mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
155 lines
4.8 KiB
Zig
155 lines
4.8 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cosf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/cos.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
const kernel = @import("__trig.zig");
|
|
const __rem_pio2 = @import("__rem_pio2.zig").__rem_pio2;
|
|
const __rem_pio2f = @import("__rem_pio2f.zig").__rem_pio2f;
|
|
|
|
/// Returns the cosine of the radian value x.
|
|
///
|
|
/// Special Cases:
|
|
/// - cos(+-inf) = nan
|
|
/// - cos(nan) = nan
|
|
pub fn cos(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => cos32(x),
|
|
f64 => cos64(x),
|
|
else => @compileError("cos not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
pub fn cos32(x: f32) f32 {
|
|
// Small multiples of pi/2 rounded to double precision.
|
|
const c1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
|
|
const c2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
|
|
const c3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
|
|
const c4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
|
|
|
|
var ix = @bitCast(u32, x);
|
|
const sign = ix >> 31 != 0;
|
|
ix &= 0x7fffffff;
|
|
|
|
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
|
|
if (ix < 0x39800000) { // |x| < 2**-12
|
|
// raise inexact if x != 0
|
|
math.doNotOptimizeAway(x + 0x1p120);
|
|
return 1.0;
|
|
}
|
|
return kernel.__cosdf(x);
|
|
}
|
|
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
|
|
if (ix > 0x4016cbe3) { // |x| ~> 3*pi/4
|
|
return -kernel.__cosdf(if (sign) x + c2pio2 else x - c2pio2);
|
|
} else {
|
|
if (sign) {
|
|
return kernel.__sindf(x + c1pio2);
|
|
} else {
|
|
return kernel.__sindf(c1pio2 - x);
|
|
}
|
|
}
|
|
}
|
|
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
|
|
if (ix > 0x40afeddf) { // |x| ~> 7*pi/4
|
|
return kernel.__cosdf(if (sign) x + c4pio2 else x - c4pio2);
|
|
} else {
|
|
if (sign) {
|
|
return kernel.__sindf(-x - c3pio2);
|
|
} else {
|
|
return kernel.__sindf(x - c3pio2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// cos(Inf or NaN) is NaN
|
|
if (ix >= 0x7f800000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: f64 = undefined;
|
|
const n = __rem_pio2f(x, &y);
|
|
return switch (n & 3) {
|
|
0 => kernel.__cosdf(y),
|
|
1 => kernel.__sindf(-y),
|
|
2 => -kernel.__cosdf(y),
|
|
else => kernel.__sindf(y),
|
|
};
|
|
}
|
|
|
|
pub fn cos64(x: f64) f64 {
|
|
var ix = @bitCast(u64, x) >> 32;
|
|
ix &= 0x7fffffff;
|
|
|
|
// |x| ~< pi/4
|
|
if (ix <= 0x3fe921fb) {
|
|
if (ix < 0x3e46a09e) { // |x| < 2**-27 * sqrt(2)
|
|
// raise inexact if x!=0
|
|
math.doNotOptimizeAway(x + 0x1p120);
|
|
return 1.0;
|
|
}
|
|
return kernel.__cos(x, 0);
|
|
}
|
|
|
|
// cos(Inf or NaN) is NaN
|
|
if (ix >= 0x7ff00000) {
|
|
return x - x;
|
|
}
|
|
|
|
var y: [2]f64 = undefined;
|
|
const n = __rem_pio2(x, &y);
|
|
return switch (n & 3) {
|
|
0 => kernel.__cos(y[0], y[1]),
|
|
1 => -kernel.__sin(y[0], y[1], 1),
|
|
2 => -kernel.__cos(y[0], y[1]),
|
|
else => kernel.__sin(y[0], y[1], 1),
|
|
};
|
|
}
|
|
|
|
test "math.cos" {
|
|
try expect(cos(@as(f32, 0.0)) == cos32(0.0));
|
|
try expect(cos(@as(f64, 0.0)) == cos64(0.0));
|
|
}
|
|
|
|
test "math.cos32" {
|
|
const epsilon = 0.00001;
|
|
|
|
try expect(math.approxEqAbs(f32, cos32(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(0.2), 0.980067, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(0.8923), 0.627623, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(-1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(37.45), 0.969132, epsilon));
|
|
try expect(math.approxEqAbs(f32, cos32(89.123), 0.400798, epsilon));
|
|
}
|
|
|
|
test "math.cos64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, cos64(0.0), 1.0, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(0.2), 0.980067, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(0.8923), 0.627623, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(-1.5), 0.070737, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(37.45), 0.969132, epsilon));
|
|
try expect(math.approxEqAbs(f64, cos64(89.123), 0.40080, epsilon));
|
|
}
|
|
|
|
test "math.cos32.special" {
|
|
try expect(math.isNan(cos32(math.inf(f32))));
|
|
try expect(math.isNan(cos32(-math.inf(f32))));
|
|
try expect(math.isNan(cos32(math.nan(f32))));
|
|
}
|
|
|
|
test "math.cos64.special" {
|
|
try expect(math.isNan(cos64(math.inf(f64))));
|
|
try expect(math.isNan(cos64(-math.inf(f64))));
|
|
try expect(math.isNan(cos64(math.nan(f64))));
|
|
}
|