zig/test/behavior/align.zig
Andrew Kelley 157f66ec07 Sema: fix pointer type hash and equality functions
Several issues with pointer types are fixed:

Prior to this commit, Zig would not canonicalize a pointer type with
an explicit alignment to alignment=0 if it matched the pointee ABI
alignment. In order to fix this, `Type.ptr` now takes a Target
parameter. I also moved the host_size canonicalization to `Type.ptr`
since target is now available. Similarly, is_allowzero in the case of
C pointers is now treated as a canonicalization done by the function
rather than a precondition.

in-memory coercion for pointers now properly checks ABI alignment
of pointee types instead of incorrectly treating the 0 value as an
alignment.

Type equality is completely reworked based on the tag() rather than the
zigTypeTag(). It's still semantically based on zigTypeTag() but that
knowledge is implied rather than dictating the control flow of the
logic. Importantly, this fixes cases for opaques, structs, tuples,
enums, and unions, where type equality was incorrectly returning based
on whether the tag() values were equal.

Additionally, pointer type equality now takes into account alignment.
Because we canonicalize non-zero alignment which equals pointee type ABI
alignment to alignment=0, this now can be a simple integer comparison.

Type hashing is implemented for pointers and floats. Array types now
additionally hash their sentinels.

This regressed some behavior tests that were passing but only because
of bugs regarding type equality.

The C backend has a noticeable problem with lowering differently-aligned
pointers (particularly slices) as the same type, causing C compilation
errors due to duplicate declarations.
2022-02-28 19:22:16 -07:00

429 lines
15 KiB
Zig

const std = @import("std");
const expect = std.testing.expect;
const builtin = @import("builtin");
const native_arch = builtin.target.cpu.arch;
var foo: u8 align(4) = 100;
test "global variable alignment" {
if (builtin.zig_backend != .stage1) return error.SkipZigTest; // TODO
comptime try expect(@typeInfo(@TypeOf(&foo)).Pointer.alignment == 4);
comptime try expect(@TypeOf(&foo) == *align(4) u8);
{
const slice = @as(*[1]u8, &foo)[0..];
comptime try expect(@TypeOf(slice) == *align(4) [1]u8);
}
{
var runtime_zero: usize = 0;
const slice = @as(*[1]u8, &foo)[runtime_zero..];
comptime try expect(@TypeOf(slice) == []align(4) u8);
}
}
test "default alignment allows unspecified in type syntax" {
try expect(*u32 == *align(@alignOf(u32)) u32);
}
test "implicitly decreasing pointer alignment" {
const a: u32 align(4) = 3;
const b: u32 align(8) = 4;
try expect(addUnaligned(&a, &b) == 7);
}
fn addUnaligned(a: *align(1) const u32, b: *align(1) const u32) u32 {
return a.* + b.*;
}
test "@alignCast pointers" {
var x: u32 align(4) = 1;
expectsOnly1(&x);
try expect(x == 2);
}
fn expectsOnly1(x: *align(1) u32) void {
expects4(@alignCast(4, x));
}
fn expects4(x: *align(4) u32) void {
x.* += 1;
}
test "alignment of structs" {
try expect(@alignOf(struct {
a: i32,
b: *i32,
}) == @alignOf(usize));
}
test "alignment of >= 128-bit integer type" {
try expect(@alignOf(u128) == 16);
try expect(@alignOf(u129) == 16);
}
test "alignment of struct with 128-bit field" {
try expect(@alignOf(struct {
x: u128,
}) == 16);
comptime {
try expect(@alignOf(struct {
x: u128,
}) == 16);
}
}
test "size of extern struct with 128-bit field" {
try expect(@sizeOf(extern struct {
x: u128,
y: u8,
}) == 32);
comptime {
try expect(@sizeOf(extern struct {
x: u128,
y: u8,
}) == 32);
}
}
test "@ptrCast preserves alignment of bigger source" {
if (builtin.zig_backend != .stage1) return error.SkipZigTest; // TODO
var x: u32 align(16) = 1234;
const ptr = @ptrCast(*u8, &x);
try expect(@TypeOf(ptr) == *align(16) u8);
}
test "alignstack" {
try expect(fnWithAlignedStack() == 1234);
}
fn fnWithAlignedStack() i32 {
@setAlignStack(256);
return 1234;
}
test "implicitly decreasing slice alignment" {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
const a: u32 align(4) = 3;
const b: u32 align(8) = 4;
try expect(addUnalignedSlice(@as(*const [1]u32, &a)[0..], @as(*const [1]u32, &b)[0..]) == 7);
}
fn addUnalignedSlice(a: []align(1) const u32, b: []align(1) const u32) u32 {
return a[0] + b[0];
}
test "specifying alignment allows pointer cast" {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
try testBytesAlign(0x33);
}
fn testBytesAlign(b: u8) !void {
var bytes align(4) = [_]u8{ b, b, b, b };
const ptr = @ptrCast(*u32, &bytes[0]);
try expect(ptr.* == 0x33333333);
}
test "@alignCast slices" {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64 or builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
var array align(4) = [_]u32{ 1, 1 };
const slice = array[0..];
sliceExpectsOnly1(slice);
try expect(slice[0] == 2);
}
fn sliceExpectsOnly1(slice: []align(1) u32) void {
sliceExpects4(@alignCast(4, slice));
}
fn sliceExpects4(slice: []align(4) u32) void {
slice[0] += 1;
}
test "return error union with 128-bit integer" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64 or builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
try expect(3 == try give());
}
fn give() anyerror!u128 {
return 3;
}
test "page aligned array on stack" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// Large alignment value to make it hard to accidentally pass.
var array align(0x1000) = [_]u8{ 1, 2, 3, 4, 5, 6, 7, 8 };
var number1: u8 align(16) = 42;
var number2: u8 align(16) = 43;
try expect(@ptrToInt(&array[0]) & 0xFFF == 0);
try expect(array[3] == 4);
try expect(@truncate(u4, @ptrToInt(&number1)) == 0);
try expect(@truncate(u4, @ptrToInt(&number2)) == 0);
try expect(number1 == 42);
try expect(number2 == 43);
}
fn derp() align(@sizeOf(usize) * 2) i32 {
return 1234;
}
fn noop1() align(1) void {}
fn noop4() align(4) void {}
test "function alignment" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// function alignment is a compile error on wasm32/wasm64
if (native_arch == .wasm32 or native_arch == .wasm64) return error.SkipZigTest;
try expect(derp() == 1234);
try expect(@TypeOf(noop1) == fn () align(1) void);
try expect(@TypeOf(noop4) == fn () align(4) void);
noop1();
noop4();
}
test "implicitly decreasing fn alignment" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage1) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// function alignment is a compile error on wasm32/wasm64
if (native_arch == .wasm32 or native_arch == .wasm64) return error.SkipZigTest;
try testImplicitlyDecreaseFnAlign(alignedSmall, 1234);
try testImplicitlyDecreaseFnAlign(alignedBig, 5678);
}
// TODO make it a compile error to put align on the fn proto instead of on the ptr
fn testImplicitlyDecreaseFnAlign(ptr: *align(1) const fn () i32, answer: i32) !void {
try expect(ptr() == answer);
}
fn alignedSmall() align(8) i32 {
return 1234;
}
fn alignedBig() align(16) i32 {
return 5678;
}
test "@alignCast functions" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage1) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// function alignment is a compile error on wasm32/wasm64
if (native_arch == .wasm32 or native_arch == .wasm64) return error.SkipZigTest;
if (native_arch == .thumb) return error.SkipZigTest;
try expect(fnExpectsOnly1(simple4) == 0x19);
}
fn fnExpectsOnly1(ptr: *const fn () align(1) i32) i32 {
return fnExpects4(@alignCast(4, ptr));
}
fn fnExpects4(ptr: *align(4) const fn () i32) i32 {
return ptr();
}
fn simple4() align(4) i32 {
return 0x19;
}
test "generic function with align param" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// function alignment is a compile error on wasm32/wasm64
if (native_arch == .wasm32 or native_arch == .wasm64) return error.SkipZigTest;
if (native_arch == .thumb) return error.SkipZigTest;
try expect(whyWouldYouEverDoThis(1) == 0x1);
try expect(whyWouldYouEverDoThis(4) == 0x1);
try expect(whyWouldYouEverDoThis(8) == 0x1);
}
fn whyWouldYouEverDoThis(comptime align_bytes: u8) align(align_bytes) u8 {
_ = align_bytes;
return 0x1;
}
test "runtime known array index has best alignment possible" {
if (builtin.zig_backend != .stage1) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
// take full advantage of over-alignment
var array align(4) = [_]u8{ 1, 2, 3, 4 };
try expect(@TypeOf(&array[0]) == *align(4) u8);
try expect(@TypeOf(&array[1]) == *u8);
try expect(@TypeOf(&array[2]) == *align(2) u8);
try expect(@TypeOf(&array[3]) == *u8);
// because align is too small but we still figure out to use 2
var bigger align(2) = [_]u64{ 1, 2, 3, 4 };
try expect(@TypeOf(&bigger[0]) == *align(2) u64);
try expect(@TypeOf(&bigger[1]) == *align(2) u64);
try expect(@TypeOf(&bigger[2]) == *align(2) u64);
try expect(@TypeOf(&bigger[3]) == *align(2) u64);
// because pointer is align 2 and u32 align % 2 == 0 we can assume align 2
var smaller align(2) = [_]u32{ 1, 2, 3, 4 };
var runtime_zero: usize = 0;
comptime try expect(@TypeOf(smaller[runtime_zero..]) == []align(2) u32);
comptime try expect(@TypeOf(smaller[runtime_zero..].ptr) == [*]align(2) u32);
try testIndex(smaller[runtime_zero..].ptr, 0, *align(2) u32);
try testIndex(smaller[runtime_zero..].ptr, 1, *align(2) u32);
try testIndex(smaller[runtime_zero..].ptr, 2, *align(2) u32);
try testIndex(smaller[runtime_zero..].ptr, 3, *align(2) u32);
// has to use ABI alignment because index known at runtime only
try testIndex2(array[runtime_zero..].ptr, 0, *u8);
try testIndex2(array[runtime_zero..].ptr, 1, *u8);
try testIndex2(array[runtime_zero..].ptr, 2, *u8);
try testIndex2(array[runtime_zero..].ptr, 3, *u8);
}
fn testIndex(smaller: [*]align(2) u32, index: usize, comptime T: type) !void {
comptime try expect(@TypeOf(&smaller[index]) == T);
}
fn testIndex2(ptr: [*]align(4) u8, index: usize, comptime T: type) !void {
comptime try expect(@TypeOf(&ptr[index]) == T);
}
test "alignment of function with c calling convention" {
if (builtin.zig_backend == .stage1) return error.SkipZigTest;
var runtime_nothing = &nothing;
const casted1 = @ptrCast(*const u8, runtime_nothing);
const casted2 = @ptrCast(*const fn () callconv(.C) void, casted1);
casted2();
}
fn nothing() callconv(.C) void {}
const DefaultAligned = struct {
nevermind: u32,
badguy: i128,
};
test "read 128-bit field from default aligned struct in stack memory" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
var default_aligned = DefaultAligned{
.nevermind = 1,
.badguy = 12,
};
try expect((@ptrToInt(&default_aligned.badguy) % 16) == 0);
try expect(12 == default_aligned.badguy);
}
var default_aligned_global = DefaultAligned{
.nevermind = 1,
.badguy = 12,
};
test "read 128-bit field from default aligned struct in global memory" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
try expect((@ptrToInt(&default_aligned_global.badguy) % 16) == 0);
try expect(12 == default_aligned_global.badguy);
}
test "struct field explicit alignment" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
const S = struct {
const Node = struct {
next: *Node,
massive_byte: u8 align(64),
};
};
var node: S.Node = undefined;
node.massive_byte = 100;
try expect(node.massive_byte == 100);
comptime try expect(@TypeOf(&node.massive_byte) == *align(64) u8);
try expect(@ptrToInt(&node.massive_byte) % 64 == 0);
}
test "align(@alignOf(T)) T does not force resolution of T" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
const S = struct {
const A = struct {
a: *align(@alignOf(A)) A,
};
fn doTheTest() void {
suspend {
resume @frame();
}
_ = bar(@Frame(doTheTest));
}
fn bar(comptime T: type) *align(@alignOf(T)) T {
ok = true;
return undefined;
}
var ok = false;
};
_ = async S.doTheTest();
try expect(S.ok);
}
test "align(N) on functions" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest;
if (builtin.zig_backend == .stage1) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_llvm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_wasm) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest;
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest;
// function alignment is a compile error on wasm32/wasm64
if (native_arch == .wasm32 or native_arch == .wasm64) return error.SkipZigTest;
if (native_arch == .thumb) return error.SkipZigTest;
try expect((@ptrToInt(&overaligned_fn) & (0x1000 - 1)) == 0);
}
fn overaligned_fn() align(0x1000) i32 {
return 42;
}