zig/lib/std/debug/SelfInfo/MachO.zig
2025-10-29 06:20:50 -07:00

989 lines
43 KiB
Zig

mutex: std.Thread.Mutex,
/// Accessed through `Module.Adapter`.
modules: std.ArrayHashMapUnmanaged(Module, void, Module.Context, false),
ofiles: std.StringArrayHashMapUnmanaged(?OFile),
pub const init: SelfInfo = .{
.mutex = .{},
.modules = .empty,
.ofiles = .empty,
};
pub fn deinit(si: *SelfInfo, gpa: Allocator) void {
for (si.modules.keys()) |*module| {
unwind: {
const u = &(module.unwind orelse break :unwind catch break :unwind);
if (u.dwarf) |*dwarf| dwarf.deinit(gpa);
}
loaded: {
const l = &(module.loaded_macho orelse break :loaded catch break :loaded);
gpa.free(l.symbols);
posix.munmap(l.mapped_memory);
}
}
for (si.ofiles.values()) |*opt_ofile| {
const ofile = &(opt_ofile.* orelse continue);
ofile.dwarf.deinit(gpa);
ofile.symbols_by_name.deinit(gpa);
posix.munmap(ofile.mapped_memory);
}
si.modules.deinit(gpa);
si.ofiles.deinit(gpa);
}
pub fn getSymbol(si: *SelfInfo, gpa: Allocator, io: Io, address: usize) Error!std.debug.Symbol {
_ = io;
const module = try si.findModule(gpa, address);
defer si.mutex.unlock();
const loaded_macho = try module.getLoadedMachO(gpa);
const vaddr = address - loaded_macho.vaddr_offset;
const symbol = MachoSymbol.find(loaded_macho.symbols, vaddr) orelse return .unknown;
// offset of `address` from start of `symbol`
const address_symbol_offset = vaddr - symbol.addr;
// Take the symbol name from the N_FUN STAB entry, we're going to
// use it if we fail to find the DWARF infos
const stab_symbol = mem.sliceTo(loaded_macho.strings[symbol.strx..], 0);
// If any information is missing, we can at least return this from now on.
const sym_only_result: std.debug.Symbol = .{
.name = stab_symbol,
.compile_unit_name = null,
.source_location = null,
};
if (symbol.ofile == MachoSymbol.unknown_ofile) {
// We don't have STAB info, so can't track down the object file; all we can do is the symbol name.
return sym_only_result;
}
const o_file: *OFile = of: {
const path = mem.sliceTo(loaded_macho.strings[symbol.ofile..], 0);
const gop = try si.ofiles.getOrPut(gpa, path);
if (!gop.found_existing) {
gop.value_ptr.* = loadOFile(gpa, path) catch null;
}
if (gop.value_ptr.*) |*o_file| {
break :of o_file;
} else {
return sym_only_result;
}
};
const symbol_index = o_file.symbols_by_name.getKeyAdapted(
@as([]const u8, stab_symbol),
@as(OFile.SymbolAdapter, .{ .strtab = o_file.strtab, .symtab = o_file.symtab }),
) orelse return sym_only_result;
const symbol_ofile_vaddr = o_file.symtab[symbol_index].n_value;
const compile_unit = o_file.dwarf.findCompileUnit(native_endian, symbol_ofile_vaddr) catch return sym_only_result;
return .{
.name = o_file.dwarf.getSymbolName(symbol_ofile_vaddr + address_symbol_offset) orelse stab_symbol,
.compile_unit_name = compile_unit.die.getAttrString(
&o_file.dwarf,
native_endian,
std.dwarf.AT.name,
o_file.dwarf.section(.debug_str),
compile_unit,
) catch |err| switch (err) {
error.MissingDebugInfo, error.InvalidDebugInfo => null,
},
.source_location = o_file.dwarf.getLineNumberInfo(
gpa,
native_endian,
compile_unit,
symbol_ofile_vaddr + address_symbol_offset,
) catch null,
};
}
pub fn getModuleName(si: *SelfInfo, gpa: Allocator, address: usize) Error![]const u8 {
const module = try si.findModule(gpa, address);
defer si.mutex.unlock();
return module.name;
}
pub const can_unwind: bool = true;
pub const UnwindContext = std.debug.Dwarf.SelfUnwinder;
/// Unwind a frame using MachO compact unwind info (from `__unwind_info`).
/// If the compact encoding can't encode a way to unwind a frame, it will
/// defer unwinding to DWARF, in which case `__eh_frame` will be used if available.
pub fn unwindFrame(si: *SelfInfo, gpa: Allocator, context: *UnwindContext) Error!usize {
return unwindFrameInner(si, gpa, context) catch |err| switch (err) {
error.InvalidDebugInfo,
error.MissingDebugInfo,
error.UnsupportedDebugInfo,
error.ReadFailed,
error.OutOfMemory,
error.Unexpected,
error.Canceled,
=> |e| return e,
error.UnsupportedRegister,
error.UnsupportedAddrSize,
error.UnimplementedUserOpcode,
=> return error.UnsupportedDebugInfo,
error.Overflow,
error.EndOfStream,
error.StreamTooLong,
error.InvalidOpcode,
error.InvalidOperation,
error.InvalidOperand,
error.InvalidRegister,
error.IncompatibleRegisterSize,
=> return error.InvalidDebugInfo,
};
}
fn unwindFrameInner(si: *SelfInfo, gpa: Allocator, context: *UnwindContext) !usize {
const module = try si.findModule(gpa, context.pc);
defer si.mutex.unlock();
const unwind: *Module.Unwind = try module.getUnwindInfo(gpa);
const ip_reg_num = comptime Dwarf.ipRegNum(builtin.target.cpu.arch).?;
const fp_reg_num = comptime Dwarf.fpRegNum(builtin.target.cpu.arch);
const sp_reg_num = comptime Dwarf.spRegNum(builtin.target.cpu.arch);
const unwind_info = unwind.unwind_info orelse return error.MissingDebugInfo;
if (unwind_info.len < @sizeOf(macho.unwind_info_section_header)) return error.InvalidDebugInfo;
const header: *align(1) const macho.unwind_info_section_header = @ptrCast(unwind_info);
const index_byte_count = header.indexCount * @sizeOf(macho.unwind_info_section_header_index_entry);
if (unwind_info.len < header.indexSectionOffset + index_byte_count) return error.InvalidDebugInfo;
const indices: []align(1) const macho.unwind_info_section_header_index_entry = @ptrCast(unwind_info[header.indexSectionOffset..][0..index_byte_count]);
if (indices.len == 0) return error.MissingDebugInfo;
// offset of the PC into the `__TEXT` segment
const pc_text_offset = context.pc - module.text_base;
const start_offset: u32, const first_level_offset: u32 = index: {
var left: usize = 0;
var len: usize = indices.len;
while (len > 1) {
const mid = left + len / 2;
if (pc_text_offset < indices[mid].functionOffset) {
len /= 2;
} else {
left = mid;
len -= len / 2;
}
}
break :index .{ indices[left].secondLevelPagesSectionOffset, indices[left].functionOffset };
};
// An offset of 0 is a sentinel indicating a range does not have unwind info.
if (start_offset == 0) return error.MissingDebugInfo;
const common_encodings_byte_count = header.commonEncodingsArrayCount * @sizeOf(macho.compact_unwind_encoding_t);
if (unwind_info.len < header.commonEncodingsArraySectionOffset + common_encodings_byte_count) return error.InvalidDebugInfo;
const common_encodings: []align(1) const macho.compact_unwind_encoding_t = @ptrCast(
unwind_info[header.commonEncodingsArraySectionOffset..][0..common_encodings_byte_count],
);
if (unwind_info.len < start_offset + @sizeOf(macho.UNWIND_SECOND_LEVEL)) return error.InvalidDebugInfo;
const kind: *align(1) const macho.UNWIND_SECOND_LEVEL = @ptrCast(unwind_info[start_offset..]);
const entry: struct {
function_offset: usize,
raw_encoding: u32,
} = switch (kind.*) {
.REGULAR => entry: {
if (unwind_info.len < start_offset + @sizeOf(macho.unwind_info_regular_second_level_page_header)) return error.InvalidDebugInfo;
const page_header: *align(1) const macho.unwind_info_regular_second_level_page_header = @ptrCast(unwind_info[start_offset..]);
const entries_byte_count = page_header.entryCount * @sizeOf(macho.unwind_info_regular_second_level_entry);
if (unwind_info.len < start_offset + entries_byte_count) return error.InvalidDebugInfo;
const entries: []align(1) const macho.unwind_info_regular_second_level_entry = @ptrCast(
unwind_info[start_offset + page_header.entryPageOffset ..][0..entries_byte_count],
);
if (entries.len == 0) return error.InvalidDebugInfo;
var left: usize = 0;
var len: usize = entries.len;
while (len > 1) {
const mid = left + len / 2;
if (pc_text_offset < entries[mid].functionOffset) {
len /= 2;
} else {
left = mid;
len -= len / 2;
}
}
break :entry .{
.function_offset = entries[left].functionOffset,
.raw_encoding = entries[left].encoding,
};
},
.COMPRESSED => entry: {
if (unwind_info.len < start_offset + @sizeOf(macho.unwind_info_compressed_second_level_page_header)) return error.InvalidDebugInfo;
const page_header: *align(1) const macho.unwind_info_compressed_second_level_page_header = @ptrCast(unwind_info[start_offset..]);
const entries_byte_count = page_header.entryCount * @sizeOf(macho.UnwindInfoCompressedEntry);
if (unwind_info.len < start_offset + entries_byte_count) return error.InvalidDebugInfo;
const entries: []align(1) const macho.UnwindInfoCompressedEntry = @ptrCast(
unwind_info[start_offset + page_header.entryPageOffset ..][0..entries_byte_count],
);
if (entries.len == 0) return error.InvalidDebugInfo;
var left: usize = 0;
var len: usize = entries.len;
while (len > 1) {
const mid = left + len / 2;
if (pc_text_offset < first_level_offset + entries[mid].funcOffset) {
len /= 2;
} else {
left = mid;
len -= len / 2;
}
}
const entry = entries[left];
const function_offset = first_level_offset + entry.funcOffset;
if (entry.encodingIndex < common_encodings.len) {
break :entry .{
.function_offset = function_offset,
.raw_encoding = common_encodings[entry.encodingIndex],
};
}
const local_index = entry.encodingIndex - common_encodings.len;
const local_encodings_byte_count = page_header.encodingsCount * @sizeOf(macho.compact_unwind_encoding_t);
if (unwind_info.len < start_offset + page_header.encodingsPageOffset + local_encodings_byte_count) return error.InvalidDebugInfo;
const local_encodings: []align(1) const macho.compact_unwind_encoding_t = @ptrCast(
unwind_info[start_offset + page_header.encodingsPageOffset ..][0..local_encodings_byte_count],
);
if (local_index >= local_encodings.len) return error.InvalidDebugInfo;
break :entry .{
.function_offset = function_offset,
.raw_encoding = local_encodings[local_index],
};
},
else => return error.InvalidDebugInfo,
};
if (entry.raw_encoding == 0) return error.MissingDebugInfo;
const encoding: macho.CompactUnwindEncoding = @bitCast(entry.raw_encoding);
const new_ip = switch (builtin.cpu.arch) {
.x86_64 => switch (encoding.mode.x86_64) {
.OLD => return error.UnsupportedDebugInfo,
.RBP_FRAME => ip: {
const frame = encoding.value.x86_64.frame;
const fp = (try dwarfRegNative(&context.cpu_state, fp_reg_num)).*;
const new_sp = fp + 2 * @sizeOf(usize);
const ip_ptr = fp + @sizeOf(usize);
const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
const new_fp = @as(*const usize, @ptrFromInt(fp)).*;
(try dwarfRegNative(&context.cpu_state, fp_reg_num)).* = new_fp;
(try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
(try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;
const regs: [5]u3 = .{
frame.reg0,
frame.reg1,
frame.reg2,
frame.reg3,
frame.reg4,
};
for (regs, 0..) |reg, i| {
if (reg == 0) continue;
const addr = fp - frame.frame_offset * @sizeOf(usize) + i * @sizeOf(usize);
const reg_number = try Dwarf.compactUnwindToDwarfRegNumber(reg);
(try dwarfRegNative(&context.cpu_state, reg_number)).* = @as(*const usize, @ptrFromInt(addr)).*;
}
break :ip new_ip;
},
.STACK_IMMD,
.STACK_IND,
=> ip: {
const frameless = encoding.value.x86_64.frameless;
const sp = (try dwarfRegNative(&context.cpu_state, sp_reg_num)).*;
const stack_size: usize = stack_size: {
if (encoding.mode.x86_64 == .STACK_IMMD) {
break :stack_size @as(usize, frameless.stack.direct.stack_size) * @sizeOf(usize);
}
// In .STACK_IND, the stack size is inferred from the subq instruction at the beginning of the function.
const sub_offset_addr =
module.text_base +
entry.function_offset +
frameless.stack.indirect.sub_offset;
// `sub_offset_addr` points to the offset of the literal within the instruction
const sub_operand = @as(*align(1) const u32, @ptrFromInt(sub_offset_addr)).*;
break :stack_size sub_operand + @sizeOf(usize) * @as(usize, frameless.stack.indirect.stack_adjust);
};
// Decode the Lehmer-coded sequence of registers.
// For a description of the encoding see lib/libc/include/any-macos.13-any/mach-o/compact_unwind_encoding.h
// Decode the variable-based permutation number into its digits. Each digit represents
// an index into the list of register numbers that weren't yet used in the sequence at
// the time the digit was added.
const reg_count = frameless.stack_reg_count;
const ip_ptr = ip_ptr: {
var digits: [6]u3 = undefined;
var accumulator: usize = frameless.stack_reg_permutation;
var base: usize = 2;
for (0..reg_count) |i| {
const div = accumulator / base;
digits[digits.len - 1 - i] = @intCast(accumulator - base * div);
accumulator = div;
base += 1;
}
var registers: [6]u3 = undefined;
var used_indices: [6]bool = @splat(false);
for (digits[digits.len - reg_count ..], 0..) |target_unused_index, i| {
var unused_count: u8 = 0;
const unused_index = for (used_indices, 0..) |used, index| {
if (!used) {
if (target_unused_index == unused_count) break index;
unused_count += 1;
}
} else unreachable;
registers[i] = @intCast(unused_index + 1);
used_indices[unused_index] = true;
}
var reg_addr = sp + stack_size - @sizeOf(usize) * @as(usize, reg_count + 1);
for (0..reg_count) |i| {
const reg_number = try Dwarf.compactUnwindToDwarfRegNumber(registers[i]);
(try dwarfRegNative(&context.cpu_state, reg_number)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
reg_addr += @sizeOf(usize);
}
break :ip_ptr reg_addr;
};
const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
const new_sp = ip_ptr + @sizeOf(usize);
(try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
(try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;
break :ip new_ip;
},
.DWARF => {
const dwarf = &(unwind.dwarf orelse return error.MissingDebugInfo);
const rules = try context.computeRules(gpa, dwarf, unwind.vmaddr_slide, encoding.value.x86_64.dwarf);
return context.next(gpa, &rules);
},
},
.aarch64 => switch (encoding.mode.arm64) {
.OLD => return error.UnsupportedDebugInfo,
.FRAMELESS => ip: {
const sp = (try dwarfRegNative(&context.cpu_state, sp_reg_num)).*;
const new_sp = sp + encoding.value.arm64.frameless.stack_size * 16;
const new_ip = (try dwarfRegNative(&context.cpu_state, 30)).*;
(try dwarfRegNative(&context.cpu_state, sp_reg_num)).* = new_sp;
break :ip new_ip;
},
.DWARF => {
const dwarf = &(unwind.dwarf orelse return error.MissingDebugInfo);
const rules = try context.computeRules(gpa, dwarf, unwind.vmaddr_slide, encoding.value.arm64.dwarf);
return context.next(gpa, &rules);
},
.FRAME => ip: {
const frame = encoding.value.arm64.frame;
const fp = (try dwarfRegNative(&context.cpu_state, fp_reg_num)).*;
const ip_ptr = fp + @sizeOf(usize);
var reg_addr = fp - @sizeOf(usize);
inline for (@typeInfo(@TypeOf(frame.x_reg_pairs)).@"struct".fields, 0..) |field, i| {
if (@field(frame.x_reg_pairs, field.name) != 0) {
(try dwarfRegNative(&context.cpu_state, 19 + i)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
reg_addr += @sizeOf(usize);
(try dwarfRegNative(&context.cpu_state, 20 + i)).* = @as(*const usize, @ptrFromInt(reg_addr)).*;
reg_addr += @sizeOf(usize);
}
}
// We intentionally skip restoring `frame.d_reg_pairs`; we know we don't support
// vector registers in the AArch64 `cpu_context` anyway, so there's no reason to
// fail a legitimate unwind just because we're asked to restore the registers here.
// If some weird/broken unwind info tells us to read them later, we will fail then.
reg_addr += 16 * @as(usize, @popCount(@as(u4, @bitCast(frame.d_reg_pairs))));
const new_ip = @as(*const usize, @ptrFromInt(ip_ptr)).*;
const new_fp = @as(*const usize, @ptrFromInt(fp)).*;
(try dwarfRegNative(&context.cpu_state, fp_reg_num)).* = new_fp;
(try dwarfRegNative(&context.cpu_state, ip_reg_num)).* = new_ip;
break :ip new_ip;
},
},
else => comptime unreachable, // unimplemented
};
const ret_addr = std.debug.stripInstructionPtrAuthCode(new_ip);
// Like `Dwarf.SelfUnwinder.next`, adjust our next lookup pc in case the `call` was this
// function's last instruction making `ret_addr` one byte past its end.
context.pc = ret_addr -| 1;
return ret_addr;
}
/// Acquires the mutex on success.
fn findModule(si: *SelfInfo, gpa: Allocator, address: usize) Error!*Module {
var info: std.c.dl_info = undefined;
if (std.c.dladdr(@ptrFromInt(address), &info) == 0) {
return error.MissingDebugInfo;
}
si.mutex.lock();
errdefer si.mutex.unlock();
const gop = try si.modules.getOrPutAdapted(gpa, @intFromPtr(info.fbase), Module.Adapter{});
errdefer comptime unreachable;
if (!gop.found_existing) {
gop.key_ptr.* = .{
.text_base = @intFromPtr(info.fbase),
.name = std.mem.span(info.fname),
.unwind = null,
.loaded_macho = null,
};
}
return gop.key_ptr;
}
const Module = struct {
text_base: usize,
name: []const u8,
unwind: ?(Error!Unwind),
loaded_macho: ?(Error!LoadedMachO),
const Adapter = struct {
pub fn hash(_: Adapter, text_base: usize) u32 {
return @truncate(std.hash.int(text_base));
}
pub fn eql(_: Adapter, a_text_base: usize, b_module: Module, b_index: usize) bool {
_ = b_index;
return a_text_base == b_module.text_base;
}
};
const Context = struct {
pub fn hash(_: Context, module: Module) u32 {
return @truncate(std.hash.int(module.text_base));
}
pub fn eql(_: Context, a_module: Module, b_module: Module, b_index: usize) bool {
_ = b_index;
return a_module.text_base == b_module.text_base;
}
};
const Unwind = struct {
/// The slide applied to the `__unwind_info` and `__eh_frame` sections.
/// So, `unwind_info.ptr` is this many bytes higher than the section's vmaddr.
vmaddr_slide: u64,
/// Backed by the in-memory section mapped by the loader.
unwind_info: ?[]const u8,
/// Backed by the in-memory `__eh_frame` section mapped by the loader.
dwarf: ?Dwarf.Unwind,
};
const LoadedMachO = struct {
mapped_memory: []align(std.heap.page_size_min) const u8,
symbols: []const MachoSymbol,
strings: []const u8,
/// This is not necessarily the same as the vmaddr_slide that dyld would report. This is
/// because the segments in the file on disk might differ from the ones in memory. Normally
/// we wouldn't necessarily expect that to work, but /usr/lib/dyld is incredibly annoying:
/// it exists on disk (necessarily, because the kernel needs to load it!), but is also in
/// the dyld cache (dyld actually restart itself from cache after loading it), and the two
/// versions have (very) different segment base addresses. It's sort of like a large slide
/// has been applied to all addresses in memory. For an optimal experience, we consider the
/// on-disk vmaddr instead of the in-memory one.
vaddr_offset: usize,
};
fn getUnwindInfo(module: *Module, gpa: Allocator) Error!*Unwind {
if (module.unwind == null) module.unwind = loadUnwindInfo(module, gpa);
return if (module.unwind.?) |*unwind| unwind else |err| err;
}
fn loadUnwindInfo(module: *const Module, gpa: Allocator) Error!Unwind {
const header: *std.macho.mach_header = @ptrFromInt(module.text_base);
var it: macho.LoadCommandIterator = .{
.ncmds = header.ncmds,
.buffer = @as([*]u8, @ptrCast(header))[@sizeOf(macho.mach_header_64)..][0..header.sizeofcmds],
};
const sections, const text_vmaddr = while (it.next()) |load_cmd| {
if (load_cmd.cmd() != .SEGMENT_64) continue;
const segment_cmd = load_cmd.cast(macho.segment_command_64).?;
if (!mem.eql(u8, segment_cmd.segName(), "__TEXT")) continue;
break .{ load_cmd.getSections(), segment_cmd.vmaddr };
} else unreachable;
const vmaddr_slide = module.text_base - text_vmaddr;
var opt_unwind_info: ?[]const u8 = null;
var opt_eh_frame: ?[]const u8 = null;
for (sections) |sect| {
if (mem.eql(u8, sect.sectName(), "__unwind_info")) {
const sect_ptr: [*]u8 = @ptrFromInt(@as(usize, @intCast(vmaddr_slide + sect.addr)));
opt_unwind_info = sect_ptr[0..@intCast(sect.size)];
} else if (mem.eql(u8, sect.sectName(), "__eh_frame")) {
const sect_ptr: [*]u8 = @ptrFromInt(@as(usize, @intCast(vmaddr_slide + sect.addr)));
opt_eh_frame = sect_ptr[0..@intCast(sect.size)];
}
}
const eh_frame = opt_eh_frame orelse return .{
.vmaddr_slide = vmaddr_slide,
.unwind_info = opt_unwind_info,
.dwarf = null,
};
var dwarf: Dwarf.Unwind = .initSection(.eh_frame, @intFromPtr(eh_frame.ptr) - vmaddr_slide, eh_frame);
errdefer dwarf.deinit(gpa);
// We don't need lookups, so this call is just for scanning CIEs.
dwarf.prepare(gpa, @sizeOf(usize), native_endian, false, true) catch |err| switch (err) {
error.ReadFailed => unreachable, // it's all fixed buffers
error.InvalidDebugInfo,
error.MissingDebugInfo,
error.OutOfMemory,
=> |e| return e,
error.EndOfStream,
error.Overflow,
error.StreamTooLong,
error.InvalidOperand,
error.InvalidOpcode,
error.InvalidOperation,
=> return error.InvalidDebugInfo,
error.UnsupportedAddrSize,
error.UnsupportedDwarfVersion,
error.UnimplementedUserOpcode,
=> return error.UnsupportedDebugInfo,
};
return .{
.vmaddr_slide = vmaddr_slide,
.unwind_info = opt_unwind_info,
.dwarf = dwarf,
};
}
fn getLoadedMachO(module: *Module, gpa: Allocator) Error!*LoadedMachO {
if (module.loaded_macho == null) module.loaded_macho = loadMachO(module, gpa) catch |err| switch (err) {
error.InvalidDebugInfo, error.MissingDebugInfo, error.OutOfMemory, error.Unexpected => |e| e,
else => error.ReadFailed,
};
return if (module.loaded_macho.?) |*lm| lm else |err| err;
}
fn loadMachO(module: *const Module, gpa: Allocator) Error!LoadedMachO {
const all_mapped_memory = try mapDebugInfoFile(module.name);
errdefer posix.munmap(all_mapped_memory);
// In most cases, the file we just mapped is a Mach-O binary. However, it could be a "universal
// binary": a simple file format which contains Mach-O binaries for multiple targets. For
// instance, `/usr/lib/dyld` is currently distributed as a universal binary containing images
// for both ARM64 macOS and x86_64 macOS.
if (all_mapped_memory.len < 4) return error.InvalidDebugInfo;
const magic = @as(*const u32, @ptrCast(all_mapped_memory.ptr)).*;
// The contents of a Mach-O file, which may or may not be the whole of `all_mapped_memory`.
const mapped_macho = switch (magic) {
macho.MH_MAGIC_64 => all_mapped_memory,
macho.FAT_CIGAM => mapped_macho: {
// This is the universal binary format (aka a "fat binary"). Annoyingly, the whole thing
// is big-endian, so we'll be swapping some bytes.
if (all_mapped_memory.len < @sizeOf(macho.fat_header)) return error.InvalidDebugInfo;
const hdr: *const macho.fat_header = @ptrCast(all_mapped_memory.ptr);
const archs_ptr: [*]const macho.fat_arch = @ptrCast(all_mapped_memory.ptr + @sizeOf(macho.fat_header));
const archs: []const macho.fat_arch = archs_ptr[0..@byteSwap(hdr.nfat_arch)];
const native_cpu_type = switch (builtin.cpu.arch) {
.x86_64 => macho.CPU_TYPE_X86_64,
.aarch64 => macho.CPU_TYPE_ARM64,
else => comptime unreachable,
};
for (archs) |*arch| {
if (@byteSwap(arch.cputype) != native_cpu_type) continue;
const offset = @byteSwap(arch.offset);
const size = @byteSwap(arch.size);
break :mapped_macho all_mapped_memory[offset..][0..size];
}
// Our native architecture was not present in the fat binary.
return error.MissingDebugInfo;
},
// Even on modern 64-bit targets, this format doesn't seem to be too extensively used. It
// will be fairly easy to add support here if necessary; it's very similar to above.
macho.FAT_CIGAM_64 => return error.UnsupportedDebugInfo,
else => return error.InvalidDebugInfo,
};
const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_macho.ptr));
if (hdr.magic != macho.MH_MAGIC_64)
return error.InvalidDebugInfo;
const symtab: macho.symtab_command, const text_vmaddr: u64 = lc_iter: {
var it: macho.LoadCommandIterator = .{
.ncmds = hdr.ncmds,
.buffer = mapped_macho[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
var symtab: ?macho.symtab_command = null;
var text_vmaddr: ?u64 = null;
while (it.next()) |cmd| switch (cmd.cmd()) {
.SYMTAB => symtab = cmd.cast(macho.symtab_command) orelse return error.InvalidDebugInfo,
.SEGMENT_64 => if (cmd.cast(macho.segment_command_64)) |seg_cmd| {
if (!mem.eql(u8, seg_cmd.segName(), "__TEXT")) continue;
text_vmaddr = seg_cmd.vmaddr;
},
else => {},
};
break :lc_iter .{
symtab orelse return error.MissingDebugInfo,
text_vmaddr orelse return error.MissingDebugInfo,
};
};
const syms_ptr: [*]align(1) const macho.nlist_64 = @ptrCast(mapped_macho[symtab.symoff..]);
const syms = syms_ptr[0..symtab.nsyms];
const strings = mapped_macho[symtab.stroff..][0 .. symtab.strsize - 1];
var symbols: std.ArrayList(MachoSymbol) = try .initCapacity(gpa, syms.len);
defer symbols.deinit(gpa);
// This map is temporary; it is used only to detect duplicates here. This is
// necessary because we prefer to use STAB ("symbolic debugging table") symbols,
// but they might not be present, so we track normal symbols too.
// Indices match 1-1 with those of `symbols`.
var symbol_names: std.StringArrayHashMapUnmanaged(void) = .empty;
defer symbol_names.deinit(gpa);
try symbol_names.ensureUnusedCapacity(gpa, syms.len);
var ofile: u32 = undefined;
var last_sym: MachoSymbol = undefined;
var state: enum {
init,
oso_open,
oso_close,
bnsym,
fun_strx,
fun_size,
ensym,
} = .init;
for (syms) |*sym| {
if (sym.n_type.bits.is_stab == 0) {
if (sym.n_strx == 0) continue;
switch (sym.n_type.bits.type) {
.undf, .pbud, .indr, .abs, _ => continue,
.sect => {
const name = std.mem.sliceTo(strings[sym.n_strx..], 0);
const gop = symbol_names.getOrPutAssumeCapacity(name);
if (!gop.found_existing) {
assert(gop.index == symbols.items.len);
symbols.appendAssumeCapacity(.{
.strx = sym.n_strx,
.addr = sym.n_value,
.ofile = MachoSymbol.unknown_ofile,
});
}
},
}
continue;
}
// TODO handle globals N_GSYM, and statics N_STSYM
switch (sym.n_type.stab) {
.oso => switch (state) {
.init, .oso_close => {
state = .oso_open;
ofile = sym.n_strx;
},
else => return error.InvalidDebugInfo,
},
.bnsym => switch (state) {
.oso_open, .ensym => {
state = .bnsym;
last_sym = .{
.strx = 0,
.addr = sym.n_value,
.ofile = ofile,
};
},
else => return error.InvalidDebugInfo,
},
.fun => switch (state) {
.bnsym => {
state = .fun_strx;
last_sym.strx = sym.n_strx;
},
.fun_strx => {
state = .fun_size;
},
else => return error.InvalidDebugInfo,
},
.ensym => switch (state) {
.fun_size => {
state = .ensym;
if (last_sym.strx != 0) {
const name = std.mem.sliceTo(strings[last_sym.strx..], 0);
const gop = symbol_names.getOrPutAssumeCapacity(name);
if (!gop.found_existing) {
assert(gop.index == symbols.items.len);
symbols.appendAssumeCapacity(last_sym);
} else {
symbols.items[gop.index] = last_sym;
}
}
},
else => return error.InvalidDebugInfo,
},
.so => switch (state) {
.init, .oso_close => {},
.oso_open, .ensym => {
state = .oso_close;
},
else => return error.InvalidDebugInfo,
},
else => {},
}
}
switch (state) {
.init => {
// Missing STAB symtab entries is still okay, unless there were also no normal symbols.
if (symbols.items.len == 0) return error.MissingDebugInfo;
},
.oso_close => {},
else => return error.InvalidDebugInfo, // corrupted STAB entries in symtab
}
const symbols_slice = try symbols.toOwnedSlice(gpa);
errdefer gpa.free(symbols_slice);
// Even though lld emits symbols in ascending order, this debug code
// should work for programs linked in any valid way.
// This sort is so that we can binary search later.
mem.sort(MachoSymbol, symbols_slice, {}, MachoSymbol.addressLessThan);
return .{
.mapped_memory = all_mapped_memory,
.symbols = symbols_slice,
.strings = strings,
.vaddr_offset = module.text_base - text_vmaddr,
};
}
};
const OFile = struct {
mapped_memory: []align(std.heap.page_size_min) const u8,
dwarf: Dwarf,
strtab: []const u8,
symtab: []align(1) const macho.nlist_64,
/// All named symbols in `symtab`. Stored `u32` key is the index into `symtab`. Accessed
/// through `SymbolAdapter`, so that the symbol name is used as the logical key.
symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true),
const SymbolAdapter = struct {
strtab: []const u8,
symtab: []align(1) const macho.nlist_64,
pub fn hash(ctx: SymbolAdapter, sym_name: []const u8) u32 {
_ = ctx;
return @truncate(std.hash.Wyhash.hash(0, sym_name));
}
pub fn eql(ctx: SymbolAdapter, a_sym_name: []const u8, b_sym_index: u32, b_index: usize) bool {
_ = b_index;
const b_sym = ctx.symtab[b_sym_index];
const b_sym_name = std.mem.sliceTo(ctx.strtab[b_sym.n_strx..], 0);
return mem.eql(u8, a_sym_name, b_sym_name);
}
};
};
const MachoSymbol = struct {
strx: u32,
addr: u64,
/// Value may be `unknown_ofile`.
ofile: u32,
const unknown_ofile = std.math.maxInt(u32);
fn addressLessThan(context: void, lhs: MachoSymbol, rhs: MachoSymbol) bool {
_ = context;
return lhs.addr < rhs.addr;
}
/// Assumes that `symbols` is sorted in order of ascending `addr`.
fn find(symbols: []const MachoSymbol, address: usize) ?*const MachoSymbol {
if (symbols.len == 0) return null; // no potential match
if (address < symbols[0].addr) return null; // address is before the lowest-address symbol
var left: usize = 0;
var len: usize = symbols.len;
while (len > 1) {
const mid = left + len / 2;
if (address < symbols[mid].addr) {
len /= 2;
} else {
left = mid;
len -= len / 2;
}
}
return &symbols[left];
}
test find {
const symbols: []const MachoSymbol = &.{
.{ .addr = 100, .strx = undefined, .ofile = undefined },
.{ .addr = 200, .strx = undefined, .ofile = undefined },
.{ .addr = 300, .strx = undefined, .ofile = undefined },
};
try testing.expectEqual(null, find(symbols, 0));
try testing.expectEqual(null, find(symbols, 99));
try testing.expectEqual(&symbols[0], find(symbols, 100).?);
try testing.expectEqual(&symbols[0], find(symbols, 150).?);
try testing.expectEqual(&symbols[0], find(symbols, 199).?);
try testing.expectEqual(&symbols[1], find(symbols, 200).?);
try testing.expectEqual(&symbols[1], find(symbols, 250).?);
try testing.expectEqual(&symbols[1], find(symbols, 299).?);
try testing.expectEqual(&symbols[2], find(symbols, 300).?);
try testing.expectEqual(&symbols[2], find(symbols, 301).?);
try testing.expectEqual(&symbols[2], find(symbols, 5000).?);
}
};
test {
_ = MachoSymbol;
}
/// Uses `mmap` to map the file at `path` into memory.
fn mapDebugInfoFile(path: []const u8) ![]align(std.heap.page_size_min) const u8 {
const file = std.fs.cwd().openFile(path, .{}) catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return error.ReadFailed,
};
defer file.close();
const file_end_pos = file.getEndPos() catch |err| switch (err) {
error.Unexpected => |e| return e,
else => return error.ReadFailed,
};
const file_len = std.math.cast(usize, file_end_pos) orelse return error.InvalidDebugInfo;
return posix.mmap(
null,
file_len,
posix.PROT.READ,
.{ .TYPE = .SHARED },
file.handle,
0,
) catch |err| switch (err) {
error.Unexpected => |e| return e,
else => return error.ReadFailed,
};
}
fn loadOFile(gpa: Allocator, o_file_path: []const u8) !OFile {
const mapped_mem = try mapDebugInfoFile(o_file_path);
errdefer posix.munmap(mapped_mem);
if (mapped_mem.len < @sizeOf(macho.mach_header_64)) return error.InvalidDebugInfo;
const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_mem.ptr));
if (hdr.magic != std.macho.MH_MAGIC_64) return error.InvalidDebugInfo;
const seg_cmd: macho.LoadCommandIterator.LoadCommand, const symtab_cmd: macho.symtab_command = cmds: {
var seg_cmd: ?macho.LoadCommandIterator.LoadCommand = null;
var symtab_cmd: ?macho.symtab_command = null;
var it: macho.LoadCommandIterator = .{
.ncmds = hdr.ncmds,
.buffer = mapped_mem[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds],
};
while (it.next()) |cmd| switch (cmd.cmd()) {
.SEGMENT_64 => seg_cmd = cmd,
.SYMTAB => symtab_cmd = cmd.cast(macho.symtab_command) orelse return error.InvalidDebugInfo,
else => {},
};
break :cmds .{
seg_cmd orelse return error.MissingDebugInfo,
symtab_cmd orelse return error.MissingDebugInfo,
};
};
if (mapped_mem.len < symtab_cmd.stroff + symtab_cmd.strsize) return error.InvalidDebugInfo;
if (mapped_mem[symtab_cmd.stroff + symtab_cmd.strsize - 1] != 0) return error.InvalidDebugInfo;
const strtab = mapped_mem[symtab_cmd.stroff..][0 .. symtab_cmd.strsize - 1];
const n_sym_bytes = symtab_cmd.nsyms * @sizeOf(macho.nlist_64);
if (mapped_mem.len < symtab_cmd.symoff + n_sym_bytes) return error.InvalidDebugInfo;
const symtab: []align(1) const macho.nlist_64 = @ptrCast(mapped_mem[symtab_cmd.symoff..][0..n_sym_bytes]);
// TODO handle tentative (common) symbols
var symbols_by_name: std.ArrayHashMapUnmanaged(u32, void, void, true) = .empty;
defer symbols_by_name.deinit(gpa);
try symbols_by_name.ensureUnusedCapacity(gpa, @intCast(symtab.len));
for (symtab, 0..) |sym, sym_index| {
if (sym.n_strx == 0) continue;
switch (sym.n_type.bits.type) {
.undf => continue, // includes tentative symbols
.abs => continue,
else => {},
}
const sym_name = mem.sliceTo(strtab[sym.n_strx..], 0);
const gop = symbols_by_name.getOrPutAssumeCapacityAdapted(
@as([]const u8, sym_name),
@as(OFile.SymbolAdapter, .{ .strtab = strtab, .symtab = symtab }),
);
if (gop.found_existing) return error.InvalidDebugInfo;
gop.key_ptr.* = @intCast(sym_index);
}
var sections: Dwarf.SectionArray = @splat(null);
for (seg_cmd.getSections()) |sect| {
if (!std.mem.eql(u8, "__DWARF", sect.segName())) continue;
const section_index: usize = inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields, 0..) |section, i| {
if (mem.eql(u8, "__" ++ section.name, sect.sectName())) break i;
} else continue;
if (mapped_mem.len < sect.offset + sect.size) return error.InvalidDebugInfo;
const section_bytes = mapped_mem[sect.offset..][0..sect.size];
sections[section_index] = .{
.data = section_bytes,
.owned = false,
};
}
const missing_debug_info =
sections[@intFromEnum(Dwarf.Section.Id.debug_info)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_abbrev)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_str)] == null or
sections[@intFromEnum(Dwarf.Section.Id.debug_line)] == null;
if (missing_debug_info) return error.MissingDebugInfo;
var dwarf: Dwarf = .{ .sections = sections };
errdefer dwarf.deinit(gpa);
try dwarf.open(gpa, native_endian);
return .{
.mapped_memory = mapped_mem,
.dwarf = dwarf,
.strtab = strtab,
.symtab = symtab,
.symbols_by_name = symbols_by_name.move(),
};
}
const std = @import("std");
const Io = std.Io;
const Allocator = std.mem.Allocator;
const Dwarf = std.debug.Dwarf;
const Error = std.debug.SelfInfoError;
const assert = std.debug.assert;
const posix = std.posix;
const macho = std.macho;
const mem = std.mem;
const testing = std.testing;
const dwarfRegNative = std.debug.Dwarf.SelfUnwinder.regNative;
const builtin = @import("builtin");
const native_endian = builtin.target.cpu.arch.endian();
const SelfInfo = @This();