mlugg 089bbd6588
Zcu: rework reference traces
Previously, `reference_table` mapped from a `Decl` being referenced to
the `Decl` that performed the reference. This is convenient for
constructing error messages, but problematic for incremental
compilation. This is because on an incremental update, we want to
efficiently remove all references triggered by an `AnalUnit` which is
being re-analyzed.

For this reason, `reference_table` now maps the other way: from the
`AnalUnit` *performing* the reference, to the `AnalUnit` whose analysis
was triggered. As a general rule, any call to any of the following
functions should be preceded by a call to `Sema.addReferenceEntry`:

* `Zcu.ensureDeclAnalyzed`
* `Sema.ensureDeclAnalyzed`
* `Zcu.ensureFuncBodyAnalyzed`
* `Zcu.ensureFuncBodyAnalysisQueued`

This is not just important for error messages, but also more
fundamentally for incremental compilation. When an incremental update
occurs, we must determine whether any `AnalUnit` has become
unreferenced: in this case, we should ignore its associated error
messages, and perhaps even remove it from the binary. For this reason,
we no longer store only one reference to every `AnalUnit`, but every
reference. At the end of an update, `Zcu.resolveReferences` will
construct the reverse mapping, and as such identify which `AnalUnit`s
are still referenced. The current implementation doesn't quite do what
we need for incremental compilation here, but the framework is in place.

Note that `Zcu.resolveReferences` does constitute a non-trivial amount
of work on every incremental update. However, for incremental
compilation, this work -- which will effectively be a graph traversal
over all `AnalUnit` references -- seems strictly necessary. At the
moment, this work is only done if the `Zcu` has any errors, when
collecting them into the final `ErrorBundle`.

An unsolved problem here is how to represent inline function calls in
the reference trace. If `foo` performs an inline call to `bar` which
references `qux`, then ideally, `bar` would be shown on the reference
trace between `foo` and `qux`, but this is not currently the case. The
solution here is probably for `Zcu.Reference` to store information about
the source locations of active inline calls betweeen the referencer and
its reference.
2024-07-04 21:01:41 +01:00
2024-07-02 02:04:10 -04:00
2024-06-27 19:37:44 +00:00
2024-07-04 21:01:41 +01:00
2024-06-21 00:12:13 -04:00
2024-03-06 14:17:41 -05:00
2024-04-19 13:16:09 -07:00
2024-03-23 18:11:32 +01:00
2024-06-17 00:10:35 -07:00

ZIG

A general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

https://ziglang.org/

Documentation

If you are looking at this README file in a source tree, please refer to the Release Notes, Language Reference, or Standard Library Documentation corresponding to the version of Zig that you are using by following the appropriate link on the download page.

Otherwise, you're looking at a release of Zig, and you can find documentation here:

  • doc/langref.html
  • doc/std/index.html

Installation

A Zig installation is composed of two things:

  1. The Zig executable
  2. The lib/ directory

At runtime, the executable searches up the file system for the lib/ directory, relative to itself:

  • lib/
  • lib/zig/
  • ../lib/
  • ../lib/zig/
  • (and so on)

In other words, you can unpack a release of Zig anywhere, and then begin using it immediately. There is no need to install it globally, although this mechanism supports that use case too (i.e. /usr/bin/zig and /usr/lib/zig/).

Building from Source

Ensure you have the required dependencies:

  • CMake >= 3.15
  • System C/C++ Toolchain
  • LLVM, Clang, LLD development libraries == 18.x

Then it is the standard CMake build process:

mkdir build
cd build
cmake ..
make install

For more options, tips, and troubleshooting, please see the Building Zig From Source page on the wiki.

Building from Source without LLVM

In this case, the only system dependency is a C compiler.

cc -o bootstrap bootstrap.c
./bootstrap

This produces a zig2 executable in the current working directory. This is a "stage2" build of the compiler, without LLVM extensions, and is therefore lacking these features:

However, a compiler built this way does provide a C backend, which may be useful for creating system packages of Zig projects using the system C toolchain. In such case, LLVM is not needed!

Contributing

Donate monthly.

Zig is Free and Open Source Software. We welcome bug reports and patches from everyone. However, keep in mind that Zig governance is BDFN (Benevolent Dictator For Now) which means that Andrew Kelley has final say on the design and implementation of everything.

One of the best ways you can contribute to Zig is to start using it for an open-source personal project.

This leads to discovering bugs and helps flesh out use cases, which lead to further design iterations of Zig. Importantly, each issue found this way comes with real world motivations, making it straightforward to explain the reasoning behind proposals and feature requests.

You will be taken much more seriously on the issue tracker if you have a personal project that uses Zig.

The issue label Contributor Friendly exists to help you find issues that are limited in scope and/or knowledge of Zig internals.

Please note that issues labeled Proposal but do not also have the Accepted label are still under consideration, and efforts to implement such a proposal have a high risk of being wasted. If you are interested in a proposal which is still under consideration, please express your interest in the issue tracker, providing extra insights and considerations that others have not yet expressed. The most highly regarded argument in such a discussion is a real world use case.

For more tips, please see the Contributing page on the wiki.

Community

The Zig community is decentralized. Anyone is free to start and maintain their own space for Zig users to gather. There is no concept of "official" or "unofficial". Each gathering place has its own moderators and rules. Users are encouraged to be aware of the social structures of the spaces they inhabit, and work purposefully to facilitate spaces that align with their values.

Please see the Community wiki page for a public listing of social spaces.

Description
General-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Readme MIT 711 MiB
Languages
Zig 98.3%
C 1.1%
C++ 0.2%
Python 0.1%