mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
364 lines
11 KiB
Zig
364 lines
11 KiB
Zig
// Ported from musl, which is licensed under the MIT license:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expmf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/expm.c
|
|
|
|
// TODO: Updated recently.
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const mem = std.mem;
|
|
const expect = std.testing.expect;
|
|
const expectEqual = std.testing.expectEqual;
|
|
|
|
/// Returns e raised to the power of x, minus 1 (e^x - 1). This is more accurate than exp(e, x) - 1
|
|
/// when x is near 0.
|
|
///
|
|
/// Special Cases:
|
|
/// - expm1(+inf) = +inf
|
|
/// - expm1(-inf) = -1
|
|
/// - expm1(nan) = nan
|
|
pub fn expm1(x: anytype) @TypeOf(x) {
|
|
const T = @TypeOf(x);
|
|
return switch (T) {
|
|
f32 => expm1_32(x),
|
|
f64 => expm1_64(x),
|
|
else => @compileError("exp1m not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn expm1_32(x_: f32) f32 {
|
|
if (math.isNan(x_))
|
|
return math.nan(f32);
|
|
|
|
const o_threshold: f32 = 8.8721679688e+01;
|
|
const ln2_hi: f32 = 6.9313812256e-01;
|
|
const ln2_lo: f32 = 9.0580006145e-06;
|
|
const invln2: f32 = 1.4426950216e+00;
|
|
const Q1: f32 = -3.3333212137e-2;
|
|
const Q2: f32 = 1.5807170421e-3;
|
|
|
|
var x = x_;
|
|
const ux: u32 = @bitCast(x);
|
|
const hx = ux & 0x7FFFFFFF;
|
|
const sign = ux >> 31;
|
|
|
|
// TODO: Shouldn't need this check explicitly.
|
|
if (math.isNegativeInf(x)) {
|
|
return -1.0;
|
|
}
|
|
|
|
// |x| >= 27 * ln2
|
|
if (hx >= 0x4195B844) {
|
|
// nan
|
|
if (hx > 0x7F800000) {
|
|
return x;
|
|
}
|
|
if (sign != 0) {
|
|
return -1;
|
|
}
|
|
if (x > o_threshold) {
|
|
x *= 0x1.0p127;
|
|
return x;
|
|
}
|
|
}
|
|
|
|
var hi: f32 = undefined;
|
|
var lo: f32 = undefined;
|
|
var c: f32 = undefined;
|
|
var k: i32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3EB17218) {
|
|
// |x| < 1.5 * ln2
|
|
if (hx < 0x3F851592) {
|
|
if (sign == 0) {
|
|
hi = x - ln2_hi;
|
|
lo = ln2_lo;
|
|
k = 1;
|
|
} else {
|
|
hi = x + ln2_hi;
|
|
lo = -ln2_lo;
|
|
k = -1;
|
|
}
|
|
} else {
|
|
var kf = invln2 * x;
|
|
if (sign != 0) {
|
|
kf -= 0.5;
|
|
} else {
|
|
kf += 0.5;
|
|
}
|
|
|
|
k = @as(i32, @intFromFloat(kf));
|
|
const t = @as(f32, @floatFromInt(k));
|
|
hi = x - t * ln2_hi;
|
|
lo = t * ln2_lo;
|
|
}
|
|
|
|
x = hi - lo;
|
|
c = (hi - x) - lo;
|
|
}
|
|
// |x| < 2^(-25)
|
|
else if (hx < 0x33000000) {
|
|
if (hx < 0x00800000) {
|
|
mem.doNotOptimizeAway(x * x);
|
|
}
|
|
return x;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
|
|
const hfx = 0.5 * x;
|
|
const hxs = x * hfx;
|
|
const r1 = 1.0 + hxs * (Q1 + hxs * Q2);
|
|
const t = 3.0 - r1 * hfx;
|
|
var e = hxs * ((r1 - t) / (6.0 - x * t));
|
|
|
|
// c is 0
|
|
if (k == 0) {
|
|
return x - (x * e - hxs);
|
|
}
|
|
|
|
e = x * (e - c) - c;
|
|
e -= hxs;
|
|
|
|
// exp(x) ~ 2^k (x_reduced - e + 1)
|
|
if (k == -1) {
|
|
return 0.5 * (x - e) - 0.5;
|
|
}
|
|
if (k == 1) {
|
|
if (x < -0.25) {
|
|
return -2.0 * (e - (x + 0.5));
|
|
} else {
|
|
return 1.0 + 2.0 * (x - e);
|
|
}
|
|
}
|
|
|
|
const twopk = @as(f32, @bitCast(@as(u32, @intCast((0x7F +% k) << 23))));
|
|
|
|
if (k < 0 or k > 56) {
|
|
var y = x - e + 1.0;
|
|
if (k == 128) {
|
|
y = y * 2.0 * 0x1.0p127;
|
|
} else {
|
|
y = y * twopk;
|
|
}
|
|
|
|
return y - 1.0;
|
|
}
|
|
|
|
const uf: f32 = @bitCast(@as(u32, @intCast(0x7F -% k)) << 23);
|
|
if (k < 23) {
|
|
return (x - e + (1 - uf)) * twopk;
|
|
} else {
|
|
return (x - (e + uf) + 1) * twopk;
|
|
}
|
|
}
|
|
|
|
fn expm1_64(x_: f64) f64 {
|
|
if (math.isNan(x_))
|
|
return math.nan(f64);
|
|
|
|
const o_threshold: f64 = 7.09782712893383973096e+02;
|
|
const ln2_hi: f64 = 6.93147180369123816490e-01;
|
|
const ln2_lo: f64 = 1.90821492927058770002e-10;
|
|
const invln2: f64 = 1.44269504088896338700e+00;
|
|
const Q1: f64 = -3.33333333333331316428e-02;
|
|
const Q2: f64 = 1.58730158725481460165e-03;
|
|
const Q3: f64 = -7.93650757867487942473e-05;
|
|
const Q4: f64 = 4.00821782732936239552e-06;
|
|
const Q5: f64 = -2.01099218183624371326e-07;
|
|
|
|
var x = x_;
|
|
const ux = @as(u64, @bitCast(x));
|
|
const hx = @as(u32, @intCast(ux >> 32)) & 0x7FFFFFFF;
|
|
const sign = ux >> 63;
|
|
|
|
if (math.isNegativeInf(x)) {
|
|
return -1.0;
|
|
}
|
|
|
|
// |x| >= 56 * ln2
|
|
if (hx >= 0x4043687A) {
|
|
// exp1md(nan) = nan
|
|
if (hx > 0x7FF00000) {
|
|
return x;
|
|
}
|
|
// exp1md(-ve) = -1
|
|
if (sign != 0) {
|
|
return -1;
|
|
}
|
|
if (x > o_threshold) {
|
|
math.raiseOverflow();
|
|
return math.inf(f64);
|
|
}
|
|
}
|
|
|
|
var hi: f64 = undefined;
|
|
var lo: f64 = undefined;
|
|
var c: f64 = undefined;
|
|
var k: i32 = undefined;
|
|
|
|
// |x| > 0.5 * ln2
|
|
if (hx > 0x3FD62E42) {
|
|
// |x| < 1.5 * ln2
|
|
if (hx < 0x3FF0A2B2) {
|
|
if (sign == 0) {
|
|
hi = x - ln2_hi;
|
|
lo = ln2_lo;
|
|
k = 1;
|
|
} else {
|
|
hi = x + ln2_hi;
|
|
lo = -ln2_lo;
|
|
k = -1;
|
|
}
|
|
} else {
|
|
var kf = invln2 * x;
|
|
if (sign != 0) {
|
|
kf -= 0.5;
|
|
} else {
|
|
kf += 0.5;
|
|
}
|
|
|
|
k = @as(i32, @intFromFloat(kf));
|
|
const t = @as(f64, @floatFromInt(k));
|
|
hi = x - t * ln2_hi;
|
|
lo = t * ln2_lo;
|
|
}
|
|
|
|
x = hi - lo;
|
|
c = (hi - x) - lo;
|
|
}
|
|
// |x| < 2^(-54)
|
|
else if (hx < 0x3C900000) {
|
|
if (hx < 0x00100000) {
|
|
mem.doNotOptimizeAway(@as(f32, @floatCast(x)));
|
|
}
|
|
return x;
|
|
} else {
|
|
k = 0;
|
|
}
|
|
|
|
const hfx = 0.5 * x;
|
|
const hxs = x * hfx;
|
|
const r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
|
|
const t = 3.0 - r1 * hfx;
|
|
var e = hxs * ((r1 - t) / (6.0 - x * t));
|
|
|
|
// c is 0
|
|
if (k == 0) {
|
|
return x - (x * e - hxs);
|
|
}
|
|
|
|
e = x * (e - c) - c;
|
|
e -= hxs;
|
|
|
|
// exp(x) ~ 2^k (x_reduced - e + 1)
|
|
if (k == -1) {
|
|
return 0.5 * (x - e) - 0.5;
|
|
}
|
|
if (k == 1) {
|
|
if (x < -0.25) {
|
|
return -2.0 * (e - (x + 0.5));
|
|
} else {
|
|
return 1.0 + 2.0 * (x - e);
|
|
}
|
|
}
|
|
|
|
const twopk = @as(f64, @bitCast(@as(u64, @intCast(0x3FF +% k)) << 52));
|
|
|
|
if (k < 0 or k > 56) {
|
|
var y = x - e + 1.0;
|
|
if (k == 1024) {
|
|
y = y * 2.0 * 0x1.0p1023;
|
|
} else {
|
|
y = y * twopk;
|
|
}
|
|
|
|
return y - 1.0;
|
|
}
|
|
|
|
const uf = @as(f64, @bitCast(@as(u64, @intCast(0x3FF -% k)) << 52));
|
|
if (k < 20) {
|
|
return (x - e + (1 - uf)) * twopk;
|
|
} else {
|
|
return (x - (e + uf) + 1) * twopk;
|
|
}
|
|
}
|
|
|
|
test "expm1_32() special" {
|
|
try expect(math.isPositiveZero(expm1_32(0.0)));
|
|
try expect(math.isNegativeZero(expm1_32(-0.0)));
|
|
try expectEqual(expm1_32(math.ln2), 1.0);
|
|
try expectEqual(expm1_32(math.inf(f32)), math.inf(f32));
|
|
try expectEqual(expm1_32(-math.inf(f32)), -1.0);
|
|
try expect(math.isNan(expm1_32(math.nan(f32))));
|
|
try expect(math.isNan(expm1_32(math.snan(f32))));
|
|
}
|
|
|
|
test "expm1_32() sanity" {
|
|
try expectEqual(expm1_32(-0x1.0223a0p+3), -0x1.ffd6e0p-1);
|
|
try expectEqual(expm1_32(0x1.161868p+2), 0x1.30712ap+6);
|
|
try expectEqual(expm1_32(-0x1.0c34b4p+3), -0x1.ffe1fap-1);
|
|
try expectEqual(expm1_32(-0x1.a206f0p+2), -0x1.ff4116p-1);
|
|
try expectEqual(expm1_32(0x1.288bbcp+3), 0x1.4ab480p+13); // Disagrees with GCC in last bit
|
|
try expectEqual(expm1_32(0x1.52efd0p-1), 0x1.e09536p-1);
|
|
try expectEqual(expm1_32(-0x1.a05cc8p-2), -0x1.561c3ep-2);
|
|
try expectEqual(expm1_32(0x1.1f9efap-1), 0x1.81ec4ep-1);
|
|
try expectEqual(expm1_32(0x1.8c5db0p-1), 0x1.2b3364p+0);
|
|
try expectEqual(expm1_32(-0x1.5b86eap-1), -0x1.f8951ap-2);
|
|
}
|
|
|
|
test "expm1_32() boundary" {
|
|
// TODO: The last value before inf is actually 0x1.62e300p+6 -> 0x1.ff681ep+127
|
|
// try expectEqual(expm1_32(0x1.62e42ep+6), 0x1.ffff08p+127); // Last value before result is inf
|
|
try expectEqual(expm1_32(0x1.62e430p+6), math.inf(f32)); // First value that gives inf
|
|
try expectEqual(expm1_32(0x1.fffffep+127), math.inf(f32)); // Max input value
|
|
try expectEqual(expm1_32(0x1p-149), 0x1p-149); // Min positive input value
|
|
try expectEqual(expm1_32(-0x1p-149), -0x1p-149); // Min negative input value
|
|
try expectEqual(expm1_32(0x1p-126), 0x1p-126); // First positive subnormal input
|
|
try expectEqual(expm1_32(-0x1p-126), -0x1p-126); // First negative subnormal input
|
|
try expectEqual(expm1_32(0x1.fffffep-125), 0x1.fffffep-125); // Last positive value before subnormal
|
|
try expectEqual(expm1_32(-0x1.fffffep-125), -0x1.fffffep-125); // Last negative value before subnormal
|
|
try expectEqual(expm1_32(-0x1.154244p+4), -0x1.fffffep-1); // Last value before result is -1
|
|
try expectEqual(expm1_32(-0x1.154246p+4), -1); // First value where result is -1
|
|
}
|
|
|
|
test "expm1_64() special" {
|
|
try expect(math.isPositiveZero(expm1_64(0.0)));
|
|
try expect(math.isNegativeZero(expm1_64(-0.0)));
|
|
try expectEqual(expm1_64(math.ln2), 1.0);
|
|
try expectEqual(expm1_64(math.inf(f64)), math.inf(f64));
|
|
try expectEqual(expm1_64(-math.inf(f64)), -1.0);
|
|
try expect(math.isNan(expm1_64(math.nan(f64))));
|
|
try expect(math.isNan(expm1_64(math.snan(f64))));
|
|
}
|
|
|
|
test "expm1_64() sanity" {
|
|
try expectEqual(expm1_64(-0x1.02239f3c6a8f1p+3), -0x1.ffd6df9b02b3ep-1);
|
|
try expectEqual(expm1_64(0x1.161868e18bc67p+2), 0x1.30712ed238c04p+6);
|
|
try expectEqual(expm1_64(-0x1.0c34b3e01e6e7p+3), -0x1.ffe1f94e493e7p-1);
|
|
try expectEqual(expm1_64(-0x1.a206f0a19dcc4p+2), -0x1.ff4115c03f78dp-1);
|
|
try expectEqual(expm1_64(0x1.288bbb0d6a1e6p+3), 0x1.4ab477496e07ep+13);
|
|
try expectEqual(expm1_64(0x1.52efd0cd80497p-1), 0x1.e095382100a01p-1);
|
|
try expectEqual(expm1_64(-0x1.a05cc754481d1p-2), -0x1.561c3e0582be6p-2);
|
|
try expectEqual(expm1_64(0x1.1f9ef934745cbp-1), 0x1.81ec4cd4d4a8fp-1);
|
|
try expectEqual(expm1_64(0x1.8c5db097f7442p-1), 0x1.2b3363a944bf7p+0);
|
|
try expectEqual(expm1_64(-0x1.5b86ea8118a0ep-1), -0x1.f8951aebffbafp-2);
|
|
}
|
|
|
|
test "expm1_64() boundary" {
|
|
try expectEqual(expm1_64(0x1.62e42fefa39efp+9), 0x1.fffffffffff2ap+1023); // Last value before result is inf
|
|
try expectEqual(expm1_64(0x1.62e42fefa39f0p+9), math.inf(f64)); // First value that gives inf
|
|
try expectEqual(expm1_64(0x1.fffffffffffffp+1023), math.inf(f64)); // Max input value
|
|
try expectEqual(expm1_64(0x1p-1074), 0x1p-1074); // Min positive input value
|
|
try expectEqual(expm1_64(-0x1p-1074), -0x1p-1074); // Min negative input value
|
|
try expectEqual(expm1_64(0x1p-1022), 0x1p-1022); // First positive subnormal input
|
|
try expectEqual(expm1_64(-0x1p-1022), -0x1p-1022); // First negative subnormal input
|
|
try expectEqual(expm1_64(0x1.fffffffffffffp-1021), 0x1.fffffffffffffp-1021); // Last positive value before subnormal
|
|
try expectEqual(expm1_64(-0x1.fffffffffffffp-1021), -0x1.fffffffffffffp-1021); // Last negative value before subnormal
|
|
try expectEqual(expm1_64(-0x1.2b708872320e1p+5), -0x1.fffffffffffffp-1); // Last value before result is -1
|
|
try expectEqual(expm1_64(-0x1.2b708872320e2p+5), -1); // First value where result is -1
|
|
}
|