const builtin = @import("builtin"); const std = @import("../std.zig"); const Watch = @This(); const Step = std.Build.Step; const Allocator = std.mem.Allocator; const assert = std.debug.assert; const fatal = std.zig.fatal; dir_table: DirTable, os: Os, generation: Generation, /// Key is the directory to watch which contains one or more files we are /// interested in noticing changes to. /// /// Value is generation. const DirTable = std.ArrayHashMapUnmanaged(Cache.Path, void, Cache.Path.TableAdapter, false); /// Special key of "." means any changes in this directory trigger the steps. const ReactionSet = std.StringArrayHashMapUnmanaged(StepSet); const StepSet = std.AutoArrayHashMapUnmanaged(*Step, Generation); const Generation = u8; const Hash = std.hash.Wyhash; const Cache = std.Build.Cache; const Os = switch (builtin.os.tag) { .linux => struct { const posix = std.posix; /// Keyed differently but indexes correspond 1:1 with `dir_table`. handle_table: HandleTable, poll_fds: [1]posix.pollfd, const HandleTable = std.ArrayHashMapUnmanaged(FileHandle, ReactionSet, FileHandle.Adapter, false); const fan_mask: std.os.linux.fanotify.MarkMask = .{ .CLOSE_WRITE = true, .CREATE = true, .DELETE = true, .DELETE_SELF = true, .EVENT_ON_CHILD = true, .MOVED_FROM = true, .MOVED_TO = true, .MOVE_SELF = true, .ONDIR = true, }; const FileHandle = struct { handle: *align(1) std.os.linux.file_handle, fn clone(lfh: FileHandle, gpa: Allocator) Allocator.Error!FileHandle { const bytes = lfh.slice(); const new_ptr = try gpa.alignedAlloc( u8, @alignOf(std.os.linux.file_handle), @sizeOf(std.os.linux.file_handle) + bytes.len, ); const new_header: *std.os.linux.file_handle = @ptrCast(new_ptr); new_header.* = lfh.handle.*; const new: FileHandle = .{ .handle = new_header }; @memcpy(new.slice(), lfh.slice()); return new; } fn destroy(lfh: FileHandle, gpa: Allocator) void { const ptr: [*]u8 = @ptrCast(lfh.handle); const allocated_slice = ptr[0 .. @sizeOf(std.os.linux.file_handle) + lfh.handle.handle_bytes]; return gpa.free(allocated_slice); } fn slice(lfh: FileHandle) []u8 { const ptr: [*]u8 = &lfh.handle.f_handle; return ptr[0..lfh.handle.handle_bytes]; } const Adapter = struct { pub fn hash(self: Adapter, a: FileHandle) u32 { _ = self; const unsigned_type: u32 = @bitCast(a.handle.handle_type); return @truncate(Hash.hash(unsigned_type, a.slice())); } pub fn eql(self: Adapter, a: FileHandle, b: FileHandle, b_index: usize) bool { _ = self; _ = b_index; return a.handle.handle_type == b.handle.handle_type and std.mem.eql(u8, a.slice(), b.slice()); } }; }; fn getDirHandle(gpa: Allocator, path: std.Build.Cache.Path) !FileHandle { var file_handle_buffer: [@sizeOf(std.os.linux.file_handle) + 128]u8 align(@alignOf(std.os.linux.file_handle)) = undefined; var mount_id: i32 = undefined; var buf: [std.fs.max_path_bytes]u8 = undefined; const adjusted_path = if (path.sub_path.len == 0) "./" else std.fmt.bufPrint(&buf, "{s}/", .{ path.sub_path, }) catch return error.NameTooLong; const stack_ptr: *std.os.linux.file_handle = @ptrCast(&file_handle_buffer); stack_ptr.handle_bytes = file_handle_buffer.len - @sizeOf(std.os.linux.file_handle); try posix.name_to_handle_at(path.root_dir.handle.fd, adjusted_path, stack_ptr, &mount_id, std.os.linux.AT.HANDLE_FID); const stack_lfh: FileHandle = .{ .handle = stack_ptr }; return stack_lfh.clone(gpa); } fn markDirtySteps(w: *Watch, gpa: Allocator) !bool { const fan_fd = w.os.getFanFd(); const fanotify = std.os.linux.fanotify; const M = fanotify.event_metadata; var events_buf: [256 + 4096]u8 = undefined; var any_dirty = false; while (true) { var len = posix.read(fan_fd, &events_buf) catch |err| switch (err) { error.WouldBlock => return any_dirty, else => |e| return e, }; var meta: [*]align(1) M = @ptrCast(&events_buf); while (len >= @sizeOf(M) and meta[0].event_len >= @sizeOf(M) and meta[0].event_len <= len) : ({ len -= meta[0].event_len; meta = @ptrCast(@as([*]u8, @ptrCast(meta)) + meta[0].event_len); }) { assert(meta[0].vers == M.VERSION); if (meta[0].mask.Q_OVERFLOW) { any_dirty = true; std.log.warn("file system watch queue overflowed; falling back to fstat", .{}); markAllFilesDirty(w, gpa); return true; } const fid: *align(1) fanotify.event_info_fid = @ptrCast(meta + 1); switch (fid.hdr.info_type) { .DFID_NAME => { const file_handle: *align(1) std.os.linux.file_handle = @ptrCast(&fid.handle); const file_name_z: [*:0]u8 = @ptrCast((&file_handle.f_handle).ptr + file_handle.handle_bytes); const file_name = std.mem.span(file_name_z); const lfh: FileHandle = .{ .handle = file_handle }; if (w.os.handle_table.getPtr(lfh)) |reaction_set| { if (reaction_set.getPtr(".")) |glob_set| any_dirty = markStepSetDirty(gpa, glob_set, any_dirty); if (reaction_set.getPtr(file_name)) |step_set| any_dirty = markStepSetDirty(gpa, step_set, any_dirty); } }, else => |t| std.log.warn("unexpected fanotify event '{s}'", .{@tagName(t)}), } } } } fn getFanFd(os: *const @This()) posix.fd_t { return os.poll_fds[0].fd; } fn update(w: *Watch, gpa: Allocator, steps: []const *Step) !void { const fan_fd = w.os.getFanFd(); // Add missing marks and note persisted ones. for (steps) |step| { for (step.inputs.table.keys(), step.inputs.table.values()) |path, *files| { const reaction_set = rs: { const gop = try w.dir_table.getOrPut(gpa, path); if (!gop.found_existing) { const dir_handle = try Os.getDirHandle(gpa, path); // `dir_handle` may already be present in the table in // the case that we have multiple Cache.Path instances // that compare inequal but ultimately point to the same // directory on the file system. // In such case, we must revert adding this directory, but keep // the additions to the step set. const dh_gop = try w.os.handle_table.getOrPut(gpa, dir_handle); if (dh_gop.found_existing) { _ = w.dir_table.pop(); } else { assert(dh_gop.index == gop.index); dh_gop.value_ptr.* = .{}; posix.fanotify_mark(fan_fd, .{ .ADD = true, .ONLYDIR = true, }, fan_mask, path.root_dir.handle.fd, path.subPathOrDot()) catch |err| { fatal("unable to watch {}: {s}", .{ path, @errorName(err) }); }; } break :rs dh_gop.value_ptr; } break :rs &w.os.handle_table.values()[gop.index]; }; for (files.items) |basename| { const gop = try reaction_set.getOrPut(gpa, basename); if (!gop.found_existing) gop.value_ptr.* = .{}; try gop.value_ptr.put(gpa, step, w.generation); } } } { // Remove marks for files that are no longer inputs. var i: usize = 0; while (i < w.os.handle_table.entries.len) { { const reaction_set = &w.os.handle_table.values()[i]; var step_set_i: usize = 0; while (step_set_i < reaction_set.entries.len) { const step_set = &reaction_set.values()[step_set_i]; var dirent_i: usize = 0; while (dirent_i < step_set.entries.len) { const generations = step_set.values(); if (generations[dirent_i] == w.generation) { dirent_i += 1; continue; } step_set.swapRemoveAt(dirent_i); } if (step_set.entries.len > 0) { step_set_i += 1; continue; } reaction_set.swapRemoveAt(step_set_i); } if (reaction_set.entries.len > 0) { i += 1; continue; } } const path = w.dir_table.keys()[i]; posix.fanotify_mark(fan_fd, .{ .REMOVE = true, .ONLYDIR = true, }, fan_mask, path.root_dir.handle.fd, path.subPathOrDot()) catch |err| switch (err) { error.FileNotFound => {}, // Expected, harmless. else => |e| std.log.warn("unable to unwatch '{}': {s}", .{ path, @errorName(e) }), }; w.dir_table.swapRemoveAt(i); w.os.handle_table.swapRemoveAt(i); } w.generation +%= 1; } } }, .windows => struct { const windows = std.os.windows; /// Keyed differently but indexes correspond 1:1 with `dir_table`. handle_table: HandleTable, dir_list: std.AutoArrayHashMapUnmanaged(usize, *Directory), io_cp: ?windows.HANDLE, counter: usize = 0, const HandleTable = std.AutoArrayHashMapUnmanaged(FileId, ReactionSet); const FileId = struct { volumeSerialNumber: windows.ULONG, indexNumber: windows.LARGE_INTEGER, }; const Directory = struct { handle: windows.HANDLE, id: FileId, overlapped: windows.OVERLAPPED, // 64 KB is the packet size limit when monitoring over a network. // https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-readdirectorychangesw#remarks buffer: [64 * 1024]u8 align(@alignOf(windows.FILE_NOTIFY_INFORMATION)) = undefined, /// Start listening for events, buffer field will be overwritten eventually. fn startListening(self: *@This()) !void { const r = windows.kernel32.ReadDirectoryChangesW( self.handle, @ptrCast(&self.buffer), self.buffer.len, 0, .{ .creation = true, .dir_name = true, .file_name = true, .last_write = true, .size = true, }, null, &self.overlapped, null, ); if (r == windows.FALSE) { switch (windows.GetLastError()) { .INVALID_FUNCTION => return error.ReadDirectoryChangesUnsupported, else => |err| return windows.unexpectedError(err), } } } fn init(gpa: Allocator, path: Cache.Path) !*@This() { // The following code is a drawn out NtCreateFile call. (mostly adapted from std.fs.Dir.makeOpenDirAccessMaskW) // It's necessary in order to get the specific flags that are required when calling ReadDirectoryChangesW. var dir_handle: windows.HANDLE = undefined; const root_fd = path.root_dir.handle.fd; const sub_path = path.subPathOrDot(); const sub_path_w = try windows.sliceToPrefixedFileW(root_fd, sub_path); const path_len_bytes = std.math.cast(u16, sub_path_w.len * 2) orelse return error.NameTooLong; var nt_name = windows.UNICODE_STRING{ .Length = @intCast(path_len_bytes), .MaximumLength = @intCast(path_len_bytes), .Buffer = @constCast(sub_path_w.span().ptr), }; var attr = windows.OBJECT_ATTRIBUTES{ .Length = @sizeOf(windows.OBJECT_ATTRIBUTES), .RootDirectory = if (std.fs.path.isAbsoluteWindowsW(sub_path_w.span())) null else root_fd, .Attributes = 0, // Note we do not use OBJ_CASE_INSENSITIVE here. .ObjectName = &nt_name, .SecurityDescriptor = null, .SecurityQualityOfService = null, }; var io: windows.IO_STATUS_BLOCK = undefined; switch (windows.ntdll.NtCreateFile( &dir_handle, windows.SYNCHRONIZE | windows.GENERIC_READ | windows.FILE_LIST_DIRECTORY, &attr, &io, null, 0, windows.FILE_SHARE_READ | windows.FILE_SHARE_WRITE | windows.FILE_SHARE_DELETE, windows.FILE_OPEN, windows.FILE_DIRECTORY_FILE | windows.FILE_OPEN_FOR_BACKUP_INTENT, null, 0, )) { .SUCCESS => {}, .OBJECT_NAME_INVALID => return error.BadPathName, .OBJECT_NAME_NOT_FOUND => return error.FileNotFound, .OBJECT_NAME_COLLISION => return error.PathAlreadyExists, .OBJECT_PATH_NOT_FOUND => return error.FileNotFound, .NOT_A_DIRECTORY => return error.NotDir, // This can happen if the directory has 'List folder contents' permission set to 'Deny' .ACCESS_DENIED => return error.AccessDenied, .INVALID_PARAMETER => unreachable, else => |rc| return windows.unexpectedStatus(rc), } assert(dir_handle != windows.INVALID_HANDLE_VALUE); errdefer windows.CloseHandle(dir_handle); const dir_id = try getFileId(dir_handle); const dir_ptr = try gpa.create(@This()); dir_ptr.* = .{ .handle = dir_handle, .id = dir_id, .overlapped = std.mem.zeroes(windows.OVERLAPPED), }; return dir_ptr; } fn deinit(self: *@This(), gpa: Allocator) void { _ = windows.kernel32.CancelIo(self.handle); windows.CloseHandle(self.handle); gpa.destroy(self); } }; fn getFileId(handle: windows.HANDLE) !FileId { var file_id: FileId = undefined; var io_status: windows.IO_STATUS_BLOCK = undefined; var volume_info: windows.FILE_FS_VOLUME_INFORMATION = undefined; switch (windows.ntdll.NtQueryVolumeInformationFile( handle, &io_status, &volume_info, @sizeOf(windows.FILE_FS_VOLUME_INFORMATION), .FileFsVolumeInformation, )) { .SUCCESS => {}, // Buffer overflow here indicates that there is more information available than was able to be stored in the buffer // size provided. This is treated as success because the type of variable-length information that this would be relevant for // (name, volume name, etc) we don't care about. .BUFFER_OVERFLOW => {}, else => |rc| return windows.unexpectedStatus(rc), } file_id.volumeSerialNumber = volume_info.VolumeSerialNumber; var internal_info: windows.FILE_INTERNAL_INFORMATION = undefined; switch (windows.ntdll.NtQueryInformationFile( handle, &io_status, &internal_info, @sizeOf(windows.FILE_INTERNAL_INFORMATION), .FileInternalInformation, )) { .SUCCESS => {}, else => |rc| return windows.unexpectedStatus(rc), } file_id.indexNumber = internal_info.IndexNumber; return file_id; } fn markDirtySteps(w: *Watch, gpa: Allocator, dir: *Directory) !bool { var any_dirty = false; const bytes_returned = try windows.GetOverlappedResult(dir.handle, &dir.overlapped, false); if (bytes_returned == 0) { std.log.warn("file system watch queue overflowed; falling back to fstat", .{}); markAllFilesDirty(w, gpa); try dir.startListening(); return true; } var file_name_buf: [std.fs.max_path_bytes]u8 = undefined; var notify: *align(1) windows.FILE_NOTIFY_INFORMATION = undefined; var offset: usize = 0; while (true) { notify = @ptrCast(&dir.buffer[offset]); const file_name_field: [*]u16 = @ptrFromInt(@intFromPtr(notify) + @sizeOf(windows.FILE_NOTIFY_INFORMATION)); const file_name_len = std.unicode.wtf16LeToWtf8(&file_name_buf, file_name_field[0 .. notify.FileNameLength / 2]); const file_name = file_name_buf[0..file_name_len]; if (w.os.handle_table.getIndex(dir.id)) |reaction_set_i| { const reaction_set = w.os.handle_table.values()[reaction_set_i]; if (reaction_set.getPtr(".")) |glob_set| any_dirty = markStepSetDirty(gpa, glob_set, any_dirty); if (reaction_set.getPtr(file_name)) |step_set| { any_dirty = markStepSetDirty(gpa, step_set, any_dirty); } } if (notify.NextEntryOffset == 0) break; offset += notify.NextEntryOffset; } // We call this now since at this point we have finished reading dir.buffer. try dir.startListening(); return any_dirty; } fn update(w: *Watch, gpa: Allocator, steps: []const *Step) !void { // Add missing marks and note persisted ones. for (steps) |step| { for (step.inputs.table.keys(), step.inputs.table.values()) |path, *files| { const reaction_set = rs: { const gop = try w.dir_table.getOrPut(gpa, path); if (!gop.found_existing) { const dir = try Os.Directory.init(gpa, path); errdefer dir.deinit(gpa); // `dir.id` may already be present in the table in // the case that we have multiple Cache.Path instances // that compare inequal but ultimately point to the same // directory on the file system. // In such case, we must revert adding this directory, but keep // the additions to the step set. const dh_gop = try w.os.handle_table.getOrPut(gpa, dir.id); if (dh_gop.found_existing) { dir.deinit(gpa); _ = w.dir_table.pop(); } else { assert(dh_gop.index == gop.index); dh_gop.value_ptr.* = .{}; try dir.startListening(); const key = w.os.counter; w.os.counter +%= 1; try w.os.dir_list.put(gpa, key, dir); w.os.io_cp = try windows.CreateIoCompletionPort( dir.handle, w.os.io_cp, key, 0, ); } break :rs &w.os.handle_table.values()[dh_gop.index]; } break :rs &w.os.handle_table.values()[gop.index]; }; for (files.items) |basename| { const gop = try reaction_set.getOrPut(gpa, basename); if (!gop.found_existing) gop.value_ptr.* = .{}; try gop.value_ptr.put(gpa, step, w.generation); } } } { // Remove marks for files that are no longer inputs. var i: usize = 0; while (i < w.os.handle_table.entries.len) { { const reaction_set = &w.os.handle_table.values()[i]; var step_set_i: usize = 0; while (step_set_i < reaction_set.entries.len) { const step_set = &reaction_set.values()[step_set_i]; var dirent_i: usize = 0; while (dirent_i < step_set.entries.len) { const generations = step_set.values(); if (generations[dirent_i] == w.generation) { dirent_i += 1; continue; } step_set.swapRemoveAt(dirent_i); } if (step_set.entries.len > 0) { step_set_i += 1; continue; } reaction_set.swapRemoveAt(step_set_i); } if (reaction_set.entries.len > 0) { i += 1; continue; } } w.os.dir_list.values()[i].deinit(gpa); w.os.dir_list.swapRemoveAt(i); w.dir_table.swapRemoveAt(i); w.os.handle_table.swapRemoveAt(i); } w.generation +%= 1; } } }, else => void, }; pub fn init() !Watch { switch (builtin.os.tag) { .linux => { const fan_fd = try std.posix.fanotify_init(.{ .CLASS = .NOTIF, .CLOEXEC = true, .NONBLOCK = true, .REPORT_NAME = true, .REPORT_DIR_FID = true, .REPORT_FID = true, .REPORT_TARGET_FID = true, }, 0); return .{ .dir_table = .{}, .os = switch (builtin.os.tag) { .linux => .{ .handle_table = .{}, .poll_fds = .{ .{ .fd = fan_fd, .events = std.posix.POLL.IN, .revents = undefined, }, }, }, else => {}, }, .generation = 0, }; }, .windows => { return .{ .dir_table = .{}, .os = switch (builtin.os.tag) { .windows => .{ .handle_table = .{}, .dir_list = .{}, .io_cp = null, }, else => {}, }, .generation = 0, }; }, else => @panic("unimplemented"), } } pub const Match = struct { /// Relative to the watched directory, the file path that triggers this /// match. basename: []const u8, /// The step to re-run when file corresponding to `basename` is changed. step: *Step, pub const Context = struct { pub fn hash(self: Context, a: Match) u32 { _ = self; var hasher = Hash.init(0); std.hash.autoHash(&hasher, a.step); hasher.update(a.basename); return @truncate(hasher.final()); } pub fn eql(self: Context, a: Match, b: Match, b_index: usize) bool { _ = self; _ = b_index; return a.step == b.step and std.mem.eql(u8, a.basename, b.basename); } }; }; fn markAllFilesDirty(w: *Watch, gpa: Allocator) void { for (w.os.handle_table.values()) |reaction_set| { for (reaction_set.values()) |step_set| { for (step_set.keys()) |step| { step.recursiveReset(gpa); } } } } fn markStepSetDirty(gpa: Allocator, step_set: *StepSet, any_dirty: bool) bool { var this_any_dirty = false; for (step_set.keys()) |step| { if (step.state != .precheck_done) { step.recursiveReset(gpa); this_any_dirty = true; } } return any_dirty or this_any_dirty; } pub fn update(w: *Watch, gpa: Allocator, steps: []const *Step) !void { switch (builtin.os.tag) { .linux, .windows => return Os.update(w, gpa, steps), else => @compileError("unimplemented"), } } pub const Timeout = union(enum) { none, ms: u16, pub fn to_i32_ms(t: Timeout) i32 { return switch (t) { .none => -1, .ms => |ms| ms, }; } }; pub const WaitResult = enum { timeout, /// File system watching triggered on files that were marked as inputs to at least one Step. /// Relevant steps have been marked dirty. dirty, /// File system watching triggered but none of the events were relevant to /// what we are listening to. There is nothing to do. clean, }; pub fn wait(w: *Watch, gpa: Allocator, timeout: Timeout) !WaitResult { switch (builtin.os.tag) { .linux => { const events_len = try std.posix.poll(&w.os.poll_fds, timeout.to_i32_ms()); return if (events_len == 0) .timeout else if (try Os.markDirtySteps(w, gpa)) .dirty else .clean; }, .windows => { var bytes_transferred: std.os.windows.DWORD = undefined; var key: usize = undefined; var overlapped_ptr: ?*std.os.windows.OVERLAPPED = undefined; return while (true) switch (std.os.windows.GetQueuedCompletionStatus( w.os.io_cp.?, &bytes_transferred, &key, &overlapped_ptr, @bitCast(timeout.to_i32_ms()), )) { .Normal => { if (bytes_transferred == 0) break error.Unexpected; // This 'orelse' detects a race condition that happens when we receive a // completion notification for a directory that no longer exists in our list. const dir = w.os.dir_list.get(key) orelse break .clean; break if (try Os.markDirtySteps(w, gpa, dir)) .dirty else .clean; }, .Timeout => break .timeout, // This status is issued because CancelIo was called, skip and try again. .Cancelled => continue, else => break error.Unexpected, }; }, else => @compileError("unimplemented"), } }