zig/src/codegen/spirv/Module.zig
Robin Voetter 074ba69ba6
spirv: assembler
spirv: introduce SpvModule.Fn to generate function code into

spirv: assembler error message setup

spirv: runtime spec info

spirv: inline assembly tokenizer

spirv: inline assembly lhs result/opcode parsing

spirv: forgot to fmt

spirv: tokenize opcodes and assigned result-ids

spirv: operand parsing setup

spirv: assembler string literals

spirv: assembler integer literals

spirv: assembler value enums

spirv: assembler bit masks

spirv: update assembler to new asm air format

spirv: target 1.5 for now

Current vulkan sdk version (1.3.204) ships spirv tools targetting 1.5,
and so these do not work with binaries targetting 1.6 yet. In the
future, this version number should be decided by the target.

spirv: store operands in flat arraylist.

Instead of having dedicated Operand variants for variadic operands,
just flatten them and store them in the normal inst.operands list.
This is a little simpler, but is not easily decodable in the operand
data representation.

spirv: parse variadic assembly operands

spirv: improve assembler result-id tokenization

spirv: begin instruction processing

spirv: only remove decl if it was actually allocated

spirv: work around weird miscompilation

Seems like there are problems with switch in anonymous struct literals.

spirv: begin resolving some types in assembler

spirv: improve instruction processing

spirv: rename some types + process OpTypeInt

spirv: process OpTypeVector

spirv: process OpTypeMatrix and OpTypeSampler

spirv: add opcode class to spec, remove @exclude'd instructions

spirv: process more type instructions

spirv: OpTypeFunction

spirv: OpTypeOpaque

spirv: parse LiteralContextDependentNumber operands

spirv: emit assembly instruction into right section

spirv: parse OpPhi parameters

spirv: inline assembly inputs

spirv: also copy air types

spirv: inline assembly outputs

spirv: spir-v address spaces

spirv: basic vector constants/types and shuffle

spirv: assembler OpTypeImage

spirv: some stuff

spirv: remove spirv address spaces for now
2022-11-23 19:17:58 +01:00

475 lines
20 KiB
Zig

//! This structure represents a SPIR-V (sections) module being compiled, and keeps track of all relevant information.
//! That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
//! of data which needs to be persistent over different calls to Decl code generation.
//!
//! A SPIR-V binary module supports both little- and big endian layout. The layout is detected by the magic word in the
//! header. Therefore, we can ignore any byte order throughout the implementation, and just use the host byte order,
//! and make this a problem for the consumer.
const Module = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ZigDecl = @import("../../Module.zig").Decl;
const spec = @import("spec.zig");
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const Section = @import("Section.zig");
const Type = @import("type.zig").Type;
const TypeCache = std.ArrayHashMapUnmanaged(Type, IdResultType, Type.ShallowHashContext32, true);
/// This structure represents a function that is in-progress of being emitted.
/// Commonly, the contents of this structure will be merged with the appropriate
/// sections of the module and re-used. Note that the SPIR-V module system makes
/// no attempt of compacting result-id's, so any Fn instance should ultimately
/// be merged into the module it's result-id's are allocated from.
pub const Fn = struct {
/// The prologue of this function; this section contains the function's
/// OpFunction, OpFunctionParameter, OpLabel and OpVariable instructions, and
/// is separated from the actual function contents as OpVariable instructions
/// must appear in the first block of a function definition.
prologue: Section = .{},
/// The code of the body of this function.
/// This section should also contain the OpFunctionEnd instruction marking
/// the end of this function definition.
body: Section = .{},
/// Reset this function without deallocating resources, so that
/// it may be used to emit code for another function.
pub fn reset(self: *Fn) void {
self.prologue.reset();
self.body.reset();
}
/// Free the resources owned by this function.
pub fn deinit(self: *Fn, a: Allocator) void {
self.prologue.deinit(a);
self.body.deinit(a);
self.* = undefined;
}
};
/// A general-purpose allocator which may be used to allocate resources for this module
gpa: Allocator,
/// An arena allocator used to store things that have the same lifetime as this module.
arena: Allocator,
/// Module layout, according to SPIR-V Spec section 2.4, "Logical Layout of a Module".
sections: struct {
/// Capability instructions
capabilities: Section = .{},
/// OpExtension instructions
extensions: Section = .{},
// OpExtInstImport instructions - skip for now.
// memory model defined by target, not required here.
/// OpEntryPoint instructions.
entry_points: Section = .{},
/// OpExecutionMode and OpExecutionModeId instructions.
execution_modes: Section = .{},
/// OpString, OpSourcExtension, OpSource, OpSourceContinued.
debug_strings: Section = .{},
// OpName, OpMemberName - skip for now.
// OpModuleProcessed - skip for now.
/// Annotation instructions (OpDecorate etc).
annotations: Section = .{},
/// Type declarations, constants, global variables
/// Below this section, OpLine and OpNoLine is allowed.
types_globals_constants: Section = .{},
// Functions without a body - skip for now.
/// Regular function definitions.
functions: Section = .{},
} = .{},
/// SPIR-V instructions return result-ids. This variable holds the module-wide counter for these.
next_result_id: Word,
/// Cache for results of OpString instructions for module file names fed to OpSource.
/// Since OpString is pretty much only used for those, we don't need to keep track of all strings,
/// just the ones for OpLine. Note that OpLine needs the result of OpString, and not that of OpSource.
source_file_names: std.StringHashMapUnmanaged(IdRef) = .{},
/// SPIR-V type cache. Note that according to SPIR-V spec section 2.8, Types and Variables, non-pointer
/// non-aggrerate types (which includes matrices and vectors) must have a _unique_ representation in
/// the final binary.
/// Note: Uses ArrayHashMap which is insertion ordered, so that we may refer to other types by index (Type.Ref).
type_cache: TypeCache = .{},
pub fn init(gpa: Allocator, arena: Allocator) Module {
return .{
.gpa = gpa,
.arena = arena,
.next_result_id = 1, // 0 is an invalid SPIR-V result id, so start counting at 1.
};
}
pub fn deinit(self: *Module) void {
self.sections.capabilities.deinit(self.gpa);
self.sections.extensions.deinit(self.gpa);
self.sections.entry_points.deinit(self.gpa);
self.sections.execution_modes.deinit(self.gpa);
self.sections.debug_strings.deinit(self.gpa);
self.sections.annotations.deinit(self.gpa);
self.sections.types_globals_constants.deinit(self.gpa);
self.sections.functions.deinit(self.gpa);
self.source_file_names.deinit(self.gpa);
self.type_cache.deinit(self.gpa);
self.* = undefined;
}
pub fn allocId(self: *Module) spec.IdResult {
defer self.next_result_id += 1;
return .{ .id = self.next_result_id };
}
pub fn idBound(self: Module) Word {
return self.next_result_id;
}
/// Emit this module as a spir-v binary.
pub fn flush(self: Module, file: std.fs.File) !void {
// See SPIR-V Spec section 2.3, "Physical Layout of a SPIR-V Module and Instruction"
const header = [_]Word{
spec.magic_number,
(1 << 16) | (5 << 8),
0, // TODO: Register Zig compiler magic number.
self.idBound(),
0, // Schema (currently reserved for future use)
};
// Note: needs to be kept in order according to section 2.3!
const buffers = &[_][]const Word{
&header,
self.sections.capabilities.toWords(),
self.sections.extensions.toWords(),
self.sections.entry_points.toWords(),
self.sections.execution_modes.toWords(),
self.sections.debug_strings.toWords(),
self.sections.annotations.toWords(),
self.sections.types_globals_constants.toWords(),
self.sections.functions.toWords(),
};
var iovc_buffers: [buffers.len]std.os.iovec_const = undefined;
var file_size: u64 = 0;
for (iovc_buffers) |*iovc, i| {
// Note, since spir-v supports both little and big endian we can ignore byte order here and
// just treat the words as a sequence of bytes.
const bytes = std.mem.sliceAsBytes(buffers[i]);
iovc.* = .{ .iov_base = bytes.ptr, .iov_len = bytes.len };
file_size += bytes.len;
}
try file.seekTo(0);
try file.setEndPos(file_size);
try file.pwritevAll(&iovc_buffers, 0);
}
/// Merge the sections making up a function declaration into this module.
pub fn addFunction(self: *Module, func: Fn) !void {
try self.sections.functions.append(self.gpa, func.prologue);
try self.sections.functions.append(self.gpa, func.body);
}
/// Fetch the result-id of an OpString instruction that encodes the path of the source
/// file of the decl. This function may also emit an OpSource with source-level information regarding
/// the decl.
pub fn resolveSourceFileName(self: *Module, decl: *ZigDecl) !IdRef {
const path = decl.getFileScope().sub_file_path;
const result = try self.source_file_names.getOrPut(self.gpa, path);
if (!result.found_existing) {
const file_result_id = self.allocId();
result.value_ptr.* = file_result_id.toRef();
try self.sections.debug_strings.emit(self.gpa, .OpString, .{
.id_result = file_result_id,
.string = path,
});
try self.sections.debug_strings.emit(self.gpa, .OpSource, .{
.source_language = .Unknown, // TODO: Register Zig source language.
.version = 0, // TODO: Zig version as u32?
.file = file_result_id.toRef(),
.source = null, // TODO: Store actual source also?
});
}
return result.value_ptr.*;
}
/// Fetch a result-id for a spir-v type. This function deduplicates the type as appropriate,
/// and returns a cached version if that exists.
/// Note: This function does not attempt to perform any validation on the type.
/// The type is emitted in a shallow fashion; any child types should already
/// be emitted at this point.
pub fn resolveType(self: *Module, ty: Type) !Type.Ref {
const result = try self.type_cache.getOrPut(self.gpa, ty);
if (!result.found_existing) {
result.value_ptr.* = try self.emitType(ty);
}
return result.index;
}
pub fn resolveTypeId(self: *Module, ty: Type) !IdRef {
const type_ref = try self.resolveType(ty);
return self.typeResultId(type_ref);
}
/// Get the result-id of a particular type, by reference. Asserts type_ref is valid.
pub fn typeResultId(self: Module, type_ref: Type.Ref) IdResultType {
return self.type_cache.values()[type_ref];
}
/// Get the result-id of a particular type as IdRef, by Type.Ref. Asserts type_ref is valid.
pub fn typeRefId(self: Module, type_ref: Type.Ref) IdRef {
return self.type_cache.values()[type_ref].toRef();
}
/// Unconditionally emit a spir-v type into the appropriate section.
/// Note: If this function is called with a type that is already generated, it may yield an invalid module
/// as non-pointer non-aggregrate types must me unique!
/// Note: This function does not attempt to perform any validation on the type.
/// The type is emitted in a shallow fashion; any child types should already
/// be emitted at this point.
pub fn emitType(self: *Module, ty: Type) !IdResultType {
const result_id = self.allocId();
const ref_id = result_id.toRef();
const types = &self.sections.types_globals_constants;
const annotations = &self.sections.annotations;
const result_id_operand = .{ .id_result = result_id };
switch (ty.tag()) {
.void => try types.emit(self.gpa, .OpTypeVoid, result_id_operand),
.bool => try types.emit(self.gpa, .OpTypeBool, result_id_operand),
.int => {
const signedness: spec.LiteralInteger = switch (ty.payload(.int).signedness) {
.unsigned => 0,
.signed => 1,
};
try types.emit(self.gpa, .OpTypeInt, .{
.id_result = result_id,
.width = ty.payload(.int).width,
.signedness = signedness,
});
},
.float => try types.emit(self.gpa, .OpTypeFloat, .{
.id_result = result_id,
.width = ty.payload(.float).width,
}),
.vector => try types.emit(self.gpa, .OpTypeVector, .{
.id_result = result_id,
.component_type = self.typeResultId(ty.childType()).toRef(),
.component_count = ty.payload(.vector).component_count,
}),
.matrix => try types.emit(self.gpa, .OpTypeMatrix, .{
.id_result = result_id,
.column_type = self.typeResultId(ty.childType()).toRef(),
.column_count = ty.payload(.matrix).column_count,
}),
.image => {
const info = ty.payload(.image);
try types.emit(self.gpa, .OpTypeImage, .{
.id_result = result_id,
.sampled_type = self.typeResultId(ty.childType()).toRef(),
.dim = info.dim,
.depth = @enumToInt(info.depth),
.arrayed = @boolToInt(info.arrayed),
.ms = @boolToInt(info.multisampled),
.sampled = @enumToInt(info.sampled),
.image_format = info.format,
.access_qualifier = info.access_qualifier,
});
},
.sampler => try types.emit(self.gpa, .OpTypeSampler, result_id_operand),
.sampled_image => try types.emit(self.gpa, .OpTypeSampledImage, .{
.id_result = result_id,
.image_type = self.typeResultId(ty.childType()).toRef(),
}),
.array => {
const info = ty.payload(.array);
assert(info.length != 0);
try types.emit(self.gpa, .OpTypeArray, .{
.id_result = result_id,
.element_type = self.typeResultId(ty.childType()).toRef(),
.length = .{ .id = 0 }, // TODO: info.length must be emitted as constant!
});
if (info.array_stride != 0) {
try annotations.decorate(self.gpa, ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
},
.runtime_array => {
const info = ty.payload(.runtime_array);
try types.emit(self.gpa, .OpTypeRuntimeArray, .{
.id_result = result_id,
.element_type = self.typeResultId(ty.childType()).toRef(),
});
if (info.array_stride != 0) {
try annotations.decorate(self.gpa, ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
},
.@"struct" => {
const info = ty.payload(.@"struct");
try types.emitRaw(self.gpa, .OpTypeStruct, 1 + info.members.len);
types.writeOperand(IdResult, result_id);
for (info.members) |member| {
types.writeOperand(IdRef, self.typeResultId(member.ty).toRef());
}
try self.decorateStruct(ref_id, info);
},
.@"opaque" => try types.emit(self.gpa, .OpTypeOpaque, .{
.id_result = result_id,
.literal_string = ty.payload(.@"opaque").name,
}),
.pointer => {
const info = ty.payload(.pointer);
try types.emit(self.gpa, .OpTypePointer, .{
.id_result = result_id,
.storage_class = info.storage_class,
.type = self.typeResultId(ty.childType()).toRef(),
});
if (info.array_stride != 0) {
try annotations.decorate(self.gpa, ref_id, .{ .ArrayStride = .{ .array_stride = info.array_stride } });
}
if (info.alignment) |alignment| {
try annotations.decorate(self.gpa, ref_id, .{ .Alignment = .{ .alignment = alignment } });
}
if (info.max_byte_offset) |max_byte_offset| {
try annotations.decorate(self.gpa, ref_id, .{ .MaxByteOffset = .{ .max_byte_offset = max_byte_offset } });
}
},
.function => {
const info = ty.payload(.function);
try types.emitRaw(self.gpa, .OpTypeFunction, 2 + info.parameters.len);
types.writeOperand(IdResult, result_id);
types.writeOperand(IdRef, self.typeResultId(info.return_type).toRef());
for (info.parameters) |parameter_type| {
types.writeOperand(IdRef, self.typeResultId(parameter_type).toRef());
}
},
.event => try types.emit(self.gpa, .OpTypeEvent, result_id_operand),
.device_event => try types.emit(self.gpa, .OpTypeDeviceEvent, result_id_operand),
.reserve_id => try types.emit(self.gpa, .OpTypeReserveId, result_id_operand),
.queue => try types.emit(self.gpa, .OpTypeQueue, result_id_operand),
.pipe => try types.emit(self.gpa, .OpTypePipe, .{
.id_result = result_id,
.qualifier = ty.payload(.pipe).qualifier,
}),
.pipe_storage => try types.emit(self.gpa, .OpTypePipeStorage, result_id_operand),
.named_barrier => try types.emit(self.gpa, .OpTypeNamedBarrier, result_id_operand),
}
return result_id.toResultType();
}
fn decorateStruct(self: *Module, target: IdRef, info: *const Type.Payload.Struct) !void {
const annotations = &self.sections.annotations;
// Decorations for the struct type itself.
if (info.decorations.block)
try annotations.decorate(self.gpa, target, .Block);
if (info.decorations.buffer_block)
try annotations.decorate(self.gpa, target, .BufferBlock);
if (info.decorations.glsl_shared)
try annotations.decorate(self.gpa, target, .GLSLShared);
if (info.decorations.glsl_packed)
try annotations.decorate(self.gpa, target, .GLSLPacked);
if (info.decorations.c_packed)
try annotations.decorate(self.gpa, target, .CPacked);
// Decorations for the struct members.
const extra = info.member_decoration_extra;
var extra_i: u32 = 0;
for (info.members) |member, i| {
const d = member.decorations;
const index = @intCast(Word, i);
switch (d.matrix_layout) {
.row_major => try annotations.decorateMember(self.gpa, target, index, .RowMajor),
.col_major => try annotations.decorateMember(self.gpa, target, index, .ColMajor),
.none => {},
}
if (d.matrix_layout != .none) {
try annotations.decorateMember(self.gpa, target, index, .{
.MatrixStride = .{ .matrix_stride = extra[extra_i] },
});
extra_i += 1;
}
if (d.no_perspective)
try annotations.decorateMember(self.gpa, target, index, .NoPerspective);
if (d.flat)
try annotations.decorateMember(self.gpa, target, index, .Flat);
if (d.patch)
try annotations.decorateMember(self.gpa, target, index, .Patch);
if (d.centroid)
try annotations.decorateMember(self.gpa, target, index, .Centroid);
if (d.sample)
try annotations.decorateMember(self.gpa, target, index, .Sample);
if (d.invariant)
try annotations.decorateMember(self.gpa, target, index, .Invariant);
if (d.@"volatile")
try annotations.decorateMember(self.gpa, target, index, .Volatile);
if (d.coherent)
try annotations.decorateMember(self.gpa, target, index, .Coherent);
if (d.non_writable)
try annotations.decorateMember(self.gpa, target, index, .NonWritable);
if (d.non_readable)
try annotations.decorateMember(self.gpa, target, index, .NonReadable);
if (d.builtin) {
try annotations.decorateMember(self.gpa, target, index, .{
.BuiltIn = .{ .built_in = @intToEnum(spec.BuiltIn, extra[extra_i]) },
});
extra_i += 1;
}
if (d.stream) {
try annotations.decorateMember(self.gpa, target, index, .{
.Stream = .{ .stream_number = extra[extra_i] },
});
extra_i += 1;
}
if (d.location) {
try annotations.decorateMember(self.gpa, target, index, .{
.Location = .{ .location = extra[extra_i] },
});
extra_i += 1;
}
if (d.component) {
try annotations.decorateMember(self.gpa, target, index, .{
.Component = .{ .component = extra[extra_i] },
});
extra_i += 1;
}
if (d.xfb_buffer) {
try annotations.decorateMember(self.gpa, target, index, .{
.XfbBuffer = .{ .xfb_buffer_number = extra[extra_i] },
});
extra_i += 1;
}
if (d.xfb_stride) {
try annotations.decorateMember(self.gpa, target, index, .{
.XfbStride = .{ .xfb_stride = extra[extra_i] },
});
extra_i += 1;
}
if (d.user_semantic) {
const len = extra[extra_i];
extra_i += 1;
const semantic = @ptrCast([*]const u8, &extra[extra_i])[0..len];
try annotations.decorateMember(self.gpa, target, index, .{
.UserSemantic = .{ .semantic = semantic },
});
extra_i += std.math.divCeil(u32, extra_i, @sizeOf(u32)) catch unreachable;
}
}
}