mirror of
https://github.com/ziglang/zig.git
synced 2025-12-06 14:23:09 +00:00
* mul_add AIR instruction: use `pl_op` instead of `ty_pl`. The type is always the same as the operand; no need to waste bytes redundantly storing the type. * AstGen: use coerced_ty for all the operands except for one which we use to communicate the type. * Sema: use the correct source location for requireRuntimeBlock in handling of `@mulAdd`. * native backends: handle liveness even for the functions that are TODO. * C backend: implement `@mulAdd`. It lowers to libc calls. * LLVM backend: make `@mulAdd` handle all float types. - improved fptrunc and fpext to handle f80 with compiler-rt calls. * Value.mulAdd: handle all float types and use the `@mulAdd` builtin. * behavior tests: revert the changes to testing `@mulAdd`. These changes broke the test coverage, making it only tested at compile-time. Improved f80 support: * std.math.fma handles f80 * move fma functions from freestanding libc to compiler-rt - add __fmax and fmal - make __fmax and fmaq only exported when they don't alias fmal. - make their linkage weak just like the rest of compiler-rt symbols. * removed `longDoubleIsF128` and replaced it with `longDoubleIs` which takes a type as a parameter. The implementation is now more accurate and handles more targets. Similarly, in stage2 the function CTypes.sizeInBits is more accurate for long double for more targets.
340 lines
10 KiB
Zig
340 lines
10 KiB
Zig
// Ported from musl, which is MIT licensed:
|
|
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
|
//
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/fmal.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/fmaf.c
|
|
// https://git.musl-libc.org/cgit/musl/tree/src/math/fma.c
|
|
|
|
const std = @import("../std.zig");
|
|
const math = std.math;
|
|
const expect = std.testing.expect;
|
|
|
|
/// Returns x * y + z with a single rounding error.
|
|
pub fn fma(comptime T: type, x: T, y: T, z: T) T {
|
|
return switch (T) {
|
|
f32 => fma32(x, y, z),
|
|
f64 => fma64(x, y, z),
|
|
f128 => fma128(x, y, z),
|
|
|
|
// TODO this is not correct for some targets
|
|
c_longdouble => @floatCast(c_longdouble, fma128(x, y, z)),
|
|
|
|
f80 => @floatCast(f80, fma128(x, y, z)),
|
|
|
|
else => @compileError("fma not implemented for " ++ @typeName(T)),
|
|
};
|
|
}
|
|
|
|
fn fma32(x: f32, y: f32, z: f32) f32 {
|
|
const xy = @as(f64, x) * y;
|
|
const xy_z = xy + z;
|
|
const u = @bitCast(u64, xy_z);
|
|
const e = (u >> 52) & 0x7FF;
|
|
|
|
if ((u & 0x1FFFFFFF) != 0x10000000 or e == 0x7FF or (xy_z - xy == z and xy_z - z == xy)) {
|
|
return @floatCast(f32, xy_z);
|
|
} else {
|
|
// TODO: Handle inexact case with double-rounding
|
|
return @floatCast(f32, xy_z);
|
|
}
|
|
}
|
|
|
|
// NOTE: Upstream fma.c has been rewritten completely to raise fp exceptions more accurately.
|
|
fn fma64(x: f64, y: f64, z: f64) f64 {
|
|
if (!math.isFinite(x) or !math.isFinite(y)) {
|
|
return x * y + z;
|
|
}
|
|
if (!math.isFinite(z)) {
|
|
return z;
|
|
}
|
|
if (x == 0.0 or y == 0.0) {
|
|
return x * y + z;
|
|
}
|
|
if (z == 0.0) {
|
|
return x * y;
|
|
}
|
|
|
|
const x1 = math.frexp(x);
|
|
var ex = x1.exponent;
|
|
var xs = x1.significand;
|
|
const x2 = math.frexp(y);
|
|
var ey = x2.exponent;
|
|
var ys = x2.significand;
|
|
const x3 = math.frexp(z);
|
|
var ez = x3.exponent;
|
|
var zs = x3.significand;
|
|
|
|
var spread = ex + ey - ez;
|
|
if (spread <= 53 * 2) {
|
|
zs = math.scalbn(zs, -spread);
|
|
} else {
|
|
zs = math.copysign(f64, math.f64_min, zs);
|
|
}
|
|
|
|
const xy = dd_mul(xs, ys);
|
|
const r = dd_add(xy.hi, zs);
|
|
spread = ex + ey;
|
|
|
|
if (r.hi == 0.0) {
|
|
return xy.hi + zs + math.scalbn(xy.lo, spread);
|
|
}
|
|
|
|
const adj = add_adjusted(r.lo, xy.lo);
|
|
if (spread + math.ilogb(r.hi) > -1023) {
|
|
return math.scalbn(r.hi + adj, spread);
|
|
} else {
|
|
return add_and_denorm(r.hi, adj, spread);
|
|
}
|
|
}
|
|
|
|
const dd = struct {
|
|
hi: f64,
|
|
lo: f64,
|
|
};
|
|
|
|
fn dd_add(a: f64, b: f64) dd {
|
|
var ret: dd = undefined;
|
|
ret.hi = a + b;
|
|
const s = ret.hi - a;
|
|
ret.lo = (a - (ret.hi - s)) + (b - s);
|
|
return ret;
|
|
}
|
|
|
|
fn dd_mul(a: f64, b: f64) dd {
|
|
var ret: dd = undefined;
|
|
const split: f64 = 0x1.0p27 + 1.0;
|
|
|
|
var p = a * split;
|
|
var ha = a - p;
|
|
ha += p;
|
|
var la = a - ha;
|
|
|
|
p = b * split;
|
|
var hb = b - p;
|
|
hb += p;
|
|
var lb = b - hb;
|
|
|
|
p = ha * hb;
|
|
var q = ha * lb + la * hb;
|
|
|
|
ret.hi = p + q;
|
|
ret.lo = p - ret.hi + q + la * lb;
|
|
return ret;
|
|
}
|
|
|
|
fn add_adjusted(a: f64, b: f64) f64 {
|
|
var sum = dd_add(a, b);
|
|
if (sum.lo != 0) {
|
|
var uhii = @bitCast(u64, sum.hi);
|
|
if (uhii & 1 == 0) {
|
|
// hibits += copysign(1.0, sum.hi, sum.lo)
|
|
const uloi = @bitCast(u64, sum.lo);
|
|
uhii += 1 - ((uhii ^ uloi) >> 62);
|
|
sum.hi = @bitCast(f64, uhii);
|
|
}
|
|
}
|
|
return sum.hi;
|
|
}
|
|
|
|
fn add_and_denorm(a: f64, b: f64, scale: i32) f64 {
|
|
var sum = dd_add(a, b);
|
|
if (sum.lo != 0) {
|
|
var uhii = @bitCast(u64, sum.hi);
|
|
const bits_lost = -@intCast(i32, (uhii >> 52) & 0x7FF) - scale + 1;
|
|
if ((bits_lost != 1) == (uhii & 1 != 0)) {
|
|
const uloi = @bitCast(u64, sum.lo);
|
|
uhii += 1 - (((uhii ^ uloi) >> 62) & 2);
|
|
sum.hi = @bitCast(f64, uhii);
|
|
}
|
|
}
|
|
return math.scalbn(sum.hi, scale);
|
|
}
|
|
|
|
/// A struct that represents a floating-point number with twice the precision
|
|
/// of f128. We maintain the invariant that "hi" stores the high-order
|
|
/// bits of the result.
|
|
const dd128 = struct {
|
|
hi: f128,
|
|
lo: f128,
|
|
};
|
|
|
|
/// Compute a+b exactly, returning the exact result in a struct dd. We assume
|
|
/// that both a and b are finite, but make no assumptions about their relative
|
|
/// magnitudes.
|
|
fn dd_add128(a: f128, b: f128) dd128 {
|
|
var ret: dd128 = undefined;
|
|
ret.hi = a + b;
|
|
const s = ret.hi - a;
|
|
ret.lo = (a - (ret.hi - s)) + (b - s);
|
|
return ret;
|
|
}
|
|
|
|
/// Compute a+b, with a small tweak: The least significant bit of the
|
|
/// result is adjusted into a sticky bit summarizing all the bits that
|
|
/// were lost to rounding. This adjustment negates the effects of double
|
|
/// rounding when the result is added to another number with a higher
|
|
/// exponent. For an explanation of round and sticky bits, see any reference
|
|
/// on FPU design, e.g.,
|
|
///
|
|
/// J. Coonen. An Implementation Guide to a Proposed Standard for
|
|
/// Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
|
|
fn add_adjusted128(a: f128, b: f128) f128 {
|
|
var sum = dd_add128(a, b);
|
|
if (sum.lo != 0) {
|
|
var uhii = @bitCast(u128, sum.hi);
|
|
if (uhii & 1 == 0) {
|
|
// hibits += copysign(1.0, sum.hi, sum.lo)
|
|
const uloi = @bitCast(u128, sum.lo);
|
|
uhii += 1 - ((uhii ^ uloi) >> 126);
|
|
sum.hi = @bitCast(f128, uhii);
|
|
}
|
|
}
|
|
return sum.hi;
|
|
}
|
|
|
|
/// Compute ldexp(a+b, scale) with a single rounding error. It is assumed
|
|
/// that the result will be subnormal, and care is taken to ensure that
|
|
/// double rounding does not occur.
|
|
fn add_and_denorm128(a: f128, b: f128, scale: i32) f128 {
|
|
var sum = dd_add128(a, b);
|
|
// If we are losing at least two bits of accuracy to denormalization,
|
|
// then the first lost bit becomes a round bit, and we adjust the
|
|
// lowest bit of sum.hi to make it a sticky bit summarizing all the
|
|
// bits in sum.lo. With the sticky bit adjusted, the hardware will
|
|
// break any ties in the correct direction.
|
|
//
|
|
// If we are losing only one bit to denormalization, however, we must
|
|
// break the ties manually.
|
|
if (sum.lo != 0) {
|
|
var uhii = @bitCast(u128, sum.hi);
|
|
const bits_lost = -@intCast(i32, (uhii >> 112) & 0x7FFF) - scale + 1;
|
|
if ((bits_lost != 1) == (uhii & 1 != 0)) {
|
|
const uloi = @bitCast(u128, sum.lo);
|
|
uhii += 1 - (((uhii ^ uloi) >> 126) & 2);
|
|
sum.hi = @bitCast(f128, uhii);
|
|
}
|
|
}
|
|
return math.scalbn(sum.hi, scale);
|
|
}
|
|
|
|
/// Compute a*b exactly, returning the exact result in a struct dd. We assume
|
|
/// that both a and b are normalized, so no underflow or overflow will occur.
|
|
/// The current rounding mode must be round-to-nearest.
|
|
fn dd_mul128(a: f128, b: f128) dd128 {
|
|
var ret: dd128 = undefined;
|
|
const split: f128 = 0x1.0p57 + 1.0;
|
|
|
|
var p = a * split;
|
|
var ha = a - p;
|
|
ha += p;
|
|
var la = a - ha;
|
|
|
|
p = b * split;
|
|
var hb = b - p;
|
|
hb += p;
|
|
var lb = b - hb;
|
|
|
|
p = ha * hb;
|
|
var q = ha * lb + la * hb;
|
|
|
|
ret.hi = p + q;
|
|
ret.lo = p - ret.hi + q + la * lb;
|
|
return ret;
|
|
}
|
|
|
|
/// Fused multiply-add: Compute x * y + z with a single rounding error.
|
|
///
|
|
/// We use scaling to avoid overflow/underflow, along with the
|
|
/// canonical precision-doubling technique adapted from:
|
|
///
|
|
/// Dekker, T. A Floating-Point Technique for Extending the
|
|
/// Available Precision. Numer. Math. 18, 224-242 (1971).
|
|
fn fma128(x: f128, y: f128, z: f128) f128 {
|
|
if (!math.isFinite(x) or !math.isFinite(y)) {
|
|
return x * y + z;
|
|
}
|
|
if (!math.isFinite(z)) {
|
|
return z;
|
|
}
|
|
if (x == 0.0 or y == 0.0) {
|
|
return x * y + z;
|
|
}
|
|
if (z == 0.0) {
|
|
return x * y;
|
|
}
|
|
|
|
const x1 = math.frexp(x);
|
|
var ex = x1.exponent;
|
|
var xs = x1.significand;
|
|
const x2 = math.frexp(y);
|
|
var ey = x2.exponent;
|
|
var ys = x2.significand;
|
|
const x3 = math.frexp(z);
|
|
var ez = x3.exponent;
|
|
var zs = x3.significand;
|
|
|
|
var spread = ex + ey - ez;
|
|
if (spread <= 113 * 2) {
|
|
zs = math.scalbn(zs, -spread);
|
|
} else {
|
|
zs = math.copysign(f128, math.f128_min, zs);
|
|
}
|
|
|
|
const xy = dd_mul128(xs, ys);
|
|
const r = dd_add128(xy.hi, zs);
|
|
spread = ex + ey;
|
|
|
|
if (r.hi == 0.0) {
|
|
return xy.hi + zs + math.scalbn(xy.lo, spread);
|
|
}
|
|
|
|
const adj = add_adjusted128(r.lo, xy.lo);
|
|
if (spread + math.ilogb(r.hi) > -16383) {
|
|
return math.scalbn(r.hi + adj, spread);
|
|
} else {
|
|
return add_and_denorm128(r.hi, adj, spread);
|
|
}
|
|
}
|
|
|
|
test "type dispatch" {
|
|
try expect(fma(f32, 0.0, 1.0, 1.0) == fma32(0.0, 1.0, 1.0));
|
|
try expect(fma(f64, 0.0, 1.0, 1.0) == fma64(0.0, 1.0, 1.0));
|
|
try expect(fma(f128, 0.0, 1.0, 1.0) == fma128(0.0, 1.0, 1.0));
|
|
}
|
|
|
|
test "32" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f32, fma32(0.0, 5.0, 9.124), 9.124, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(0.2, 5.0, 9.124), 10.124, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(0.8923, 5.0, 9.124), 13.5855, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(1.5, 5.0, 9.124), 16.624, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(37.45, 5.0, 9.124), 196.374004, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(89.123, 5.0, 9.124), 454.739005, epsilon));
|
|
try expect(math.approxEqAbs(f32, fma32(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
|
|
}
|
|
|
|
test "64" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f64, fma64(0.0, 5.0, 9.124), 9.124, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(0.2, 5.0, 9.124), 10.124, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(0.8923, 5.0, 9.124), 13.5855, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(1.5, 5.0, 9.124), 16.624, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(37.45, 5.0, 9.124), 196.374, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(89.123, 5.0, 9.124), 454.739, epsilon));
|
|
try expect(math.approxEqAbs(f64, fma64(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
|
|
}
|
|
|
|
test "128" {
|
|
const epsilon = 0.000001;
|
|
|
|
try expect(math.approxEqAbs(f128, fma128(0.0, 5.0, 9.124), 9.124, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(0.2, 5.0, 9.124), 10.124, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(0.8923, 5.0, 9.124), 13.5855, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(1.5, 5.0, 9.124), 16.624, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(37.45, 5.0, 9.124), 196.374, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(89.123, 5.0, 9.124), 454.739, epsilon));
|
|
try expect(math.approxEqAbs(f128, fma128(123123.234375, 5.0, 9.124), 615625.295875, epsilon));
|
|
}
|