType);
|
|
const handshake_len = ctd.decode(u24);
|
|
var hsd = ctd.sub(handshake_len) catch continue :fragment;
|
|
const wrapped_handshake = ctd.buf[ctd.idx - handshake_len - 4 .. ctd.idx];
|
|
switch (handshake_type) {
|
|
.server_hello => {
|
|
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
|
|
if (handshake_state != .hello) return error.TlsUnexpectedMessage;
|
|
try hsd.ensure(2 + 32 + 1);
|
|
const legacy_version = hsd.decode(u16);
|
|
@memcpy(&server_hello_rand, hsd.array(32));
|
|
if (mem.eql(u8, &server_hello_rand, &tls.hello_retry_request_sequence)) {
|
|
// This is a HelloRetryRequest message. This client implementation
|
|
// does not expect to get one.
|
|
return error.TlsUnexpectedMessage;
|
|
}
|
|
const legacy_session_id_echo_len = hsd.decode(u8);
|
|
try hsd.ensure(legacy_session_id_echo_len + 2 + 1);
|
|
const legacy_session_id_echo = hsd.slice(legacy_session_id_echo_len);
|
|
const cipher_suite_tag = hsd.decode(tls.CipherSuite);
|
|
hsd.skip(1); // legacy_compression_method
|
|
var supported_version: ?u16 = null;
|
|
if (!hsd.eof()) {
|
|
try hsd.ensure(2);
|
|
const extensions_size = hsd.decode(u16);
|
|
var all_extd = try hsd.sub(extensions_size);
|
|
while (!all_extd.eof()) {
|
|
try all_extd.ensure(2 + 2);
|
|
const et = all_extd.decode(tls.ExtensionType);
|
|
const ext_size = all_extd.decode(u16);
|
|
var extd = try all_extd.sub(ext_size);
|
|
switch (et) {
|
|
.supported_versions => {
|
|
if (supported_version) |_| return error.TlsIllegalParameter;
|
|
try extd.ensure(2);
|
|
supported_version = extd.decode(u16);
|
|
},
|
|
.key_share => {
|
|
if (key_share.getSharedSecret()) |_| return error.TlsIllegalParameter;
|
|
try extd.ensure(4);
|
|
const named_group = extd.decode(tls.NamedGroup);
|
|
const key_size = extd.decode(u16);
|
|
try extd.ensure(key_size);
|
|
try key_share.exchange(named_group, extd.slice(key_size));
|
|
},
|
|
else => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
tls_version = @enumFromInt(supported_version orelse legacy_version);
|
|
switch (tls_version) {
|
|
.tls_1_3 => if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id)) return error.TlsIllegalParameter,
|
|
.tls_1_2 => if (mem.eql(u8, server_hello_rand[24..31], "DOWNGRD") and
|
|
server_hello_rand[31] >> 1 == 0x00) return error.TlsIllegalParameter,
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
|
|
switch (cipher_suite_tag) {
|
|
inline .AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.CHACHA20_POLY1305_SHA256,
|
|
.AEGIS_256_SHA512,
|
|
.AEGIS_128L_SHA256,
|
|
|
|
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
=> |tag| {
|
|
handshake_cipher = @unionInit(tls.HandshakeCipher, @tagName(tag.with()), .{
|
|
.transcript_hash = .init(.{}),
|
|
.version = undefined,
|
|
});
|
|
const p = &@field(handshake_cipher, @tagName(tag.with()));
|
|
p.transcript_hash.update(cleartext_header[tls.record_header_len..]); // Client Hello part 1
|
|
p.transcript_hash.update(host); // Client Hello part 2
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
},
|
|
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
switch (tls_version) {
|
|
.tls_1_3 => {
|
|
switch (cipher_suite_tag) {
|
|
inline .AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.CHACHA20_POLY1305_SHA256,
|
|
.AEGIS_256_SHA512,
|
|
.AEGIS_128L_SHA256,
|
|
=> |tag| {
|
|
const sk = key_share.getSharedSecret() orelse return error.TlsIllegalParameter;
|
|
const p = &@field(handshake_cipher, @tagName(tag.with()));
|
|
const P = @TypeOf(p.*).A;
|
|
const hello_hash = p.transcript_hash.peek();
|
|
const zeroes = [1]u8{0} ** P.Hash.digest_length;
|
|
const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes);
|
|
const empty_hash = tls.emptyHash(P.Hash);
|
|
p.version = .{ .tls_1_3 = undefined };
|
|
const pv = &p.version.tls_1_3;
|
|
const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length);
|
|
pv.handshake_secret = P.Hkdf.extract(&hs_derived_secret, sk);
|
|
const ap_derived_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "derived", &empty_hash, P.Hash.digest_length);
|
|
pv.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes);
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length);
|
|
if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{
|
|
.client_random = &client_hello_rand,
|
|
}, .{
|
|
.SERVER_HANDSHAKE_TRAFFIC_SECRET = &server_secret,
|
|
.CLIENT_HANDSHAKE_TRAFFIC_SECRET = &client_secret,
|
|
});
|
|
pv.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length);
|
|
pv.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length);
|
|
pv.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
|
|
pv.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
|
|
pv.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
|
|
pv.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
|
|
},
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
pending_cipher_state = .handshake;
|
|
handshake_state = .encrypted_extensions;
|
|
},
|
|
.tls_1_2 => switch (cipher_suite_tag) {
|
|
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
=> handshake_state = .certificate,
|
|
else => return error.TlsIllegalParameter,
|
|
},
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
},
|
|
.encrypted_extensions => {
|
|
if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage;
|
|
if (cipher_state != .handshake) return error.TlsUnexpectedMessage;
|
|
if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage;
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
|
|
}
|
|
try hsd.ensure(2);
|
|
const total_ext_size = hsd.decode(u16);
|
|
var all_extd = try hsd.sub(total_ext_size);
|
|
while (!all_extd.eof()) {
|
|
try all_extd.ensure(4);
|
|
const et = all_extd.decode(tls.ExtensionType);
|
|
const ext_size = all_extd.decode(u16);
|
|
const extd = try all_extd.sub(ext_size);
|
|
_ = extd;
|
|
switch (et) {
|
|
.server_name => {},
|
|
else => {},
|
|
}
|
|
}
|
|
handshake_state = .certificate;
|
|
},
|
|
.certificate => cert: {
|
|
if (cipher_state == .application) return error.TlsUnexpectedMessage;
|
|
switch (handshake_state) {
|
|
.certificate => {},
|
|
.trust_chain_established => break :cert,
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
|
|
}
|
|
|
|
switch (tls_version) {
|
|
.tls_1_3 => {
|
|
try hsd.ensure(1 + 3);
|
|
const cert_req_ctx_len = hsd.decode(u8);
|
|
if (cert_req_ctx_len != 0) return error.TlsIllegalParameter;
|
|
},
|
|
.tls_1_2 => try hsd.ensure(3),
|
|
else => unreachable,
|
|
}
|
|
const certs_size = hsd.decode(u24);
|
|
var certs_decoder = try hsd.sub(certs_size);
|
|
while (!certs_decoder.eof()) {
|
|
try certs_decoder.ensure(3);
|
|
const cert_size = certs_decoder.decode(u24);
|
|
const certd = try certs_decoder.sub(cert_size);
|
|
|
|
if (tls_version == .tls_1_3) {
|
|
try certs_decoder.ensure(2);
|
|
const total_ext_size = certs_decoder.decode(u16);
|
|
const all_extd = try certs_decoder.sub(total_ext_size);
|
|
_ = all_extd;
|
|
}
|
|
|
|
const subject_cert: Certificate = .{
|
|
.buffer = certd.buf,
|
|
.index = @intCast(certd.idx),
|
|
};
|
|
const subject = try subject_cert.parse();
|
|
if (cert_index == 0) {
|
|
// Verify the host on the first certificate.
|
|
switch (options.host) {
|
|
.no_verification => {},
|
|
.explicit => try subject.verifyHostName(host),
|
|
}
|
|
|
|
// Keep track of the public key for the
|
|
// certificate_verify message later.
|
|
try main_cert_pub_key.init(subject.pub_key_algo, subject.pubKey());
|
|
} else {
|
|
try prev_cert.verify(subject, now_sec);
|
|
}
|
|
|
|
switch (options.ca) {
|
|
.no_verification => {
|
|
handshake_state = .trust_chain_established;
|
|
break :cert;
|
|
},
|
|
.self_signed => {
|
|
try subject.verify(subject, now_sec);
|
|
handshake_state = .trust_chain_established;
|
|
break :cert;
|
|
},
|
|
.bundle => |ca_bundle| if (ca_bundle.verify(subject, now_sec)) |_| {
|
|
handshake_state = .trust_chain_established;
|
|
break :cert;
|
|
} else |err| switch (err) {
|
|
error.CertificateIssuerNotFound => {},
|
|
else => |e| return e,
|
|
},
|
|
}
|
|
|
|
prev_cert = subject;
|
|
cert_index += 1;
|
|
}
|
|
cert_buf_index += 1;
|
|
},
|
|
.server_key_exchange => {
|
|
if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage;
|
|
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
|
|
switch (handshake_state) {
|
|
.trust_chain_established => {},
|
|
.certificate => return error.TlsCertificateNotVerified,
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
|
|
}
|
|
try hsd.ensure(1 + 2 + 1);
|
|
const curve_type = hsd.decode(u8);
|
|
if (curve_type != 0x03) return error.TlsIllegalParameter; // named_curve
|
|
const named_group = hsd.decode(tls.NamedGroup);
|
|
const key_size = hsd.decode(u8);
|
|
try hsd.ensure(key_size);
|
|
const server_pub_key = hsd.slice(key_size);
|
|
try main_cert_pub_key.verifySignature(&hsd, &.{ &client_hello_rand, &server_hello_rand, hsd.buf[0..hsd.idx] });
|
|
try key_share.exchange(named_group, server_pub_key);
|
|
handshake_state = .server_hello_done;
|
|
},
|
|
.server_hello_done => {
|
|
if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage;
|
|
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
|
|
if (handshake_state != .server_hello_done) return error.TlsUnexpectedMessage;
|
|
|
|
const client_key_exchange_msg = .{@intFromEnum(tls.ContentType.handshake)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
array(u16, u8, .{@intFromEnum(tls.HandshakeType.client_key_exchange)} ++
|
|
array(u24, u8, array(u8, u8, key_share.secp256r1_kp.public_key.toUncompressedSec1())));
|
|
const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec});
|
|
const pre_master_secret = key_share.getSharedSecret().?;
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| {
|
|
const P = @TypeOf(p.*).A;
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
p.transcript_hash.update(client_key_exchange_msg[tls.record_header_len..]);
|
|
const master_secret = hmacExpandLabel(P.Hmac, pre_master_secret, &.{
|
|
"master secret",
|
|
&client_hello_rand,
|
|
&server_hello_rand,
|
|
}, 48);
|
|
if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{
|
|
.client_random = &client_hello_rand,
|
|
}, .{
|
|
.CLIENT_RANDOM = &master_secret,
|
|
});
|
|
const key_block = hmacExpandLabel(
|
|
P.Hmac,
|
|
&master_secret,
|
|
&.{ "key expansion", &server_hello_rand, &client_hello_rand },
|
|
@sizeOf(P.Tls_1_2),
|
|
);
|
|
const client_verify_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++
|
|
array(u24, u8, hmacExpandLabel(
|
|
P.Hmac,
|
|
&master_secret,
|
|
&.{ "client finished", &p.transcript_hash.peek() },
|
|
P.verify_data_length,
|
|
));
|
|
p.transcript_hash.update(&client_verify_cleartext);
|
|
p.version = .{ .tls_1_2 = .{
|
|
.expected_server_verify_data = hmacExpandLabel(
|
|
P.Hmac,
|
|
&master_secret,
|
|
&.{ "server finished", &p.transcript_hash.finalResult() },
|
|
P.verify_data_length,
|
|
),
|
|
.app_cipher = std.mem.bytesToValue(P.Tls_1_2, &key_block),
|
|
} };
|
|
const pv = &p.version.tls_1_2;
|
|
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @as([8]u8, @bitCast(big(write_seq)));
|
|
break :nonce @as(V, pv.app_cipher.client_write_IV ++ pv.app_cipher.client_salt) ^ operand;
|
|
};
|
|
var client_verify_msg = .{@intFromEnum(tls.ContentType.handshake)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
array(u16, u8, nonce[P.fixed_iv_length..].* ++
|
|
@as([client_verify_cleartext.len + P.mac_length]u8, undefined));
|
|
P.AEAD.encrypt(
|
|
client_verify_msg[client_verify_msg.len - P.mac_length -
|
|
client_verify_cleartext.len ..][0..client_verify_cleartext.len],
|
|
client_verify_msg[client_verify_msg.len - P.mac_length ..][0..P.mac_length],
|
|
&client_verify_cleartext,
|
|
std.mem.toBytes(big(write_seq)) ++ client_verify_msg[0 .. 1 + 2] ++ int(u16, client_verify_cleartext.len),
|
|
nonce,
|
|
pv.app_cipher.client_write_key,
|
|
);
|
|
var all_msgs_vec: [3][]const u8 = .{
|
|
&client_key_exchange_msg,
|
|
&client_change_cipher_spec_msg,
|
|
&client_verify_msg,
|
|
};
|
|
try output.writevAll(&all_msgs_vec);
|
|
},
|
|
}
|
|
write_seq += 1;
|
|
pending_cipher_state = .application;
|
|
handshake_state = .finished;
|
|
},
|
|
.certificate_verify => {
|
|
if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage;
|
|
if (cipher_state != .handshake) return error.TlsUnexpectedMessage;
|
|
switch (handshake_state) {
|
|
.trust_chain_established => {},
|
|
.certificate => return error.TlsCertificateNotVerified,
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
switch (handshake_cipher) {
|
|
inline else => |*p| {
|
|
try main_cert_pub_key.verifySignature(&hsd, &.{
|
|
" " ** 64 ++ "TLS 1.3, server CertificateVerify\x00",
|
|
&p.transcript_hash.peek(),
|
|
});
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
},
|
|
}
|
|
handshake_state = .finished;
|
|
},
|
|
.finished => {
|
|
if (cipher_state == .cleartext) return error.TlsUnexpectedMessage;
|
|
if (handshake_state != .finished) return error.TlsUnexpectedMessage;
|
|
// This message is to trick buggy proxies into behaving correctly.
|
|
const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec});
|
|
const app_cipher = app_cipher: switch (handshake_cipher) {
|
|
inline else => |*p, tag| switch (tls_version) {
|
|
.tls_1_3 => {
|
|
const pv = &p.version.tls_1_3;
|
|
const P = @TypeOf(p.*).A;
|
|
try hsd.ensure(P.Hmac.mac_length);
|
|
const finished_digest = p.transcript_hash.peek();
|
|
p.transcript_hash.update(wrapped_handshake);
|
|
const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, pv.server_finished_key);
|
|
if (!std.crypto.timing_safe.eql([P.Hmac.mac_length]u8, expected_server_verify_data, hsd.array(P.Hmac.mac_length).*)) return error.TlsDecryptError;
|
|
const handshake_hash = p.transcript_hash.finalResult();
|
|
const verify_data = tls.hmac(P.Hmac, &handshake_hash, pv.client_finished_key);
|
|
const out_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++
|
|
array(u24, u8, verify_data) ++
|
|
.{@intFromEnum(tls.ContentType.handshake)};
|
|
|
|
const wrapped_len = out_cleartext.len + P.AEAD.tag_length;
|
|
|
|
var finished_msg = .{@intFromEnum(tls.ContentType.application_data)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
array(u16, u8, @as([wrapped_len]u8, undefined));
|
|
|
|
const ad = finished_msg[0..tls.record_header_len];
|
|
const ciphertext = finished_msg[tls.record_header_len..][0..out_cleartext.len];
|
|
const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..];
|
|
const nonce = pv.client_handshake_iv;
|
|
P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, pv.client_handshake_key);
|
|
|
|
var all_msgs_vec: [2][]const u8 = .{
|
|
&client_change_cipher_spec_msg,
|
|
&finished_msg,
|
|
};
|
|
try output.writevAll(&all_msgs_vec);
|
|
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length);
|
|
if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{
|
|
.counter = key_seq,
|
|
.client_random = &client_hello_rand,
|
|
}, .{
|
|
.SERVER_TRAFFIC_SECRET = &server_secret,
|
|
.CLIENT_TRAFFIC_SECRET = &client_secret,
|
|
});
|
|
key_seq += 1;
|
|
break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_3 = .{
|
|
.client_secret = client_secret,
|
|
.server_secret = server_secret,
|
|
.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length),
|
|
.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length),
|
|
.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length),
|
|
.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length),
|
|
} });
|
|
},
|
|
.tls_1_2 => {
|
|
const pv = &p.version.tls_1_2;
|
|
const P = @TypeOf(p.*).A;
|
|
try hsd.ensure(P.verify_data_length);
|
|
if (!std.crypto.timing_safe.eql([P.verify_data_length]u8, pv.expected_server_verify_data, hsd.array(P.verify_data_length).*)) return error.TlsDecryptError;
|
|
break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_2 = pv.app_cipher });
|
|
},
|
|
else => unreachable,
|
|
},
|
|
};
|
|
const leftover = d.rest();
|
|
client.* = .{
|
|
.input = input,
|
|
.output = output,
|
|
.reader = undefined,
|
|
.tls_version = tls_version,
|
|
.read_seq = switch (tls_version) {
|
|
.tls_1_3 => 0,
|
|
.tls_1_2 => read_seq,
|
|
else => unreachable,
|
|
},
|
|
.write_seq = switch (tls_version) {
|
|
.tls_1_3 => 0,
|
|
.tls_1_2 => write_seq,
|
|
else => unreachable,
|
|
},
|
|
.partial_cleartext_idx = 0,
|
|
.partial_ciphertext_idx = 0,
|
|
.partial_ciphertext_end = @intCast(leftover.len),
|
|
.received_close_notify = false,
|
|
.allow_truncation_attacks = false,
|
|
.application_cipher = app_cipher,
|
|
.partially_read_buffer = undefined,
|
|
.ssl_key_log = if (options.ssl_key_log_file) |key_log_file| .{
|
|
.client_key_seq = key_seq,
|
|
.server_key_seq = key_seq,
|
|
.client_random = client_hello_rand,
|
|
.file = key_log_file,
|
|
} else null,
|
|
};
|
|
@memcpy(client.partially_read_buffer[0..leftover.len], leftover);
|
|
client.reader.init(.{
|
|
.context = client,
|
|
.vtable = &.{
|
|
.read = read,
|
|
.readVec = readVec,
|
|
.discard = discard,
|
|
},
|
|
}, input.storage.buffer[0..0]);
|
|
return;
|
|
},
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
if (ctd.eof()) break;
|
|
cleartext_fragment_start = ctd.idx;
|
|
},
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
cleartext_fragment_start = 0;
|
|
cleartext_fragment_end = 0;
|
|
}
|
|
}
|
|
|
|
pub fn writer(c: *Client) std.io.Writer {
|
|
return .{
|
|
.context = c,
|
|
.vtable = &.{
|
|
.writeSplat = writeSplat,
|
|
.writeFile = std.io.Writer.unimplemented_writeFile,
|
|
},
|
|
};
|
|
}
|
|
|
|
fn writeSplat(context: *anyopaque, data: []const []const u8, splat: usize) std.io.Writer.Error!usize {
|
|
const c: *Client = @alignCast(@ptrCast(context));
|
|
const sliced_data = if (splat == 0) data[0..data.len -| 1] else data;
|
|
const output = &c.output;
|
|
const ciphertext_buf = try output.writableSliceGreedy(min_buffer_len);
|
|
var total_clear: usize = 0;
|
|
var ciphertext_end: usize = 0;
|
|
for (sliced_data) |buf| {
|
|
const prepared = prepareCiphertextRecord(c, ciphertext_buf[ciphertext_end..], buf, .application_data);
|
|
total_clear += prepared.cleartext_len;
|
|
ciphertext_end += prepared.ciphertext_end;
|
|
if (total_clear < buf.len) break;
|
|
}
|
|
output.advance(ciphertext_end);
|
|
return total_clear;
|
|
}
|
|
|
|
/// Sends a `close_notify` alert, which is necessary for the server to
|
|
/// distinguish between a properly finished TLS session, or a truncation
|
|
/// attack.
|
|
pub fn end(c: *Client) std.io.Writer.Error!void {
|
|
const output = &c.output;
|
|
const ciphertext_buf = try output.writableSliceGreedy(min_buffer_len);
|
|
const prepared = prepareCiphertextRecord(c, ciphertext_buf, &tls.close_notify_alert, .alert);
|
|
output.advance(prepared.cleartext_len);
|
|
return prepared.ciphertext_end;
|
|
}
|
|
|
|
fn prepareCiphertextRecord(
|
|
c: *Client,
|
|
ciphertext_buf: []u8,
|
|
bytes: []const u8,
|
|
inner_content_type: tls.ContentType,
|
|
) struct {
|
|
ciphertext_end: usize,
|
|
cleartext_len: usize,
|
|
} {
|
|
// Due to the trailing inner content type byte in the ciphertext, we need
|
|
// an additional buffer for storing the cleartext into before encrypting.
|
|
var cleartext_buf: [max_ciphertext_len]u8 = undefined;
|
|
var ciphertext_end: usize = 0;
|
|
var bytes_i: usize = 0;
|
|
switch (c.application_cipher) {
|
|
inline else => |*p| switch (c.tls_version) {
|
|
.tls_1_3 => {
|
|
const pv = &p.tls_1_3;
|
|
const P = @TypeOf(p.*);
|
|
const overhead_len = tls.record_header_len + P.AEAD.tag_length + 1;
|
|
while (true) {
|
|
const encrypted_content_len: u16 = @min(
|
|
bytes.len - bytes_i,
|
|
tls.max_ciphertext_inner_record_len,
|
|
ciphertext_buf.len -| (overhead_len + ciphertext_end),
|
|
);
|
|
if (encrypted_content_len == 0) return .{
|
|
.ciphertext_end = ciphertext_end,
|
|
.cleartext_len = bytes_i,
|
|
};
|
|
|
|
@memcpy(cleartext_buf[0..encrypted_content_len], bytes[bytes_i..][0..encrypted_content_len]);
|
|
cleartext_buf[encrypted_content_len] = @intFromEnum(inner_content_type);
|
|
bytes_i += encrypted_content_len;
|
|
const ciphertext_len = encrypted_content_len + 1;
|
|
const cleartext = cleartext_buf[0..ciphertext_len];
|
|
|
|
const ad = ciphertext_buf[ciphertext_end..][0..tls.record_header_len];
|
|
ad.* = .{@intFromEnum(tls.ContentType.application_data)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
int(u16, ciphertext_len + P.AEAD.tag_length);
|
|
ciphertext_end += ad.len;
|
|
const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len];
|
|
ciphertext_end += ciphertext_len;
|
|
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length];
|
|
ciphertext_end += auth_tag.len;
|
|
const nonce = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ std.mem.toBytes(big(c.write_seq));
|
|
break :nonce @as(V, pv.client_iv) ^ operand;
|
|
};
|
|
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, pv.client_key);
|
|
c.write_seq += 1; // TODO send key_update on overflow
|
|
}
|
|
},
|
|
.tls_1_2 => {
|
|
const pv = &p.tls_1_2;
|
|
const P = @TypeOf(p.*);
|
|
const overhead_len = tls.record_header_len + P.record_iv_length + P.mac_length;
|
|
while (true) {
|
|
const message_len: u16 = @min(
|
|
bytes.len - bytes_i,
|
|
tls.max_ciphertext_inner_record_len,
|
|
ciphertext_buf.len -| (overhead_len + ciphertext_end),
|
|
);
|
|
if (message_len == 0) return .{
|
|
.ciphertext_end = ciphertext_end,
|
|
.cleartext_len = bytes_i,
|
|
};
|
|
|
|
@memcpy(cleartext_buf[0..message_len], bytes[bytes_i..][0..message_len]);
|
|
bytes_i += message_len;
|
|
const cleartext = cleartext_buf[0..message_len];
|
|
|
|
const record_header = ciphertext_buf[ciphertext_end..][0..tls.record_header_len];
|
|
ciphertext_end += tls.record_header_len;
|
|
record_header.* = .{@intFromEnum(inner_content_type)} ++
|
|
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
|
|
int(u16, P.record_iv_length + message_len + P.mac_length);
|
|
const ad = std.mem.toBytes(big(c.write_seq)) ++ record_header[0 .. 1 + 2] ++ int(u16, message_len);
|
|
const record_iv = ciphertext_buf[ciphertext_end..][0..P.record_iv_length];
|
|
ciphertext_end += P.record_iv_length;
|
|
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @as([8]u8, @bitCast(big(c.write_seq)));
|
|
break :nonce @as(V, pv.client_write_IV ++ pv.client_salt) ^ operand;
|
|
};
|
|
record_iv.* = nonce[P.fixed_iv_length..].*;
|
|
const ciphertext = ciphertext_buf[ciphertext_end..][0..message_len];
|
|
ciphertext_end += message_len;
|
|
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.mac_length];
|
|
ciphertext_end += P.mac_length;
|
|
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, pv.client_write_key);
|
|
c.write_seq += 1; // TODO send key_update on overflow
|
|
}
|
|
},
|
|
else => unreachable,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn eof(c: Client) bool {
|
|
return c.received_close_notify and
|
|
c.partial_cleartext_idx >= c.partial_ciphertext_idx and
|
|
c.partial_ciphertext_idx >= c.partial_ciphertext_end;
|
|
}
|
|
|
|
fn read(
|
|
context: ?*anyopaque,
|
|
bw: *std.io.BufferedWriter,
|
|
limit: std.io.Reader.Limit,
|
|
) std.io.Reader.RwError!std.io.Reader.Status {
|
|
const buf = limit.slice(try bw.writableSliceGreedy(1));
|
|
const status = try readVec(context, &.{buf});
|
|
bw.advance(status.len);
|
|
return status;
|
|
}
|
|
|
|
fn readVec(context: ?*anyopaque, data: []const []u8) std.io.Reader.Error!usize {
|
|
const c: *Client = @ptrCast(@alignCast(context));
|
|
if (c.eof()) return .{ .end = true };
|
|
|
|
var vp: VecPut = .{ .iovecs = data };
|
|
|
|
// Give away the buffered cleartext we have, if any.
|
|
const partial_cleartext = c.partially_read_buffer[c.partial_cleartext_idx..c.partial_ciphertext_idx];
|
|
if (partial_cleartext.len > 0) {
|
|
const amt: u15 = @intCast(vp.put(partial_cleartext));
|
|
c.partial_cleartext_idx += amt;
|
|
|
|
if (c.partial_cleartext_idx == c.partial_ciphertext_idx and
|
|
c.partial_ciphertext_end == c.partial_ciphertext_idx)
|
|
{
|
|
// The buffer is now empty.
|
|
c.partial_cleartext_idx = 0;
|
|
c.partial_ciphertext_idx = 0;
|
|
c.partial_ciphertext_end = 0;
|
|
}
|
|
|
|
if (c.received_close_notify) {
|
|
c.partial_ciphertext_end = 0;
|
|
assert(vp.total == amt);
|
|
return .{ .len = amt, .end = c.eof() };
|
|
} else if (amt > 0) {
|
|
// We don't need more data, so don't call read.
|
|
assert(vp.total == amt);
|
|
return .{ .len = amt, .end = c.eof() };
|
|
}
|
|
}
|
|
|
|
assert(!c.received_close_notify);
|
|
|
|
// Ideally, this buffer would never be used. It is needed when `iovecs` are
|
|
// too small to fit the cleartext, which may be as large as `max_ciphertext_len`.
|
|
var cleartext_stack_buffer: [max_ciphertext_len]u8 = undefined;
|
|
// Temporarily stores ciphertext before decrypting it and giving it to `iovecs`.
|
|
var in_stack_buffer: [max_ciphertext_len * 4]u8 = undefined;
|
|
// How many bytes left in the user's buffer.
|
|
const free_size = vp.freeSize();
|
|
// The amount of the user's buffer that we need to repurpose for storing
|
|
// ciphertext. The end of the buffer will be used for such purposes.
|
|
const ciphertext_buf_len = (free_size / 2) -| in_stack_buffer.len;
|
|
// The amount of the user's buffer that will be used to give cleartext. The
|
|
// beginning of the buffer will be used for such purposes.
|
|
const cleartext_buf_len = free_size - ciphertext_buf_len;
|
|
|
|
// Recoup `partially_read_buffer` space. This is necessary because it is assumed
|
|
// below that `frag0` is big enough to hold at least one record.
|
|
limitedOverlapCopy(c.partially_read_buffer[0..c.partial_ciphertext_end], c.partial_ciphertext_idx);
|
|
c.partial_ciphertext_end -= c.partial_ciphertext_idx;
|
|
c.partial_ciphertext_idx = 0;
|
|
c.partial_cleartext_idx = 0;
|
|
const first_iov = c.partially_read_buffer[c.partial_ciphertext_end..];
|
|
|
|
var ask_iovecs_buf: [2]std.posix.iovec = .{
|
|
.{
|
|
.base = first_iov.ptr,
|
|
.len = first_iov.len,
|
|
},
|
|
.{
|
|
.base = &in_stack_buffer,
|
|
.len = in_stack_buffer.len,
|
|
},
|
|
};
|
|
|
|
// Cleartext capacity of output buffer, in records. Minimum one full record.
|
|
const buf_cap = @max(cleartext_buf_len / max_ciphertext_len, 1);
|
|
const wanted_read_len = buf_cap * (max_ciphertext_len + tls.record_header_len);
|
|
const ask_len = @max(wanted_read_len, cleartext_stack_buffer.len) - c.partial_ciphertext_end;
|
|
const ask_iovecs = limitVecs(&ask_iovecs_buf, ask_len);
|
|
const actual_read_len = try c.input.readv(ask_iovecs);
|
|
if (actual_read_len == 0) {
|
|
// This is either a truncation attack, a bug in the server, or an
|
|
// intentional omission of the close_notify message due to truncation
|
|
// detection handled above the TLS layer.
|
|
if (c.allow_truncation_attacks) {
|
|
c.received_close_notify = true;
|
|
} else {
|
|
return error.TlsConnectionTruncated;
|
|
}
|
|
}
|
|
|
|
// There might be more bytes inside `in_stack_buffer` that need to be processed,
|
|
// but at least frag0 will have one complete ciphertext record.
|
|
const frag0_end = @min(c.partially_read_buffer.len, c.partial_ciphertext_end + actual_read_len);
|
|
const frag0 = c.partially_read_buffer[c.partial_ciphertext_idx..frag0_end];
|
|
var frag1 = in_stack_buffer[0..actual_read_len -| first_iov.len];
|
|
// We need to decipher frag0 and frag1 but there may be a ciphertext record
|
|
// straddling the boundary. We can handle this with two memcpy() calls to
|
|
// assemble the straddling record in between handling the two sides.
|
|
var frag = frag0;
|
|
var in: usize = 0;
|
|
while (true) {
|
|
if (in == frag.len) {
|
|
// Perfect split.
|
|
if (frag.ptr == frag1.ptr) {
|
|
c.partial_ciphertext_end = c.partial_ciphertext_idx;
|
|
return .{ .len = vp.total, .end = c.eof() };
|
|
}
|
|
frag = frag1;
|
|
in = 0;
|
|
continue;
|
|
}
|
|
|
|
if (in + tls.record_header_len > frag.len) {
|
|
if (frag.ptr == frag1.ptr)
|
|
return finishRead(c, frag, in, vp.total);
|
|
|
|
const first = frag[in..];
|
|
|
|
if (frag1.len < tls.record_header_len)
|
|
return finishRead2(c, first, frag1, vp.total);
|
|
|
|
// A record straddles the two fragments. Copy into the now-empty first fragment.
|
|
const record_len_byte_0: u16 = straddleByte(frag, frag1, in + 3);
|
|
const record_len_byte_1: u16 = straddleByte(frag, frag1, in + 4);
|
|
const record_len = (record_len_byte_0 << 8) | record_len_byte_1;
|
|
if (record_len > max_ciphertext_len) return error.TlsRecordOverflow;
|
|
|
|
const full_record_len = record_len + tls.record_header_len;
|
|
const second_len = full_record_len - first.len;
|
|
if (frag1.len < second_len)
|
|
return finishRead2(c, first, frag1, vp.total);
|
|
|
|
limitedOverlapCopy(frag, in);
|
|
@memcpy(frag[first.len..][0..second_len], frag1[0..second_len]);
|
|
frag = frag[0..full_record_len];
|
|
frag1 = frag1[second_len..];
|
|
in = 0;
|
|
continue;
|
|
}
|
|
const ct: tls.ContentType = @enumFromInt(frag[in]);
|
|
in += 1;
|
|
const legacy_version = mem.readInt(u16, frag[in..][0..2], .big);
|
|
in += 2;
|
|
_ = legacy_version;
|
|
const record_len = mem.readInt(u16, frag[in..][0..2], .big);
|
|
if (record_len > max_ciphertext_len) return error.TlsRecordOverflow;
|
|
in += 2;
|
|
const the_end = in + record_len;
|
|
if (the_end > frag.len) {
|
|
// We need the record header on the next iteration of the loop.
|
|
in -= tls.record_header_len;
|
|
|
|
if (frag.ptr == frag1.ptr)
|
|
return finishRead(c, frag, in, vp.total);
|
|
|
|
// A record straddles the two fragments. Copy into the now-empty first fragment.
|
|
const first = frag[in..];
|
|
const full_record_len = record_len + tls.record_header_len;
|
|
const second_len = full_record_len - first.len;
|
|
if (frag1.len < second_len)
|
|
return finishRead2(c, first, frag1, vp.total);
|
|
|
|
limitedOverlapCopy(frag, in);
|
|
@memcpy(frag[first.len..][0..second_len], frag1[0..second_len]);
|
|
frag = frag[0..full_record_len];
|
|
frag1 = frag1[second_len..];
|
|
in = 0;
|
|
continue;
|
|
}
|
|
const cleartext, const inner_ct: tls.ContentType = cleartext: switch (c.application_cipher) {
|
|
inline else => |*p| switch (c.tls_version) {
|
|
.tls_1_3 => {
|
|
const pv = &p.tls_1_3;
|
|
const P = @TypeOf(p.*);
|
|
const ad = frag[in - tls.record_header_len ..][0..tls.record_header_len];
|
|
const ciphertext_len = record_len - P.AEAD.tag_length;
|
|
const ciphertext = frag[in..][0..ciphertext_len];
|
|
in += ciphertext_len;
|
|
const auth_tag = frag[in..][0..P.AEAD.tag_length].*;
|
|
const nonce = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ std.mem.toBytes(big(c.read_seq));
|
|
break :nonce @as(V, pv.server_iv) ^ operand;
|
|
};
|
|
const out_buf = vp.peek();
|
|
const cleartext_buf = if (ciphertext.len <= out_buf.len)
|
|
out_buf
|
|
else
|
|
&cleartext_stack_buffer;
|
|
const cleartext = cleartext_buf[0..ciphertext.len];
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, pv.server_key) catch
|
|
return error.TlsBadRecordMac;
|
|
const msg = mem.trimEnd(u8, cleartext, "\x00");
|
|
break :cleartext .{ msg[0 .. msg.len - 1], @enumFromInt(msg[msg.len - 1]) };
|
|
},
|
|
.tls_1_2 => {
|
|
const pv = &p.tls_1_2;
|
|
const P = @TypeOf(p.*);
|
|
const message_len: u16 = record_len - P.record_iv_length - P.mac_length;
|
|
const ad = std.mem.toBytes(big(c.read_seq)) ++
|
|
frag[in - tls.record_header_len ..][0 .. 1 + 2] ++
|
|
std.mem.toBytes(big(message_len));
|
|
const record_iv = frag[in..][0..P.record_iv_length].*;
|
|
in += P.record_iv_length;
|
|
const masked_read_seq = c.read_seq &
|
|
comptime std.math.shl(u64, std.math.maxInt(u64), 8 * P.record_iv_length);
|
|
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
|
|
const V = @Vector(P.AEAD.nonce_length, u8);
|
|
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
|
|
const operand: V = pad ++ @as([8]u8, @bitCast(big(masked_read_seq)));
|
|
break :nonce @as(V, pv.server_write_IV ++ record_iv) ^ operand;
|
|
};
|
|
const ciphertext = frag[in..][0..message_len];
|
|
in += message_len;
|
|
const auth_tag = frag[in..][0..P.mac_length].*;
|
|
in += P.mac_length;
|
|
const out_buf = vp.peek();
|
|
const cleartext_buf = if (message_len <= out_buf.len)
|
|
out_buf
|
|
else
|
|
&cleartext_stack_buffer;
|
|
const cleartext = cleartext_buf[0..ciphertext.len];
|
|
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, pv.server_write_key) catch
|
|
return error.TlsBadRecordMac;
|
|
break :cleartext .{ cleartext, ct };
|
|
},
|
|
else => unreachable,
|
|
},
|
|
};
|
|
c.read_seq = try std.math.add(u64, c.read_seq, 1);
|
|
switch (inner_ct) {
|
|
.alert => {
|
|
if (cleartext.len != 2) return error.TlsDecodeError;
|
|
const level: tls.AlertLevel = @enumFromInt(cleartext[0]);
|
|
_ = level;
|
|
const desc: tls.AlertDescription = @enumFromInt(cleartext[1]);
|
|
switch (desc) {
|
|
.close_notify => {
|
|
c.received_close_notify = true;
|
|
c.partial_ciphertext_end = c.partial_ciphertext_idx;
|
|
return .{ .len = vp.total, .end = c.eof() };
|
|
},
|
|
.user_canceled => {
|
|
// TODO: handle server-side closures
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
else => {
|
|
c.diagnostics = .{ .alert = desc };
|
|
return error.TlsAlert;
|
|
},
|
|
}
|
|
},
|
|
.handshake => {
|
|
var ct_i: usize = 0;
|
|
while (true) {
|
|
const handshake_type: tls.HandshakeType = @enumFromInt(cleartext[ct_i]);
|
|
ct_i += 1;
|
|
const handshake_len = mem.readInt(u24, cleartext[ct_i..][0..3], .big);
|
|
ct_i += 3;
|
|
const next_handshake_i = ct_i + handshake_len;
|
|
if (next_handshake_i > cleartext.len)
|
|
return error.TlsBadLength;
|
|
const handshake = cleartext[ct_i..next_handshake_i];
|
|
switch (handshake_type) {
|
|
.new_session_ticket => {
|
|
// This client implementation ignores new session tickets.
|
|
},
|
|
.key_update => {
|
|
switch (c.application_cipher) {
|
|
inline else => |*p| {
|
|
const pv = &p.tls_1_3;
|
|
const P = @TypeOf(p.*);
|
|
const server_secret = hkdfExpandLabel(P.Hkdf, pv.server_secret, "traffic upd", "", P.Hash.digest_length);
|
|
if (c.ssl_key_log) |*key_log| logSecrets(key_log.file, .{
|
|
.counter = key_log.serverCounter(),
|
|
.client_random = &key_log.client_random,
|
|
}, .{
|
|
.SERVER_TRAFFIC_SECRET = &server_secret,
|
|
});
|
|
pv.server_secret = server_secret;
|
|
pv.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
|
|
pv.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
|
|
},
|
|
}
|
|
c.read_seq = 0;
|
|
|
|
switch (@as(tls.KeyUpdateRequest, @enumFromInt(handshake[0]))) {
|
|
.update_requested => {
|
|
switch (c.application_cipher) {
|
|
inline else => |*p| {
|
|
const pv = &p.tls_1_3;
|
|
const P = @TypeOf(p.*);
|
|
const client_secret = hkdfExpandLabel(P.Hkdf, pv.client_secret, "traffic upd", "", P.Hash.digest_length);
|
|
if (c.ssl_key_log) |*key_log| logSecrets(key_log.file, .{
|
|
.counter = key_log.clientCounter(),
|
|
.client_random = &key_log.client_random,
|
|
}, .{
|
|
.CLIENT_TRAFFIC_SECRET = &client_secret,
|
|
});
|
|
pv.client_secret = client_secret;
|
|
pv.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
|
|
pv.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
|
|
},
|
|
}
|
|
c.write_seq = 0;
|
|
},
|
|
.update_not_requested => {},
|
|
_ => return error.TlsIllegalParameter,
|
|
}
|
|
},
|
|
else => {
|
|
return error.TlsUnexpectedMessage;
|
|
},
|
|
}
|
|
ct_i = next_handshake_i;
|
|
if (ct_i >= cleartext.len) break;
|
|
}
|
|
},
|
|
.application_data => {
|
|
// Determine whether the output buffer or a stack
|
|
// buffer was used for storing the cleartext.
|
|
if (cleartext.ptr == &cleartext_stack_buffer) {
|
|
// Stack buffer was used, so we must copy to the output buffer.
|
|
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
|
|
// We have already run out of room in iovecs. Continue
|
|
// appending to `partially_read_buffer`.
|
|
@memcpy(
|
|
c.partially_read_buffer[c.partial_ciphertext_idx..][0..cleartext.len],
|
|
cleartext,
|
|
);
|
|
c.partial_ciphertext_idx = @intCast(c.partial_ciphertext_idx + cleartext.len);
|
|
} else {
|
|
const amt = vp.put(cleartext);
|
|
if (amt < cleartext.len) {
|
|
const rest = cleartext[amt..];
|
|
c.partial_cleartext_idx = 0;
|
|
c.partial_ciphertext_idx = @intCast(rest.len);
|
|
@memcpy(c.partially_read_buffer[0..rest.len], rest);
|
|
}
|
|
}
|
|
} else {
|
|
// Output buffer was used directly which means no
|
|
// memory copying needs to occur, and we can move
|
|
// on to the next ciphertext record.
|
|
vp.next(cleartext.len);
|
|
}
|
|
},
|
|
else => return error.TlsUnexpectedMessage,
|
|
}
|
|
in = end;
|
|
}
|
|
}
|
|
|
|
fn discard(context: ?*anyopaque, limit: std.io.Reader.Limit) std.io.Reader.Error!usize {
|
|
_ = context;
|
|
_ = limit;
|
|
@panic("TODO");
|
|
}
|
|
|
|
fn logSecrets(key_log_file: std.fs.File, context: anytype, secrets: anytype) void {
|
|
const locked = if (key_log_file.lock(.exclusive)) |_| true else |_| false;
|
|
defer if (locked) key_log_file.unlock();
|
|
key_log_file.seekFromEnd(0) catch {};
|
|
var w = key_log_file.writer().unbuffered();
|
|
inline for (@typeInfo(@TypeOf(secrets)).@"struct".fields) |field| w.print("{s}" ++
|
|
(if (@hasField(@TypeOf(context), "counter")) "_{d}" else "") ++ " {x} {x}\n", .{field.name} ++
|
|
(if (@hasField(@TypeOf(context), "counter")) .{context.counter} else .{}) ++ .{
|
|
context.client_random,
|
|
@field(secrets, field.name),
|
|
}) catch {};
|
|
}
|
|
|
|
fn finishRead(c: *Client, frag: []const u8, in: usize, out: usize) std.io.Reader.Status {
|
|
const saved_buf = frag[in..];
|
|
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
|
|
// There is cleartext at the beginning already which we need to preserve.
|
|
c.partial_ciphertext_end = @intCast(c.partial_ciphertext_idx + saved_buf.len);
|
|
@memcpy(c.partially_read_buffer[c.partial_ciphertext_idx..][0..saved_buf.len], saved_buf);
|
|
} else {
|
|
c.partial_cleartext_idx = 0;
|
|
c.partial_ciphertext_idx = 0;
|
|
c.partial_ciphertext_end = @intCast(saved_buf.len);
|
|
@memcpy(c.partially_read_buffer[0..saved_buf.len], saved_buf);
|
|
}
|
|
return .{ .len = out, .end = c.eof() };
|
|
}
|
|
|
|
/// Note that `first` usually overlaps with `c.partially_read_buffer`.
|
|
fn finishRead2(c: *Client, first: []const u8, frag1: []const u8, out: usize) std.io.Reader.Status {
|
|
if (c.partial_ciphertext_idx > c.partial_cleartext_idx) {
|
|
// There is cleartext at the beginning already which we need to preserve.
|
|
c.partial_ciphertext_end = @intCast(c.partial_ciphertext_idx + first.len + frag1.len);
|
|
// TODO: eliminate this call to copyForwards
|
|
std.mem.copyForwards(u8, c.partially_read_buffer[c.partial_ciphertext_idx..][0..first.len], first);
|
|
@memcpy(c.partially_read_buffer[c.partial_ciphertext_idx + first.len ..][0..frag1.len], frag1);
|
|
} else {
|
|
c.partial_cleartext_idx = 0;
|
|
c.partial_ciphertext_idx = 0;
|
|
c.partial_ciphertext_end = @intCast(first.len + frag1.len);
|
|
// TODO: eliminate this call to copyForwards
|
|
std.mem.copyForwards(u8, c.partially_read_buffer[0..first.len], first);
|
|
@memcpy(c.partially_read_buffer[first.len..][0..frag1.len], frag1);
|
|
}
|
|
return .{ .len = out, .end = c.eof() };
|
|
}
|
|
|
|
fn limitedOverlapCopy(frag: []u8, in: usize) void {
|
|
const first = frag[in..];
|
|
if (first.len <= in) {
|
|
// A single, non-overlapping memcpy suffices.
|
|
@memcpy(frag[0..first.len], first);
|
|
} else {
|
|
// One memcpy call would overlap, so just do this instead.
|
|
std.mem.copyForwards(u8, frag, first);
|
|
}
|
|
}
|
|
|
|
fn straddleByte(s1: []const u8, s2: []const u8, index: usize) u8 {
|
|
if (index < s1.len) {
|
|
return s1[index];
|
|
} else {
|
|
return s2[index - s1.len];
|
|
}
|
|
}
|
|
|
|
inline fn big(x: anytype) @TypeOf(x) {
|
|
return switch (native_endian) {
|
|
.big => x,
|
|
.little => @byteSwap(x),
|
|
};
|
|
}
|
|
|
|
const KeyShare = struct {
|
|
ml_kem768_kp: crypto.kem.ml_kem.MLKem768.KeyPair,
|
|
secp256r1_kp: crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair,
|
|
secp384r1_kp: crypto.sign.ecdsa.EcdsaP384Sha384.KeyPair,
|
|
x25519_kp: crypto.dh.X25519.KeyPair,
|
|
sk_buf: [sk_max_len]u8,
|
|
sk_len: std.math.IntFittingRange(0, sk_max_len),
|
|
|
|
const sk_max_len = @max(
|
|
crypto.dh.X25519.shared_length + crypto.kem.ml_kem.MLKem768.shared_length,
|
|
crypto.ecc.P256.scalar.encoded_length,
|
|
crypto.ecc.P384.scalar.encoded_length,
|
|
crypto.dh.X25519.shared_length,
|
|
);
|
|
|
|
fn init(seed: [112]u8) error{IdentityElement}!KeyShare {
|
|
return .{
|
|
.ml_kem768_kp = .generate(),
|
|
.secp256r1_kp = try .generateDeterministic(seed[0..32].*),
|
|
.secp384r1_kp = try .generateDeterministic(seed[32..80].*),
|
|
.x25519_kp = try .generateDeterministic(seed[80..112].*),
|
|
.sk_buf = undefined,
|
|
.sk_len = 0,
|
|
};
|
|
}
|
|
|
|
fn exchange(
|
|
ks: *KeyShare,
|
|
named_group: tls.NamedGroup,
|
|
server_pub_key: []const u8,
|
|
) error{ TlsIllegalParameter, TlsDecryptFailure }!void {
|
|
switch (named_group) {
|
|
.x25519_ml_kem768 => {
|
|
const hksl = crypto.kem.ml_kem.MLKem768.ciphertext_length;
|
|
const xksl = hksl + crypto.dh.X25519.public_length;
|
|
if (server_pub_key.len != xksl) return error.TlsIllegalParameter;
|
|
|
|
const hsk = ks.ml_kem768_kp.secret_key.decaps(server_pub_key[0..hksl]) catch
|
|
return error.TlsDecryptFailure;
|
|
const xsk = crypto.dh.X25519.scalarmult(ks.x25519_kp.secret_key, server_pub_key[hksl..xksl].*) catch
|
|
return error.TlsDecryptFailure;
|
|
@memcpy(ks.sk_buf[0..hsk.len], &hsk);
|
|
@memcpy(ks.sk_buf[hsk.len..][0..xsk.len], &xsk);
|
|
ks.sk_len = hsk.len + xsk.len;
|
|
},
|
|
.secp256r1 => {
|
|
const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey;
|
|
const pk = PublicKey.fromSec1(server_pub_key) catch return error.TlsDecryptFailure;
|
|
const mul = pk.p.mulPublic(ks.secp256r1_kp.secret_key.bytes, .big) catch
|
|
return error.TlsDecryptFailure;
|
|
const sk = mul.affineCoordinates().x.toBytes(.big);
|
|
@memcpy(ks.sk_buf[0..sk.len], &sk);
|
|
ks.sk_len = sk.len;
|
|
},
|
|
.secp384r1 => {
|
|
const PublicKey = crypto.sign.ecdsa.EcdsaP384Sha384.PublicKey;
|
|
const pk = PublicKey.fromSec1(server_pub_key) catch return error.TlsDecryptFailure;
|
|
const mul = pk.p.mulPublic(ks.secp384r1_kp.secret_key.bytes, .big) catch
|
|
return error.TlsDecryptFailure;
|
|
const sk = mul.affineCoordinates().x.toBytes(.big);
|
|
@memcpy(ks.sk_buf[0..sk.len], &sk);
|
|
ks.sk_len = sk.len;
|
|
},
|
|
.x25519 => {
|
|
const ksl = crypto.dh.X25519.public_length;
|
|
if (server_pub_key.len != ksl) return error.TlsIllegalParameter;
|
|
const sk = crypto.dh.X25519.scalarmult(ks.x25519_kp.secret_key, server_pub_key[0..ksl].*) catch
|
|
return error.TlsDecryptFailure;
|
|
@memcpy(ks.sk_buf[0..sk.len], &sk);
|
|
ks.sk_len = sk.len;
|
|
},
|
|
else => return error.TlsIllegalParameter,
|
|
}
|
|
}
|
|
|
|
fn getSharedSecret(ks: *const KeyShare) ?[]const u8 {
|
|
return if (ks.sk_len > 0) ks.sk_buf[0..ks.sk_len] else null;
|
|
}
|
|
};
|
|
|
|
fn SchemeEcdsa(comptime scheme: tls.SignatureScheme) type {
|
|
return switch (scheme) {
|
|
.ecdsa_secp256r1_sha256 => crypto.sign.ecdsa.EcdsaP256Sha256,
|
|
.ecdsa_secp384r1_sha384 => crypto.sign.ecdsa.EcdsaP384Sha384,
|
|
else => @compileError("bad scheme"),
|
|
};
|
|
}
|
|
|
|
fn SchemeRsa(comptime scheme: tls.SignatureScheme) type {
|
|
return switch (scheme) {
|
|
.rsa_pkcs1_sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.rsa_pkcs1_sha1,
|
|
=> Certificate.rsa.PKCS1v1_5Signature,
|
|
.rsa_pss_rsae_sha256,
|
|
.rsa_pss_rsae_sha384,
|
|
.rsa_pss_rsae_sha512,
|
|
.rsa_pss_pss_sha256,
|
|
.rsa_pss_pss_sha384,
|
|
.rsa_pss_pss_sha512,
|
|
=> Certificate.rsa.PSSSignature,
|
|
else => @compileError("bad scheme"),
|
|
};
|
|
}
|
|
|
|
fn SchemeEddsa(comptime scheme: tls.SignatureScheme) type {
|
|
return switch (scheme) {
|
|
.ed25519 => crypto.sign.Ed25519,
|
|
else => @compileError("bad scheme"),
|
|
};
|
|
}
|
|
|
|
fn SchemeHash(comptime scheme: tls.SignatureScheme) type {
|
|
return switch (scheme) {
|
|
.rsa_pkcs1_sha256,
|
|
.ecdsa_secp256r1_sha256,
|
|
.rsa_pss_rsae_sha256,
|
|
.rsa_pss_pss_sha256,
|
|
=> crypto.hash.sha2.Sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.ecdsa_secp384r1_sha384,
|
|
.rsa_pss_rsae_sha384,
|
|
.rsa_pss_pss_sha384,
|
|
=> crypto.hash.sha2.Sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.ecdsa_secp521r1_sha512,
|
|
.rsa_pss_rsae_sha512,
|
|
.rsa_pss_pss_sha512,
|
|
=> crypto.hash.sha2.Sha512,
|
|
.rsa_pkcs1_sha1,
|
|
.ecdsa_sha1,
|
|
=> crypto.hash.Sha1,
|
|
else => @compileError("bad scheme"),
|
|
};
|
|
}
|
|
|
|
const CertificatePublicKey = struct {
|
|
algo: Certificate.AlgorithmCategory,
|
|
buf: [600]u8,
|
|
len: u16,
|
|
|
|
fn init(
|
|
cert_pub_key: *CertificatePublicKey,
|
|
algo: Certificate.AlgorithmCategory,
|
|
pub_key: []const u8,
|
|
) error{CertificatePublicKeyInvalid}!void {
|
|
if (pub_key.len > cert_pub_key.buf.len) return error.CertificatePublicKeyInvalid;
|
|
cert_pub_key.algo = algo;
|
|
@memcpy(cert_pub_key.buf[0..pub_key.len], pub_key);
|
|
cert_pub_key.len = @intCast(pub_key.len);
|
|
}
|
|
|
|
const VerifyError = error{ TlsDecodeError, TlsBadSignatureScheme, InvalidEncoding } ||
|
|
// ecdsa
|
|
crypto.errors.EncodingError ||
|
|
crypto.errors.NotSquareError ||
|
|
crypto.errors.NonCanonicalError ||
|
|
SchemeEcdsa(.ecdsa_secp256r1_sha256).Signature.VerifyError ||
|
|
SchemeEcdsa(.ecdsa_secp384r1_sha384).Signature.VerifyError ||
|
|
// rsa
|
|
error{TlsBadRsaSignatureBitCount} ||
|
|
Certificate.rsa.PublicKey.ParseDerError ||
|
|
Certificate.rsa.PublicKey.FromBytesError ||
|
|
Certificate.rsa.PSSSignature.VerifyError ||
|
|
Certificate.rsa.PKCS1v1_5Signature.VerifyError ||
|
|
// eddsa
|
|
SchemeEddsa(.ed25519).Signature.VerifyError;
|
|
|
|
fn verifySignature(
|
|
cert_pub_key: *const CertificatePublicKey,
|
|
sigd: *tls.Decoder,
|
|
msg: []const []const u8,
|
|
) VerifyError!void {
|
|
const pub_key = cert_pub_key.buf[0..cert_pub_key.len];
|
|
|
|
try sigd.ensure(2 + 2);
|
|
const scheme = sigd.decode(tls.SignatureScheme);
|
|
const sig_len = sigd.decode(u16);
|
|
try sigd.ensure(sig_len);
|
|
const encoded_sig = sigd.slice(sig_len);
|
|
|
|
if (cert_pub_key.algo != @as(Certificate.AlgorithmCategory, switch (scheme) {
|
|
.ecdsa_secp256r1_sha256,
|
|
.ecdsa_secp384r1_sha384,
|
|
=> .X9_62_id_ecPublicKey,
|
|
.rsa_pkcs1_sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.rsa_pss_rsae_sha256,
|
|
.rsa_pss_rsae_sha384,
|
|
.rsa_pss_rsae_sha512,
|
|
.rsa_pkcs1_sha1,
|
|
=> .rsaEncryption,
|
|
.rsa_pss_pss_sha256,
|
|
.rsa_pss_pss_sha384,
|
|
.rsa_pss_pss_sha512,
|
|
=> .rsassa_pss,
|
|
else => return error.TlsBadSignatureScheme,
|
|
})) return error.TlsBadSignatureScheme;
|
|
|
|
switch (scheme) {
|
|
inline .ecdsa_secp256r1_sha256,
|
|
.ecdsa_secp384r1_sha384,
|
|
=> |comptime_scheme| {
|
|
const Ecdsa = SchemeEcdsa(comptime_scheme);
|
|
const sig = try Ecdsa.Signature.fromDer(encoded_sig);
|
|
const key = try Ecdsa.PublicKey.fromSec1(pub_key);
|
|
var ver = try sig.verifier(key);
|
|
for (msg) |part| ver.update(part);
|
|
try ver.verify();
|
|
},
|
|
inline .rsa_pkcs1_sha256,
|
|
.rsa_pkcs1_sha384,
|
|
.rsa_pkcs1_sha512,
|
|
.rsa_pss_rsae_sha256,
|
|
.rsa_pss_rsae_sha384,
|
|
.rsa_pss_rsae_sha512,
|
|
.rsa_pss_pss_sha256,
|
|
.rsa_pss_pss_sha384,
|
|
.rsa_pss_pss_sha512,
|
|
.rsa_pkcs1_sha1,
|
|
=> |comptime_scheme| {
|
|
const RsaSignature = SchemeRsa(comptime_scheme);
|
|
const Hash = SchemeHash(comptime_scheme);
|
|
const PublicKey = Certificate.rsa.PublicKey;
|
|
const components = try PublicKey.parseDer(pub_key);
|
|
const exponent = components.exponent;
|
|
const modulus = components.modulus;
|
|
switch (modulus.len) {
|
|
inline 128, 256, 384, 512 => |modulus_len| {
|
|
const key: PublicKey = try .fromBytes(exponent, modulus);
|
|
const sig = RsaSignature.fromBytes(modulus_len, encoded_sig);
|
|
try RsaSignature.concatVerify(modulus_len, sig, msg, key, Hash);
|
|
},
|
|
else => return error.TlsBadRsaSignatureBitCount,
|
|
}
|
|
},
|
|
inline .ed25519 => |comptime_scheme| {
|
|
const Eddsa = SchemeEddsa(comptime_scheme);
|
|
if (encoded_sig.len != Eddsa.Signature.encoded_length) return error.InvalidEncoding;
|
|
const sig = Eddsa.Signature.fromBytes(encoded_sig[0..Eddsa.Signature.encoded_length].*);
|
|
if (pub_key.len != Eddsa.PublicKey.encoded_length) return error.InvalidEncoding;
|
|
const key = try Eddsa.PublicKey.fromBytes(pub_key[0..Eddsa.PublicKey.encoded_length].*);
|
|
var ver = try sig.verifier(key);
|
|
for (msg) |part| ver.update(part);
|
|
try ver.verify();
|
|
},
|
|
else => unreachable,
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Abstraction for sending multiple byte buffers to a slice of iovecs.
|
|
const VecPut = struct {
|
|
iovecs: []const std.posix.iovec,
|
|
idx: usize = 0,
|
|
off: usize = 0,
|
|
total: usize = 0,
|
|
|
|
/// Returns the amount actually put which is always equal to bytes.len
|
|
/// unless the vectors ran out of space.
|
|
fn put(vp: *VecPut, bytes: []const u8) usize {
|
|
if (vp.idx >= vp.iovecs.len) return 0;
|
|
var bytes_i: usize = 0;
|
|
while (true) {
|
|
const v = vp.iovecs[vp.idx];
|
|
const dest = v.base[vp.off..v.len];
|
|
const src = bytes[bytes_i..][0..@min(dest.len, bytes.len - bytes_i)];
|
|
@memcpy(dest[0..src.len], src);
|
|
bytes_i += src.len;
|
|
vp.off += src.len;
|
|
if (vp.off >= v.len) {
|
|
vp.off = 0;
|
|
vp.idx += 1;
|
|
if (vp.idx >= vp.iovecs.len) {
|
|
vp.total += bytes_i;
|
|
return bytes_i;
|
|
}
|
|
}
|
|
if (bytes_i >= bytes.len) {
|
|
vp.total += bytes_i;
|
|
return bytes_i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the next buffer that consecutive bytes can go into.
|
|
fn peek(vp: VecPut) []u8 {
|
|
if (vp.idx >= vp.iovecs.len) return &.{};
|
|
const v = vp.iovecs[vp.idx];
|
|
return v.base[vp.off..v.len];
|
|
}
|
|
|
|
// After writing to the result of peek(), one can call next() to
|
|
// advance the cursor.
|
|
fn next(vp: *VecPut, len: usize) void {
|
|
vp.total += len;
|
|
vp.off += len;
|
|
if (vp.off >= vp.iovecs[vp.idx].len) {
|
|
vp.off = 0;
|
|
vp.idx += 1;
|
|
}
|
|
}
|
|
|
|
fn freeSize(vp: VecPut) usize {
|
|
if (vp.idx >= vp.iovecs.len) return 0;
|
|
var total: usize = 0;
|
|
total += vp.iovecs[vp.idx].len - vp.off;
|
|
if (vp.idx + 1 >= vp.iovecs.len) return total;
|
|
for (vp.iovecs[vp.idx + 1 ..]) |v| total += v.len;
|
|
return total;
|
|
}
|
|
};
|
|
|
|
/// Limit iovecs to a specific byte size.
|
|
fn limitVecs(iovecs: []std.posix.iovec, len: usize) []std.posix.iovec {
|
|
var bytes_left: usize = len;
|
|
for (iovecs, 0..) |*iovec, vec_i| {
|
|
if (bytes_left <= iovec.len) {
|
|
iovec.len = bytes_left;
|
|
return iovecs[0 .. vec_i + 1];
|
|
}
|
|
bytes_left -= iovec.len;
|
|
}
|
|
return iovecs;
|
|
}
|
|
|
|
/// The priority order here is chosen based on what crypto algorithms Zig has
|
|
/// available in the standard library as well as what is faster. Following are
|
|
/// a few data points on the relative performance of these algorithms.
|
|
///
|
|
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
|
|
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
|
|
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast
|
|
/// aegis-128l: 15382 MiB/s
|
|
/// aegis-256: 9553 MiB/s
|
|
/// aes128-gcm: 3721 MiB/s
|
|
/// aes256-gcm: 3010 MiB/s
|
|
/// chacha20Poly1305: 597 MiB/s
|
|
///
|
|
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
|
|
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
|
|
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline
|
|
/// aegis-128l: 629 MiB/s
|
|
/// chacha20Poly1305: 529 MiB/s
|
|
/// aegis-256: 461 MiB/s
|
|
/// aes128-gcm: 138 MiB/s
|
|
/// aes256-gcm: 120 MiB/s
|
|
const cipher_suites = if (crypto.core.aes.has_hardware_support)
|
|
array(u16, tls.CipherSuite, .{
|
|
.AEGIS_128L_SHA256,
|
|
.AEGIS_256_SHA512,
|
|
.AES_128_GCM_SHA256,
|
|
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
.CHACHA20_POLY1305_SHA256,
|
|
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
})
|
|
else
|
|
array(u16, tls.CipherSuite, .{
|
|
.CHACHA20_POLY1305_SHA256,
|
|
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
|
|
.AEGIS_128L_SHA256,
|
|
.AEGIS_256_SHA512,
|
|
.AES_128_GCM_SHA256,
|
|
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
|
|
.AES_256_GCM_SHA384,
|
|
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
|
|
});
|