mlugg 0ec6b2dd88 compiler: simplify generic functions, fix issues with inline calls
The original motivation here was to fix regressions caused by #22414.
However, while working on this, I ended up discussing a language
simplification with Andrew, which changes things a little from how they
worked before #22414.

The main user-facing change here is that any reference to a prior
function parameter, even if potentially comptime-known at the usage
site or even not analyzed, now makes a function generic. This applies
even if the parameter being referenced is not a `comptime` parameter,
since it could still be populated when performing an inline call. This
is a breaking language change.

The detection of this is done in AstGen; when evaluating a parameter
type or return type, we track whether it referenced any prior parameter,
and if so, we mark this type as being "generic" in ZIR. This will cause
Sema to not evaluate it until the time of instantiation or inline call.

A lovely consequence of this from an implementation perspective is that
it eliminates the need for most of the "generic poison" system. In
particular, `error.GenericPoison` is now completely unnecessary, because
we identify generic expressions earlier in the pipeline; this simplifies
the compiler and avoids redundant work. This also entirely eliminates
the concept of the "generic poison value". The only remnant of this
system is the "generic poison type" (`Type.generic_poison` and
`InternPool.Index.generic_poison_type`). This type is used in two
places:

* During semantic analysis, to represent an unknown result type.
* When storing generic function types, to represent a generic parameter/return type.

It's possible that these use cases should instead use `.none`, but I
leave that investigation to a future adventurer.

One last thing. Prior to #22414, inline calls were a little inefficient,
because they re-evaluated even non-generic parameter types whenever they
were called. Changing this behavior is what ultimately led to #22538.
Well, because the new logic will mark a type expression as generic if
there is any change its resolved type could differ in an inline call,
this redundant work is unnecessary! So, this is another way in which the
new design reduces redundant work and complexity.

Resolves: #22494
Resolves: #22532
Resolves: #22538
2025-01-21 02:41:42 +00:00
..
2024-09-26 21:02:14 -07:00

Test Case Quick Reference

Use comments at the end of the file to indicate metadata about the test case. Here are examples of different kinds of tests:

Compile Error Test

If you want it to be run with zig test and match expected error messages:

// error
// is_test=true
//
// :4:13: error: 'try' outside function scope

Execution

This will do zig run on the code and expect exit code 0.

// run

Translate-c

If you want to test translating C code to Zig use translate-c:

// translate-c
// c_frontend=aro,clang
// target=x86_64-linux
//
// pub const foo = 1;
// pub const immediately_after_foo = 2;
//
// pub const somewhere_else_in_the_file = 3:

Run Translated C

If you want to test translating C code to Zig and then executing it use run-translated-c:

// run-translated-c
// c_frontend=aro,clang
// target=x86_64-linux
//
// Hello world!

Incremental Compilation

Make multiple files that have ".", and then an integer, before the ".zig" extension, like this:

hello.0.zig
hello.1.zig
hello.2.zig

Each file can be a different kind of test, such as expecting compile errors, or expecting to be run and exit(0). The test harness will use these to simulate incremental compilation.

At the time of writing there is no way to specify multiple files being changed as part of an update.

Subdirectories

Subdirectories do not have any semantic meaning but they can be used for organization since the test harness will recurse into them. The full directory path will be prepended as a prefix on the test case name.

Limiting which Backends and Targets are Tested

// run
// backend=stage2,llvm
// target=x86_64-linux,x86_64-macos

Possible backends are:

  • stage1: equivalent to -fstage1.
  • stage2: equivalent to passing -fno-stage1 -fno-LLVM.
  • llvm: equivalent to -fLLVM -fno-stage1.