zig/lib/std/debug/leb128.zig
tgschultz 00ec81b0dc Overhauled leb128:
handles integers < 8 bits
    incorrect overflow bugs fixed
    simplified *mem implementations
    added wrte* functions
    added thurough write/read testing
2020-06-16 16:20:59 +00:00

369 lines
14 KiB
Zig

const std = @import("std");
const testing = std.testing;
//@TODO: you can take *slice and alter slice.ptr
// make sign bits check more efficient
// add wrapper readLEB128 and write LEB128 that infer from type?
// or use assertions?
pub fn readULEB128(comptime T: type, reader: var) !T {
const U = if (T.bit_count < 8) u8 else T;
const ShiftT = std.math.Log2Int(U);
const max_group = (U.bit_count + 6) / 7;
var value = @as(U, 0);
var group = @as(ShiftT, 0);
while (group < max_group) : (group += 1) {
const byte = try reader.readByte();
var temp = @as(U, byte & 0x7f);
if (@shlWithOverflow(U, temp, group * 7, &temp)) return error.Overflow;
value |= temp;
if (byte & 0x80 == 0) break;
} else {
return error.Overflow;
}
//only applies in the case that we extended to u8
if (value > std.math.maxInt(T)) return error.Overflow;
return @truncate(T, value);
}
pub fn writeULEB128(writer: var, uint_value: var) !void {
const T = @TypeOf(uint_value);
const U = if (T.bit_count < 8) u8 else T;
var value = @intCast(U, uint_value);
while (true) {
const byte = @truncate(u8, value & 0x7f);
value >>= 7;
if (value == 0) {
try writer.writeByte(byte);
break;
} else {
try writer.writeByte(byte | 0x80);
}
}
}
pub fn readULEB128Mem(comptime T: type, ptr: *[*]const u8) !T {
const max_group = (T.bit_count + 6) / 7;
var buf = std.io.fixedBufferStream(ptr.*[0 .. max_group + 1]);
const value = try readULEB128(T, buf.reader());
ptr.* += @intCast(usize, try buf.getPos());
return value;
}
pub fn writeULEB128Mem(ptr: []u8, uint_value: var) !usize {
const T = @TypeOf(uint_value);
const max_group = (T.bit_count + 6) / 7;
var buf = std.io.fixedBufferStream(ptr);
try writeULEB128(buf.writer(), uint_value);
return try buf.getPos();
}
pub fn readILEB128(comptime T: type, reader: var) !T {
const S = if (T.bit_count < 8) i8 else T;
const U = std.meta.Int(false, S.bit_count);
const ShiftU = std.math.Log2Int(U);
const max_group = (U.bit_count + 6) / 7;
var value = @as(U, 0);
var group = @as(ShiftU, 0);
while (group < max_group) : (group += 1) {
const byte = try reader.readByte();
var temp = @as(U, byte & 0x7f);
if (@shlWithOverflow(U, temp, group * 7, &temp)) {
//Overflow is ok so long as the sign bit is set and this is the last byte
if (byte & 0x80 != 0) return error.Overflow;
if (@bitCast(S, temp) >= 0) return error.Overflow;
//and all the overflowed bits are 1
const check_bits_shift = @intCast(u3, U.bit_count - @as(u16, group * 7));
const check_bits_remaining = 7 - check_bits_shift;
const check_bits = byte >> check_bits_shift;
const num_consecutive_ones = @ctz(u8, ~check_bits);
if (num_consecutive_ones < check_bits_remaining) return error.Overflow;
}
value |= temp;
if (byte & 0x80 == 0) {
if (byte & 0x40 != 0 and group + 1 < max_group) {
value |= @bitCast(U, @as(S, -1)) << ((group + 1) * 7);
}
break;
}
} else {
return error.Overflow;
}
//Only applies if we extended to i8
if (@bitCast(S, value) > std.math.maxInt(T) or @bitCast(S, value) < std.math.minInt(T)) return error.Overflow;
return @truncate(T, @bitCast(S, value));
}
pub fn writeILEB128(writer: var, int_value: var) !void {
const T = @TypeOf(int_value);
const S = if (T.bit_count < 8) i8 else T;
const U = std.meta.Int(false, S.bit_count);
var value = @intCast(S, int_value);
while (true) {
const uvalue = @bitCast(U, value);
const byte = @truncate(u8, uvalue);
value >>= 6;
if (value == -1 or value == 0) {
try writer.writeByte(byte & 0x7F);
break;
} else {
value >>= 1;
try writer.writeByte(byte | 0x80);
}
}
}
pub fn readILEB128Mem(comptime T: type, ptr: *[*]const u8) !T {
const max_group = (T.bit_count + 6) / 7;
var buf = std.io.fixedBufferStream(ptr.*[0 .. max_group + 1]);
const value = try readILEB128(T, buf.reader());
ptr.* += @intCast(usize, try buf.getPos());
return value;
}
pub fn writeILEB128Mem(ptr: []u8, int_value: var) !usize {
const T = @TypeOf(int_value);
var buf = std.io.fixedBufferStream(ptr);
try writeILEB128(buf.writer(), int_value);
return try buf.getPos();
}
//tests
fn test_read_stream_ileb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
return try readILEB128(T, reader.reader());
}
fn test_read_stream_uleb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
return try readULEB128(T, reader.reader());
}
fn test_read_ileb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
const v1 = try readILEB128(T, reader.reader());
var in_ptr = encoded.ptr;
const v2 = try readILEB128Mem(T, &in_ptr);
testing.expectEqual(v1, v2);
return v1;
}
fn test_read_uleb128(comptime T: type, encoded: []const u8) !T {
var reader = std.io.fixedBufferStream(encoded);
const v1 = try readULEB128(T, reader.reader());
var in_ptr = encoded.ptr;
const v2 = try readULEB128Mem(T, &in_ptr);
testing.expectEqual(v1, v2);
return v1;
}
fn test_read_ileb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) !void {
var reader = std.io.fixedBufferStream(encoded);
var in_ptr = encoded.ptr;
var i: usize = 0;
while (i < N) : (i += 1) {
const v1 = try readILEB128(T, reader.reader());
const v2 = try readILEB128Mem(T, &in_ptr);
testing.expectEqual(v1, v2);
}
}
fn test_read_uleb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) !void {
var reader = std.io.fixedBufferStream(encoded);
var in_ptr = encoded.ptr;
var i: usize = 0;
while (i < N) : (i += 1) {
const v1 = try readULEB128(T, reader.reader());
const v2 = try readULEB128Mem(T, &in_ptr);
testing.expectEqual(v1, v2);
}
}
test "deserialize signed LEB128" {
// Truncated
testing.expectError(error.EndOfStream, test_read_stream_ileb128(i64, "\x80"));
// Overflow
testing.expectError(error.Overflow, test_read_ileb128(i8, "\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_ileb128(i16, "\x80\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_ileb128(i32, "\x80\x80\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_ileb128(i8, "\xff\x7e"));
// Decode SLEB128
testing.expect((try test_read_ileb128(i64, "\x00")) == 0);
testing.expect((try test_read_ileb128(i64, "\x01")) == 1);
testing.expect((try test_read_ileb128(i64, "\x3f")) == 63);
testing.expect((try test_read_ileb128(i64, "\x40")) == -64);
testing.expect((try test_read_ileb128(i64, "\x41")) == -63);
testing.expect((try test_read_ileb128(i64, "\x7f")) == -1);
testing.expect((try test_read_ileb128(i64, "\x80\x01")) == 128);
testing.expect((try test_read_ileb128(i64, "\x81\x01")) == 129);
testing.expect((try test_read_ileb128(i64, "\xff\x7e")) == -129);
testing.expect((try test_read_ileb128(i64, "\x80\x7f")) == -128);
testing.expect((try test_read_ileb128(i64, "\x81\x7f")) == -127);
testing.expect((try test_read_ileb128(i64, "\xc0\x00")) == 64);
testing.expect((try test_read_ileb128(i64, "\xc7\x9f\x7f")) == -12345);
testing.expect((try test_read_ileb128(i8, "\xff\x7f")) == -1);
testing.expect((try test_read_ileb128(i16, "\xff\xff\x7f")) == -1);
testing.expect((try test_read_ileb128(i32, "\xff\xff\xff\xff\x7f")) == -1);
testing.expect((try test_read_ileb128(i32, "\x80\x80\x80\x80\x08")) == -0x80000000);
testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01")) == @bitCast(i64, @intCast(u64, 0x8000000000000000)));
testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x40")) == -0x4000000000000000);
testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x7f")) == -0x8000000000000000);
// Decode unnormalized SLEB128 with extra padding bytes.
testing.expect((try test_read_ileb128(i64, "\x80\x00")) == 0);
testing.expect((try test_read_ileb128(i64, "\x80\x80\x00")) == 0);
testing.expect((try test_read_ileb128(i64, "\xff\x00")) == 0x7f);
testing.expect((try test_read_ileb128(i64, "\xff\x80\x00")) == 0x7f);
testing.expect((try test_read_ileb128(i64, "\x80\x81\x00")) == 0x80);
testing.expect((try test_read_ileb128(i64, "\x80\x81\x80\x00")) == 0x80);
// Decode sequence of SLEB128 values
try test_read_ileb128_seq(i64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00");
}
test "deserialize unsigned LEB128" {
// Truncated
testing.expectError(error.EndOfStream, test_read_stream_uleb128(u64, "\x80"));
// Overflow
testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x02"));
testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x84"));
testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x90"));
testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x40"));
testing.expectError(error.Overflow, test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40"));
// Decode ULEB128
testing.expect((try test_read_uleb128(u64, "\x00")) == 0);
testing.expect((try test_read_uleb128(u64, "\x01")) == 1);
testing.expect((try test_read_uleb128(u64, "\x3f")) == 63);
testing.expect((try test_read_uleb128(u64, "\x40")) == 64);
testing.expect((try test_read_uleb128(u64, "\x7f")) == 0x7f);
testing.expect((try test_read_uleb128(u64, "\x80\x01")) == 0x80);
testing.expect((try test_read_uleb128(u64, "\x81\x01")) == 0x81);
testing.expect((try test_read_uleb128(u64, "\x90\x01")) == 0x90);
testing.expect((try test_read_uleb128(u64, "\xff\x01")) == 0xff);
testing.expect((try test_read_uleb128(u64, "\x80\x02")) == 0x100);
testing.expect((try test_read_uleb128(u64, "\x81\x02")) == 0x101);
testing.expect((try test_read_uleb128(u64, "\x80\xc1\x80\x80\x10")) == 4294975616);
testing.expect((try test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01")) == 0x8000000000000000);
// Decode ULEB128 with extra padding bytes
testing.expect((try test_read_uleb128(u64, "\x80\x00")) == 0);
testing.expect((try test_read_uleb128(u64, "\x80\x80\x00")) == 0);
testing.expect((try test_read_uleb128(u64, "\xff\x00")) == 0x7f);
testing.expect((try test_read_uleb128(u64, "\xff\x80\x00")) == 0x7f);
testing.expect((try test_read_uleb128(u64, "\x80\x81\x00")) == 0x80);
testing.expect((try test_read_uleb128(u64, "\x80\x81\x80\x00")) == 0x80);
// Decode sequence of ULEB128 values
try test_read_uleb128_seq(u64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00");
}
fn test_write_leb128(value: var) !void {
const T = @TypeOf(value);
if (T.bit_count == 0) std.debug.warn("{}\n", .{@typeName(T)});
const writeStream = if (T.is_signed) writeILEB128 else writeULEB128;
const writeMem = if (T.is_signed) writeILEB128Mem else writeULEB128Mem;
const readStream = if (T.is_signed) readILEB128 else readULEB128;
const readMem = if (T.is_signed) readILEB128Mem else readULEB128Mem;
//decode to a larger bit size too, to ensure sign extension
// is working as expected
const larger_type_bits = ((T.bit_count + 8) / 8) * 8;
const B = std.meta.Int(T.is_signed, larger_type_bits);
const max_groups = if (T.bit_count == 0) 1 else (T.bit_count + 6) / 7;
var buf: [max_groups]u8 = undefined;
var fbs = std.io.fixedBufferStream(&buf);
//stream write
try writeStream(fbs.writer(), value);
const w1_pos = fbs.pos;
testing.expect(w1_pos > 0);
//stream read
fbs.pos = 0;
const sr = try readStream(T, fbs.reader());
testing.expect(fbs.pos == w1_pos);
testing.expect(sr == value);
//bigger type stream read
fbs.pos = 0;
const bsr = try readStream(B, fbs.reader());
testing.expect(fbs.pos == w1_pos);
testing.expect(bsr == value);
//mem write
const w2_pos = try writeMem(&buf, value);
testing.expect(w2_pos == w1_pos);
//mem read
var buf_ref: []u8 = buf[0..];
const mr = try readMem(T, &buf_ref.ptr);
testing.expect(@ptrToInt(buf_ref.ptr) - @ptrToInt(&buf) == w2_pos);
testing.expect(mr == value);
//bigger type mem read
buf_ref = buf[0..];
const bmr = try readMem(T, &buf_ref.ptr);
testing.expect(@ptrToInt(buf_ref.ptr) - @ptrToInt(&buf) == w2_pos);
testing.expect(bmr == value);
}
test "serialize unsigned LEB128" {
const max_bits = 18;
comptime var t = 0;
inline while (t <= max_bits) : (t += 1) {
const T = std.meta.Int(false, t);
const min = std.math.minInt(T);
const max = std.math.maxInt(T);
var i = @as(std.meta.Int(false, T.bit_count + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i));
}
}
test "serialize signed LEB128" {
//explicitly test i0 because starting `t` at 0
// will break the while loop
try test_write_leb128(@as(i0, 0));
const max_bits = 18;
comptime var t = 1;
inline while (t <= max_bits) : (t += 1) {
const T = std.meta.Int(true, t);
const min = std.math.minInt(T);
const max = std.math.maxInt(T);
var i = @as(std.meta.Int(true, T.bit_count + 1), min);
while (i <= max) : (i += 1) try test_write_leb128(@intCast(T, i));
}
}