zig/lib/std/math/complex/tanh.zig
expikr 0c70d9c714 use Peer Type Resolution for standalone complex fn
use peer type resolution

Update complex.zig

Revert "use peer type resolution"

This reverts commit 1bc681ca5b36d2b55b5efab5a5dbec7e8a17332e.

Revert "Update pow.zig"

This reverts commit 5487e8d3159f832b5a0bf29a06bd12575182464f.

Update pow.zig

Revert "Update pow.zig"

This reverts commit 521153d1ef004d627c785f2d3fe5e6497dc15073.

Update pow.zig
2024-01-14 18:09:17 -08:00

121 lines
3.5 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanhf.c
// https://git.musl-libc.org/cgit/musl/tree/src/complex/ctanh.c
const std = @import("../../std.zig");
const testing = std.testing;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
/// Returns the hyperbolic tangent of z.
pub fn tanh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => tanh32(z),
f64 => tanh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn tanh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @as(u32, @bitCast(x));
const ix = hx & 0x7fffffff;
if (ix >= 0x7f800000) {
if (ix & 0x7fffff != 0) {
const r = if (y == 0) y else x * y;
return Complex(f32).init(x, r);
}
const xx = @as(f32, @bitCast(hx - 0x40000000));
const r = if (math.isInf(y)) y else @sin(y) * @cos(y);
return Complex(f32).init(xx, math.copysign(@as(f32, 0.0), r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f32).init(r, y - y);
}
// x >= 11
if (ix >= 0x41300000) {
const exp_mx = @exp(-@abs(x));
return Complex(f32).init(math.copysign(@as(f32, 1.0), x), 4 * @sin(y) * @cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = @tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = @sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f32).init((beta * rho * s) / den, t / den);
}
fn tanh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx: u64 = @bitCast(x);
// TODO: zig should allow this conversion implicitly because it can notice that the value necessarily
// fits in range.
const hx: u32 = @intCast(fx >> 32);
const lx: u32 = @truncate(fx);
const ix = hx & 0x7fffffff;
if (ix >= 0x7ff00000) {
if ((ix & 0x7fffff) | lx != 0) {
const r = if (y == 0) y else x * y;
return Complex(f64).init(x, r);
}
const xx: f64 = @bitCast((@as(u64, hx - 0x40000000) << 32) | lx);
const r = if (math.isInf(y)) y else @sin(y) * @cos(y);
return Complex(f64).init(xx, math.copysign(@as(f64, 0.0), r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f64).init(r, y - y);
}
// x >= 22
if (ix >= 0x40360000) {
const exp_mx = @exp(-@abs(x));
return Complex(f64).init(math.copysign(@as(f64, 1.0), x), 4 * @sin(y) * @cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = @tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = @sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f64).init((beta * rho * s) / den, t / den);
}
const epsilon = 0.0001;
test "complex.ctanh32" {
const a = Complex(f32).init(5, 3);
const c = tanh(a);
try testing.expect(math.approxEqAbs(f32, c.re, 0.999913, epsilon));
try testing.expect(math.approxEqAbs(f32, c.im, -0.000025, epsilon));
}
test "complex.ctanh64" {
const a = Complex(f64).init(5, 3);
const c = tanh(a);
try testing.expect(math.approxEqAbs(f64, c.re, 0.999913, epsilon));
try testing.expect(math.approxEqAbs(f64, c.im, -0.000025, epsilon));
}