zig/src/codegen/spirv/Module.zig
2025-10-27 11:19:51 +01:00

944 lines
34 KiB
Zig

//! This structure represents a SPIR-V (sections) module being compiled, and keeps
//! track of all relevant information. That includes the actual instructions, the
//! current result-id bound, and data structures for querying result-id's of data
//! which needs to be persistent over different calls to Decl code generation.
//!
//! A SPIR-V binary module supports both little- and big endian layout. The layout
//! is detected by the magic word in the header. Therefore, we can ignore any byte
//! order throughout the implementation, and just use the host byte order, and make
//! this a problem for the consumer.
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const Zcu = @import("../../Zcu.zig");
const InternPool = @import("../../InternPool.zig");
const Section = @import("Section.zig");
const spec = @import("spec.zig");
const Word = spec.Word;
const Id = spec.Id;
const Module = @This();
gpa: Allocator,
arena: Allocator,
zcu: *Zcu,
nav_link: std.AutoHashMapUnmanaged(InternPool.Nav.Index, Decl.Index) = .empty,
uav_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, spec.StorageClass }, Decl.Index) = .empty,
intern_map: std.AutoHashMapUnmanaged(struct { InternPool.Index, Repr }, Id) = .empty,
decls: std.ArrayListUnmanaged(Decl) = .empty,
decl_deps: std.ArrayListUnmanaged(Decl.Index) = .empty,
entry_points: std.AutoArrayHashMapUnmanaged(Id, EntryPoint) = .empty,
/// This map serves a dual purpose:
/// - It keeps track of pointers that are currently being emitted, so that we can tell
/// if they are recursive and need an OpTypeForwardPointer.
/// - It caches pointers by child-type. This is required because sometimes we rely on
/// ID-equality for pointers, and pointers constructed via `ptrType()` aren't interned
/// via the usual `intern_map` mechanism.
ptr_types: std.AutoHashMapUnmanaged(struct { Id, spec.StorageClass }, Id) = .{},
/// For test declarations compiled for Vulkan target, we have to add a buffer.
/// We only need to generate this once, this holds the link information related to that.
error_buffer: ?Decl.Index = null,
/// SPIR-V instructions return result-ids.
/// This variable holds the module-wide counter for these.
next_result_id: Word = 1,
/// Some types shouldn't be emitted more than one time, but cannot be caught by
/// the `intern_map` during codegen. Sometimes, IDs are compared to check if
/// types are the same, so we can't delay until the dedup pass. Therefore,
/// this is an ad-hoc structure to cache types where required.
/// According to the SPIR-V specification, section 2.8, this includes all non-aggregate
/// non-pointer types.
/// Additionally, this is used for other values which can be cached, for example,
/// built-in variables.
cache: struct {
bool_type: ?Id = null,
void_type: ?Id = null,
opaque_types: std.StringHashMapUnmanaged(Id) = .empty,
int_types: std.AutoHashMapUnmanaged(std.builtin.Type.Int, Id) = .empty,
float_types: std.AutoHashMapUnmanaged(std.builtin.Type.Float, Id) = .empty,
vector_types: std.AutoHashMapUnmanaged(struct { Id, u32 }, Id) = .empty,
array_types: std.AutoHashMapUnmanaged(struct { Id, Id }, Id) = .empty,
struct_types: std.ArrayHashMapUnmanaged(StructType, Id, StructType.HashContext, true) = .empty,
fn_types: std.ArrayHashMapUnmanaged(FnType, Id, FnType.HashContext, true) = .empty,
capabilities: std.AutoHashMapUnmanaged(spec.Capability, void) = .empty,
extensions: std.StringHashMapUnmanaged(void) = .empty,
extended_instruction_set: std.AutoHashMapUnmanaged(spec.InstructionSet, Id) = .empty,
decorations: std.AutoHashMapUnmanaged(struct { Id, spec.Decoration }, void) = .empty,
builtins: std.AutoHashMapUnmanaged(struct { spec.BuiltIn, spec.StorageClass }, Decl.Index) = .empty,
strings: std.StringArrayHashMapUnmanaged(Id) = .empty,
bool_const: [2]?Id = .{ null, null },
constants: std.ArrayHashMapUnmanaged(Constant, Id, Constant.HashContext, true) = .empty,
} = .{},
/// Module layout, according to SPIR-V Spec section 2.4, "Logical Layout of a Module".
sections: struct {
capabilities: Section = .{},
extensions: Section = .{},
extended_instruction_set: Section = .{},
memory_model: Section = .{},
execution_modes: Section = .{},
debug_strings: Section = .{},
debug_names: Section = .{},
annotations: Section = .{},
globals: Section = .{},
functions: Section = .{},
} = .{},
pub const big_int_bits = 32;
/// Data can be lowered into in two basic representations: indirect, which is when
/// a type is stored in memory, and direct, which is how a type is stored when its
/// a direct SPIR-V value.
pub const Repr = enum {
/// A SPIR-V value as it would be used in operations.
direct,
/// A SPIR-V value as it is stored in memory.
indirect,
};
/// Declarations, both functions and globals, can have dependencies. These are used for 2 things:
/// - Globals must be declared before they are used, also between globals. The compiler processes
/// globals unordered, so we must use the dependencies here to figure out how to order the globals
/// in the final module. The Globals structure is also used for that.
/// - Entry points must declare the complete list of OpVariable instructions that they access.
/// For these we use the same dependency structure.
/// In this mechanism, globals will only depend on other globals, while functions may depend on
/// globals or other functions.
pub const Decl = struct {
/// Index to refer to a Decl by.
pub const Index = enum(u32) { _ };
/// Useful to tell what kind of decl this is, and hold the result-id or field index
/// to be used for this decl.
pub const Kind = enum {
func,
global,
invocation_global,
};
/// See comment on Kind
kind: Kind,
/// The result-id associated to this decl. The specific meaning of this depends on `kind`:
/// - For `func`, this is the result-id of the associated OpFunction instruction.
/// - For `global`, this is the result-id of the associated OpVariable instruction.
/// - For `invocation_global`, this is the result-id of the associated InvocationGlobal instruction.
result_id: Id,
/// The offset of the first dependency of this decl in the `decl_deps` array.
begin_dep: usize = 0,
/// The past-end offset of the dependencies of this decl in the `decl_deps` array.
end_dep: usize = 0,
};
/// This models a kernel entry point.
pub const EntryPoint = struct {
/// The declaration that should be exported.
decl_index: Decl.Index,
/// The name of the kernel to be exported.
name: []const u8,
/// Calling Convention
exec_model: spec.ExecutionModel,
exec_mode: ?spec.ExecutionMode = null,
};
const StructType = struct {
fields: []const Id,
ip_index: InternPool.Index,
const HashContext = struct {
pub fn hash(_: @This(), ty: StructType) u32 {
var hasher = std.hash.Wyhash.init(0);
hasher.update(std.mem.sliceAsBytes(ty.fields));
hasher.update(std.mem.asBytes(&ty.ip_index));
return @truncate(hasher.final());
}
pub fn eql(_: @This(), a: StructType, b: StructType, _: usize) bool {
return a.ip_index == b.ip_index and std.mem.eql(Id, a.fields, b.fields);
}
};
};
const FnType = struct {
return_ty: Id,
params: []const Id,
const HashContext = struct {
pub fn hash(_: @This(), ty: FnType) u32 {
var hasher = std.hash.Wyhash.init(0);
hasher.update(std.mem.asBytes(&ty.return_ty));
hasher.update(std.mem.sliceAsBytes(ty.params));
return @truncate(hasher.final());
}
pub fn eql(_: @This(), a: FnType, b: FnType, _: usize) bool {
return a.return_ty == b.return_ty and
std.mem.eql(Id, a.params, b.params);
}
};
};
const Constant = struct {
ty: Id,
value: spec.LiteralContextDependentNumber,
const HashContext = struct {
pub fn hash(_: @This(), value: Constant) u32 {
const Tag = @typeInfo(spec.LiteralContextDependentNumber).@"union".tag_type.?;
var hasher = std.hash.Wyhash.init(0);
hasher.update(std.mem.asBytes(&value.ty));
hasher.update(std.mem.asBytes(&@as(Tag, value.value)));
switch (value.value) {
inline else => |v| hasher.update(std.mem.asBytes(&v)),
}
return @truncate(hasher.final());
}
pub fn eql(_: @This(), a: Constant, b: Constant, _: usize) bool {
if (a.ty != b.ty) return false;
const Tag = @typeInfo(spec.LiteralContextDependentNumber).@"union".tag_type.?;
if (@as(Tag, a.value) != @as(Tag, b.value)) return false;
return switch (a.value) {
inline else => |v, tag| v == @field(b.value, @tagName(tag)),
};
}
};
};
pub fn deinit(module: *Module) void {
module.nav_link.deinit(module.gpa);
module.uav_link.deinit(module.gpa);
module.intern_map.deinit(module.gpa);
module.ptr_types.deinit(module.gpa);
module.sections.capabilities.deinit(module.gpa);
module.sections.extensions.deinit(module.gpa);
module.sections.extended_instruction_set.deinit(module.gpa);
module.sections.memory_model.deinit(module.gpa);
module.sections.execution_modes.deinit(module.gpa);
module.sections.debug_strings.deinit(module.gpa);
module.sections.debug_names.deinit(module.gpa);
module.sections.annotations.deinit(module.gpa);
module.sections.globals.deinit(module.gpa);
module.sections.functions.deinit(module.gpa);
module.cache.opaque_types.deinit(module.gpa);
module.cache.int_types.deinit(module.gpa);
module.cache.float_types.deinit(module.gpa);
module.cache.vector_types.deinit(module.gpa);
module.cache.array_types.deinit(module.gpa);
module.cache.struct_types.deinit(module.gpa);
module.cache.fn_types.deinit(module.gpa);
module.cache.capabilities.deinit(module.gpa);
module.cache.extensions.deinit(module.gpa);
module.cache.extended_instruction_set.deinit(module.gpa);
module.cache.decorations.deinit(module.gpa);
module.cache.builtins.deinit(module.gpa);
module.cache.strings.deinit(module.gpa);
module.cache.constants.deinit(module.gpa);
module.decls.deinit(module.gpa);
module.decl_deps.deinit(module.gpa);
module.entry_points.deinit(module.gpa);
module.* = undefined;
}
/// Fetch or allocate a result id for nav index. This function also marks the nav as alive.
/// Note: Function does not actually generate the nav, it just allocates an index.
pub fn resolveNav(module: *Module, ip: *InternPool, nav_index: InternPool.Nav.Index) !Decl.Index {
const entry = try module.nav_link.getOrPut(module.gpa, nav_index);
if (!entry.found_existing) {
const nav = ip.getNav(nav_index);
// TODO: Extern fn?
const kind: Decl.Kind = if (ip.isFunctionType(nav.typeOf(ip)))
.func
else switch (nav.getAddrspace()) {
.generic => .invocation_global,
else => .global,
};
entry.value_ptr.* = try module.allocDecl(kind);
}
return entry.value_ptr.*;
}
pub fn allocIds(module: *Module, n: u32) spec.IdRange {
defer module.next_result_id += n;
return .{ .base = module.next_result_id, .len = n };
}
pub fn allocId(module: *Module) Id {
return module.allocIds(1).at(0);
}
pub fn idBound(module: Module) Word {
return module.next_result_id;
}
pub fn addEntryPointDeps(
module: *Module,
decl_index: Decl.Index,
seen: *std.DynamicBitSetUnmanaged,
interface: *std.array_list.Managed(Id),
) !void {
const decl = module.declPtr(decl_index);
const deps = module.decl_deps.items[decl.begin_dep..decl.end_dep];
if (seen.isSet(@intFromEnum(decl_index))) {
return;
}
seen.set(@intFromEnum(decl_index));
if (decl.kind == .global) {
try interface.append(decl.result_id);
}
for (deps) |dep| {
try module.addEntryPointDeps(dep, seen, interface);
}
}
fn entryPoints(module: *Module) !Section {
const target = module.zcu.getTarget();
var entry_points = Section{};
errdefer entry_points.deinit(module.gpa);
var interface = std.array_list.Managed(Id).init(module.gpa);
defer interface.deinit();
var seen = try std.DynamicBitSetUnmanaged.initEmpty(module.gpa, module.decls.items.len);
defer seen.deinit(module.gpa);
for (module.entry_points.keys(), module.entry_points.values()) |entry_point_id, entry_point| {
interface.items.len = 0;
seen.setRangeValue(.{ .start = 0, .end = module.decls.items.len }, false);
try module.addEntryPointDeps(entry_point.decl_index, &seen, &interface);
try entry_points.emit(module.gpa, .OpEntryPoint, .{
.execution_model = entry_point.exec_model,
.entry_point = entry_point_id,
.name = entry_point.name,
.interface = interface.items,
});
if (entry_point.exec_mode == null and entry_point.exec_model == .fragment) {
switch (target.os.tag) {
.vulkan, .opengl => |tag| {
try module.sections.execution_modes.emit(module.gpa, .OpExecutionMode, .{
.entry_point = entry_point_id,
.mode = if (tag == .vulkan) .origin_upper_left else .origin_lower_left,
});
},
.opencl => {},
else => unreachable,
}
}
}
return entry_points;
}
pub fn finalize(module: *Module, gpa: Allocator) ![]Word {
const target = module.zcu.getTarget();
// Emit capabilities and extensions
switch (target.os.tag) {
.opengl => {
try module.addCapability(.shader);
try module.addCapability(.matrix);
},
.vulkan => {
try module.addCapability(.shader);
try module.addCapability(.matrix);
if (target.cpu.arch == .spirv64) {
try module.addExtension("SPV_KHR_physical_storage_buffer");
try module.addCapability(.physical_storage_buffer_addresses);
}
},
.opencl, .amdhsa => {
try module.addCapability(.kernel);
try module.addCapability(.addresses);
},
else => unreachable,
}
if (target.cpu.arch == .spirv64) try module.addCapability(.int64);
if (target.cpu.has(.spirv, .int64)) try module.addCapability(.int64);
if (target.cpu.has(.spirv, .float16)) {
if (target.os.tag == .opencl) try module.addExtension("cl_khr_fp16");
try module.addCapability(.float16);
}
if (target.cpu.has(.spirv, .float64)) try module.addCapability(.float64);
if (target.cpu.has(.spirv, .generic_pointer)) try module.addCapability(.generic_pointer);
if (target.cpu.has(.spirv, .vector16)) try module.addCapability(.vector16);
if (target.cpu.has(.spirv, .storage_push_constant16)) {
try module.addExtension("SPV_KHR_16bit_storage");
try module.addCapability(.storage_push_constant16);
}
if (target.cpu.has(.spirv, .arbitrary_precision_integers)) {
try module.addExtension("SPV_INTEL_arbitrary_precision_integers");
try module.addCapability(.arbitrary_precision_integers_intel);
}
if (target.cpu.has(.spirv, .variable_pointers)) {
try module.addExtension("SPV_KHR_variable_pointers");
try module.addCapability(.variable_pointers_storage_buffer);
try module.addCapability(.variable_pointers);
}
// These are well supported
try module.addCapability(.int8);
try module.addCapability(.int16);
// Emit memory model
const addressing_model: spec.AddressingModel = switch (target.os.tag) {
.opengl => .logical,
.vulkan => if (target.cpu.arch == .spirv32) .logical else .physical_storage_buffer64,
.opencl => if (target.cpu.arch == .spirv32) .physical32 else .physical64,
.amdhsa => .physical64,
else => unreachable,
};
try module.sections.memory_model.emit(module.gpa, .OpMemoryModel, .{
.addressing_model = addressing_model,
.memory_model = switch (target.os.tag) {
.opencl => .open_cl,
.vulkan, .opengl => .glsl450,
else => unreachable,
},
});
var entry_points = try module.entryPoints();
defer entry_points.deinit(module.gpa);
const version: spec.Version = .{
.major = 1,
.minor = blk: {
// Prefer higher versions
if (target.cpu.has(.spirv, .v1_6)) break :blk 6;
if (target.cpu.has(.spirv, .v1_5)) break :blk 5;
if (target.cpu.has(.spirv, .v1_4)) break :blk 4;
if (target.cpu.has(.spirv, .v1_3)) break :blk 3;
if (target.cpu.has(.spirv, .v1_2)) break :blk 2;
if (target.cpu.has(.spirv, .v1_1)) break :blk 1;
break :blk 0;
},
};
const header = [_]Word{
spec.magic_number,
version.toWord(),
spec.zig_generator_id,
module.idBound(),
0, // Schema (currently reserved for future use)
};
var source = Section{};
defer source.deinit(module.gpa);
try module.sections.debug_strings.emit(module.gpa, .OpSource, .{
.source_language = .zig,
.version = 0,
// We cannot emit these because the Khronos translator does not parse this instruction
// correctly.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/2188
.file = null,
.source = null,
});
// Note: needs to be kept in order according to section 2.3!
const buffers = &[_][]const Word{
&header,
module.sections.capabilities.toWords(),
module.sections.extensions.toWords(),
module.sections.extended_instruction_set.toWords(),
module.sections.memory_model.toWords(),
entry_points.toWords(),
module.sections.execution_modes.toWords(),
source.toWords(),
module.sections.debug_strings.toWords(),
module.sections.debug_names.toWords(),
module.sections.annotations.toWords(),
module.sections.globals.toWords(),
module.sections.functions.toWords(),
};
var total_result_size: usize = 0;
for (buffers) |buffer| {
total_result_size += buffer.len;
}
const result = try gpa.alloc(Word, total_result_size);
errdefer comptime unreachable;
var offset: usize = 0;
for (buffers) |buffer| {
@memcpy(result[offset..][0..buffer.len], buffer);
offset += buffer.len;
}
return result;
}
pub fn addCapability(module: *Module, cap: spec.Capability) !void {
const entry = try module.cache.capabilities.getOrPut(module.gpa, cap);
if (entry.found_existing) return;
try module.sections.capabilities.emit(module.gpa, .OpCapability, .{ .capability = cap });
}
pub fn addExtension(module: *Module, ext: []const u8) !void {
const entry = try module.cache.extensions.getOrPut(module.gpa, ext);
if (entry.found_existing) return;
try module.sections.extensions.emit(module.gpa, .OpExtension, .{ .name = ext });
}
/// Imports or returns the existing id of an extended instruction set
pub fn importInstructionSet(module: *Module, set: spec.InstructionSet) !Id {
assert(set != .core);
const gop = try module.cache.extended_instruction_set.getOrPut(module.gpa, set);
if (gop.found_existing) return gop.value_ptr.*;
const result_id = module.allocId();
try module.sections.extended_instruction_set.emit(module.gpa, .OpExtInstImport, .{
.id_result = result_id,
.name = @tagName(set),
});
gop.value_ptr.* = result_id;
return result_id;
}
pub fn boolType(module: *Module) !Id {
if (module.cache.bool_type) |id| return id;
const result_id = module.allocId();
try module.sections.globals.emit(module.gpa, .OpTypeBool, .{
.id_result = result_id,
});
module.cache.bool_type = result_id;
return result_id;
}
pub fn voidType(module: *Module) !Id {
if (module.cache.void_type) |id| return id;
const result_id = module.allocId();
try module.sections.globals.emit(module.gpa, .OpTypeVoid, .{
.id_result = result_id,
});
module.cache.void_type = result_id;
try module.debugName(result_id, "void");
return result_id;
}
pub fn opaqueType(module: *Module, name: []const u8) !Id {
if (module.cache.opaque_types.get(name)) |id| return id;
const result_id = module.allocId();
const name_dup = try module.arena.dupe(u8, name);
try module.sections.globals.emit(module.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = name_dup,
});
try module.debugName(result_id, name_dup);
try module.cache.opaque_types.put(module.gpa, name_dup, result_id);
return result_id;
}
pub fn backingIntBits(module: *Module, bits: u16) struct { u16, bool } {
assert(bits != 0);
const target = module.zcu.getTarget();
if (target.cpu.has(.spirv, .arbitrary_precision_integers) and bits <= 32) {
return .{ bits, false };
}
// We require Int8 and Int16 capabilities and benefit Int64 when available.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, enabled: bool }{
.{ .bits = 8, .enabled = true },
.{ .bits = 16, .enabled = true },
.{ .bits = 32, .enabled = true },
.{
.bits = 64,
.enabled = target.cpu.has(.spirv, .int64) or target.cpu.arch == .spirv64,
},
};
for (ints) |int| {
if (bits <= int.bits and int.enabled) return .{ int.bits, false };
}
// Big int
return .{ std.mem.alignForward(u16, bits, big_int_bits), true };
}
pub fn intType(module: *Module, signedness: std.builtin.Signedness, bits: u16) !Id {
assert(bits > 0);
const target = module.zcu.getTarget();
const actual_signedness = switch (target.os.tag) {
// Kernel only supports unsigned ints.
.opencl, .amdhsa => .unsigned,
else => signedness,
};
const backing_bits, const big_int = module.backingIntBits(bits);
if (big_int) {
// TODO: support composite integers larger than 64 bit
assert(backing_bits <= 64);
const u32_ty = try module.intType(.unsigned, 32);
const len_id = try module.constant(u32_ty, .{ .uint32 = backing_bits / big_int_bits });
return module.arrayType(len_id, u32_ty);
}
const entry = try module.cache.int_types.getOrPut(module.gpa, .{ .signedness = actual_signedness, .bits = backing_bits });
if (!entry.found_existing) {
const result_id = module.allocId();
entry.value_ptr.* = result_id;
try module.sections.globals.emit(module.gpa, .OpTypeInt, .{
.id_result = result_id,
.width = backing_bits,
.signedness = switch (actual_signedness) {
.signed => 1,
.unsigned => 0,
},
});
switch (actual_signedness) {
.signed => try module.debugNameFmt(result_id, "i{}", .{backing_bits}),
.unsigned => try module.debugNameFmt(result_id, "u{}", .{backing_bits}),
}
}
return entry.value_ptr.*;
}
pub fn floatType(module: *Module, bits: u16) !Id {
assert(bits > 0);
const entry = try module.cache.float_types.getOrPut(module.gpa, .{ .bits = bits });
if (!entry.found_existing) {
const result_id = module.allocId();
entry.value_ptr.* = result_id;
try module.sections.globals.emit(module.gpa, .OpTypeFloat, .{
.id_result = result_id,
.width = bits,
});
try module.debugNameFmt(result_id, "f{}", .{bits});
}
return entry.value_ptr.*;
}
pub fn vectorType(module: *Module, len: u32, child_ty_id: Id) !Id {
const entry = try module.cache.vector_types.getOrPut(module.gpa, .{ child_ty_id, len });
if (!entry.found_existing) {
const result_id = module.allocId();
entry.value_ptr.* = result_id;
try module.sections.globals.emit(module.gpa, .OpTypeVector, .{
.id_result = result_id,
.component_type = child_ty_id,
.component_count = len,
});
}
return entry.value_ptr.*;
}
pub fn arrayType(module: *Module, len_id: Id, child_ty_id: Id) !Id {
const entry = try module.cache.array_types.getOrPut(module.gpa, .{ child_ty_id, len_id });
if (!entry.found_existing) {
const result_id = module.allocId();
entry.value_ptr.* = result_id;
try module.sections.globals.emit(module.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = child_ty_id,
.length = len_id,
});
}
return entry.value_ptr.*;
}
pub fn ptrType(module: *Module, child_ty_id: Id, storage_class: spec.StorageClass) !Id {
const key = .{ child_ty_id, storage_class };
const gop = try module.ptr_types.getOrPut(module.gpa, key);
if (!gop.found_existing) {
gop.value_ptr.* = module.allocId();
try module.sections.globals.emit(module.gpa, .OpTypePointer, .{
.id_result = gop.value_ptr.*,
.storage_class = storage_class,
.type = child_ty_id,
});
return gop.value_ptr.*;
}
return gop.value_ptr.*;
}
pub fn structType(
module: *Module,
types: []const Id,
maybe_names: ?[]const []const u8,
maybe_offsets: ?[]const u32,
ip_index: InternPool.Index,
) !Id {
const target = module.zcu.getTarget();
const actual_ip_index = if (module.zcu.comp.config.root_strip) .none else ip_index;
if (module.cache.struct_types.get(.{ .fields = types, .ip_index = actual_ip_index })) |id| return id;
const result_id = module.allocId();
const types_dup = try module.arena.dupe(Id, types);
try module.sections.globals.emit(module.gpa, .OpTypeStruct, .{
.id_result = result_id,
.id_ref = types_dup,
});
if (maybe_names) |names| {
assert(names.len == types.len);
for (names, 0..) |name, i| {
try module.memberDebugName(result_id, @intCast(i), name);
}
}
switch (target.os.tag) {
.vulkan, .opengl => {
if (maybe_offsets) |offsets| {
assert(offsets.len == types.len);
for (offsets, 0..) |offset, i| {
try module.decorateMember(
result_id,
@intCast(i),
.{ .offset = .{ .byte_offset = offset } },
);
}
}
},
else => {},
}
try module.cache.struct_types.put(
module.gpa,
.{ .fields = types_dup, .ip_index = actual_ip_index },
result_id,
);
return result_id;
}
pub fn functionType(module: *Module, return_ty_id: Id, param_type_ids: []const Id) !Id {
if (module.cache.fn_types.get(.{
.return_ty = return_ty_id,
.params = param_type_ids,
})) |id| return id;
const result_id = module.allocId();
const params_dup = try module.arena.dupe(Id, param_type_ids);
try module.sections.globals.emit(module.gpa, .OpTypeFunction, .{
.id_result = result_id,
.return_type = return_ty_id,
.id_ref_2 = params_dup,
});
try module.cache.fn_types.put(module.gpa, .{
.return_ty = return_ty_id,
.params = params_dup,
}, result_id);
return result_id;
}
pub fn constant(module: *Module, ty_id: Id, value: spec.LiteralContextDependentNumber) !Id {
const gop = try module.cache.constants.getOrPut(module.gpa, .{ .ty = ty_id, .value = value });
if (!gop.found_existing) {
gop.value_ptr.* = module.allocId();
try module.sections.globals.emit(module.gpa, .OpConstant, .{
.id_result_type = ty_id,
.id_result = gop.value_ptr.*,
.value = value,
});
}
return gop.value_ptr.*;
}
pub fn constBool(module: *Module, value: bool) !Id {
if (module.cache.bool_const[@intFromBool(value)]) |b| return b;
const result_ty_id = try module.boolType();
const result_id = module.allocId();
module.cache.bool_const[@intFromBool(value)] = result_id;
switch (value) {
inline else => |value_ct| try module.sections.globals.emit(
module.gpa,
if (value_ct) .OpConstantTrue else .OpConstantFalse,
.{
.id_result_type = result_ty_id,
.id_result = result_id,
},
),
}
return result_id;
}
pub fn builtin(
module: *Module,
result_ty_id: Id,
spirv_builtin: spec.BuiltIn,
storage_class: spec.StorageClass,
) !Decl.Index {
const gop = try module.cache.builtins.getOrPut(module.gpa, .{ spirv_builtin, storage_class });
if (!gop.found_existing) {
const decl_index = try module.allocDecl(.global);
const decl = module.declPtr(decl_index);
gop.value_ptr.* = decl_index;
try module.sections.globals.emit(module.gpa, .OpVariable, .{
.id_result_type = result_ty_id,
.id_result = decl.result_id,
.storage_class = storage_class,
});
try module.decorate(decl.result_id, .{ .built_in = .{ .built_in = spirv_builtin } });
}
return gop.value_ptr.*;
}
pub fn constUndef(module: *Module, ty_id: Id) !Id {
const result_id = module.allocId();
try module.sections.globals.emit(module.gpa, .OpUndef, .{
.id_result_type = ty_id,
.id_result = result_id,
});
return result_id;
}
pub fn constNull(module: *Module, ty_id: Id) !Id {
const result_id = module.allocId();
try module.sections.globals.emit(module.gpa, .OpConstantNull, .{
.id_result_type = ty_id,
.id_result = result_id,
});
return result_id;
}
/// Decorate a result-id.
pub fn decorate(
module: *Module,
target: Id,
decoration: spec.Decoration.Extended,
) !void {
const gop = try module.cache.decorations.getOrPut(module.gpa, .{ target, decoration });
if (!gop.found_existing) {
try module.sections.annotations.emit(module.gpa, .OpDecorate, .{
.target = target,
.decoration = decoration,
});
}
}
/// Decorate a result-id which is a member of some struct.
/// We really don't have to and shouldn't need to cache this.
pub fn decorateMember(
module: *Module,
structure_type: Id,
member: u32,
decoration: spec.Decoration.Extended,
) !void {
try module.sections.annotations.emit(module.gpa, .OpMemberDecorate, .{
.structure_type = structure_type,
.member = member,
.decoration = decoration,
});
}
pub fn allocDecl(module: *Module, kind: Decl.Kind) !Decl.Index {
try module.decls.append(module.gpa, .{
.kind = kind,
.result_id = module.allocId(),
});
return @as(Decl.Index, @enumFromInt(@as(u32, @intCast(module.decls.items.len - 1))));
}
pub fn declPtr(module: *Module, index: Decl.Index) *Decl {
return &module.decls.items[@intFromEnum(index)];
}
/// Declare a SPIR-V function as an entry point. This causes an extra wrapper
/// function to be generated, which is then exported as the real entry point. The purpose of this
/// wrapper is to allocate and initialize the structure holding the instance globals.
pub fn declareEntryPoint(
module: *Module,
decl_index: Decl.Index,
name: []const u8,
exec_model: spec.ExecutionModel,
exec_mode: ?spec.ExecutionMode,
) !void {
const gop = try module.entry_points.getOrPut(module.gpa, module.declPtr(decl_index).result_id);
gop.value_ptr.decl_index = decl_index;
gop.value_ptr.name = name;
gop.value_ptr.exec_model = exec_model;
// Might've been set by assembler
if (!gop.found_existing) gop.value_ptr.exec_mode = exec_mode;
}
pub fn debugName(module: *Module, target: Id, name: []const u8) !void {
if (module.zcu.comp.config.root_strip) return;
try module.sections.debug_names.emit(module.gpa, .OpName, .{
.target = target,
.name = name,
});
}
pub fn debugNameFmt(module: *Module, target: Id, comptime fmt: []const u8, args: anytype) !void {
if (module.zcu.comp.config.root_strip) return;
const name = try std.fmt.allocPrint(module.gpa, fmt, args);
defer module.gpa.free(name);
try module.debugName(target, name);
}
pub fn memberDebugName(module: *Module, target: Id, member: u32, name: []const u8) !void {
if (module.zcu.comp.config.root_strip) return;
try module.sections.debug_names.emit(module.gpa, .OpMemberName, .{
.type = target,
.member = member,
.name = name,
});
}
pub fn debugString(module: *Module, string: []const u8) !Id {
const entry = try module.cache.strings.getOrPut(module.gpa, string);
if (!entry.found_existing) {
entry.value_ptr.* = module.allocId();
try module.sections.debug_strings.emit(module.gpa, .OpString, .{
.id_result = entry.value_ptr.*,
.string = string,
});
}
return entry.value_ptr.*;
}
pub fn storageClass(module: *Module, as: std.builtin.AddressSpace) spec.StorageClass {
const target = module.zcu.getTarget();
return switch (as) {
.generic => .function,
.global => switch (target.os.tag) {
.opencl, .amdhsa => .cross_workgroup,
else => .storage_buffer,
},
.push_constant => .push_constant,
.output => .output,
.uniform => .uniform,
.storage_buffer => .storage_buffer,
.physical_storage_buffer => .physical_storage_buffer,
.constant => .uniform_constant,
.shared => .workgroup,
.local => .function,
.input => .input,
.gs,
.fs,
.ss,
.far,
.param,
.flash,
.flash1,
.flash2,
.flash3,
.flash4,
.flash5,
.cog,
.lut,
.hub,
=> unreachable,
};
}