zig/lib/std/special/compiler_rt/compareXf2.zig
Andrew Kelley a024aff932 make f80 less hacky; lower as u80 on non-x86
Get rid of `std.math.F80Repr`. Instead of trying to match the memory
layout of f80, we treat it as a value, same as the other floating point
types. The functions `make_f80` and `break_f80` are introduced to
compose an f80 value out of its parts, and the inverse operation.

stage2 LLVM backend: fix pointer to zero length array tripping LLVM
assertion. It now checks for when the element type is a zero-bit type
and lowers such thing the same way that pointers to other zero-bit types
are lowered.

Both stage1 and stage2 LLVM backends are adjusted so that f80 is lowered
as x86_fp80 on x86_64 and i386 architectures, and identical to a u80 on
others. LLVM constants are lowered in a less hacky way now that #10860
is fixed, by using the expression `(exp << 64) | fraction` using llvm
constants.

Sema is improved to handle c_longdouble by recursively handling it
correctly for whatever the float bit width is. In both stage1 and
stage2.
2022-02-12 11:18:23 +01:00

329 lines
9.4 KiB
Zig

// Ported from:
//
// https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/comparesf2.c
const std = @import("std");
const builtin = @import("builtin");
const LE = enum(i32) {
Less = -1,
Equal = 0,
Greater = 1,
const Unordered: LE = .Greater;
};
const GE = enum(i32) {
Less = -1,
Equal = 0,
Greater = 1,
const Unordered: GE = .Less;
};
pub inline fn cmp(comptime T: type, comptime RT: type, a: T, b: T) RT {
@setRuntimeSafety(builtin.is_test);
const bits = @typeInfo(T).Float.bits;
const srep_t = std.meta.Int(.signed, bits);
const rep_t = std.meta.Int(.unsigned, bits);
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const absMask = signBit - 1;
const infT = comptime std.math.inf(T);
const infRep = @bitCast(rep_t, infT);
const aInt = @bitCast(srep_t, a);
const bInt = @bitCast(srep_t, b);
const aAbs = @bitCast(rep_t, aInt) & absMask;
const bAbs = @bitCast(rep_t, bInt) & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep or bAbs > infRep) return RT.Unordered;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0) return .Equal;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a floating-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt) {
return .Less;
} else if (aInt == bInt) {
return .Equal;
} else return .Greater;
} else {
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
if (aInt > bInt) {
return .Less;
} else if (aInt == bInt) {
return .Equal;
} else return .Greater;
}
}
pub inline fn unordcmp(comptime T: type, a: T, b: T) i32 {
@setRuntimeSafety(builtin.is_test);
const rep_t = std.meta.Int(.unsigned, @typeInfo(T).Float.bits);
const significandBits = std.math.floatMantissaBits(T);
const exponentBits = std.math.floatExponentBits(T);
const signBit = (@as(rep_t, 1) << (significandBits + exponentBits));
const absMask = signBit - 1;
const infRep = @bitCast(rep_t, std.math.inf(T));
const aAbs: rep_t = @bitCast(rep_t, a) & absMask;
const bAbs: rep_t = @bitCast(rep_t, b) & absMask;
return @boolToInt(aAbs > infRep or bAbs > infRep);
}
// Comparison between f32
pub fn __lesf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f32, LE, a, b);
return @bitCast(i32, float);
}
pub fn __gesf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f32, GE, a, b);
return @bitCast(i32, float);
}
pub fn __eqsf2(a: f32, b: f32) callconv(.C) i32 {
return __lesf2(a, b);
}
pub fn __ltsf2(a: f32, b: f32) callconv(.C) i32 {
return __lesf2(a, b);
}
pub fn __nesf2(a: f32, b: f32) callconv(.C) i32 {
return __lesf2(a, b);
}
pub fn __gtsf2(a: f32, b: f32) callconv(.C) i32 {
return __gesf2(a, b);
}
// Comparison between f64
pub fn __ledf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f64, LE, a, b);
return @bitCast(i32, float);
}
pub fn __gedf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f64, GE, a, b);
return @bitCast(i32, float);
}
pub fn __eqdf2(a: f64, b: f64) callconv(.C) i32 {
return __ledf2(a, b);
}
pub fn __ltdf2(a: f64, b: f64) callconv(.C) i32 {
return __ledf2(a, b);
}
pub fn __nedf2(a: f64, b: f64) callconv(.C) i32 {
return __ledf2(a, b);
}
pub fn __gtdf2(a: f64, b: f64) callconv(.C) i32 {
return __gedf2(a, b);
}
// Comparison between f80
pub inline fn cmp_f80(comptime RT: type, a: f80, b: f80) RT {
const a_rep = std.math.break_f80(a);
const b_rep = std.math.break_f80(b);
const sig_bits = std.math.floatMantissaBits(f80);
const int_bit = 0x8000000000000000;
const sign_bit = 0x8000;
const special_exp = 0x7FFF;
// If either a or b is NaN, they are unordered.
if ((a_rep.exp & special_exp == special_exp and a_rep.fraction ^ int_bit != 0) or
(b_rep.exp & special_exp == special_exp and b_rep.fraction ^ int_bit != 0))
return RT.Unordered;
// If a and b are both zeros, they are equal.
if ((a_rep.fraction | b_rep.fraction) | ((a_rep.exp | b_rep.exp) & special_exp) == 0)
return .Equal;
if (@boolToInt(a_rep.exp == b_rep.exp) & @boolToInt(a_rep.fraction == b_rep.fraction) != 0) {
return .Equal;
} else if (a_rep.exp & sign_bit != b_rep.exp & sign_bit) {
// signs are different
if (@bitCast(i16, a_rep.exp) < @bitCast(i16, b_rep.exp)) {
return .Less;
} else {
return .Greater;
}
} else {
const a_fraction = a_rep.fraction | (@as(u80, a_rep.exp) << sig_bits);
const b_fraction = b_rep.fraction | (@as(u80, b_rep.exp) << sig_bits);
if (a_fraction < b_fraction) {
return .Less;
} else {
return .Greater;
}
}
}
pub fn __lexf2(a: f80, b: f80) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp_f80(LE, a, b);
return @bitCast(i32, float);
}
pub fn __gexf2(a: f80, b: f80) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp_f80(GE, a, b);
return @bitCast(i32, float);
}
pub fn __eqxf2(a: f80, b: f80) callconv(.C) i32 {
return __lexf2(a, b);
}
pub fn __ltxf2(a: f80, b: f80) callconv(.C) i32 {
return __lexf2(a, b);
}
pub fn __nexf2(a: f80, b: f80) callconv(.C) i32 {
return __lexf2(a, b);
}
pub fn __gtxf2(a: f80, b: f80) callconv(.C) i32 {
return __gexf2(a, b);
}
// Comparison between f128
pub fn __letf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f128, LE, a, b);
return @bitCast(i32, float);
}
pub fn __getf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
const float = cmp(f128, GE, a, b);
return @bitCast(i32, float);
}
pub fn __eqtf2(a: f128, b: f128) callconv(.C) i32 {
return __letf2(a, b);
}
pub fn __lttf2(a: f128, b: f128) callconv(.C) i32 {
return __letf2(a, b);
}
pub fn __netf2(a: f128, b: f128) callconv(.C) i32 {
return __letf2(a, b);
}
pub fn __gttf2(a: f128, b: f128) callconv(.C) i32 {
return __getf2(a, b);
}
// Unordered comparison between f32/f64/f128
pub fn __unordsf2(a: f32, b: f32) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f32, a, b);
}
pub fn __unorddf2(a: f64, b: f64) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f64, a, b);
}
pub fn __unordtf2(a: f128, b: f128) callconv(.C) i32 {
@setRuntimeSafety(builtin.is_test);
return unordcmp(f128, a, b);
}
// ARM EABI intrinsics
pub fn __aeabi_fcmpeq(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __eqsf2, .{ a, b }) == 0);
}
pub fn __aeabi_fcmplt(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ltsf2, .{ a, b }) < 0);
}
pub fn __aeabi_fcmple(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __lesf2, .{ a, b }) <= 0);
}
pub fn __aeabi_fcmpge(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gesf2, .{ a, b }) >= 0);
}
pub fn __aeabi_fcmpgt(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gtsf2, .{ a, b }) > 0);
}
pub fn __aeabi_fcmpun(a: f32, b: f32) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __unordsf2, .{ a, b });
}
pub fn __aeabi_dcmpeq(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __eqdf2, .{ a, b }) == 0);
}
pub fn __aeabi_dcmplt(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ltdf2, .{ a, b }) < 0);
}
pub fn __aeabi_dcmple(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __ledf2, .{ a, b }) <= 0);
}
pub fn __aeabi_dcmpge(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gedf2, .{ a, b }) >= 0);
}
pub fn __aeabi_dcmpgt(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @boolToInt(@call(.{ .modifier = .always_inline }, __gtdf2, .{ a, b }) > 0);
}
pub fn __aeabi_dcmpun(a: f64, b: f64) callconv(.AAPCS) i32 {
@setRuntimeSafety(false);
return @call(.{ .modifier = .always_inline }, __unorddf2, .{ a, b });
}
test "comparesf2" {
_ = @import("comparesf2_test.zig");
}
test "comparedf2" {
_ = @import("comparedf2_test.zig");
}