const std = @import("std"); const builtin = @import("builtin"); const mem = std.mem; const math = std.math; const assert = std.debug.assert; const Air = @import("../../Air.zig"); const Mir = @import("Mir.zig"); const Emit = @import("Emit.zig"); const Liveness = @import("../../Liveness.zig"); const Type = @import("../../type.zig").Type; const Value = @import("../../value.zig").Value; const TypedValue = @import("../../TypedValue.zig"); const link = @import("../../link.zig"); const Module = @import("../../Module.zig"); const Compilation = @import("../../Compilation.zig"); const ErrorMsg = Module.ErrorMsg; const Target = std.Target; const Allocator = mem.Allocator; const trace = @import("../../tracy.zig").trace; const DW = std.dwarf; const leb128 = std.leb; const log = std.log.scoped(.codegen); const build_options = @import("build_options"); const RegisterManagerFn = @import("../../register_manager.zig").RegisterManager; const RegisterManager = RegisterManagerFn(Self, Register, &allocatable_registers); const RegisterLock = RegisterManager.RegisterLock; const FnResult = @import("../../codegen.zig").FnResult; const GenerateSymbolError = @import("../../codegen.zig").GenerateSymbolError; const DebugInfoOutput = @import("../../codegen.zig").DebugInfoOutput; const bits = @import("bits.zig"); const abi = @import("abi.zig"); const Register = bits.Register; const Instruction = bits.Instruction; const Condition = bits.Condition; const callee_preserved_regs = abi.callee_preserved_regs; const caller_preserved_regs = abi.caller_preserved_regs; const allocatable_registers = abi.allocatable_registers; const c_abi_int_param_regs = abi.c_abi_int_param_regs; const c_abi_int_return_regs = abi.c_abi_int_return_regs; const InnerError = error{ OutOfMemory, CodegenFail, OutOfRegisters, }; gpa: Allocator, air: Air, liveness: Liveness, bin_file: *link.File, debug_output: DebugInfoOutput, target: *const std.Target, mod_fn: *const Module.Fn, err_msg: ?*ErrorMsg, args: []MCValue, ret_mcv: MCValue, fn_type: Type, arg_index: u32, src_loc: Module.SrcLoc, stack_align: u32, /// MIR Instructions mir_instructions: std.MultiArrayList(Mir.Inst) = .{}, /// MIR extra data mir_extra: std.ArrayListUnmanaged(u32) = .{}, /// Byte offset within the source file of the ending curly. end_di_line: u32, end_di_column: u32, /// The value is an offset into the `Function` `code` from the beginning. /// To perform the reloc, write 32-bit signed little-endian integer /// which is a relative jump, based on the address following the reloc. exitlude_jump_relocs: std.ArrayListUnmanaged(usize) = .{}, /// For every argument, we postpone the creation of debug info for /// later after all Mir instructions have been generated. Only then we /// will know saved_regs_stack_space which is necessary in order to /// address parameters passed on the stack. dbg_arg_relocs: std.ArrayListUnmanaged(DbgArgReloc) = .{}, /// Whenever there is a runtime branch, we push a Branch onto this stack, /// and pop it off when the runtime branch joins. This provides an "overlay" /// of the table of mappings from instructions to `MCValue` from within the branch. /// This way we can modify the `MCValue` for an instruction in different ways /// within different branches. Special consideration is needed when a branch /// joins with its parent, to make sure all instructions have the same MCValue /// across each runtime branch upon joining. branch_stack: *std.ArrayList(Branch), // Key is the block instruction blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, BlockData) = .{}, register_manager: RegisterManager = .{}, /// Maps offset to what is stored there. stack: std.AutoHashMapUnmanaged(u32, StackAllocation) = .{}, /// Tracks the current instruction allocated to the compare flags compare_flags_inst: ?Air.Inst.Index = null, /// Offset from the stack base, representing the end of the stack frame. max_end_stack: u32 = 0, /// Represents the current end stack offset. If there is no existing slot /// to place a new stack allocation, it goes here, and then bumps `max_end_stack`. next_stack_offset: u32 = 0, saved_regs_stack_space: u32 = 0, /// Debug field, used to find bugs in the compiler. air_bookkeeping: @TypeOf(air_bookkeeping_init) = air_bookkeeping_init, const air_bookkeeping_init = if (std.debug.runtime_safety) @as(usize, 0) else {}; const MCValue = union(enum) { /// No runtime bits. `void` types, empty structs, u0, enums with 1 /// tag, etc. /// /// TODO Look into deleting this tag and using `dead` instead, /// since every use of MCValue.none should be instead looking at /// the type and noticing it is 0 bits. none, /// Control flow will not allow this value to be observed. unreach, /// No more references to this value remain. dead, /// The value is undefined. undef, /// A pointer-sized integer that fits in a register. /// /// If the type is a pointer, this is the pointer address in /// virtual address space. immediate: u32, /// The value is in a target-specific register. register: Register, /// The value is a tuple { wrapped: u32, overflow: u1 } where /// wrapped is stored in the register and the overflow bit is /// stored in the C flag of the CPSR. /// /// This MCValue is only generated by a add_with_overflow or /// sub_with_overflow instruction operating on u32. register_c_flag: Register, /// The value is a tuple { wrapped: i32, overflow: u1 } where /// wrapped is stored in the register and the overflow bit is /// stored in the V flag of the CPSR. /// /// This MCValue is only generated by a add_with_overflow or /// sub_with_overflow instruction operating on i32. register_v_flag: Register, /// The value is in memory at a hard-coded address. /// /// If the type is a pointer, it means the pointer address is at /// this memory location. memory: u64, /// The value is one of the stack variables. /// /// If the type is a pointer, it means the pointer address is in /// the stack at this offset. stack_offset: u32, /// The value is a pointer to one of the stack variables (payload /// is stack offset). ptr_stack_offset: u32, /// The value is in the compare flags assuming an unsigned /// operation, with this operator applied on top of it. compare_flags_unsigned: math.CompareOperator, /// The value is in the compare flags assuming a signed operation, /// with this operator applied on top of it. compare_flags_signed: math.CompareOperator, /// The value is a function argument passed via the stack. stack_argument_offset: u32, fn isMemory(mcv: MCValue) bool { return switch (mcv) { .memory, .stack_offset, .stack_argument_offset => true, else => false, }; } fn isImmediate(mcv: MCValue) bool { return switch (mcv) { .immediate => true, else => false, }; } fn isMutable(mcv: MCValue) bool { return switch (mcv) { .none => unreachable, .unreach => unreachable, .dead => unreachable, .immediate, .memory, .compare_flags_unsigned, .compare_flags_signed, .ptr_stack_offset, .undef, .stack_argument_offset, => false, .register, .stack_offset, => true, }; } }; const Branch = struct { inst_table: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, MCValue) = .{}, fn deinit(self: *Branch, gpa: Allocator) void { self.inst_table.deinit(gpa); self.* = undefined; } }; const StackAllocation = struct { inst: Air.Inst.Index, /// TODO do we need size? should be determined by inst.ty.abiSize() size: u32, }; const BlockData = struct { relocs: std.ArrayListUnmanaged(Mir.Inst.Index), /// The first break instruction encounters `null` here and chooses a /// machine code value for the block result, populating this field. /// Following break instructions encounter that value and use it for /// the location to store their block results. mcv: MCValue, }; const BigTomb = struct { function: *Self, inst: Air.Inst.Index, lbt: Liveness.BigTomb, fn feed(bt: *BigTomb, op_ref: Air.Inst.Ref) void { const dies = bt.lbt.feed(); const op_index = Air.refToIndex(op_ref) orelse return; if (!dies) return; bt.function.processDeath(op_index); } fn finishAir(bt: *BigTomb, result: MCValue) void { const is_used = !bt.function.liveness.isUnused(bt.inst); if (is_used) { log.debug("%{d} => {}", .{ bt.inst, result }); const branch = &bt.function.branch_stack.items[bt.function.branch_stack.items.len - 1]; branch.inst_table.putAssumeCapacityNoClobber(bt.inst, result); } bt.function.finishAirBookkeeping(); } }; const DbgArgReloc = struct { inst: Air.Inst.Index, index: u32, }; const Self = @This(); pub fn generate( bin_file: *link.File, src_loc: Module.SrcLoc, module_fn: *Module.Fn, air: Air, liveness: Liveness, code: *std.ArrayList(u8), debug_output: DebugInfoOutput, ) GenerateSymbolError!FnResult { if (build_options.skip_non_native and builtin.cpu.arch != bin_file.options.target.cpu.arch) { @panic("Attempted to compile for architecture that was disabled by build configuration"); } const mod = bin_file.options.module.?; const fn_owner_decl = mod.declPtr(module_fn.owner_decl); assert(fn_owner_decl.has_tv); const fn_type = fn_owner_decl.ty; var branch_stack = std.ArrayList(Branch).init(bin_file.allocator); defer { assert(branch_stack.items.len == 1); branch_stack.items[0].deinit(bin_file.allocator); branch_stack.deinit(); } try branch_stack.append(.{}); var function = Self{ .gpa = bin_file.allocator, .air = air, .liveness = liveness, .target = &bin_file.options.target, .bin_file = bin_file, .debug_output = debug_output, .mod_fn = module_fn, .err_msg = null, .args = undefined, // populated after `resolveCallingConventionValues` .ret_mcv = undefined, // populated after `resolveCallingConventionValues` .fn_type = fn_type, .arg_index = 0, .branch_stack = &branch_stack, .src_loc = src_loc, .stack_align = undefined, .end_di_line = module_fn.rbrace_line, .end_di_column = module_fn.rbrace_column, }; defer function.stack.deinit(bin_file.allocator); defer function.blocks.deinit(bin_file.allocator); defer function.exitlude_jump_relocs.deinit(bin_file.allocator); defer function.dbg_arg_relocs.deinit(bin_file.allocator); var call_info = function.resolveCallingConventionValues(fn_type) catch |err| switch (err) { error.CodegenFail => return FnResult{ .fail = function.err_msg.? }, error.OutOfRegisters => return FnResult{ .fail = try ErrorMsg.create(bin_file.allocator, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}), }, else => |e| return e, }; defer call_info.deinit(&function); function.args = call_info.args; function.ret_mcv = call_info.return_value; function.stack_align = call_info.stack_align; function.max_end_stack = call_info.stack_byte_count; function.gen() catch |err| switch (err) { error.CodegenFail => return FnResult{ .fail = function.err_msg.? }, error.OutOfRegisters => return FnResult{ .fail = try ErrorMsg.create(bin_file.allocator, src_loc, "CodeGen ran out of registers. This is a bug in the Zig compiler.", .{}), }, else => |e| return e, }; for (function.dbg_arg_relocs.items) |reloc| { try function.genArgDbgInfo(reloc.inst, reloc.index, call_info.stack_byte_count); } var mir = Mir{ .instructions = function.mir_instructions.toOwnedSlice(), .extra = function.mir_extra.toOwnedSlice(bin_file.allocator), }; defer mir.deinit(bin_file.allocator); var emit = Emit{ .mir = mir, .bin_file = bin_file, .debug_output = debug_output, .target = &bin_file.options.target, .src_loc = src_loc, .code = code, .prev_di_pc = 0, .prev_di_line = module_fn.lbrace_line, .prev_di_column = module_fn.lbrace_column, .prologue_stack_space = call_info.stack_byte_count + function.saved_regs_stack_space, }; defer emit.deinit(); emit.emitMir() catch |err| switch (err) { error.EmitFail => return FnResult{ .fail = emit.err_msg.? }, else => |e| return e, }; if (function.err_msg) |em| { return FnResult{ .fail = em }; } else { return FnResult{ .appended = {} }; } } fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!Mir.Inst.Index { const gpa = self.gpa; try self.mir_instructions.ensureUnusedCapacity(gpa, 1); const result_index = @intCast(Air.Inst.Index, self.mir_instructions.len); self.mir_instructions.appendAssumeCapacity(inst); return result_index; } fn addNop(self: *Self) error{OutOfMemory}!Mir.Inst.Index { return try self.addInst(.{ .tag = .nop, .data = .{ .nop = {} }, }); } pub fn addExtra(self: *Self, extra: anytype) Allocator.Error!u32 { const fields = std.meta.fields(@TypeOf(extra)); try self.mir_extra.ensureUnusedCapacity(self.gpa, fields.len); return self.addExtraAssumeCapacity(extra); } pub fn addExtraAssumeCapacity(self: *Self, extra: anytype) u32 { const fields = std.meta.fields(@TypeOf(extra)); const result = @intCast(u32, self.mir_extra.items.len); inline for (fields) |field| { self.mir_extra.appendAssumeCapacity(switch (field.field_type) { u32 => @field(extra, field.name), i32 => @bitCast(u32, @field(extra, field.name)), else => @compileError("bad field type"), }); } return result; } fn gen(self: *Self) !void { const cc = self.fn_type.fnCallingConvention(); if (cc != .Naked) { // push {fp, lr} const push_reloc = try self.addNop(); // mov fp, sp _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = .fp, .rn = .r0, .op = Instruction.Operand.reg(.sp, Instruction.Operand.Shift.none), } }, }); // sub sp, sp, #reloc const sub_reloc = try self.addNop(); if (self.ret_mcv == .stack_offset) { // The address of where to store the return value is in // r0. As this register might get overwritten along the // way, save the address to the stack. const stack_offset = mem.alignForwardGeneric(u32, self.next_stack_offset, 4) + 4; self.next_stack_offset = stack_offset; self.max_end_stack = @maximum(self.max_end_stack, self.next_stack_offset); try self.genSetStack(Type.usize, stack_offset, MCValue{ .register = .r0 }); self.ret_mcv = MCValue{ .stack_offset = stack_offset }; } _ = try self.addInst(.{ .tag = .dbg_prologue_end, .cond = undefined, .data = .{ .nop = {} }, }); try self.genBody(self.air.getMainBody()); // Backpatch push callee saved regs var saved_regs = Instruction.RegisterList{ .r11 = true, // fp .r14 = true, // lr }; self.saved_regs_stack_space = 8; inline for (callee_preserved_regs) |reg| { if (self.register_manager.isRegAllocated(reg)) { @field(saved_regs, @tagName(reg)) = true; self.saved_regs_stack_space += 4; } } self.mir_instructions.set(push_reloc, .{ .tag = .push, .data = .{ .register_list = saved_regs }, }); // Backpatch stack offset const total_stack_size = self.max_end_stack + self.saved_regs_stack_space; const aligned_total_stack_end = mem.alignForwardGeneric(u32, total_stack_size, self.stack_align); const stack_size = aligned_total_stack_end - self.saved_regs_stack_space; if (Instruction.Operand.fromU32(stack_size)) |op| { self.mir_instructions.set(sub_reloc, .{ .tag = .sub, .data = .{ .rr_op = .{ .rd = .sp, .rn = .sp, .op = op } }, }); } else { return self.failSymbol("TODO ARM: allow larger stacks", .{}); } _ = try self.addInst(.{ .tag = .dbg_epilogue_begin, .cond = undefined, .data = .{ .nop = {} }, }); // exitlude jumps if (self.exitlude_jump_relocs.items.len > 0 and self.exitlude_jump_relocs.items[self.exitlude_jump_relocs.items.len - 1] == self.mir_instructions.len - 2) { // If the last Mir instruction (apart from the // dbg_epilogue_begin) is the last exitlude jump // relocation (which would just jump one instruction // further), it can be safely removed self.mir_instructions.orderedRemove(self.exitlude_jump_relocs.pop()); } for (self.exitlude_jump_relocs.items) |jmp_reloc| { self.mir_instructions.set(jmp_reloc, .{ .tag = .b, .data = .{ .inst = @intCast(u32, self.mir_instructions.len) }, }); } // Epilogue: pop callee saved registers (swap lr with pc in saved_regs) saved_regs.r14 = false; // lr saved_regs.r15 = true; // pc // mov sp, fp _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = .sp, .rn = .r0, .op = Instruction.Operand.reg(.fp, Instruction.Operand.Shift.none), } }, }); // pop {fp, pc} _ = try self.addInst(.{ .tag = .pop, .data = .{ .register_list = saved_regs }, }); } else { _ = try self.addInst(.{ .tag = .dbg_prologue_end, .cond = undefined, .data = .{ .nop = {} }, }); try self.genBody(self.air.getMainBody()); _ = try self.addInst(.{ .tag = .dbg_epilogue_begin, .cond = undefined, .data = .{ .nop = {} }, }); } // Drop them off at the rbrace. _ = try self.addInst(.{ .tag = .dbg_line, .cond = undefined, .data = .{ .dbg_line_column = .{ .line = self.end_di_line, .column = self.end_di_column, } }, }); } fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void { const air_tags = self.air.instructions.items(.tag); for (body) |inst| { const old_air_bookkeeping = self.air_bookkeeping; try self.ensureProcessDeathCapacity(Liveness.bpi); switch (air_tags[inst]) { // zig fmt: off .add, .ptr_add => try self.airBinOp(inst), .addwrap => try self.airBinOp(inst), .add_sat => try self.airAddSat(inst), .sub, .ptr_sub => try self.airBinOp(inst), .subwrap => try self.airBinOp(inst), .sub_sat => try self.airSubSat(inst), .mul => try self.airBinOp(inst), .mulwrap => try self.airBinOp(inst), .mul_sat => try self.airMulSat(inst), .rem => try self.airRem(inst), .mod => try self.airMod(inst), .shl, .shl_exact => try self.airBinOp(inst), .shl_sat => try self.airShlSat(inst), .min => try self.airMinMax(inst), .max => try self.airMinMax(inst), .slice => try self.airSlice(inst), .sqrt, .sin, .cos, .tan, .exp, .exp2, .log, .log2, .log10, .fabs, .floor, .ceil, .round, .trunc_float, => try self.airUnaryMath(inst), .add_with_overflow => try self.airOverflow(inst), .sub_with_overflow => try self.airOverflow(inst), .mul_with_overflow => try self.airMulWithOverflow(inst), .shl_with_overflow => try self.airShlWithOverflow(inst), .div_float, .div_trunc, .div_floor, .div_exact => try self.airDiv(inst), .cmp_lt => try self.airCmp(inst, .lt), .cmp_lte => try self.airCmp(inst, .lte), .cmp_eq => try self.airCmp(inst, .eq), .cmp_gte => try self.airCmp(inst, .gte), .cmp_gt => try self.airCmp(inst, .gt), .cmp_neq => try self.airCmp(inst, .neq), .cmp_vector => try self.airCmpVector(inst), .cmp_lt_errors_len => try self.airCmpLtErrorsLen(inst), .bool_and => try self.airBinOp(inst), .bool_or => try self.airBinOp(inst), .bit_and => try self.airBinOp(inst), .bit_or => try self.airBinOp(inst), .xor => try self.airBinOp(inst), .shr, .shr_exact => try self.airBinOp(inst), .alloc => try self.airAlloc(inst), .ret_ptr => try self.airRetPtr(inst), .arg => try self.airArg(inst), .assembly => try self.airAsm(inst), .bitcast => try self.airBitCast(inst), .block => try self.airBlock(inst), .br => try self.airBr(inst), .breakpoint => try self.airBreakpoint(), .ret_addr => try self.airRetAddr(inst), .frame_addr => try self.airFrameAddress(inst), .fence => try self.airFence(), .cond_br => try self.airCondBr(inst), .dbg_stmt => try self.airDbgStmt(inst), .fptrunc => try self.airFptrunc(inst), .fpext => try self.airFpext(inst), .intcast => try self.airIntCast(inst), .trunc => try self.airTrunc(inst), .bool_to_int => try self.airBoolToInt(inst), .is_non_null => try self.airIsNonNull(inst), .is_non_null_ptr => try self.airIsNonNullPtr(inst), .is_null => try self.airIsNull(inst), .is_null_ptr => try self.airIsNullPtr(inst), .is_non_err => try self.airIsNonErr(inst), .is_non_err_ptr => try self.airIsNonErrPtr(inst), .is_err => try self.airIsErr(inst), .is_err_ptr => try self.airIsErrPtr(inst), .load => try self.airLoad(inst), .loop => try self.airLoop(inst), .not => try self.airNot(inst), .ptrtoint => try self.airPtrToInt(inst), .ret => try self.airRet(inst), .ret_load => try self.airRetLoad(inst), .store => try self.airStore(inst), .struct_field_ptr=> try self.airStructFieldPtr(inst), .struct_field_val=> try self.airStructFieldVal(inst), .array_to_slice => try self.airArrayToSlice(inst), .int_to_float => try self.airIntToFloat(inst), .float_to_int => try self.airFloatToInt(inst), .cmpxchg_strong => try self.airCmpxchg(inst), .cmpxchg_weak => try self.airCmpxchg(inst), .atomic_rmw => try self.airAtomicRmw(inst), .atomic_load => try self.airAtomicLoad(inst), .memcpy => try self.airMemcpy(inst), .memset => try self.airMemset(inst), .set_union_tag => try self.airSetUnionTag(inst), .get_union_tag => try self.airGetUnionTag(inst), .clz => try self.airClz(inst), .ctz => try self.airCtz(inst), .popcount => try self.airPopcount(inst), .byte_swap => try self.airByteSwap(inst), .bit_reverse => try self.airBitReverse(inst), .tag_name => try self.airTagName(inst), .error_name => try self.airErrorName(inst), .splat => try self.airSplat(inst), .select => try self.airSelect(inst), .shuffle => try self.airShuffle(inst), .reduce => try self.airReduce(inst), .aggregate_init => try self.airAggregateInit(inst), .union_init => try self.airUnionInit(inst), .prefetch => try self.airPrefetch(inst), .mul_add => try self.airMulAdd(inst), .dbg_var_ptr, .dbg_var_val, => try self.airDbgVar(inst), .dbg_inline_begin, .dbg_inline_end, => try self.airDbgInline(inst), .dbg_block_begin, .dbg_block_end, => try self.airDbgBlock(inst), .call => try self.airCall(inst, .auto), .call_always_tail => try self.airCall(inst, .always_tail), .call_never_tail => try self.airCall(inst, .never_tail), .call_never_inline => try self.airCall(inst, .never_inline), .atomic_store_unordered => try self.airAtomicStore(inst, .Unordered), .atomic_store_monotonic => try self.airAtomicStore(inst, .Monotonic), .atomic_store_release => try self.airAtomicStore(inst, .Release), .atomic_store_seq_cst => try self.airAtomicStore(inst, .SeqCst), .struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0), .struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1), .struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2), .struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3), .field_parent_ptr => try self.airFieldParentPtr(inst), .switch_br => try self.airSwitch(inst), .slice_ptr => try self.airSlicePtr(inst), .slice_len => try self.airSliceLen(inst), .ptr_slice_len_ptr => try self.airPtrSliceLenPtr(inst), .ptr_slice_ptr_ptr => try self.airPtrSlicePtrPtr(inst), .array_elem_val => try self.airArrayElemVal(inst), .slice_elem_val => try self.airSliceElemVal(inst), .slice_elem_ptr => try self.airSliceElemPtr(inst), .ptr_elem_val => try self.airPtrElemVal(inst), .ptr_elem_ptr => try self.airPtrElemPtr(inst), .constant => unreachable, // excluded from function bodies .const_ty => unreachable, // excluded from function bodies .unreach => self.finishAirBookkeeping(), .optional_payload => try self.airOptionalPayload(inst), .optional_payload_ptr => try self.airOptionalPayloadPtr(inst), .optional_payload_ptr_set => try self.airOptionalPayloadPtrSet(inst), .unwrap_errunion_err => try self.airUnwrapErrErr(inst), .unwrap_errunion_payload => try self.airUnwrapErrPayload(inst), .unwrap_errunion_err_ptr => try self.airUnwrapErrErrPtr(inst), .unwrap_errunion_payload_ptr=> try self.airUnwrapErrPayloadPtr(inst), .errunion_payload_ptr_set => try self.airErrUnionPayloadPtrSet(inst), .wrap_optional => try self.airWrapOptional(inst), .wrap_errunion_payload => try self.airWrapErrUnionPayload(inst), .wrap_errunion_err => try self.airWrapErrUnionErr(inst), .wasm_memory_size => unreachable, .wasm_memory_grow => unreachable, // zig fmt: on } assert(!self.register_manager.lockedRegsExist()); if (std.debug.runtime_safety) { if (self.air_bookkeeping < old_air_bookkeeping + 1) { std.debug.panic("in codegen.zig, handling of AIR instruction %{d} ('{}') did not do proper bookkeeping. Look for a missing call to finishAir.", .{ inst, air_tags[inst] }); } } } } /// Asserts there is already capacity to insert into top branch inst_table. fn processDeath(self: *Self, inst: Air.Inst.Index) void { const air_tags = self.air.instructions.items(.tag); if (air_tags[inst] == .constant) return; // Constants are immortal. // When editing this function, note that the logic must synchronize with `reuseOperand`. const prev_value = self.getResolvedInstValue(inst); const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; branch.inst_table.putAssumeCapacity(inst, .dead); switch (prev_value) { .register => |reg| { self.register_manager.freeReg(reg); }, .register_c_flag, .register_v_flag, => |reg| { self.register_manager.freeReg(reg); self.compare_flags_inst = null; }, .compare_flags_signed, .compare_flags_unsigned => { self.compare_flags_inst = null; }, else => {}, // TODO process stack allocation death } } /// Called when there are no operands, and the instruction is always unreferenced. fn finishAirBookkeeping(self: *Self) void { if (std.debug.runtime_safety) { self.air_bookkeeping += 1; } } fn finishAir(self: *Self, inst: Air.Inst.Index, result: MCValue, operands: [Liveness.bpi - 1]Air.Inst.Ref) void { var tomb_bits = self.liveness.getTombBits(inst); for (operands) |op| { const dies = @truncate(u1, tomb_bits) != 0; tomb_bits >>= 1; if (!dies) continue; const op_int = @enumToInt(op); if (op_int < Air.Inst.Ref.typed_value_map.len) continue; const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len); self.processDeath(op_index); } const is_used = @truncate(u1, tomb_bits) == 0; if (is_used) { log.debug("%{d} => {}", .{ inst, result }); const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; branch.inst_table.putAssumeCapacityNoClobber(inst, result); switch (result) { .register => |reg| { // In some cases (such as bitcast), an operand // may be the same MCValue as the result. If // that operand died and was a register, it // was freed by processDeath. We have to // "re-allocate" the register. if (self.register_manager.isRegFree(reg)) { self.register_manager.getRegAssumeFree(reg, inst); } }, else => {}, } } self.finishAirBookkeeping(); } fn ensureProcessDeathCapacity(self: *Self, additional_count: usize) !void { const table = &self.branch_stack.items[self.branch_stack.items.len - 1].inst_table; try table.ensureUnusedCapacity(self.gpa, additional_count); } fn allocMem(self: *Self, inst: Air.Inst.Index, abi_size: u32, abi_align: u32) !u32 { if (abi_align > self.stack_align) self.stack_align = abi_align; // TODO find a free slot instead of always appending const offset = mem.alignForwardGeneric(u32, self.next_stack_offset, abi_align) + abi_size; self.next_stack_offset = offset; self.max_end_stack = @maximum(self.max_end_stack, self.next_stack_offset); try self.stack.putNoClobber(self.gpa, offset, .{ .inst = inst, .size = abi_size, }); return offset; } /// Use a pointer instruction as the basis for allocating stack memory. fn allocMemPtr(self: *Self, inst: Air.Inst.Index) !u32 { const elem_ty = self.air.typeOfIndex(inst).elemType(); if (!elem_ty.hasRuntimeBits()) { // As this stack item will never be dereferenced at runtime, // return the stack offset 0. Stack offset 0 will be where all // zero-sized stack allocations live as non-zero-sized // allocations will always have an offset > 0. return @as(u32, 0); } const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) catch { const mod = self.bin_file.options.module.?; return self.fail("type '{}' too big to fit into stack frame", .{elem_ty.fmt(mod)}); }; // TODO swap this for inst.ty.ptrAlign const abi_align = elem_ty.abiAlignment(self.target.*); return self.allocMem(inst, abi_size, abi_align); } fn allocRegOrMem(self: *Self, inst: Air.Inst.Index, reg_ok: bool) !MCValue { const elem_ty = self.air.typeOfIndex(inst); const abi_size = math.cast(u32, elem_ty.abiSize(self.target.*)) catch { const mod = self.bin_file.options.module.?; return self.fail("type '{}' too big to fit into stack frame", .{elem_ty.fmt(mod)}); }; const abi_align = elem_ty.abiAlignment(self.target.*); if (abi_align > self.stack_align) self.stack_align = abi_align; if (reg_ok) { // Make sure the type can fit in a register before we try to allocate one. const ptr_bits = self.target.cpu.arch.ptrBitWidth(); const ptr_bytes: u64 = @divExact(ptr_bits, 8); if (abi_size <= ptr_bytes) { if (self.register_manager.tryAllocReg(inst)) |reg| { return MCValue{ .register = reg }; } } } const stack_offset = try self.allocMem(inst, abi_size, abi_align); return MCValue{ .stack_offset = stack_offset }; } pub fn spillInstruction(self: *Self, reg: Register, inst: Air.Inst.Index) !void { const stack_mcv = try self.allocRegOrMem(inst, false); log.debug("spilling {} (%{d}) to stack mcv {any}", .{ reg, inst, stack_mcv }); const reg_mcv = self.getResolvedInstValue(inst); switch (reg_mcv) { .register, .register_c_flag, .register_v_flag, => |r| assert(r == reg), else => unreachable, // not a register } const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; try branch.inst_table.put(self.gpa, inst, stack_mcv); try self.genSetStack(self.air.typeOfIndex(inst), stack_mcv.stack_offset, reg_mcv); } /// Save the current instruction stored in the compare flags if /// occupied fn spillCompareFlagsIfOccupied(self: *Self) !void { if (self.compare_flags_inst) |inst_to_save| { const mcv = self.getResolvedInstValue(inst_to_save); switch (mcv) { .compare_flags_signed, .compare_flags_unsigned, .register_c_flag, .register_v_flag, => {}, else => unreachable, // mcv doesn't occupy the compare flags } const new_mcv = try self.allocRegOrMem(inst_to_save, true); try self.setRegOrMem(self.air.typeOfIndex(inst_to_save), new_mcv, mcv); log.debug("spilling {d} to mcv {any}", .{ inst_to_save, new_mcv }); const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; try branch.inst_table.put(self.gpa, inst_to_save, new_mcv); self.compare_flags_inst = null; } } /// Copies a value to a register without tracking the register. The register is not considered /// allocated. A second call to `copyToTmpRegister` may return the same register. /// This can have a side effect of spilling instructions to the stack to free up a register. fn copyToTmpRegister(self: *Self, ty: Type, mcv: MCValue) !Register { const reg = try self.register_manager.allocReg(null); try self.genSetReg(ty, reg, mcv); return reg; } /// Allocates a new register and copies `mcv` into it. /// `reg_owner` is the instruction that gets associated with the register in the register table. /// This can have a side effect of spilling instructions to the stack to free up a register. fn copyToNewRegister(self: *Self, reg_owner: Air.Inst.Index, mcv: MCValue) !MCValue { const reg = try self.register_manager.allocReg(reg_owner); try self.genSetReg(self.air.typeOfIndex(reg_owner), reg, mcv); return MCValue{ .register = reg }; } fn airAlloc(self: *Self, inst: Air.Inst.Index) !void { const stack_offset = try self.allocMemPtr(inst); return self.finishAir(inst, .{ .ptr_stack_offset = stack_offset }, .{ .none, .none, .none }); } fn airRetPtr(self: *Self, inst: Air.Inst.Index) !void { const result: MCValue = switch (self.ret_mcv) { .none, .register => .{ .ptr_stack_offset = try self.allocMemPtr(inst) }, .stack_offset => blk: { // self.ret_mcv is an address to where this function // should store its result into const ret_ty = self.fn_type.fnReturnType(); var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = ret_ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); // addr_reg will contain the address of where to store the // result into const addr_reg = try self.copyToTmpRegister(ptr_ty, self.ret_mcv); break :blk .{ .register = addr_reg }; }, else => unreachable, // invalid return result }; return self.finishAir(inst, result, .{ .none, .none, .none }); } fn airFptrunc(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFptrunc for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airFpext(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFpext for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airIntCast(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; if (self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ ty_op.operand, .none, .none }); const operand_ty = self.air.typeOf(ty_op.operand); const operand = try self.resolveInst(ty_op.operand); const info_a = operand_ty.intInfo(self.target.*); const info_b = self.air.typeOfIndex(inst).intInfo(self.target.*); if (info_a.signedness != info_b.signedness) return self.fail("TODO gen intcast sign safety in semantic analysis", .{}); if (info_a.bits == info_b.bits) return self.finishAir(inst, operand, .{ ty_op.operand, .none, .none }); return self.fail("TODO implement intCast for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn truncRegister( self: *Self, operand_reg: Register, dest_reg: Register, int_signedness: std.builtin.Signedness, int_bits: u16, ) !void { // TODO check if sxtb/uxtb/sxth/uxth are more efficient _ = try self.addInst(.{ .tag = switch (int_signedness) { .signed => .sbfx, .unsigned => .ubfx, }, .data = .{ .rr_lsb_width = .{ .rd = dest_reg, .rn = operand_reg, .lsb = 0, .width = @intCast(u6, int_bits), } }, }); } fn trunc( self: *Self, maybe_inst: ?Air.Inst.Index, operand: MCValue, operand_ty: Type, dest_ty: Type, ) !MCValue { const info_a = operand_ty.intInfo(self.target.*); const info_b = dest_ty.intInfo(self.target.*); if (info_b.bits <= 32) { const operand_reg = switch (operand) { .register => |r| r, else => operand_reg: { if (info_a.bits <= 32) { break :operand_reg try self.copyToTmpRegister(operand_ty, operand); } else { return self.fail("TODO load least significant word into register", .{}); } }, }; const operand_reg_lock = self.register_manager.lockReg(operand_reg); defer if (operand_reg_lock) |reg| self.register_manager.unlockReg(reg); const dest_reg = if (maybe_inst) |inst| blk: { const ty_op = self.air.instructions.items(.data)[inst].ty_op; if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) { break :blk operand_reg; } else { break :blk try self.register_manager.allocReg(inst); } } else try self.register_manager.allocReg(null); switch (info_b.bits) { 32 => { try self.genSetReg(operand_ty, dest_reg, .{ .register = operand_reg }); return MCValue{ .register = dest_reg }; }, else => { try self.truncRegister(operand_reg, dest_reg, info_b.signedness, info_b.bits); return MCValue{ .register = dest_reg }; }, } } else { return self.fail("TODO: truncate to ints > 32 bits", .{}); } } fn airTrunc(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const operand_ty = self.air.typeOf(ty_op.operand); const dest_ty = self.air.typeOfIndex(inst); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else blk: { break :blk try self.trunc(inst, operand, operand_ty, dest_ty); }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airBoolToInt(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else operand; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airNot(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand = try self.resolveInst(ty_op.operand); const operand_ty = self.air.typeOf(ty_op.operand); switch (operand) { .dead => unreachable, .unreach => unreachable, .compare_flags_unsigned => |op| { const r = MCValue{ .compare_flags_unsigned = switch (op) { .gte => .lt, .gt => .lte, .neq => .eq, .lt => .gte, .lte => .gt, .eq => .neq, }, }; break :result r; }, .compare_flags_signed => |op| { const r = MCValue{ .compare_flags_signed = switch (op) { .gte => .lt, .gt => .lte, .neq => .eq, .lt => .gte, .lte => .gt, .eq => .neq, }, }; break :result r; }, else => { switch (operand_ty.zigTypeTag()) { .Bool => { const op_reg = switch (operand) { .register => |r| r, else => try self.copyToTmpRegister(operand_ty, operand), }; const op_reg_lock = self.register_manager.lockRegAssumeUnused(op_reg); defer self.register_manager.unlockReg(op_reg_lock); const dest_reg = blk: { if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) { break :blk op_reg; } break :blk try self.register_manager.allocReg(null); }; _ = try self.addInst(.{ .tag = .eor, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = op_reg, .op = Instruction.Operand.fromU32(1).?, } }, }); break :result MCValue{ .register = dest_reg }; }, .Vector => return self.fail("TODO bitwise not for vectors", .{}), .Int => { const int_info = operand_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const op_reg = switch (operand) { .register => |r| r, else => try self.copyToTmpRegister(operand_ty, operand), }; const op_reg_lock = self.register_manager.lockRegAssumeUnused(op_reg); defer self.register_manager.unlockReg(op_reg_lock); const dest_reg = blk: { if (operand == .register and self.reuseOperand(inst, ty_op.operand, 0, operand)) { break :blk op_reg; } break :blk try self.register_manager.allocReg(null); }; _ = try self.addInst(.{ .tag = .mvn, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = undefined, .op = Instruction.Operand.reg(op_reg, Instruction.Operand.Shift.none), } }, }); if (int_info.bits < 32) { try self.truncRegister(dest_reg, dest_reg, int_info.signedness, int_info.bits); } break :result MCValue{ .register = dest_reg }; } else { return self.fail("TODO ARM not on integers > u32/i32", .{}); } }, else => unreachable, } }, } }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn minMax( self: *Self, tag: Air.Inst.Tag, maybe_inst: ?Air.Inst.Index, lhs: MCValue, rhs: MCValue, lhs_ty: Type, rhs_ty: Type, ) !MCValue { switch (lhs_ty.zigTypeTag()) { .Float => return self.fail("TODO ARM min/max on floats", .{}), .Vector => return self.fail("TODO ARM min/max on vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const lhs_is_register = lhs == .register; const rhs_is_register = rhs == .register; const lhs_reg = switch (lhs) { .register => |r| r, else => try self.copyToTmpRegister(lhs_ty, lhs), }; const lhs_reg_lock = self.register_manager.lockReg(lhs_reg); defer if (lhs_reg_lock) |reg| self.register_manager.unlockReg(reg); const rhs_reg = switch (rhs) { .register => |r| r, else => try self.copyToTmpRegister(rhs_ty, rhs), }; const rhs_reg_lock = self.register_manager.lockReg(rhs_reg); defer if (rhs_reg_lock) |reg| self.register_manager.unlockReg(reg); const dest_reg = if (maybe_inst) |inst| blk: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; if (lhs_is_register and self.reuseOperand(inst, bin_op.lhs, 0, lhs)) { break :blk lhs_reg; } else if (rhs_is_register and self.reuseOperand(inst, bin_op.rhs, 1, rhs)) { break :blk rhs_reg; } else { break :blk try self.register_manager.allocReg(inst); } } else try self.register_manager.allocReg(null); // lhs == reg should have been checked by airMinMax // // By guaranteeing lhs != rhs, we guarantee (dst != // lhs) or (dst != rhs), which is a property we use to // omit generating one instruction when we reuse a // register. assert(lhs_reg != rhs_reg); // see note above _ = try self.binOpRegister(.cmp, null, .{ .register = lhs_reg }, .{ .register = rhs_reg }, lhs_ty, rhs_ty); const cond_choose_lhs: Condition = switch (tag) { .max => switch (int_info.signedness) { .signed => Condition.gt, .unsigned => Condition.hi, }, .min => switch (int_info.signedness) { .signed => Condition.lt, .unsigned => Condition.cc, }, else => unreachable, }; const cond_choose_rhs = cond_choose_lhs.negate(); if (dest_reg != lhs_reg) { _ = try self.addInst(.{ .tag = .mov, .cond = cond_choose_lhs, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = .r0, .op = Instruction.Operand.reg(lhs_reg, Instruction.Operand.Shift.none), } }, }); } if (dest_reg != rhs_reg) { _ = try self.addInst(.{ .tag = .mov, .cond = cond_choose_rhs, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = .r0, .op = Instruction.Operand.reg(rhs_reg, Instruction.Operand.Shift.none), } }, }); } return MCValue{ .register = dest_reg }; } else { return self.fail("TODO ARM min/max on integers > u32/i32", .{}); } }, else => unreachable, } } fn airMinMax(self: *Self, inst: Air.Inst.Index) !void { const tag = self.air.instructions.items(.tag)[inst]; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const lhs_ty = self.air.typeOf(bin_op.lhs); const rhs_ty = self.air.typeOf(bin_op.rhs); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { if (bin_op.lhs == bin_op.rhs) break :result lhs; break :result try self.minMax(tag, inst, lhs, rhs, lhs_ty, rhs_ty); }; return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airSlice(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const ptr = try self.resolveInst(bin_op.lhs); const ptr_ty = self.air.typeOf(bin_op.lhs); const len = try self.resolveInst(bin_op.rhs); const len_ty = self.air.typeOf(bin_op.rhs); const stack_offset = try self.allocMem(inst, 8, 4); try self.genSetStack(ptr_ty, stack_offset, ptr); try self.genSetStack(len_ty, stack_offset - 4, len); break :result MCValue{ .stack_offset = stack_offset }; }; return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airBinOp(self: *Self, inst: Air.Inst.Index) !void { const tag = self.air.instructions.items(.tag)[inst]; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const lhs_ty = self.air.typeOf(bin_op.lhs); const rhs_ty = self.air.typeOf(bin_op.rhs); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else try self.binOp(tag, inst, lhs, rhs, lhs_ty, rhs_ty); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airAddSat(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement add_sat for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airSubSat(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement sub_sat for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airMulSat(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement mul_sat for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airOverflow(self: *Self, inst: Air.Inst.Index) !void { const tag = self.air.instructions.items(.tag)[inst]; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const lhs = try self.resolveInst(extra.lhs); const rhs = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); const rhs_ty = self.air.typeOf(extra.rhs); const tuple_ty = self.air.typeOfIndex(inst); const tuple_size = @intCast(u32, tuple_ty.abiSize(self.target.*)); const tuple_align = tuple_ty.abiAlignment(self.target.*); const overflow_bit_offset = @intCast(u32, tuple_ty.structFieldOffset(1, self.target.*)); switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO implement add_with_overflow/sub_with_overflow for vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits < 32) { const stack_offset = try self.allocMem(inst, tuple_size, tuple_align); try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = null; const base_tag: Air.Inst.Tag = switch (tag) { .add_with_overflow => .add, .sub_with_overflow => .sub, else => unreachable, }; const dest = try self.binOp(base_tag, null, lhs, rhs, lhs_ty, rhs_ty); const dest_reg = dest.register; const dest_reg_lock = self.register_manager.lockRegAssumeUnused(dest_reg); defer self.register_manager.unlockReg(dest_reg_lock); const truncated_reg = try self.register_manager.allocReg(null); const truncated_reg_lock = self.register_manager.lockRegAssumeUnused(truncated_reg); defer self.register_manager.unlockReg(truncated_reg_lock); // sbfx/ubfx truncated, dest, #0, #bits try self.truncRegister(dest_reg, truncated_reg, int_info.signedness, int_info.bits); // cmp dest, truncated _ = try self.binOp(.cmp_eq, null, dest, .{ .register = truncated_reg }, Type.usize, Type.usize); try self.genSetStack(lhs_ty, stack_offset, .{ .register = truncated_reg }); try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .compare_flags_unsigned = .neq }); break :result MCValue{ .stack_offset = stack_offset }; } else if (int_info.bits == 32) { // Only say yes if the operation is // commutative, i.e. we can swap both of the // operands const lhs_immediate_ok = switch (tag) { .add_with_overflow => lhs == .immediate and Instruction.Operand.fromU32(lhs.immediate) != null, .sub_with_overflow => false, else => unreachable, }; const rhs_immediate_ok = switch (tag) { .add_with_overflow, .sub_with_overflow, => rhs == .immediate and Instruction.Operand.fromU32(rhs.immediate) != null, else => unreachable, }; const mir_tag: Mir.Inst.Tag = switch (tag) { .add_with_overflow => .adds, .sub_with_overflow => .subs, else => unreachable, }; try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = inst; const dest = blk: { if (rhs_immediate_ok) { break :blk try self.binOpImmediate(mir_tag, null, lhs, rhs, lhs_ty, false); } else if (lhs_immediate_ok) { // swap lhs and rhs break :blk try self.binOpImmediate(mir_tag, null, rhs, lhs, rhs_ty, true); } else { break :blk try self.binOpRegister(mir_tag, null, lhs, rhs, lhs_ty, rhs_ty); } }; switch (int_info.signedness) { .unsigned => break :result MCValue{ .register_c_flag = dest.register }, .signed => break :result MCValue{ .register_v_flag = dest.register }, } } else { return self.fail("TODO ARM overflow operations on integers > u32/i32", .{}); } }, else => unreachable, } }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none }); } fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; if (self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ extra.lhs, extra.rhs, .none }); const result: MCValue = result: { const lhs = try self.resolveInst(extra.lhs); const rhs = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); const rhs_ty = self.air.typeOf(extra.rhs); const tuple_ty = self.air.typeOfIndex(inst); const tuple_size = @intCast(u32, tuple_ty.abiSize(self.target.*)); const tuple_align = tuple_ty.abiAlignment(self.target.*); const overflow_bit_offset = @intCast(u32, tuple_ty.structFieldOffset(1, self.target.*)); switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO implement mul_with_overflow for vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 16) { const stack_offset = try self.allocMem(inst, tuple_size, tuple_align); try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = null; const base_tag: Mir.Inst.Tag = switch (int_info.signedness) { .signed => .smulbb, .unsigned => .mul, }; const dest = try self.binOpRegister(base_tag, null, lhs, rhs, lhs_ty, rhs_ty); const dest_reg = dest.register; const dest_reg_lock = self.register_manager.lockRegAssumeUnused(dest_reg); defer self.register_manager.unlockReg(dest_reg_lock); const truncated_reg = try self.register_manager.allocReg(null); const truncated_reg_lock = self.register_manager.lockRegAssumeUnused(truncated_reg); defer self.register_manager.unlockReg(truncated_reg_lock); // sbfx/ubfx truncated, dest, #0, #bits try self.truncRegister(dest_reg, truncated_reg, int_info.signedness, int_info.bits); // cmp dest, truncated _ = try self.binOp(.cmp_eq, null, dest, .{ .register = truncated_reg }, Type.usize, Type.usize); try self.genSetStack(lhs_ty, stack_offset, .{ .register = truncated_reg }); try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .compare_flags_unsigned = .neq }); break :result MCValue{ .stack_offset = stack_offset }; } else if (int_info.bits <= 32) { const stack_offset = try self.allocMem(inst, tuple_size, tuple_align); try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = null; const base_tag: Mir.Inst.Tag = switch (int_info.signedness) { .signed => .smull, .unsigned => .umull, }; // TODO extract umull etc. to binOpTwoRegister // once MCValue.rr is implemented const lhs_is_register = lhs == .register; const rhs_is_register = rhs == .register; const lhs_lock: ?RegisterLock = if (lhs_is_register) self.register_manager.lockReg(lhs.register) else null; defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg); const lhs_reg = if (lhs_is_register) lhs.register else try self.register_manager.allocReg(null); const new_lhs_lock = self.register_manager.lockReg(lhs_reg); defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg); const rhs_reg = if (rhs_is_register) rhs.register else try self.register_manager.allocReg(null); const new_rhs_lock = self.register_manager.lockReg(rhs_reg); defer if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg); const dest_regs = try self.register_manager.allocRegs(2, .{ null, null }); const dest_regs_locks = self.register_manager.lockRegsAssumeUnused(2, dest_regs); defer for (dest_regs_locks) |reg| { self.register_manager.unlockReg(reg); }; const rdlo = dest_regs[0]; const rdhi = dest_regs[1]; if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs); if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs); const truncated_reg = try self.register_manager.allocReg(null); const truncated_reg_lock = self.register_manager.lockRegAssumeUnused(truncated_reg); defer self.register_manager.unlockReg(truncated_reg_lock); _ = try self.addInst(.{ .tag = base_tag, .data = .{ .rrrr = .{ .rdlo = rdlo, .rdhi = rdhi, .rn = lhs_reg, .rm = rhs_reg, } }, }); // sbfx/ubfx truncated, rdlo, #0, #bits try self.truncRegister(rdlo, truncated_reg, int_info.signedness, int_info.bits); // str truncated, [...] try self.genSetStack(lhs_ty, stack_offset, .{ .register = truncated_reg }); // cmp truncated, rdlo _ = try self.binOp(.cmp_eq, null, .{ .register = truncated_reg }, .{ .register = rdlo }, Type.usize, Type.usize); // mov rdlo, #0 _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = rdlo, .rn = .r0, .op = Instruction.Operand.fromU32(0).?, } }, }); // movne rdlo, #1 _ = try self.addInst(.{ .tag = .mov, .cond = .ne, .data = .{ .rr_op = .{ .rd = rdlo, .rn = .r0, .op = Instruction.Operand.fromU32(1).?, } }, }); // cmp rdhi, #0 _ = try self.binOp(.cmp_eq, null, .{ .register = rdhi }, .{ .immediate = 0 }, Type.usize, Type.usize); // movne rdlo, #1 _ = try self.addInst(.{ .tag = .mov, .cond = .ne, .data = .{ .rr_op = .{ .rd = rdlo, .rn = .r0, .op = Instruction.Operand.fromU32(1).?, } }, }); // strb rdlo, [...] try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .register = rdlo }); break :result MCValue{ .stack_offset = stack_offset }; } else { return self.fail("TODO ARM overflow operations on integers > u32/i32", .{}); } }, else => unreachable, } }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none }); } fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; if (self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ extra.lhs, extra.rhs, .none }); const result: MCValue = result: { const lhs = try self.resolveInst(extra.lhs); const rhs = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); const rhs_ty = self.air.typeOf(extra.rhs); const tuple_ty = self.air.typeOfIndex(inst); const tuple_size = @intCast(u32, tuple_ty.abiSize(self.target.*)); const tuple_align = tuple_ty.abiAlignment(self.target.*); const overflow_bit_offset = @intCast(u32, tuple_ty.structFieldOffset(1, self.target.*)); switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO implement shl_with_overflow for vectors", .{}), .Int => { const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const stack_offset = try self.allocMem(inst, tuple_size, tuple_align); const lhs_lock: ?RegisterLock = if (lhs == .register) self.register_manager.lockRegAssumeUnused(lhs.register) else null; defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg); try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = null; // lsl dest, lhs, rhs const dest = try self.binOp(.shl, null, lhs, rhs, lhs_ty, rhs_ty); // asr/lsr reconstructed, dest, rhs const reconstructed = try self.binOp(.shr, null, dest, rhs, lhs_ty, rhs_ty); // cmp lhs, reconstructed _ = try self.binOp(.cmp_eq, null, lhs, reconstructed, lhs_ty, lhs_ty); try self.genSetStack(lhs_ty, stack_offset, dest); try self.genSetStack(Type.initTag(.u1), stack_offset - overflow_bit_offset, .{ .compare_flags_unsigned = .neq }); break :result MCValue{ .stack_offset = stack_offset }; } else { return self.fail("TODO ARM overflow operations on integers > u32/i32", .{}); } }, else => unreachable, } }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none }); } fn airDiv(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement div for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airRem(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement rem for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airMod(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement mod for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airShlSat(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement shl_sat for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload_ptr for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .optional_payload_ptr_set for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airWrapOptional(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const optional_ty = self.air.typeOfIndex(inst); const abi_size = @intCast(u32, optional_ty.abiSize(self.target.*)); // Optional with a zero-bit payload type is just a boolean true if (abi_size == 1) { break :result MCValue{ .immediate = 1 }; } else { return self.fail("TODO implement wrap optional for {}", .{self.target.cpu.arch}); } }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } /// Given an error union, returns the error fn errUnionErr(self: *Self, error_union_mcv: MCValue, error_union_ty: Type) !MCValue { const payload_ty = error_union_ty.errorUnionPayload(); if (!payload_ty.hasRuntimeBits()) return error_union_mcv; switch (error_union_mcv) { .register => return self.fail("TODO errUnionErr for registers", .{}), .stack_argument_offset => |off| { return MCValue{ .stack_argument_offset = off }; }, .stack_offset => |off| { return MCValue{ .stack_offset = off }; }, .memory => |addr| { return MCValue{ .memory = addr }; }, else => unreachable, // invalid MCValue for an error union } } fn airUnwrapErrErr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const error_union_ty = self.air.typeOf(ty_op.operand); const mcv = try self.resolveInst(ty_op.operand); break :result try self.errUnionErr(mcv, error_union_ty); }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } /// Given an error union, returns the payload fn errUnionPayload(self: *Self, error_union_mcv: MCValue, error_union_ty: Type) !MCValue { const payload_ty = error_union_ty.errorUnionPayload(); if (!payload_ty.hasRuntimeBits()) return MCValue.none; const error_ty = error_union_ty.errorUnionSet(); const error_size = @intCast(u32, error_ty.abiSize(self.target.*)); const eu_align = @intCast(u32, error_union_ty.abiAlignment(self.target.*)); const offset = std.mem.alignForwardGeneric(u32, error_size, eu_align); switch (error_union_mcv) { .register => return self.fail("TODO errUnionPayload for registers", .{}), .stack_argument_offset => |off| { return MCValue{ .stack_argument_offset = off - offset }; }, .stack_offset => |off| { return MCValue{ .stack_offset = off - offset }; }, .memory => |addr| { return MCValue{ .memory = addr - offset }; }, else => unreachable, // invalid MCValue for an error union } } fn airUnwrapErrPayload(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const error_union_ty = self.air.typeOf(ty_op.operand); const mcv = try self.resolveInst(ty_op.operand); break :result try self.errUnionPayload(mcv, error_union_ty); }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } // *(E!T) -> E fn airUnwrapErrErrPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement unwrap error union error ptr for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } // *(E!T) -> *T fn airUnwrapErrPayloadPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement unwrap error union payload ptr for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airErrUnionPayloadPtrSet(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement .errunion_payload_ptr_set for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } /// T to E!T fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement wrap errunion payload for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } /// E to E!T fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const error_union_ty = self.air.getRefType(ty_op.ty); const payload_ty = error_union_ty.errorUnionPayload(); const mcv = try self.resolveInst(ty_op.operand); if (!payload_ty.hasRuntimeBits()) break :result mcv; return self.fail("TODO implement wrap errunion error for non-empty payloads", .{}); }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } /// Given a slice, returns the length fn slicePtr(mcv: MCValue) MCValue { switch (mcv) { .register => unreachable, // a slice doesn't fit in one register .stack_argument_offset => |off| { return MCValue{ .stack_argument_offset = off }; }, .stack_offset => |off| { return MCValue{ .stack_offset = off }; }, .memory => |addr| { return MCValue{ .memory = addr }; }, else => unreachable, // invalid MCValue for a slice } } fn airSlicePtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(ty_op.operand); break :result slicePtr(mcv); }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airSliceLen(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(ty_op.operand); switch (mcv) { .dead, .unreach => unreachable, .register => unreachable, // a slice doesn't fit in one register .stack_argument_offset => |off| { break :result MCValue{ .stack_argument_offset = off - 4 }; }, .stack_offset => |off| { break :result MCValue{ .stack_offset = off - 4 }; }, .memory => |addr| { break :result MCValue{ .memory = addr + 4 }; }, else => return self.fail("TODO implement slice_len for {}", .{mcv}), } }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airPtrSliceLenPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(ty_op.operand); switch (mcv) { .dead, .unreach => unreachable, .ptr_stack_offset => |off| { break :result MCValue{ .ptr_stack_offset = off - 4 }; }, else => return self.fail("TODO implement ptr_slice_len_ptr for {}", .{mcv}), } }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airPtrSlicePtrPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(ty_op.operand); switch (mcv) { .dead, .unreach => unreachable, .ptr_stack_offset => |off| { break :result MCValue{ .ptr_stack_offset = off }; }, else => return self.fail("TODO implement ptr_slice_ptr_ptr for {}", .{mcv}), } }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) !void { const is_volatile = false; // TODO const bin_op = self.air.instructions.items(.data)[inst].bin_op; if (!is_volatile and self.liveness.isUnused(inst)) return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none }); const result: MCValue = result: { const slice_mcv = try self.resolveInst(bin_op.lhs); // TODO optimize for the case where the index is a constant, // i.e. index_mcv == .immediate const index_mcv = try self.resolveInst(bin_op.rhs); const index_is_register = index_mcv == .register; const slice_ty = self.air.typeOf(bin_op.lhs); const elem_ty = slice_ty.childType(); const elem_size = @intCast(u32, elem_ty.abiSize(self.target.*)); var buf: Type.SlicePtrFieldTypeBuffer = undefined; const slice_ptr_field_type = slice_ty.slicePtrFieldType(&buf); const index_lock: ?RegisterLock = if (index_is_register) self.register_manager.lockRegAssumeUnused(index_mcv.register) else null; defer if (index_lock) |reg| self.register_manager.unlockReg(reg); const base_mcv = slicePtr(slice_mcv); switch (elem_size) { 1, 4 => { const base_reg = switch (base_mcv) { .register => |r| r, else => try self.copyToTmpRegister(slice_ptr_field_type, base_mcv), }; const base_reg_lock = self.register_manager.lockRegAssumeUnused(base_reg); defer self.register_manager.unlockReg(base_reg_lock); const dst_reg = try self.register_manager.allocReg(inst); const dst_mcv = MCValue{ .register = dst_reg }; const dst_reg_lock = self.register_manager.lockRegAssumeUnused(dst_reg); defer self.register_manager.unlockReg(dst_reg_lock); const index_reg: Register = switch (index_mcv) { .register => |reg| reg, else => try self.copyToTmpRegister(Type.usize, index_mcv), }; const index_reg_lock = self.register_manager.lockRegAssumeUnused(index_reg); defer self.register_manager.unlockReg(index_reg_lock); const tag: Mir.Inst.Tag = switch (elem_size) { 1 => .ldrb, 4 => .ldr, else => unreachable, }; const shift: u5 = switch (elem_size) { 1 => 0, 4 => 2, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = .{ .rr_offset = .{ .rt = dst_reg, .rn = base_reg, .offset = .{ .offset = Instruction.Offset.reg(index_reg, .{ .lsl = shift }) }, } }, }); break :result dst_mcv; }, else => { const dest = try self.allocRegOrMem(inst, true); const addr = try self.binOp(.ptr_add, null, base_mcv, index_mcv, slice_ptr_field_type, Type.usize); try self.load(dest, addr, slice_ptr_field_type); break :result dest; }, } }; return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airSliceElemPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const slice_mcv = try self.resolveInst(extra.lhs); const index_mcv = try self.resolveInst(extra.rhs); const base_mcv = slicePtr(slice_mcv); const slice_ty = self.air.typeOf(extra.lhs); const addr = try self.binOp(.ptr_add, null, base_mcv, index_mcv, slice_ty, Type.usize); break :result addr; }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none }); } fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement array_elem_val for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) !void { const is_volatile = false; // TODO const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (!is_volatile and self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement ptr_elem_val for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const ptr_mcv = try self.resolveInst(extra.lhs); const index_mcv = try self.resolveInst(extra.rhs); const ptr_ty = self.air.typeOf(extra.lhs); const addr = try self.binOp(.ptr_add, null, ptr_mcv, index_mcv, ptr_ty, Type.usize); break :result addr; }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, .none }); } fn airSetUnionTag(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; _ = bin_op; return self.fail("TODO implement airSetUnionTag for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airGetUnionTag(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airGetUnionTag for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airClz(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airClz for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airCtz(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airCtz for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airPopcount(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airPopcount for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airByteSwap(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airByteSwap for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airBitReverse(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO implement airBitReverse for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airUnaryMath(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airUnaryMath for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn reuseOperand(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, op_index: Liveness.OperandInt, mcv: MCValue) bool { if (!self.liveness.operandDies(inst, op_index)) return false; switch (mcv) { .register => |reg| { // We assert that this register is allocatable by asking // for its index const index = RegisterManager.indexOfRegIntoTracked(reg).?; // see note above if (!self.register_manager.isRegFree(reg)) { self.register_manager.registers[index] = inst; } log.debug("%{d} => {} (reused)", .{ inst, reg }); }, .stack_offset => |off| { log.debug("%{d} => stack offset {d} (reused)", .{ inst, off }); }, else => return false, } // Prevent the operand deaths processing code from deallocating it. self.liveness.clearOperandDeath(inst, op_index); // That makes us responsible for doing the rest of the stuff that processDeath would have done. const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; branch.inst_table.putAssumeCapacity(Air.refToIndex(operand).?, .dead); return true; } fn load(self: *Self, dst_mcv: MCValue, ptr: MCValue, ptr_ty: Type) InnerError!void { const elem_ty = ptr_ty.elemType(); const elem_size = @intCast(u32, elem_ty.abiSize(self.target.*)); switch (ptr) { .none => unreachable, .undef => unreachable, .unreach => unreachable, .dead => unreachable, .compare_flags_unsigned, .compare_flags_signed, .register_c_flag, .register_v_flag, => unreachable, // cannot hold an address .immediate => |imm| try self.setRegOrMem(elem_ty, dst_mcv, .{ .memory = imm }), .ptr_stack_offset => |off| try self.setRegOrMem(elem_ty, dst_mcv, .{ .stack_offset = off }), .register => |reg| { const reg_lock = self.register_manager.lockReg(reg); defer if (reg_lock) |reg_locked| self.register_manager.unlockReg(reg_locked); switch (dst_mcv) { .dead => unreachable, .undef => unreachable, .compare_flags_signed, .compare_flags_unsigned => unreachable, .register => |dst_reg| { try self.genLdrRegister(dst_reg, reg, elem_ty); }, .stack_offset => |off| { if (elem_size <= 4) { const tmp_reg = try self.register_manager.allocReg(null); const tmp_reg_lock = self.register_manager.lockRegAssumeUnused(tmp_reg); defer self.register_manager.unlockReg(tmp_reg_lock); try self.load(.{ .register = tmp_reg }, ptr, ptr_ty); try self.genSetStack(elem_ty, off, MCValue{ .register = tmp_reg }); } else { // TODO optimize the register allocation const regs = try self.register_manager.allocRegs(4, .{ null, null, null, null }); const regs_locks = self.register_manager.lockRegsAssumeUnused(4, regs); defer for (regs_locks) |reg_locked| { self.register_manager.unlockReg(reg_locked); }; const src_reg = reg; const dst_reg = regs[0]; const len_reg = regs[1]; const count_reg = regs[2]; const tmp_reg = regs[3]; // sub dst_reg, fp, #off try self.genSetReg(ptr_ty, dst_reg, .{ .ptr_stack_offset = off }); // mov len, #elem_size try self.genSetReg(Type.usize, len_reg, .{ .immediate = elem_size }); // memcpy(src, dst, len) try self.genInlineMemcpy(src_reg, dst_reg, len_reg, count_reg, tmp_reg); } }, else => return self.fail("TODO load from register into {}", .{dst_mcv}), } }, .memory, .stack_offset, .stack_argument_offset, => { const reg = try self.register_manager.allocReg(null); const reg_lock = self.register_manager.lockRegAssumeUnused(reg); defer self.register_manager.unlockReg(reg_lock); try self.genSetReg(ptr_ty, reg, ptr); try self.load(dst_mcv, .{ .register = reg }, ptr_ty); }, } } fn airLoad(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const elem_ty = self.air.typeOfIndex(inst); const result: MCValue = result: { if (!elem_ty.hasRuntimeBits()) break :result MCValue.none; const ptr = try self.resolveInst(ty_op.operand); const is_volatile = self.air.typeOf(ty_op.operand).isVolatilePtr(); if (self.liveness.isUnused(inst) and !is_volatile) break :result MCValue.dead; const dst_mcv: MCValue = blk: { if (self.reuseOperand(inst, ty_op.operand, 0, ptr)) { // The MCValue that holds the pointer can be re-used as the value. break :blk ptr; } else { break :blk try self.allocRegOrMem(inst, true); } }; try self.load(dst_mcv, ptr, self.air.typeOf(ty_op.operand)); break :result dst_mcv; }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn store(self: *Self, ptr: MCValue, value: MCValue, ptr_ty: Type, value_ty: Type) InnerError!void { const elem_size = @intCast(u32, value_ty.abiSize(self.target.*)); switch (ptr) { .none => unreachable, .undef => unreachable, .unreach => unreachable, .dead => unreachable, .compare_flags_unsigned, .compare_flags_signed, .register_c_flag, .register_v_flag, => unreachable, // cannot hold an address .immediate => |imm| { try self.setRegOrMem(value_ty, .{ .memory = imm }, value); }, .ptr_stack_offset => |off| { try self.genSetStack(value_ty, off, value); }, .register => |addr_reg| { const addr_reg_lock = self.register_manager.lockReg(addr_reg); defer if (addr_reg_lock) |reg| self.register_manager.unlockReg(reg); switch (value) { .dead => unreachable, .undef => unreachable, .register => |value_reg| { try self.genStrRegister(value_reg, addr_reg, value_ty); }, else => { if (elem_size <= 4) { const tmp_reg = try self.register_manager.allocReg(null); const tmp_reg_lock = self.register_manager.lockRegAssumeUnused(tmp_reg); defer self.register_manager.unlockReg(tmp_reg_lock); try self.genSetReg(value_ty, tmp_reg, value); try self.store(ptr, .{ .register = tmp_reg }, ptr_ty, value_ty); } else { const regs = try self.register_manager.allocRegs(4, .{ null, null, null, null }); const regs_locks = self.register_manager.lockRegsAssumeUnused(4, regs); defer for (regs_locks) |reg| { self.register_manager.unlockReg(reg); }; const src_reg = regs[0]; const dst_reg = addr_reg; const len_reg = regs[1]; const count_reg = regs[2]; const tmp_reg = regs[3]; switch (value) { .stack_offset => |off| { // sub src_reg, fp, #off try self.genSetReg(ptr_ty, src_reg, .{ .ptr_stack_offset = off }); }, .memory => |addr| try self.genSetReg(Type.usize, src_reg, .{ .immediate = @intCast(u32, addr) }), .stack_argument_offset => |off| { _ = try self.addInst(.{ .tag = .ldr_ptr_stack_argument, .data = .{ .r_stack_offset = .{ .rt = src_reg, .stack_offset = off, } }, }); }, else => return self.fail("TODO store {} to register", .{value}), } // mov len, #elem_size try self.genSetReg(Type.usize, len_reg, .{ .immediate = elem_size }); // memcpy(src, dst, len) try self.genInlineMemcpy(src_reg, dst_reg, len_reg, count_reg, tmp_reg); } }, } }, .memory, .stack_offset, .stack_argument_offset, => { const addr_reg = try self.copyToTmpRegister(ptr_ty, ptr); try self.store(.{ .register = addr_reg }, value, ptr_ty, value_ty); }, } } fn airStore(self: *Self, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const ptr = try self.resolveInst(bin_op.lhs); const value = try self.resolveInst(bin_op.rhs); const ptr_ty = self.air.typeOf(bin_op.lhs); const value_ty = self.air.typeOf(bin_op.rhs); try self.store(ptr, value, ptr_ty, value_ty); return self.finishAir(inst, .dead, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.StructField, ty_pl.payload).data; const result = try self.structFieldPtr(inst, extra.struct_operand, extra.field_index); return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none }); } fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u8) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result = try self.structFieldPtr(inst, ty_op.operand, index); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn structFieldPtr(self: *Self, inst: Air.Inst.Index, operand: Air.Inst.Ref, index: u32) !MCValue { return if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(operand); const ptr_ty = self.air.typeOf(operand); const struct_ty = ptr_ty.childType(); const struct_field_offset = @intCast(u32, struct_ty.structFieldOffset(index, self.target.*)); switch (mcv) { .ptr_stack_offset => |off| { break :result MCValue{ .ptr_stack_offset = off - struct_field_offset }; }, else => { const offset_reg = try self.copyToTmpRegister(ptr_ty, .{ .immediate = struct_field_offset, }); const offset_reg_lock = self.register_manager.lockRegAssumeUnused(offset_reg); defer self.register_manager.unlockReg(offset_reg_lock); const addr_reg = try self.copyToTmpRegister(ptr_ty, mcv); const addr_reg_lock = self.register_manager.lockRegAssumeUnused(addr_reg); defer self.register_manager.unlockReg(addr_reg_lock); const dest = try self.binOp( .add, null, .{ .register = addr_reg }, .{ .register = offset_reg }, Type.usize, Type.usize, ); break :result dest; }, } }; } fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.StructField, ty_pl.payload).data; const operand = extra.struct_operand; const index = extra.field_index; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const mcv = try self.resolveInst(operand); const struct_ty = self.air.typeOf(operand); const struct_field_offset = @intCast(u32, struct_ty.structFieldOffset(index, self.target.*)); switch (mcv) { .dead, .unreach => unreachable, .stack_argument_offset => |off| { break :result MCValue{ .stack_argument_offset = off - struct_field_offset }; }, .stack_offset => |off| { break :result MCValue{ .stack_offset = off - struct_field_offset }; }, .memory => |addr| { break :result MCValue{ .memory = addr + struct_field_offset }; }, .register_c_flag, .register_v_flag, => |reg| { switch (index) { 0 => { // get wrapped value: return register break :result MCValue{ .register = reg }; }, 1 => { // get overflow bit: set register to C flag // resp. V flag const dest_reg = try self.register_manager.allocReg(null); // mov reg, #0 _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = .r0, .op = Instruction.Operand.fromU32(0).?, } }, }); // C flag: movcs reg, #1 // V flag: movvs reg, #1 _ = try self.addInst(.{ .tag = .mov, .cond = switch (mcv) { .register_c_flag => .cs, .register_v_flag => .vs, else => unreachable, }, .data = .{ .rr_op = .{ .rd = dest_reg, .rn = .r0, .op = Instruction.Operand.fromU32(1).?, } }, }); break :result MCValue{ .register = dest_reg }; }, else => unreachable, } }, else => return self.fail("TODO implement codegen struct_field_val for {}", .{mcv}), } }; return self.finishAir(inst, result, .{ extra.struct_operand, .none, .none }); } fn airFieldParentPtr(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFieldParentPtr", .{}); return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } /// Don't call this function directly. Use binOp instead. /// /// Calling this function signals an intention to generate a Mir /// instruction of the form /// /// op dest, lhs, rhs /// /// Asserts that generating an instruction of that form is possible. fn binOpRegister( self: *Self, mir_tag: Mir.Inst.Tag, maybe_inst: ?Air.Inst.Index, lhs: MCValue, rhs: MCValue, lhs_ty: Type, rhs_ty: Type, ) !MCValue { const lhs_is_register = lhs == .register; const rhs_is_register = rhs == .register; const lhs_lock: ?RegisterLock = if (lhs_is_register) self.register_manager.lockReg(lhs.register) else null; defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg); const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; const lhs_reg = if (lhs_is_register) lhs.register else blk: { const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; break :inst Air.refToIndex(bin_op.lhs).?; } else null; const reg = try self.register_manager.allocReg(track_inst); if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg }); break :blk reg; }; const new_lhs_lock = self.register_manager.lockReg(lhs_reg); defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg); const rhs_reg = if (rhs_is_register) rhs.register else blk: { const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; break :inst Air.refToIndex(bin_op.rhs).?; } else null; const reg = try self.register_manager.allocReg(track_inst); if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg }); break :blk reg; }; const new_rhs_lock = self.register_manager.lockReg(rhs_reg); defer if (new_rhs_lock) |reg| self.register_manager.unlockReg(reg); const dest_reg = switch (mir_tag) { .cmp => .r0, // cmp has no destination regardless else => if (maybe_inst) |inst| blk: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; if (lhs_is_register and self.reuseOperand(inst, bin_op.lhs, 0, lhs)) { break :blk lhs_reg; } else if (rhs_is_register and self.reuseOperand(inst, bin_op.rhs, 1, rhs)) { break :blk rhs_reg; } else { break :blk try self.register_manager.allocReg(inst); } } else try self.register_manager.allocReg(null), }; if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs); if (!rhs_is_register) try self.genSetReg(rhs_ty, rhs_reg, rhs); const mir_data: Mir.Inst.Data = switch (mir_tag) { .add, .adds, .sub, .subs, .cmp, .@"and", .orr, .eor, => .{ .rr_op = .{ .rd = dest_reg, .rn = lhs_reg, .op = Instruction.Operand.reg(rhs_reg, Instruction.Operand.Shift.none), } }, .lsl, .asr, .lsr, => .{ .rr_shift = .{ .rd = dest_reg, .rm = lhs_reg, .shift_amount = Instruction.ShiftAmount.reg(rhs_reg), } }, .mul, .smulbb, => .{ .rrr = .{ .rd = dest_reg, .rn = lhs_reg, .rm = rhs_reg, } }, else => unreachable, }; _ = try self.addInst(.{ .tag = mir_tag, .data = mir_data, }); return MCValue{ .register = dest_reg }; } /// Don't call this function directly. Use binOp instead. /// /// Calling this function signals an intention to generate a Mir /// instruction of the form /// /// op dest, lhs, #rhs_imm /// /// Set lhs_and_rhs_swapped to true iff inst.bin_op.lhs corresponds to /// rhs and vice versa. This parameter is only used when maybe_inst != /// null. /// /// Asserts that generating an instruction of that form is possible. fn binOpImmediate( self: *Self, mir_tag: Mir.Inst.Tag, maybe_inst: ?Air.Inst.Index, lhs: MCValue, rhs: MCValue, lhs_ty: Type, lhs_and_rhs_swapped: bool, ) !MCValue { const lhs_is_register = lhs == .register; const lhs_lock: ?RegisterLock = if (lhs_is_register) self.register_manager.lockReg(lhs.register) else null; defer if (lhs_lock) |reg| self.register_manager.unlockReg(reg); const branch = &self.branch_stack.items[self.branch_stack.items.len - 1]; const lhs_reg = if (lhs_is_register) lhs.register else blk: { const track_inst: ?Air.Inst.Index = if (maybe_inst) |inst| inst: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; break :inst Air.refToIndex( if (lhs_and_rhs_swapped) bin_op.rhs else bin_op.lhs, ).?; } else null; const reg = try self.register_manager.allocReg(track_inst); if (track_inst) |inst| branch.inst_table.putAssumeCapacity(inst, .{ .register = reg }); break :blk reg; }; const new_lhs_lock = self.register_manager.lockReg(lhs_reg); defer if (new_lhs_lock) |reg| self.register_manager.unlockReg(reg); const dest_reg = switch (mir_tag) { .cmp => .r0, // cmp has no destination reg else => if (maybe_inst) |inst| blk: { const bin_op = self.air.instructions.items(.data)[inst].bin_op; if (lhs_is_register and self.reuseOperand( inst, if (lhs_and_rhs_swapped) bin_op.rhs else bin_op.lhs, if (lhs_and_rhs_swapped) 1 else 0, lhs, )) { break :blk lhs_reg; } else { break :blk try self.register_manager.allocReg(inst); } } else try self.register_manager.allocReg(null), }; if (!lhs_is_register) try self.genSetReg(lhs_ty, lhs_reg, lhs); const mir_data: Mir.Inst.Data = switch (mir_tag) { .add, .adds, .sub, .subs, .cmp, .@"and", .orr, .eor, => .{ .rr_op = .{ .rd = dest_reg, .rn = lhs_reg, .op = Instruction.Operand.fromU32(rhs.immediate).?, } }, .lsl, .asr, .lsr, => .{ .rr_shift = .{ .rd = dest_reg, .rm = lhs_reg, .shift_amount = Instruction.ShiftAmount.imm(@intCast(u5, rhs.immediate)), } }, else => unreachable, }; _ = try self.addInst(.{ .tag = mir_tag, .data = mir_data, }); return MCValue{ .register = dest_reg }; } /// For all your binary operation needs, this function will generate /// the corresponding Mir instruction(s). Returns the location of the /// result. /// /// If the binary operation itself happens to be an Air instruction, /// pass the corresponding index in the inst parameter. That helps /// this function do stuff like reusing operands. /// /// This function does not do any lowering to Mir itself, but instead /// looks at the lhs and rhs and determines which kind of lowering /// would be best suitable and then delegates the lowering to other /// functions. fn binOp( self: *Self, tag: Air.Inst.Tag, maybe_inst: ?Air.Inst.Index, lhs: MCValue, rhs: MCValue, lhs_ty: Type, rhs_ty: Type, ) InnerError!MCValue { switch (tag) { .add, .sub, .cmp_eq, => { switch (lhs_ty.zigTypeTag()) { .Float => return self.fail("TODO ARM binary operations on floats", .{}), .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { // Only say yes if the operation is // commutative, i.e. we can swap both of the // operands const lhs_immediate_ok = switch (tag) { .add => lhs == .immediate and Instruction.Operand.fromU32(lhs.immediate) != null, .sub, .cmp_eq, => false, else => unreachable, }; const rhs_immediate_ok = switch (tag) { .add, .sub, .cmp_eq, => rhs == .immediate and Instruction.Operand.fromU32(rhs.immediate) != null, else => unreachable, }; const mir_tag: Mir.Inst.Tag = switch (tag) { .add => .add, .sub => .sub, .cmp_eq => .cmp, else => unreachable, }; if (rhs_immediate_ok) { return try self.binOpImmediate(mir_tag, maybe_inst, lhs, rhs, lhs_ty, false); } else if (lhs_immediate_ok) { // swap lhs and rhs return try self.binOpImmediate(mir_tag, maybe_inst, rhs, lhs, rhs_ty, true); } else { return try self.binOpRegister(mir_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, } }, .mul => { switch (lhs_ty.zigTypeTag()) { .Float => return self.fail("TODO ARM binary operations on floats", .{}), .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { // TODO add optimisations for multiplication // with immediates, for example a * 2 can be // lowered to a << 1 return try self.binOpRegister(.mul, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, } }, .addwrap, .subwrap, .mulwrap, => { const base_tag: Air.Inst.Tag = switch (tag) { .addwrap => .add, .subwrap => .sub, .mulwrap => .mul, else => unreachable, }; // Generate an add/sub/mul const result = try self.binOp(base_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); // Truncate if necessary switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const result_reg = result.register; if (int_info.bits < 32) { try self.truncRegister(result_reg, result_reg, int_info.signedness, int_info.bits); return result; } else return result; } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, } }, .bit_and, .bit_or, .xor, => { switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const mod = self.bin_file.options.module.?; assert(lhs_ty.eql(rhs_ty, mod)); const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const lhs_immediate_ok = lhs == .immediate and Instruction.Operand.fromU32(lhs.immediate) != null; const rhs_immediate_ok = rhs == .immediate and Instruction.Operand.fromU32(rhs.immediate) != null; const mir_tag: Mir.Inst.Tag = switch (tag) { .bit_and => .@"and", .bit_or => .orr, .xor => .eor, else => unreachable, }; if (rhs_immediate_ok) { return try self.binOpImmediate(mir_tag, maybe_inst, lhs, rhs, lhs_ty, false); } else if (lhs_immediate_ok) { // swap lhs and rhs return try self.binOpImmediate(mir_tag, maybe_inst, rhs, lhs, rhs_ty, true); } else { return try self.binOpRegister(mir_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, } }, .shl_exact, .shr_exact, => { switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const rhs_immediate_ok = rhs == .immediate; const mir_tag: Mir.Inst.Tag = switch (tag) { .shl_exact => .lsl, .shr_exact => switch (lhs_ty.intInfo(self.target.*).signedness) { .signed => Mir.Inst.Tag.asr, .unsigned => Mir.Inst.Tag.lsr, }, else => unreachable, }; if (rhs_immediate_ok) { return try self.binOpImmediate(mir_tag, maybe_inst, lhs, rhs, lhs_ty, false); } else { return try self.binOpRegister(mir_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, } }, .shl, .shr, => { const base_tag: Air.Inst.Tag = switch (tag) { .shl => .shl_exact, .shr => .shr_exact, else => unreachable, }; // Generate a shl_exact/shr_exact const result = try self.binOp(base_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); // Truncate if necessary switch (tag) { .shr => return result, .shl => switch (lhs_ty.zigTypeTag()) { .Vector => return self.fail("TODO ARM binary operations on vectors", .{}), .Int => { const int_info = lhs_ty.intInfo(self.target.*); if (int_info.bits <= 32) { const result_reg = result.register; if (int_info.bits < 32) { try self.truncRegister(result_reg, result_reg, int_info.signedness, int_info.bits); return result; } else return result; } else { return self.fail("TODO ARM binary operations on integers > u32/i32", .{}); } }, else => unreachable, }, else => unreachable, } }, .bool_and, .bool_or, => { switch (lhs_ty.zigTypeTag()) { .Bool => { const lhs_immediate_ok = lhs == .immediate; const rhs_immediate_ok = rhs == .immediate; const mir_tag: Mir.Inst.Tag = switch (tag) { .bool_and => .@"and", .bool_or => .orr, else => unreachable, }; if (rhs_immediate_ok) { return try self.binOpImmediate(mir_tag, maybe_inst, lhs, rhs, lhs_ty, false); } else if (lhs_immediate_ok) { // swap lhs and rhs return try self.binOpImmediate(mir_tag, maybe_inst, rhs, lhs, rhs_ty, true); } else { return try self.binOpRegister(mir_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } }, else => unreachable, } }, .ptr_add, .ptr_sub, => { switch (lhs_ty.zigTypeTag()) { .Pointer => { const ptr_ty = lhs_ty; const elem_ty = switch (ptr_ty.ptrSize()) { .One => ptr_ty.childType().childType(), // ptr to array, so get array element type else => ptr_ty.childType(), }; const elem_size = @intCast(u32, elem_ty.abiSize(self.target.*)); if (elem_size == 1) { const base_tag: Mir.Inst.Tag = switch (tag) { .ptr_add => .add, .ptr_sub => .sub, else => unreachable, }; return try self.binOpRegister(base_tag, maybe_inst, lhs, rhs, lhs_ty, rhs_ty); } else { // convert the offset into a byte offset by // multiplying it with elem_size const offset = try self.binOp(.mul, null, rhs, .{ .immediate = elem_size }, Type.usize, Type.usize); const addr = try self.binOp(tag, null, lhs, offset, Type.initTag(.manyptr_u8), Type.usize); return addr; } }, else => unreachable, } }, else => unreachable, } } fn genLdrRegister(self: *Self, dest_reg: Register, addr_reg: Register, ty: Type) !void { const abi_size = ty.abiSize(self.target.*); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsb else .ldrb, 2 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsh else .ldrh, 3, 4 => .ldr, else => unreachable, }; const rr_offset: Mir.Inst.Data = .{ .rr_offset = .{ .rt = dest_reg, .rn = addr_reg, .offset = .{ .offset = Instruction.Offset.none }, } }; const rr_extra_offset: Mir.Inst.Data = .{ .rr_extra_offset = .{ .rt = dest_reg, .rn = addr_reg, .offset = .{ .offset = Instruction.ExtraLoadStoreOffset.none }, } }; const data: Mir.Inst.Data = switch (abi_size) { 1 => if (ty.isSignedInt()) rr_extra_offset else rr_offset, 2 => rr_extra_offset, 3, 4 => rr_offset, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = data, }); } fn genStrRegister(self: *Self, source_reg: Register, addr_reg: Register, ty: Type) !void { const abi_size = ty.abiSize(self.target.*); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => .strb, 2 => .strh, 3, 4 => .str, else => unreachable, }; const rr_offset: Mir.Inst.Data = .{ .rr_offset = .{ .rt = source_reg, .rn = addr_reg, .offset = .{ .offset = Instruction.Offset.none }, } }; const rr_extra_offset: Mir.Inst.Data = .{ .rr_extra_offset = .{ .rt = source_reg, .rn = addr_reg, .offset = .{ .offset = Instruction.ExtraLoadStoreOffset.none }, } }; const data: Mir.Inst.Data = switch (abi_size) { 1, 3, 4 => rr_offset, 2 => rr_extra_offset, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = data, }); } fn genInlineMemcpy( self: *Self, src: Register, dst: Register, len: Register, count: Register, tmp: Register, ) !void { // mov count, #0 _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = count, .rn = .r0, .op = Instruction.Operand.imm(0, 0), } }, }); // loop: // cmp count, len _ = try self.addInst(.{ .tag = .cmp, .data = .{ .rr_op = .{ .rd = .r0, .rn = count, .op = Instruction.Operand.reg(len, Instruction.Operand.Shift.none), } }, }); // bge end _ = try self.addInst(.{ .tag = .b, .cond = .ge, .data = .{ .inst = @intCast(u32, self.mir_instructions.len + 5) }, }); // ldrb tmp, [src, count] _ = try self.addInst(.{ .tag = .ldrb, .data = .{ .rr_offset = .{ .rt = tmp, .rn = src, .offset = .{ .offset = Instruction.Offset.reg(count, .none) }, } }, }); // strb tmp, [src, count] _ = try self.addInst(.{ .tag = .strb, .data = .{ .rr_offset = .{ .rt = tmp, .rn = dst, .offset = .{ .offset = Instruction.Offset.reg(count, .none) }, } }, }); // add count, count, #1 _ = try self.addInst(.{ .tag = .add, .data = .{ .rr_op = .{ .rd = count, .rn = count, .op = Instruction.Operand.imm(1, 0), } }, }); // b loop _ = try self.addInst(.{ .tag = .b, .data = .{ .inst = @intCast(u32, self.mir_instructions.len - 5) }, }); // end: } /// Adds a Type to the .debug_info at the current position. The bytes will be populated later, /// after codegen for this symbol is done. fn addDbgInfoTypeReloc(self: *Self, ty: Type) error{OutOfMemory}!void { switch (self.debug_output) { .dwarf => |dw| { assert(ty.hasRuntimeBits()); const dbg_info = &dw.dbg_info; const index = dbg_info.items.len; try dbg_info.resize(index + 4); // DW.AT.type, DW.FORM.ref4 const mod = self.bin_file.options.module.?; const atom = switch (self.bin_file.tag) { .elf => &mod.declPtr(self.mod_fn.owner_decl).link.elf.dbg_info_atom, .macho => unreachable, else => unreachable, }; try dw.addTypeReloc(atom, ty, @intCast(u32, index), null); }, .plan9 => {}, .none => {}, } } fn genArgDbgInfo(self: *Self, inst: Air.Inst.Index, arg_index: u32, stack_byte_count: u32) error{OutOfMemory}!void { const prologue_stack_space = stack_byte_count + self.saved_regs_stack_space; const mcv = self.args[arg_index]; const ty = self.air.instructions.items(.data)[inst].ty; const name = self.mod_fn.getParamName(arg_index); const name_with_null = name.ptr[0 .. name.len + 1]; switch (mcv) { .register => |reg| { switch (self.debug_output) { .dwarf => |dw| { const dbg_info = &dw.dbg_info; try dbg_info.ensureUnusedCapacity(3); dbg_info.appendAssumeCapacity(@enumToInt(link.File.Dwarf.AbbrevKind.parameter)); dbg_info.appendSliceAssumeCapacity(&[2]u8{ // DW.AT.location, DW.FORM.exprloc 1, // ULEB128 dwarf expression length reg.dwarfLocOp(), }); try dbg_info.ensureUnusedCapacity(5 + name_with_null.len); try self.addDbgInfoTypeReloc(ty); // DW.AT.type, DW.FORM.ref4 dbg_info.appendSliceAssumeCapacity(name_with_null); // DW.AT.name, DW.FORM.string }, .plan9 => {}, .none => {}, } }, .stack_offset, .stack_argument_offset, => { switch (self.debug_output) { .dwarf => |dw| { // const abi_size = @intCast(u32, ty.abiSize(self.target.*)); const adjusted_stack_offset = switch (mcv) { .stack_offset => |offset| -@intCast(i32, offset), .stack_argument_offset => |offset| @intCast(i32, prologue_stack_space - offset), else => unreachable, }; const dbg_info = &dw.dbg_info; try dbg_info.append(@enumToInt(link.File.Dwarf.AbbrevKind.parameter)); // Get length of the LEB128 stack offset var counting_writer = std.io.countingWriter(std.io.null_writer); leb128.writeILEB128(counting_writer.writer(), adjusted_stack_offset) catch unreachable; // DW.AT.location, DW.FORM.exprloc // ULEB128 dwarf expression length try leb128.writeULEB128(dbg_info.writer(), counting_writer.bytes_written + 1); try dbg_info.append(DW.OP.breg11); try leb128.writeILEB128(dbg_info.writer(), adjusted_stack_offset); try dbg_info.ensureUnusedCapacity(5 + name_with_null.len); try self.addDbgInfoTypeReloc(ty); // DW.AT.type, DW.FORM.ref4 dbg_info.appendSliceAssumeCapacity(name_with_null); // DW.AT.name, DW.FORM.string }, .plan9 => {}, .none => {}, } }, else => unreachable, // not a possible argument } } fn airArg(self: *Self, inst: Air.Inst.Index) !void { const arg_index = self.arg_index; self.arg_index += 1; const ty = self.air.typeOfIndex(inst); const result = self.args[arg_index]; const mcv = switch (result) { // Copy registers to the stack .register => |reg| blk: { const abi_size = @intCast(u32, ty.abiSize(self.target.*)); const abi_align = ty.abiAlignment(self.target.*); const stack_offset = try self.allocMem(inst, abi_size, abi_align); try self.genSetStack(ty, stack_offset, MCValue{ .register = reg }); break :blk MCValue{ .stack_offset = stack_offset }; }, else => result, }; try self.dbg_arg_relocs.append(self.gpa, .{ .inst = inst, .index = arg_index, }); if (self.liveness.isUnused(inst)) return self.finishAirBookkeeping(); switch (mcv) { .register => |reg| { self.register_manager.getRegAssumeFree(reg, inst); }, else => {}, } return self.finishAir(inst, mcv, .{ .none, .none, .none }); } fn airBreakpoint(self: *Self) !void { _ = try self.addInst(.{ .tag = .bkpt, .data = .{ .imm16 = 0 }, }); return self.finishAirBookkeeping(); } fn airRetAddr(self: *Self, inst: Air.Inst.Index) !void { const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airRetAddr for arm", .{}); return self.finishAir(inst, result, .{ .none, .none, .none }); } fn airFrameAddress(self: *Self, inst: Air.Inst.Index) !void { const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFrameAddress for arm", .{}); return self.finishAir(inst, result, .{ .none, .none, .none }); } fn airFence(self: *Self) !void { return self.fail("TODO implement fence() for {}", .{self.target.cpu.arch}); //return self.finishAirBookkeeping(); } fn airCall(self: *Self, inst: Air.Inst.Index, modifier: std.builtin.CallOptions.Modifier) !void { if (modifier == .always_tail) return self.fail("TODO implement tail calls for arm", .{}); const pl_op = self.air.instructions.items(.data)[inst].pl_op; const callee = pl_op.operand; const extra = self.air.extraData(Air.Call, pl_op.payload); const args = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra.end..][0..extra.data.args_len]); const ty = self.air.typeOf(callee); const fn_ty = switch (ty.zigTypeTag()) { .Fn => ty, .Pointer => ty.childType(), else => unreachable, }; var info = try self.resolveCallingConventionValues(fn_ty); defer info.deinit(self); // According to the Procedure Call Standard for the ARM // Architecture, compare flags are not preserved across // calls. Therefore, if some value is currently stored there, we // need to save it. try self.spillCompareFlagsIfOccupied(); // Save caller-saved registers, but crucially *after* we save the // compare flags as saving compare flags may require a new // caller-saved register for (caller_preserved_regs) |reg| { try self.register_manager.getReg(reg, null); } if (info.return_value == .stack_offset) { log.debug("airCall: return by reference", .{}); const ret_ty = fn_ty.fnReturnType(); const ret_abi_size = @intCast(u32, ret_ty.abiSize(self.target.*)); const ret_abi_align = @intCast(u32, ret_ty.abiAlignment(self.target.*)); const stack_offset = try self.allocMem(inst, ret_abi_size, ret_abi_align); var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = ret_ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); try self.register_manager.getReg(.r0, null); try self.genSetReg(ptr_ty, .r0, .{ .ptr_stack_offset = stack_offset }); info.return_value = .{ .stack_offset = stack_offset }; } // Make space for the arguments passed via the stack self.max_end_stack += info.stack_byte_count; for (info.args) |mc_arg, arg_i| { const arg = args[arg_i]; const arg_ty = self.air.typeOf(arg); const arg_mcv = try self.resolveInst(args[arg_i]); switch (mc_arg) { .none => continue, .register => |reg| { try self.register_manager.getReg(reg, null); try self.genSetReg(arg_ty, reg, arg_mcv); }, .stack_offset => unreachable, .stack_argument_offset => |offset| try self.genSetStackArgument( arg_ty, info.stack_byte_count - offset, arg_mcv, ), else => unreachable, } } // Due to incremental compilation, how function calls are generated depends // on linking. switch (self.bin_file.tag) { .elf, .coff => { if (self.air.value(callee)) |func_value| { if (func_value.castTag(.function)) |func_payload| { const func = func_payload.data; const ptr_bits = self.target.cpu.arch.ptrBitWidth(); const ptr_bytes: u64 = @divExact(ptr_bits, 8); const mod = self.bin_file.options.module.?; const fn_owner_decl = mod.declPtr(func.owner_decl); const got_addr = if (self.bin_file.cast(link.File.Elf)) |elf_file| blk: { const got = &elf_file.program_headers.items[elf_file.phdr_got_index.?]; break :blk @intCast(u32, got.p_vaddr + fn_owner_decl.link.elf.offset_table_index * ptr_bytes); } else if (self.bin_file.cast(link.File.Coff)) |coff_file| coff_file.offset_table_virtual_address + fn_owner_decl.link.coff.offset_table_index * ptr_bytes else unreachable; try self.genSetReg(Type.initTag(.usize), .lr, .{ .memory = got_addr }); } else if (func_value.castTag(.extern_fn)) |_| { return self.fail("TODO implement calling extern functions", .{}); } else { return self.fail("TODO implement calling bitcasted functions", .{}); } } else { assert(ty.zigTypeTag() == .Pointer); const mcv = try self.resolveInst(callee); try self.genSetReg(Type.initTag(.usize), .lr, mcv); } // TODO: add Instruction.supportedOn // function for ARM if (Target.arm.featureSetHas(self.target.cpu.features, .has_v5t)) { _ = try self.addInst(.{ .tag = .blx, .data = .{ .reg = .lr }, }); } else { return self.fail("TODO fix blx emulation for ARM unreachable, // unsupported architecture for MachO .plan9 => return self.fail("TODO implement call on plan9 for {}", .{self.target.cpu.arch}), else => unreachable, } const result: MCValue = result: { switch (info.return_value) { .register => |reg| { if (RegisterManager.indexOfRegIntoTracked(reg) == null) { // Save function return value into a tracked register log.debug("airCall: copying {} as it is not tracked", .{reg}); break :result try self.copyToNewRegister(inst, info.return_value); } }, else => {}, } break :result info.return_value; }; if (args.len <= Liveness.bpi - 2) { var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1); buf[0] = callee; std.mem.copy(Air.Inst.Ref, buf[1..], args); return self.finishAir(inst, result, buf); } var bt = try self.iterateBigTomb(inst, 1 + args.len); bt.feed(callee); for (args) |arg| { bt.feed(arg); } return bt.finishAir(result); } fn airRet(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const ret_ty = self.fn_type.fnReturnType(); switch (self.ret_mcv) { .none => {}, .register => |reg| { // Return result by value try self.genSetReg(ret_ty, reg, operand); }, .stack_offset => { // Return result by reference // // self.ret_mcv is an address to where this function // should store its result into var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = ret_ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); try self.store(self.ret_mcv, operand, ptr_ty, ret_ty); }, else => unreachable, // invalid return result } // Just add space for an instruction, patch this later try self.exitlude_jump_relocs.append(self.gpa, try self.addNop()); return self.finishAir(inst, .dead, .{ un_op, .none, .none }); } fn airRetLoad(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const ptr = try self.resolveInst(un_op); const ptr_ty = self.air.typeOf(un_op); const ret_ty = self.fn_type.fnReturnType(); switch (self.ret_mcv) { .none => {}, .register => { // Return result by value try self.load(self.ret_mcv, ptr, ptr_ty); }, .stack_offset => { // Return result by reference // // self.ret_mcv is an address to where this function // should store its result into // // If the operand is a ret_ptr instruction, we are done // here. Else we need to load the result from the location // pointed to by the operand and store it to the result // location. const op_inst = Air.refToIndex(un_op).?; if (self.air.instructions.items(.tag)[op_inst] != .ret_ptr) { const abi_size = @intCast(u32, ret_ty.abiSize(self.target.*)); const abi_align = ret_ty.abiAlignment(self.target.*); // This is essentially allocMem without the // instruction tracking if (abi_align > self.stack_align) self.stack_align = abi_align; // TODO find a free slot instead of always appending const offset = mem.alignForwardGeneric(u32, self.next_stack_offset, abi_align) + abi_size; self.next_stack_offset = offset; self.max_end_stack = @maximum(self.max_end_stack, self.next_stack_offset); const tmp_mcv = MCValue{ .stack_offset = offset }; try self.load(tmp_mcv, ptr, ptr_ty); try self.store(self.ret_mcv, tmp_mcv, ptr_ty, ret_ty); } }, else => unreachable, // invalid return result } // Just add space for an instruction, patch this later try self.exitlude_jump_relocs.append(self.gpa, try self.addNop()); return self.finishAir(inst, .dead, .{ un_op, .none, .none }); } fn airCmp(self: *Self, inst: Air.Inst.Index, op: math.CompareOperator) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const lhs_ty = self.air.typeOf(bin_op.lhs); var int_buffer: Type.Payload.Bits = undefined; const int_ty = switch (lhs_ty.zigTypeTag()) { .Optional => blk: { var opt_buffer: Type.Payload.ElemType = undefined; const payload_ty = lhs_ty.optionalChild(&opt_buffer); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { break :blk Type.initTag(.u1); } else if (lhs_ty.isPtrLikeOptional()) { break :blk Type.usize; } else { return self.fail("TODO ARM cmp non-pointer optionals", .{}); } }, .Float => return self.fail("TODO ARM cmp floats", .{}), .Enum => lhs_ty.intTagType(&int_buffer), .Int => lhs_ty, .Bool => Type.initTag(.u1), .Pointer => Type.usize, .ErrorSet => Type.initTag(.u16), else => unreachable, }; const int_info = int_ty.intInfo(self.target.*); if (int_info.bits <= 32) { try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = inst; _ = try self.binOp(.cmp_eq, inst, lhs, rhs, int_ty, int_ty); break :result switch (int_info.signedness) { .signed => MCValue{ .compare_flags_signed = op }, .unsigned => MCValue{ .compare_flags_unsigned = op }, }; } else { return self.fail("TODO ARM cmp for ints > 32 bits", .{}); } }; return self.finishAir(inst, result, .{ bin_op.lhs, bin_op.rhs, .none }); } fn airCmpVector(self: *Self, inst: Air.Inst.Index) !void { _ = inst; return self.fail("TODO implement airCmpVector for {}", .{self.target.cpu.arch}); } fn airCmpLtErrorsLen(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); _ = operand; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airCmpLtErrorsLen for {}", .{self.target.cpu.arch}); return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airDbgStmt(self: *Self, inst: Air.Inst.Index) !void { const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt; _ = try self.addInst(.{ .tag = .dbg_line, .cond = undefined, .data = .{ .dbg_line_column = .{ .line = dbg_stmt.line, .column = dbg_stmt.column, } }, }); return self.finishAirBookkeeping(); } fn airDbgInline(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const function = self.air.values[ty_pl.payload].castTag(.function).?.data; // TODO emit debug info for function change _ = function; return self.finishAir(inst, .dead, .{ .none, .none, .none }); } fn airDbgBlock(self: *Self, inst: Air.Inst.Index) !void { // TODO emit debug info lexical block return self.finishAir(inst, .dead, .{ .none, .none, .none }); } fn airDbgVar(self: *Self, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const name = self.air.nullTerminatedString(pl_op.payload); const operand = pl_op.operand; // TODO emit debug info for this variable _ = name; return self.finishAir(inst, .dead, .{ operand, .none, .none }); } fn airCondBr(self: *Self, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const cond = try self.resolveInst(pl_op.operand); const extra = self.air.extraData(Air.CondBr, pl_op.payload); const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len]; const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; const liveness_condbr = self.liveness.getCondBr(inst); const reloc: Mir.Inst.Index = reloc: { const condition: Condition = switch (cond) { .compare_flags_signed => |cmp_op| blk: { // Here we map to the opposite condition because the jump is to the false branch. const condition = Condition.fromCompareOperatorSigned(cmp_op); break :blk condition.negate(); }, .compare_flags_unsigned => |cmp_op| blk: { // Here we map to the opposite condition because the jump is to the false branch. const condition = Condition.fromCompareOperatorUnsigned(cmp_op); break :blk condition.negate(); }, else => blk: { const reg = switch (cond) { .register => |r| r, else => try self.copyToTmpRegister(Type.bool, cond), }; try self.spillCompareFlagsIfOccupied(); // cmp reg, 1 // bne ... _ = try self.addInst(.{ .tag = .cmp, .cond = .al, .data = .{ .rr_op = .{ .rd = .r0, .rn = reg, .op = Instruction.Operand.imm(1, 0), } }, }); break :blk .ne; }, }; break :reloc try self.addInst(.{ .tag = .b, .cond = condition, .data = .{ .inst = undefined }, // populated later through performReloc }); }; // If the condition dies here in this condbr instruction, process // that death now instead of later as this has an effect on // whether it needs to be spilled in the branches if (self.liveness.operandDies(inst, 0)) { const op_int = @enumToInt(pl_op.operand); if (op_int >= Air.Inst.Ref.typed_value_map.len) { const op_index = @intCast(Air.Inst.Index, op_int - Air.Inst.Ref.typed_value_map.len); self.processDeath(op_index); } } // Capture the state of register and stack allocation state so that we can revert to it. const parent_next_stack_offset = self.next_stack_offset; const parent_free_registers = self.register_manager.free_registers; var parent_stack = try self.stack.clone(self.gpa); defer parent_stack.deinit(self.gpa); const parent_registers = self.register_manager.registers; const parent_compare_flags_inst = self.compare_flags_inst; try self.branch_stack.append(.{}); try self.ensureProcessDeathCapacity(liveness_condbr.then_deaths.len); for (liveness_condbr.then_deaths) |operand| { self.processDeath(operand); } try self.genBody(then_body); // Revert to the previous register and stack allocation state. var saved_then_branch = self.branch_stack.pop(); defer saved_then_branch.deinit(self.gpa); self.register_manager.registers = parent_registers; self.compare_flags_inst = parent_compare_flags_inst; self.stack.deinit(self.gpa); self.stack = parent_stack; parent_stack = .{}; self.next_stack_offset = parent_next_stack_offset; self.register_manager.free_registers = parent_free_registers; try self.performReloc(reloc); const else_branch = self.branch_stack.addOneAssumeCapacity(); else_branch.* = .{}; try self.ensureProcessDeathCapacity(liveness_condbr.else_deaths.len); for (liveness_condbr.else_deaths) |operand| { self.processDeath(operand); } try self.genBody(else_body); // At this point, each branch will possibly have conflicting values for where // each instruction is stored. They agree, however, on which instructions are alive/dead. // We use the first ("then") branch as canonical, and here emit // instructions into the second ("else") branch to make it conform. // We continue respect the data structure semantic guarantees of the else_branch so // that we can use all the code emitting abstractions. This is why at the bottom we // assert that parent_branch.free_registers equals the saved_then_branch.free_registers // rather than assigning it. const parent_branch = &self.branch_stack.items[self.branch_stack.items.len - 2]; try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, else_branch.inst_table.count()); const else_slice = else_branch.inst_table.entries.slice(); const else_keys = else_slice.items(.key); const else_values = else_slice.items(.value); for (else_keys) |else_key, else_idx| { const else_value = else_values[else_idx]; const canon_mcv = if (saved_then_branch.inst_table.fetchSwapRemove(else_key)) |then_entry| blk: { // The instruction's MCValue is overridden in both branches. parent_branch.inst_table.putAssumeCapacity(else_key, then_entry.value); if (else_value == .dead) { assert(then_entry.value == .dead); continue; } break :blk then_entry.value; } else blk: { if (else_value == .dead) continue; // The instruction is only overridden in the else branch. var i: usize = self.branch_stack.items.len - 2; while (true) { i -= 1; // If this overflows, the question is: why wasn't the instruction marked dead? if (self.branch_stack.items[i].inst_table.get(else_key)) |mcv| { assert(mcv != .dead); break :blk mcv; } } }; log.debug("consolidating else_entry {d} {}=>{}", .{ else_key, else_value, canon_mcv }); // TODO make sure the destination stack offset / register does not already have something // going on there. try self.setRegOrMem(self.air.typeOfIndex(else_key), canon_mcv, else_value); // TODO track the new register / stack allocation } try parent_branch.inst_table.ensureUnusedCapacity(self.gpa, saved_then_branch.inst_table.count()); const then_slice = saved_then_branch.inst_table.entries.slice(); const then_keys = then_slice.items(.key); const then_values = then_slice.items(.value); for (then_keys) |then_key, then_idx| { const then_value = then_values[then_idx]; // We already deleted the items from this table that matched the else_branch. // So these are all instructions that are only overridden in the then branch. parent_branch.inst_table.putAssumeCapacity(then_key, then_value); if (then_value == .dead) continue; const parent_mcv = blk: { var i: usize = self.branch_stack.items.len - 2; while (true) { i -= 1; if (self.branch_stack.items[i].inst_table.get(then_key)) |mcv| { assert(mcv != .dead); break :blk mcv; } } }; log.debug("consolidating then_entry {d} {}=>{}", .{ then_key, parent_mcv, then_value }); // TODO make sure the destination stack offset / register does not already have something // going on there. try self.setRegOrMem(self.air.typeOfIndex(then_key), parent_mcv, then_value); // TODO track the new register / stack allocation } { var item = self.branch_stack.pop(); item.deinit(self.gpa); } // We already took care of pl_op.operand earlier, so we're going // to pass .none here return self.finishAir(inst, .unreach, .{ .none, .none, .none }); } fn isNull(self: *Self, ty: Type, operand: MCValue) !MCValue { if (ty.isPtrLikeOptional()) { assert(ty.abiSize(self.target.*) == 4); const reg_mcv: MCValue = switch (operand) { .register => operand, else => .{ .register = try self.copyToTmpRegister(ty, operand) }, }; _ = try self.addInst(.{ .tag = .cmp, .data = .{ .rr_op = .{ .rd = undefined, .rn = reg_mcv.register, .op = Instruction.Operand.fromU32(0).?, } }, }); return MCValue{ .compare_flags_unsigned = .eq }; } else { return self.fail("TODO implement non-pointer optionals", .{}); } } fn isNonNull(self: *Self, ty: Type, operand: MCValue) !MCValue { const is_null_result = try self.isNull(ty, operand); assert(is_null_result.compare_flags_unsigned == .eq); return MCValue{ .compare_flags_unsigned = .neq }; } fn isErr(self: *Self, ty: Type, operand: MCValue) !MCValue { const error_type = ty.errorUnionSet(); const error_int_type = Type.initTag(.u16); if (!error_type.hasRuntimeBits()) { return MCValue{ .immediate = 0 }; // always false } const error_mcv = try self.errUnionErr(operand, ty); _ = try self.binOp(.cmp_eq, null, error_mcv, .{ .immediate = 0 }, error_int_type, error_int_type); return MCValue{ .compare_flags_unsigned = .gt }; } fn isNonErr(self: *Self, ty: Type, operand: MCValue) !MCValue { const is_err_result = try self.isErr(ty, operand); switch (is_err_result) { .compare_flags_unsigned => |op| { assert(op == .gt); return MCValue{ .compare_flags_unsigned = .lte }; }, .immediate => |imm| { assert(imm == 0); return MCValue{ .immediate = 1 }; }, else => unreachable, } } fn airIsNull(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; try self.spillCompareFlagsIfOccupied(); self.compare_flags_inst = inst; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand = try self.resolveInst(un_op); const ty = self.air.typeOf(un_op); break :result try self.isNull(ty, operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsNullPtr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand_ptr = try self.resolveInst(un_op); const ptr_ty = self.air.typeOf(un_op); const operand: MCValue = blk: { if (self.reuseOperand(inst, un_op, 0, operand_ptr)) { // The MCValue that holds the pointer can be re-used as the value. break :blk operand_ptr; } else { break :blk try self.allocRegOrMem(inst, true); } }; try self.load(operand, operand_ptr, ptr_ty); break :result try self.isNull(ptr_ty.elemType(), operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsNonNull(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand = try self.resolveInst(un_op); const ty = self.air.typeOf(un_op); break :result try self.isNonNull(ty, operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsNonNullPtr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand_ptr = try self.resolveInst(un_op); const ptr_ty = self.air.typeOf(un_op); const operand: MCValue = blk: { if (self.reuseOperand(inst, un_op, 0, operand_ptr)) { // The MCValue that holds the pointer can be re-used as the value. break :blk operand_ptr; } else { break :blk try self.allocRegOrMem(inst, true); } }; try self.load(operand, operand_ptr, ptr_ty); break :result try self.isNonNull(ptr_ty.elemType(), operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsErr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand = try self.resolveInst(un_op); const ty = self.air.typeOf(un_op); break :result try self.isErr(ty, operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsErrPtr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand_ptr = try self.resolveInst(un_op); const ptr_ty = self.air.typeOf(un_op); const operand: MCValue = blk: { if (self.reuseOperand(inst, un_op, 0, operand_ptr)) { // The MCValue that holds the pointer can be re-used as the value. break :blk operand_ptr; } else { break :blk try self.allocRegOrMem(inst, true); } }; try self.load(operand, operand_ptr, ptr_ty); break :result try self.isErr(ptr_ty.elemType(), operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsNonErr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand = try self.resolveInst(un_op); const ty = self.air.typeOf(un_op); break :result try self.isNonErr(ty, operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airIsNonErrPtr(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const operand_ptr = try self.resolveInst(un_op); const ptr_ty = self.air.typeOf(un_op); const operand: MCValue = blk: { if (self.reuseOperand(inst, un_op, 0, operand_ptr)) { // The MCValue that holds the pointer can be re-used as the value. break :blk operand_ptr; } else { break :blk try self.allocRegOrMem(inst, true); } }; try self.load(operand, operand_ptr, ptr_ty); break :result try self.isNonErr(ptr_ty.elemType(), operand); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airLoop(self: *Self, inst: Air.Inst.Index) !void { // A loop is a setup to be able to jump back to the beginning. const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const loop = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[loop.end..][0..loop.data.body_len]; const start_index = @intCast(Mir.Inst.Index, self.mir_instructions.len); try self.genBody(body); try self.jump(start_index); return self.finishAirBookkeeping(); } /// Send control flow to `inst`. fn jump(self: *Self, inst: Mir.Inst.Index) !void { _ = try self.addInst(.{ .tag = .b, .data = .{ .inst = inst }, }); } fn airBlock(self: *Self, inst: Air.Inst.Index) !void { try self.blocks.putNoClobber(self.gpa, inst, .{ // A block is a setup to be able to jump to the end. .relocs = .{}, // It also acts as a receptacle for break operands. // Here we use `MCValue.none` to represent a null value so that the first // break instruction will choose a MCValue for the block result and overwrite // this field. Following break instructions will use that MCValue to put their // block results. .mcv = MCValue{ .none = {} }, }); defer self.blocks.getPtr(inst).?.relocs.deinit(self.gpa); const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[extra.end..][0..extra.data.body_len]; try self.genBody(body); // relocations for `br` instructions const relocs = &self.blocks.getPtr(inst).?.relocs; if (relocs.items.len > 0 and relocs.items[relocs.items.len - 1] == self.mir_instructions.len - 1) { // If the last Mir instruction is the last relocation (which // would just jump one instruction further), it can be safely // removed self.mir_instructions.orderedRemove(relocs.pop()); } for (relocs.items) |reloc| { try self.performReloc(reloc); } const result = self.blocks.getPtr(inst).?.mcv; return self.finishAir(inst, result, .{ .none, .none, .none }); } fn airSwitch(self: *Self, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const condition = pl_op.operand; _ = condition; return self.fail("TODO airSwitch for {}", .{self.target.cpu.arch}); // return self.finishAir(inst, .dead, .{ condition, .none, .none }); } fn performReloc(self: *Self, inst: Mir.Inst.Index) !void { const tag = self.mir_instructions.items(.tag)[inst]; switch (tag) { .b => self.mir_instructions.items(.data)[inst].inst = @intCast(Air.Inst.Index, self.mir_instructions.len), else => unreachable, } } fn airBr(self: *Self, inst: Air.Inst.Index) !void { const branch = self.air.instructions.items(.data)[inst].br; try self.br(branch.block_inst, branch.operand); return self.finishAir(inst, .dead, .{ branch.operand, .none, .none }); } fn br(self: *Self, block: Air.Inst.Index, operand: Air.Inst.Ref) !void { const block_data = self.blocks.getPtr(block).?; if (self.air.typeOf(operand).hasRuntimeBits()) { const operand_mcv = try self.resolveInst(operand); const block_mcv = block_data.mcv; if (block_mcv == .none) { block_data.mcv = switch (operand_mcv) { .none, .dead, .unreach => unreachable, .register, .stack_offset, .memory => operand_mcv, .immediate, .stack_argument_offset => blk: { const new_mcv = try self.allocRegOrMem(block, true); try self.setRegOrMem(self.air.typeOfIndex(block), new_mcv, operand_mcv); break :blk new_mcv; }, else => return self.fail("TODO implement block_data.mcv = operand_mcv for {}", .{operand_mcv}), }; } else { try self.setRegOrMem(self.air.typeOfIndex(block), block_mcv, operand_mcv); } } return self.brVoid(block); } fn brVoid(self: *Self, block: Air.Inst.Index) !void { const block_data = self.blocks.getPtr(block).?; // Emit a jump with a relocation. It will be patched up after the block ends. try block_data.relocs.append(self.gpa, try self.addInst(.{ .tag = .b, .data = .{ .inst = undefined }, // populated later through performReloc })); } fn airAsm(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Asm, ty_pl.payload); const is_volatile = @truncate(u1, extra.data.flags >> 31) != 0; const clobbers_len = @truncate(u31, extra.data.flags); var extra_i: usize = extra.end; const outputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.outputs_len]); extra_i += outputs.len; const inputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.inputs_len]); extra_i += inputs.len; const dead = !is_volatile and self.liveness.isUnused(inst); const result: MCValue = if (dead) .dead else result: { if (outputs.len > 1) { return self.fail("TODO implement codegen for asm with more than 1 output", .{}); } const output_constraint: ?[]const u8 = for (outputs) |output| { if (output != .none) { return self.fail("TODO implement codegen for non-expr asm", .{}); } const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]); const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. extra_i += (constraint.len + name.len + (2 + 3)) / 4; break constraint; } else null; for (inputs) |input| { const input_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]); const constraint = std.mem.sliceTo(input_bytes, 0); const name = std.mem.sliceTo(input_bytes[constraint.len + 1 ..], 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. extra_i += (constraint.len + name.len + (2 + 3)) / 4; if (constraint.len < 3 or constraint[0] != '{' or constraint[constraint.len - 1] != '}') { return self.fail("unrecognized asm input constraint: '{s}'", .{constraint}); } const reg_name = constraint[1 .. constraint.len - 1]; const reg = parseRegName(reg_name) orelse return self.fail("unrecognized register: '{s}'", .{reg_name}); const arg_mcv = try self.resolveInst(input); try self.register_manager.getReg(reg, null); try self.genSetReg(self.air.typeOf(input), reg, arg_mcv); } { var clobber_i: u32 = 0; while (clobber_i < clobbers_len) : (clobber_i += 1) { const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. extra_i += clobber.len / 4 + 1; // TODO honor these } } const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len]; if (mem.eql(u8, asm_source, "svc #0")) { _ = try self.addInst(.{ .tag = .svc, .data = .{ .imm24 = 0 }, }); } else { return self.fail("TODO implement support for more arm assembly instructions", .{}); } if (output_constraint) |output| { if (output.len < 4 or output[0] != '=' or output[1] != '{' or output[output.len - 1] != '}') { return self.fail("unrecognized asm output constraint: '{s}'", .{output}); } const reg_name = output[2 .. output.len - 1]; const reg = parseRegName(reg_name) orelse return self.fail("unrecognized register: '{s}'", .{reg_name}); break :result MCValue{ .register = reg }; } else { break :result MCValue{ .none = {} }; } }; simple: { var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1); var buf_index: usize = 0; for (outputs) |output| { if (output == .none) continue; if (buf_index >= buf.len) break :simple; buf[buf_index] = output; buf_index += 1; } if (buf_index + inputs.len > buf.len) break :simple; std.mem.copy(Air.Inst.Ref, buf[buf_index..], inputs); return self.finishAir(inst, result, buf); } var bt = try self.iterateBigTomb(inst, outputs.len + inputs.len); for (outputs) |output| { if (output == .none) continue; bt.feed(output); } for (inputs) |input| { bt.feed(input); } return bt.finishAir(result); } fn iterateBigTomb(self: *Self, inst: Air.Inst.Index, operand_count: usize) !BigTomb { try self.ensureProcessDeathCapacity(operand_count + 1); return BigTomb{ .function = self, .inst = inst, .lbt = self.liveness.iterateBigTomb(inst), }; } /// Sets the value without any modifications to register allocation metadata or stack allocation metadata. fn setRegOrMem(self: *Self, ty: Type, loc: MCValue, val: MCValue) !void { switch (loc) { .none => return, .register => |reg| return self.genSetReg(ty, reg, val), .stack_offset => |off| return self.genSetStack(ty, off, val), .memory => { return self.fail("TODO implement setRegOrMem for memory", .{}); }, else => unreachable, } } fn genSetStack(self: *Self, ty: Type, stack_offset: u32, mcv: MCValue) InnerError!void { const abi_size = @intCast(u32, ty.abiSize(self.target.*)); switch (mcv) { .dead => unreachable, .unreach, .none => return, // Nothing to do. .undef => { if (!self.wantSafety()) return; // The already existing value will do just fine. // TODO Upgrade this to a memset call when we have that available. switch (ty.abiSize(self.target.*)) { 1 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaa }), 2 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaa }), 4 => return self.genSetStack(ty, stack_offset, .{ .immediate = 0xaaaaaaaa }), else => return self.fail("TODO implement memset", .{}), } }, .compare_flags_unsigned, .compare_flags_signed, .immediate, .ptr_stack_offset, => { const reg = try self.copyToTmpRegister(ty, mcv); return self.genSetStack(ty, stack_offset, MCValue{ .register = reg }); }, .register => |reg| { switch (abi_size) { 1, 4 => { const offset = if (math.cast(u12, stack_offset)) |imm| blk: { break :blk Instruction.Offset.imm(imm); } else |_| Instruction.Offset.reg(try self.copyToTmpRegister(Type.initTag(.u32), MCValue{ .immediate = stack_offset }), .none); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => .strb, 4 => .str, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = .{ .rr_offset = .{ .rt = reg, .rn = .fp, .offset = .{ .offset = offset, .positive = false, }, } }, }); }, 2 => { const offset = if (stack_offset <= math.maxInt(u8)) blk: { break :blk Instruction.ExtraLoadStoreOffset.imm(@intCast(u8, stack_offset)); } else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(Type.initTag(.u32), MCValue{ .immediate = stack_offset })); _ = try self.addInst(.{ .tag = .strh, .data = .{ .rr_extra_offset = .{ .rt = reg, .rn = .fp, .offset = .{ .offset = offset, .positive = false, }, } }, }); }, else => return self.fail("TODO implement storing other types abi_size={}", .{abi_size}), } }, .register_c_flag, .register_v_flag, => { return self.fail("TODO implement genSetStack {}", .{mcv}); }, .memory, .stack_argument_offset, .stack_offset, => { switch (mcv) { .stack_offset => |off| { if (stack_offset == off) return; // Copy stack variable to itself; nothing to do. }, else => {}, } if (abi_size <= 4) { const reg = try self.copyToTmpRegister(ty, mcv); return self.genSetStack(ty, stack_offset, MCValue{ .register = reg }); } else { var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); // TODO call extern memcpy const regs = try self.register_manager.allocRegs(5, .{ null, null, null, null, null }); const src_reg = regs[0]; const dst_reg = regs[1]; const len_reg = regs[2]; const count_reg = regs[3]; const tmp_reg = regs[4]; switch (mcv) { .stack_offset => |off| { // sub src_reg, fp, #off try self.genSetReg(ptr_ty, src_reg, .{ .ptr_stack_offset = off }); }, .memory => |addr| try self.genSetReg(ptr_ty, src_reg, .{ .immediate = @intCast(u32, addr) }), .stack_argument_offset => |off| { _ = try self.addInst(.{ .tag = .ldr_ptr_stack_argument, .data = .{ .r_stack_offset = .{ .rt = src_reg, .stack_offset = off, } }, }); }, else => unreachable, } // sub dst_reg, fp, #stack_offset try self.genSetReg(ptr_ty, dst_reg, .{ .ptr_stack_offset = stack_offset }); // mov len, #abi_size try self.genSetReg(Type.usize, len_reg, .{ .immediate = abi_size }); // memcpy(src, dst, len) try self.genInlineMemcpy(src_reg, dst_reg, len_reg, count_reg, tmp_reg); } }, } } fn genSetReg(self: *Self, ty: Type, reg: Register, mcv: MCValue) InnerError!void { switch (mcv) { .dead => unreachable, .unreach, .none => return, // Nothing to do. .undef => { if (!self.wantSafety()) return; // The already existing value will do just fine. // Write the debug undefined value. return self.genSetReg(ty, reg, .{ .immediate = 0xaaaaaaaa }); }, .ptr_stack_offset => |off| { // TODO: maybe addressing from sp instead of fp const op = Instruction.Operand.fromU32(off) orelse return self.fail("TODO larger stack offsets", .{}); _ = try self.addInst(.{ .tag = .sub, .data = .{ .rr_op = .{ .rd = reg, .rn = .fp, .op = op, } }, }); }, .compare_flags_unsigned, .compare_flags_signed, => |op| { const condition = switch (mcv) { .compare_flags_unsigned => Condition.fromCompareOperatorUnsigned(op), .compare_flags_signed => Condition.fromCompareOperatorSigned(op), else => unreachable, }; const zero = Instruction.Operand.imm(0, 0); const one = Instruction.Operand.imm(1, 0); // mov reg, 0 _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = zero, } }, }); // moveq reg, 1 _ = try self.addInst(.{ .tag = .mov, .cond = condition, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = one, } }, }); }, .immediate => |x| { if (Instruction.Operand.fromU32(x)) |op| { _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = op, } }, }); } else if (Instruction.Operand.fromU32(~x)) |op| { _ = try self.addInst(.{ .tag = .mvn, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = op, } }, }); } else if (x <= math.maxInt(u16)) { if (Target.arm.featureSetHas(self.target.cpu.features, .has_v7)) { _ = try self.addInst(.{ .tag = .movw, .data = .{ .r_imm16 = .{ .rd = reg, .imm16 = @intCast(u16, x), } }, }); } else { _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = Instruction.Operand.imm(@truncate(u8, x), 0), } }, }); _ = try self.addInst(.{ .tag = .orr, .data = .{ .rr_op = .{ .rd = reg, .rn = reg, .op = Instruction.Operand.imm(@truncate(u8, x >> 8), 12), } }, }); } } else { // TODO write constant to code and load // relative to pc if (Target.arm.featureSetHas(self.target.cpu.features, .has_v7)) { // immediate: 0xaaaabbbb // movw reg, #0xbbbb // movt reg, #0xaaaa _ = try self.addInst(.{ .tag = .movw, .data = .{ .r_imm16 = .{ .rd = reg, .imm16 = @truncate(u16, x), } }, }); _ = try self.addInst(.{ .tag = .movt, .data = .{ .r_imm16 = .{ .rd = reg, .imm16 = @truncate(u16, x >> 16), } }, }); } else { // immediate: 0xaabbccdd // mov reg, #0xaa // orr reg, reg, #0xbb, 24 // orr reg, reg, #0xcc, 16 // orr reg, reg, #0xdd, 8 _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = Instruction.Operand.imm(@truncate(u8, x), 0), } }, }); _ = try self.addInst(.{ .tag = .orr, .data = .{ .rr_op = .{ .rd = reg, .rn = reg, .op = Instruction.Operand.imm(@truncate(u8, x >> 8), 12), } }, }); _ = try self.addInst(.{ .tag = .orr, .data = .{ .rr_op = .{ .rd = reg, .rn = reg, .op = Instruction.Operand.imm(@truncate(u8, x >> 16), 8), } }, }); _ = try self.addInst(.{ .tag = .orr, .data = .{ .rr_op = .{ .rd = reg, .rn = reg, .op = Instruction.Operand.imm(@truncate(u8, x >> 24), 4), } }, }); } } }, .register => |src_reg| { // If the registers are the same, nothing to do. if (src_reg.id() == reg.id()) return; // mov reg, src_reg _ = try self.addInst(.{ .tag = .mov, .data = .{ .rr_op = .{ .rd = reg, .rn = .r0, .op = Instruction.Operand.reg(src_reg, Instruction.Operand.Shift.none), } }, }); }, .register_c_flag => unreachable, // doesn't fit into a register .register_v_flag => unreachable, // doesn't fit into a register .memory => |addr| { // The value is in memory at a hard-coded address. // If the type is a pointer, it means the pointer address is at this memory location. try self.genSetReg(ty, reg, .{ .immediate = @intCast(u32, addr) }); try self.genLdrRegister(reg, reg, ty); }, .stack_offset => |off| { // TODO: maybe addressing from sp instead of fp const abi_size = @intCast(u32, ty.abiSize(self.target.*)); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsb else .ldrb, 2 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsh else .ldrh, 3, 4 => .ldr, else => unreachable, }; const extra_offset = switch (abi_size) { 1 => ty.isSignedInt(), 2 => true, 3, 4 => false, else => unreachable, }; if (extra_offset) { const offset = if (off <= math.maxInt(u8)) blk: { break :blk Instruction.ExtraLoadStoreOffset.imm(@intCast(u8, off)); } else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(Type.initTag(.usize), MCValue{ .immediate = off })); _ = try self.addInst(.{ .tag = tag, .data = .{ .rr_extra_offset = .{ .rt = reg, .rn = .fp, .offset = .{ .offset = offset, .positive = false, }, } }, }); } else { const offset = if (off <= math.maxInt(u12)) blk: { break :blk Instruction.Offset.imm(@intCast(u12, off)); } else Instruction.Offset.reg(try self.copyToTmpRegister(Type.initTag(.usize), MCValue{ .immediate = off }), .none); _ = try self.addInst(.{ .tag = tag, .data = .{ .rr_offset = .{ .rt = reg, .rn = .fp, .offset = .{ .offset = offset, .positive = false, }, } }, }); } }, .stack_argument_offset => |off| { const abi_size = ty.abiSize(self.target.*); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsb_stack_argument else .ldrb_stack_argument, 2 => if (ty.isSignedInt()) Mir.Inst.Tag.ldrsh_stack_argument else .ldrh_stack_argument, 3, 4 => .ldr_stack_argument, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = .{ .r_stack_offset = .{ .rt = reg, .stack_offset = off, } }, }); }, } } fn genSetStackArgument(self: *Self, ty: Type, stack_offset: u32, mcv: MCValue) InnerError!void { const abi_size = @intCast(u32, ty.abiSize(self.target.*)); switch (mcv) { .dead => unreachable, .none, .unreach => return, .undef => { if (!self.wantSafety()) return; // The already existing value will do just fine. // TODO Upgrade this to a memset call when we have that available. switch (abi_size) { 1 => return self.genSetStackArgument(ty, stack_offset, .{ .immediate = 0xaa }), 2 => return self.genSetStackArgument(ty, stack_offset, .{ .immediate = 0xaaaa }), 4 => return self.genSetStackArgument(ty, stack_offset, .{ .immediate = 0xaaaaaaaa }), else => return self.fail("TODO implement memset", .{}), } }, .register => |reg| { switch (abi_size) { 1, 4 => { const offset = if (math.cast(u12, stack_offset)) |imm| blk: { break :blk Instruction.Offset.imm(imm); } else |_| Instruction.Offset.reg(try self.copyToTmpRegister(Type.initTag(.u32), MCValue{ .immediate = stack_offset }), .none); const tag: Mir.Inst.Tag = switch (abi_size) { 1 => .strb, 4 => .str, else => unreachable, }; _ = try self.addInst(.{ .tag = tag, .data = .{ .rr_offset = .{ .rt = reg, .rn = .sp, .offset = .{ .offset = offset }, } }, }); }, 2 => { const offset = if (stack_offset <= math.maxInt(u8)) blk: { break :blk Instruction.ExtraLoadStoreOffset.imm(@intCast(u8, stack_offset)); } else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(Type.initTag(.u32), MCValue{ .immediate = stack_offset })); _ = try self.addInst(.{ .tag = .strh, .data = .{ .rr_extra_offset = .{ .rt = reg, .rn = .sp, .offset = .{ .offset = offset }, } }, }); }, else => return self.fail("TODO implement storing other types abi_size={}", .{abi_size}), } }, .register_c_flag, .register_v_flag, => { return self.fail("TODO implement genSetStack {}", .{mcv}); }, .stack_offset, .memory, .stack_argument_offset, => { if (abi_size <= 4) { const reg = try self.copyToTmpRegister(ty, mcv); return self.genSetStackArgument(ty, stack_offset, MCValue{ .register = reg }); } else { var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); // TODO call extern memcpy const regs = try self.register_manager.allocRegs(5, .{ null, null, null, null, null }); const src_reg = regs[0]; const dst_reg = regs[1]; const len_reg = regs[2]; const count_reg = regs[3]; const tmp_reg = regs[4]; switch (mcv) { .stack_offset => |off| { // sub src_reg, fp, #off try self.genSetReg(ptr_ty, src_reg, .{ .ptr_stack_offset = off }); }, .memory => |addr| try self.genSetReg(ptr_ty, src_reg, .{ .immediate = @intCast(u32, addr) }), .stack_argument_offset => |off| { _ = try self.addInst(.{ .tag = .ldr_ptr_stack_argument, .data = .{ .r_stack_offset = .{ .rt = src_reg, .stack_offset = off, } }, }); }, else => unreachable, } // add dst_reg, sp, #stack_offset const dst_offset_op: Instruction.Operand = if (Instruction.Operand.fromU32(stack_offset)) |x| x else { return self.fail("TODO load: set reg to stack offset with all possible offsets", .{}); }; _ = try self.addInst(.{ .tag = .add, .data = .{ .rr_op = .{ .rd = dst_reg, .rn = .sp, .op = dst_offset_op, } }, }); // mov len, #abi_size try self.genSetReg(Type.usize, len_reg, .{ .immediate = abi_size }); // memcpy(src, dst, len) try self.genInlineMemcpy(src_reg, dst_reg, len_reg, count_reg, tmp_reg); } }, .compare_flags_unsigned, .compare_flags_signed, .immediate, .ptr_stack_offset, => { const reg = try self.copyToTmpRegister(ty, mcv); return self.genSetStackArgument(ty, stack_offset, MCValue{ .register = reg }); }, } } fn airPtrToInt(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const result = try self.resolveInst(un_op); return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airBitCast(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result = try self.resolveInst(ty_op.operand); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else result: { const ptr_ty = self.air.typeOf(ty_op.operand); const ptr = try self.resolveInst(ty_op.operand); const array_ty = ptr_ty.childType(); const array_len = @intCast(u32, array_ty.arrayLen()); const stack_offset = try self.allocMem(inst, 8, 8); try self.genSetStack(ptr_ty, stack_offset, ptr); try self.genSetStack(Type.initTag(.usize), stack_offset - 4, .{ .immediate = array_len }); break :result MCValue{ .stack_offset = stack_offset }; }; return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airIntToFloat(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airIntToFloat for {}", .{ self.target.cpu.arch, }); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airFloatToInt(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airFloatToInt for {}", .{ self.target.cpu.arch, }); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airCmpxchg(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Block, ty_pl.payload); _ = extra; return self.fail("TODO implement airCmpxchg for {}", .{ self.target.cpu.arch, }); } fn airAtomicRmw(self: *Self, inst: Air.Inst.Index) !void { _ = inst; return self.fail("TODO implement airCmpxchg for {}", .{self.target.cpu.arch}); } fn airAtomicLoad(self: *Self, inst: Air.Inst.Index) !void { _ = inst; return self.fail("TODO implement airAtomicLoad for {}", .{self.target.cpu.arch}); } fn airAtomicStore(self: *Self, inst: Air.Inst.Index, order: std.builtin.AtomicOrder) !void { _ = inst; _ = order; return self.fail("TODO implement airAtomicStore for {}", .{self.target.cpu.arch}); } fn airMemset(self: *Self, inst: Air.Inst.Index) !void { _ = inst; return self.fail("TODO implement airMemset for {}", .{self.target.cpu.arch}); } fn airMemcpy(self: *Self, inst: Air.Inst.Index) !void { _ = inst; return self.fail("TODO implement airMemcpy for {}", .{self.target.cpu.arch}); } fn airTagName(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else { _ = operand; return self.fail("TODO implement airTagName for arm", .{}); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airErrorName(self: *Self, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const result: MCValue = if (self.liveness.isUnused(inst)) .dead else { _ = operand; return self.fail("TODO implement airErrorName for arm", .{}); }; return self.finishAir(inst, result, .{ un_op, .none, .none }); } fn airSplat(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airSplat for arm", .{}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airSelect(self: *Self, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const extra = self.air.extraData(Air.Bin, pl_op.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airSelect for arm", .{}); return self.finishAir(inst, result, .{ pl_op.operand, extra.lhs, extra.rhs }); } fn airShuffle(self: *Self, inst: Air.Inst.Index) !void { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airShuffle for arm", .{}); return self.finishAir(inst, result, .{ ty_op.operand, .none, .none }); } fn airReduce(self: *Self, inst: Air.Inst.Index) !void { const reduce = self.air.instructions.items(.data)[inst].reduce; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else return self.fail("TODO implement airReduce for arm", .{}); return self.finishAir(inst, result, .{ reduce.operand, .none, .none }); } fn airAggregateInit(self: *Self, inst: Air.Inst.Index) !void { const vector_ty = self.air.typeOfIndex(inst); const len = vector_ty.vectorLen(); const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const elements = @ptrCast([]const Air.Inst.Ref, self.air.extra[ty_pl.payload..][0..len]); const result: MCValue = res: { if (self.liveness.isUnused(inst)) break :res MCValue.dead; return self.fail("TODO implement airAggregateInit for arm", .{}); }; if (elements.len <= Liveness.bpi - 1) { var buf = [1]Air.Inst.Ref{.none} ** (Liveness.bpi - 1); std.mem.copy(Air.Inst.Ref, &buf, elements); return self.finishAir(inst, result, buf); } var bt = try self.iterateBigTomb(inst, elements.len); for (elements) |elem| { bt.feed(elem); } return bt.finishAir(result); } fn airUnionInit(self: *Self, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data; _ = extra; return self.fail("TODO implement airUnionInit for arm", .{}); } fn airPrefetch(self: *Self, inst: Air.Inst.Index) !void { const prefetch = self.air.instructions.items(.data)[inst].prefetch; return self.finishAir(inst, MCValue.dead, .{ prefetch.ptr, .none, .none }); } fn airMulAdd(self: *Self, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const extra = self.air.extraData(Air.Bin, pl_op.payload).data; const result: MCValue = if (self.liveness.isUnused(inst)) .dead else { return self.fail("TODO implement airMulAdd for arm", .{}); }; return self.finishAir(inst, result, .{ extra.lhs, extra.rhs, pl_op.operand }); } fn resolveInst(self: *Self, inst: Air.Inst.Ref) InnerError!MCValue { // First section of indexes correspond to a set number of constant values. const ref_int = @enumToInt(inst); if (ref_int < Air.Inst.Ref.typed_value_map.len) { const tv = Air.Inst.Ref.typed_value_map[ref_int]; if (!tv.ty.hasRuntimeBits()) { return MCValue{ .none = {} }; } return self.genTypedValue(tv); } // If the type has no codegen bits, no need to store it. const inst_ty = self.air.typeOf(inst); if (!inst_ty.hasRuntimeBits()) return MCValue{ .none = {} }; const inst_index = @intCast(Air.Inst.Index, ref_int - Air.Inst.Ref.typed_value_map.len); switch (self.air.instructions.items(.tag)[inst_index]) { .constant => { // Constants have static lifetimes, so they are always memoized in the outer most table. const branch = &self.branch_stack.items[0]; const gop = try branch.inst_table.getOrPut(self.gpa, inst_index); if (!gop.found_existing) { const ty_pl = self.air.instructions.items(.data)[inst_index].ty_pl; gop.value_ptr.* = try self.genTypedValue(.{ .ty = inst_ty, .val = self.air.values[ty_pl.payload], }); } return gop.value_ptr.*; }, .const_ty => unreachable, else => return self.getResolvedInstValue(inst_index), } } fn getResolvedInstValue(self: *Self, inst: Air.Inst.Index) MCValue { // Treat each stack item as a "layer" on top of the previous one. var i: usize = self.branch_stack.items.len; while (true) { i -= 1; if (self.branch_stack.items[i].inst_table.get(inst)) |mcv| { assert(mcv != .dead); return mcv; } } } fn lowerDeclRef(self: *Self, tv: TypedValue, decl_index: Module.Decl.Index) InnerError!MCValue { const ptr_bits = self.target.cpu.arch.ptrBitWidth(); const ptr_bytes: u64 = @divExact(ptr_bits, 8); const mod = self.bin_file.options.module.?; const decl = mod.declPtr(decl_index); mod.markDeclAlive(decl); if (self.bin_file.cast(link.File.Elf)) |elf_file| { const got = &elf_file.program_headers.items[elf_file.phdr_got_index.?]; const got_addr = got.p_vaddr + decl.link.elf.offset_table_index * ptr_bytes; return MCValue{ .memory = got_addr }; } else if (self.bin_file.cast(link.File.MachO)) |_| { unreachable; // unsupported architecture for MachO } else if (self.bin_file.cast(link.File.Coff)) |coff_file| { const got_addr = coff_file.offset_table_virtual_address + decl.link.coff.offset_table_index * ptr_bytes; return MCValue{ .memory = got_addr }; } else if (self.bin_file.cast(link.File.Plan9)) |p9| { try p9.seeDecl(decl_index); const got_addr = p9.bases.data + decl.link.plan9.got_index.? * ptr_bytes; return MCValue{ .memory = got_addr }; } else { return self.fail("TODO codegen non-ELF const Decl pointer", .{}); } _ = tv; } fn lowerUnnamedConst(self: *Self, tv: TypedValue) InnerError!MCValue { const local_sym_index = self.bin_file.lowerUnnamedConst(tv, self.mod_fn.owner_decl) catch |err| { return self.fail("lowering unnamed constant failed: {s}", .{@errorName(err)}); }; if (self.bin_file.cast(link.File.Elf)) |elf_file| { const vaddr = elf_file.local_symbols.items[local_sym_index].st_value; return MCValue{ .memory = vaddr }; } else if (self.bin_file.cast(link.File.MachO)) |_| { unreachable; } else if (self.bin_file.cast(link.File.Coff)) |_| { return self.fail("TODO lower unnamed const in COFF", .{}); } else if (self.bin_file.cast(link.File.Plan9)) |_| { return self.fail("TODO lower unnamed const in Plan9", .{}); } else { return self.fail("TODO lower unnamed const", .{}); } } fn genTypedValue(self: *Self, typed_value: TypedValue) InnerError!MCValue { if (typed_value.val.isUndef()) return MCValue{ .undef = {} }; const ptr_bits = self.target.cpu.arch.ptrBitWidth(); if (typed_value.val.castTag(.decl_ref)) |payload| { return self.lowerDeclRef(typed_value, payload.data); } if (typed_value.val.castTag(.decl_ref_mut)) |payload| { return self.lowerDeclRef(typed_value, payload.data.decl_index); } const target = self.target.*; switch (typed_value.ty.zigTypeTag()) { .Array => { return self.lowerUnnamedConst(typed_value); }, .Pointer => switch (typed_value.ty.ptrSize()) { .Slice => { return self.lowerUnnamedConst(typed_value); }, else => { switch (typed_value.val.tag()) { .int_u64 => { return MCValue{ .immediate = @intCast(u32, typed_value.val.toUnsignedInt(target)) }; }, .slice => { return self.lowerUnnamedConst(typed_value); }, else => { return self.fail("TODO codegen more kinds of const pointers", .{}); }, } }, }, .Int => { const info = typed_value.ty.intInfo(self.target.*); if (info.bits <= ptr_bits) { const unsigned = switch (info.signedness) { .signed => blk: { const signed = @intCast(i32, typed_value.val.toSignedInt()); break :blk @bitCast(u32, signed); }, .unsigned => @intCast(u32, typed_value.val.toUnsignedInt(target)), }; return MCValue{ .immediate = unsigned }; } else { return self.lowerUnnamedConst(typed_value); } }, .Bool => { return MCValue{ .immediate = @boolToInt(typed_value.val.toBool()) }; }, .ComptimeInt => unreachable, // semantic analysis prevents this .ComptimeFloat => unreachable, // semantic analysis prevents this .Optional => { if (typed_value.ty.isPtrLikeOptional()) { if (typed_value.val.isNull()) return MCValue{ .immediate = 0 }; var buf: Type.Payload.ElemType = undefined; return self.genTypedValue(.{ .ty = typed_value.ty.optionalChild(&buf), .val = typed_value.val, }); } else if (typed_value.ty.abiSize(self.target.*) == 1) { return MCValue{ .immediate = @boolToInt(typed_value.val.isNull()) }; } return self.fail("TODO non pointer optionals", .{}); }, .Enum => { if (typed_value.val.castTag(.enum_field_index)) |field_index| { switch (typed_value.ty.tag()) { .enum_simple => { return MCValue{ .immediate = field_index.data }; }, .enum_full, .enum_nonexhaustive => { const enum_full = typed_value.ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { const tag_val = enum_full.values.keys()[field_index.data]; return self.genTypedValue(.{ .ty = enum_full.tag_ty, .val = tag_val }); } else { return MCValue{ .immediate = field_index.data }; } }, else => unreachable, } } else { var int_tag_buffer: Type.Payload.Bits = undefined; const int_tag_ty = typed_value.ty.intTagType(&int_tag_buffer); return self.genTypedValue(.{ .ty = int_tag_ty, .val = typed_value.val }); } }, .ErrorSet => { const err_name = typed_value.val.castTag(.@"error").?.data.name; const module = self.bin_file.options.module.?; const global_error_set = module.global_error_set; const error_index = global_error_set.get(err_name).?; return MCValue{ .immediate = error_index }; }, .ErrorUnion => { const error_type = typed_value.ty.errorUnionSet(); const payload_type = typed_value.ty.errorUnionPayload(); if (typed_value.val.castTag(.eu_payload)) |pl| { if (!payload_type.hasRuntimeBits()) { // We use the error type directly as the type. return MCValue{ .immediate = 0 }; } _ = pl; return self.fail("TODO implement error union const of type '{}' (non-error)", .{typed_value.ty.fmtDebug()}); } else { if (!payload_type.hasRuntimeBits()) { // We use the error type directly as the type. return self.genTypedValue(.{ .ty = error_type, .val = typed_value.val }); } return self.fail("TODO implement error union const of type '{}' (error)", .{typed_value.ty.fmtDebug()}); } }, .Struct => { return self.lowerUnnamedConst(typed_value); }, else => return self.fail("TODO implement const of type '{}'", .{typed_value.ty.fmtDebug()}), } } const CallMCValues = struct { args: []MCValue, return_value: MCValue, stack_byte_count: u32, stack_align: u32, fn deinit(self: *CallMCValues, func: *Self) void { func.gpa.free(self.args); self.* = undefined; } }; /// Caller must call `CallMCValues.deinit`. fn resolveCallingConventionValues(self: *Self, fn_ty: Type) !CallMCValues { const cc = fn_ty.fnCallingConvention(); const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen()); defer self.gpa.free(param_types); fn_ty.fnParamTypes(param_types); var result: CallMCValues = .{ .args = try self.gpa.alloc(MCValue, param_types.len), // These undefined values must be populated before returning from this function. .return_value = undefined, .stack_byte_count = undefined, .stack_align = undefined, }; errdefer self.gpa.free(result.args); const ret_ty = fn_ty.fnReturnType(); switch (cc) { .Naked => { assert(result.args.len == 0); result.return_value = .{ .unreach = {} }; result.stack_byte_count = 0; result.stack_align = 1; return result; }, .C => { // ARM Procedure Call Standard, Chapter 6.5 var ncrn: usize = 0; // Next Core Register Number var nsaa: u32 = 0; // Next stacked argument address if (ret_ty.zigTypeTag() == .NoReturn) { result.return_value = .{ .unreach = {} }; } else if (!ret_ty.hasRuntimeBits()) { result.return_value = .{ .none = {} }; } else { const ret_ty_size = @intCast(u32, ret_ty.abiSize(self.target.*)); // TODO handle cases where multiple registers are used if (ret_ty_size <= 4) { result.return_value = .{ .register = c_abi_int_return_regs[0] }; } else { // The result is returned by reference, not by // value. This means that r0 will contain the // address of where this function should write the // result into. result.return_value = .{ .stack_offset = 0 }; ncrn = 1; } } for (param_types) |ty, i| { if (ty.abiAlignment(self.target.*) == 8) ncrn = std.mem.alignForwardGeneric(usize, ncrn, 2); const param_size = @intCast(u32, ty.abiSize(self.target.*)); if (std.math.divCeil(u32, param_size, 4) catch unreachable <= 4 - ncrn) { if (param_size <= 4) { result.args[i] = .{ .register = c_abi_int_param_regs[ncrn] }; ncrn += 1; } else { return self.fail("TODO MCValues with multiple registers", .{}); } } else if (ncrn < 4 and nsaa == 0) { return self.fail("TODO MCValues split between registers and stack", .{}); } else { ncrn = 4; if (ty.abiAlignment(self.target.*) == 8) nsaa = std.mem.alignForwardGeneric(u32, nsaa, 8); nsaa += param_size; result.args[i] = .{ .stack_argument_offset = nsaa }; } } result.stack_byte_count = nsaa; result.stack_align = 8; }, .Unspecified => { if (ret_ty.zigTypeTag() == .NoReturn) { result.return_value = .{ .unreach = {} }; } else if (!ret_ty.hasRuntimeBits()) { result.return_value = .{ .none = {} }; } else { const ret_ty_size = @intCast(u32, ret_ty.abiSize(self.target.*)); if (ret_ty_size <= 4) { result.return_value = .{ .register = .r0 }; } else { // The result is returned by reference, not by // value. This means that r0 will contain the // address of where this function should write the // result into. result.return_value = .{ .stack_offset = 0 }; } } var stack_offset: u32 = 0; for (param_types) |ty, i| { if (ty.abiSize(self.target.*) > 0) { const param_size = @intCast(u32, ty.abiSize(self.target.*)); stack_offset = std.mem.alignForwardGeneric(u32, stack_offset, ty.abiAlignment(self.target.*)) + param_size; result.args[i] = .{ .stack_argument_offset = stack_offset }; } else { result.args[i] = .{ .none = {} }; } } result.stack_byte_count = stack_offset; result.stack_align = 8; }, else => return self.fail("TODO implement function parameters for {} on arm", .{cc}), } return result; } /// TODO support scope overrides. Also note this logic is duplicated with `Module.wantSafety`. fn wantSafety(self: *Self) bool { return switch (self.bin_file.options.optimize_mode) { .Debug => true, .ReleaseSafe => true, .ReleaseFast => false, .ReleaseSmall => false, }; } fn fail(self: *Self, comptime format: []const u8, args: anytype) InnerError { @setCold(true); assert(self.err_msg == null); self.err_msg = try ErrorMsg.create(self.bin_file.allocator, self.src_loc, format, args); return error.CodegenFail; } fn failSymbol(self: *Self, comptime format: []const u8, args: anytype) InnerError { @setCold(true); assert(self.err_msg == null); self.err_msg = try ErrorMsg.create(self.bin_file.allocator, self.src_loc, format, args); return error.CodegenFail; } fn parseRegName(name: []const u8) ?Register { if (@hasDecl(Register, "parseRegName")) { return Register.parseRegName(name); } return std.meta.stringToEnum(Register, name); }