const std = @import("std.zig"); const assert = std.debug.assert; const mem = std.mem; const testing = std.testing; /// A structure with an array and a length, that can be used as a slice. /// /// Useful to pass around small arrays whose exact size is only known at /// runtime, but whose maximum size is known at comptime, without requiring /// an `Allocator`. /// /// ```zig /// var actual_size = 32; /// var a = try BoundedArray(u8, 64).init(actual_size); /// var slice = a.slice(); // a slice of the 64-byte array /// var a_clone = a; // creates a copy - the structure doesn't use any internal pointers /// ``` pub fn BoundedArray(comptime T: type, comptime capacity: usize) type { return struct { const Self = @This(); buffer: [capacity]T, len: usize = 0, /// Set the actual length of the slice. /// Returns error.Overflow if it exceeds the length of the backing array. pub fn init(len: usize) !Self { if (len > capacity) return error.Overflow; return Self{ .buffer = undefined, .len = len }; } /// View the internal array as a mutable slice whose size was previously set. pub fn slice(self: *Self) []T { return self.buffer[0..self.len]; } /// View the internal array as a constant slice whose size was previously set. pub fn constSlice(self: Self) []const T { return self.buffer[0..self.len]; } /// Adjust the slice's length to `len`. /// Does not initialize added items if any. pub fn resize(self: *Self, len: usize) !void { if (len > capacity) return error.Overflow; self.len = len; } /// Copy the content of an existing slice. pub fn fromSlice(m: []const T) !Self { var list = try init(m.len); std.mem.copy(T, list.slice(), m); return list; } /// Return the element at index `i` of the slice. pub fn get(self: Self, i: usize) T { return self.constSlice()[i]; } /// Set the value of the element at index `i` of the slice. pub fn set(self: *Self, i: usize, item: T) void { self.slice()[i] = item; } /// Return the maximum length of a slice. pub fn capacity(self: Self) usize { return self.buffer.len; } /// Check that the slice can hold at least `additional_count` items. pub fn ensureUnusedCapacity(self: Self, additional_count: usize) !void { if (self.len + additional_count > capacity) { return error.Overflow; } } /// Increase length by 1, returning a pointer to the new item. pub fn addOne(self: *Self) !*T { try self.ensureUnusedCapacity(1); return self.addOneAssumeCapacity(); } /// Increase length by 1, returning pointer to the new item. /// Asserts that there is space for the new item. pub fn addOneAssumeCapacity(self: *Self) *T { assert(self.len < capacity); self.len += 1; return &self.slice()[self.len - 1]; } /// Resize the slice, adding `n` new elements, which have `undefined` values. /// The return value is a slice pointing to the uninitialized elements. pub fn addManyAsArray(self: *Self, comptime n: usize) !*[n]T { const prev_len = self.len; try self.resize(self.len + n); return self.slice()[prev_len..][0..n]; } /// Remove and return the last element from the slice. /// Asserts the slice has at least one item. pub fn pop(self: *Self) T { const item = self.get(self.len - 1); self.len -= 1; return item; } /// Remove and return the last element from the slice, or /// return `null` if the slice is empty. pub fn popOrNull(self: *Self) ?T { return if (self.len == 0) null else self.pop(); } /// Return a slice of only the extra capacity after items. /// This can be useful for writing directly into it. /// Note that such an operation must be followed up with a /// call to `resize()` pub fn unusedCapacitySlice(self: *Self) []T { return self.buffer[self.len..]; } /// Insert `item` at index `i` by moving `slice[n .. slice.len]` to make room. /// This operation is O(N). pub fn insert(self: *Self, i: usize, item: T) !void { if (i >= self.len) { return error.IndexOutOfBounds; } _ = try self.addOne(); var s = self.slice(); mem.copyBackwards(T, s[i + 1 .. s.len], s[i .. s.len - 1]); self.buffer[i] = item; } /// Insert slice `items` at index `i` by moving `slice[i .. slice.len]` to make room. /// This operation is O(N). pub fn insertSlice(self: *Self, i: usize, items: []const T) !void { try self.ensureUnusedCapacity(items.len); self.len += items.len; mem.copyBackwards(T, self.slice()[i + items.len .. self.len], self.constSlice()[i .. self.len - items.len]); mem.copy(T, self.slice()[i .. i + items.len], items); } /// Replace range of elements `slice[start..start+len]` with `new_items`. /// Grows slice if `len < new_items.len`. /// Shrinks slice if `len > new_items.len`. pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) !void { const after_range = start + len; var range = self.slice()[start..after_range]; if (range.len == new_items.len) { mem.copy(T, range, new_items); } else if (range.len < new_items.len) { const first = new_items[0..range.len]; const rest = new_items[range.len..]; mem.copy(T, range, first); try self.insertSlice(after_range, rest); } else { mem.copy(T, range, new_items); const after_subrange = start + new_items.len; for (self.constSlice()[after_range..]) |item, i| { self.slice()[after_subrange..][i] = item; } self.len -= len - new_items.len; } } /// Extend the slice by 1 element. pub fn append(self: *Self, item: T) !void { const new_item_ptr = try self.addOne(); new_item_ptr.* = item; } /// Extend the slice by 1 element, asserting the capacity is already /// enough to store the new item. pub fn appendAssumeCapacity(self: *Self, item: T) void { const new_item_ptr = self.addOneAssumeCapacity(); new_item_ptr.* = item; } /// Remove the element at index `i`, shift elements after index /// `i` forward, and return the removed element. /// Asserts the slice has at least one item. /// This operation is O(N). pub fn orderedRemove(self: *Self, i: usize) T { const newlen = self.len - 1; if (newlen == i) return self.pop(); const old_item = self.get(i); for (self.slice()[i..newlen]) |*b, j| b.* = self.get(i + 1 + j); self.set(newlen, undefined); self.len = newlen; return old_item; } /// Remove the element at the specified index and return it. /// The empty slot is filled from the end of the slice. /// This operation is O(1). pub fn swapRemove(self: *Self, i: usize) T { if (self.len - 1 == i) return self.pop(); const old_item = self.get(i); self.set(i, self.pop()); return old_item; } /// Append the slice of items to the slice. pub fn appendSlice(self: *Self, items: []const T) !void { try self.ensureUnusedCapacity(items.len); self.appendSliceAssumeCapacity(items); } /// Append the slice of items to the slice, asserting the capacity is already /// enough to store the new items. pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void { const oldlen = self.len; self.len += items.len; mem.copy(T, self.slice()[oldlen..], items); } /// Append a value to the slice `n` times. /// Allocates more memory as necessary. pub fn appendNTimes(self: *Self, value: T, n: usize) !void { const old_len = self.len; try self.resize(old_len + n); mem.set(T, self.slice()[old_len..self.len], value); } /// Append a value to the slice `n` times. /// Asserts the capacity is enough. pub fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void { const old_len = self.len; self.len += n; assert(self.len <= capacity); mem.set(T, self.slice()[old_len..self.len], value); } }; } test "BoundedArray" { var a = try BoundedArray(u8, 64).init(32); try testing.expectEqual(a.capacity(), 64); try testing.expectEqual(a.slice().len, 32); try testing.expectEqual(a.constSlice().len, 32); try a.resize(48); try testing.expectEqual(a.len, 48); const x = [_]u8{1} ** 10; a = try BoundedArray(u8, 64).fromSlice(&x); try testing.expectEqualSlices(u8, &x, a.constSlice()); var a2 = a; try testing.expectEqualSlices(u8, a.constSlice(), a.constSlice()); a2.set(0, 0); try testing.expect(a.get(0) != a2.get(0)); try testing.expectError(error.Overflow, a.resize(100)); try testing.expectError(error.Overflow, BoundedArray(u8, x.len - 1).fromSlice(&x)); try a.resize(0); try a.ensureUnusedCapacity(a.capacity()); (try a.addOne()).* = 0; try a.ensureUnusedCapacity(a.capacity() - 1); try testing.expectEqual(a.len, 1); const uninitialized = try a.addManyAsArray(4); try testing.expectEqual(uninitialized.len, 4); try testing.expectEqual(a.len, 5); try a.append(0xff); try testing.expectEqual(a.len, 6); try testing.expectEqual(a.pop(), 0xff); a.appendAssumeCapacity(0xff); try testing.expectEqual(a.len, 6); try testing.expectEqual(a.pop(), 0xff); try a.resize(1); try testing.expectEqual(a.popOrNull(), 0); try testing.expectEqual(a.popOrNull(), null); var unused = a.unusedCapacitySlice(); mem.set(u8, unused[0..8], 2); unused[8] = 3; unused[9] = 4; try testing.expectEqual(unused.len, a.capacity()); try a.resize(10); try a.insert(5, 0xaa); try testing.expectEqual(a.len, 11); try testing.expectEqual(a.get(5), 0xaa); try testing.expectEqual(a.get(9), 3); try testing.expectEqual(a.get(10), 4); try a.appendSlice(&x); try testing.expectEqual(a.len, 11 + x.len); try a.appendNTimes(0xbb, 5); try testing.expectEqual(a.len, 11 + x.len + 5); try testing.expectEqual(a.pop(), 0xbb); a.appendNTimesAssumeCapacity(0xcc, 5); try testing.expectEqual(a.len, 11 + x.len + 5 - 1 + 5); try testing.expectEqual(a.pop(), 0xcc); try testing.expectEqual(a.len, 29); try a.replaceRange(1, 20, &x); try testing.expectEqual(a.len, 29 + x.len - 20); try a.insertSlice(0, &x); try testing.expectEqual(a.len, 29 + x.len - 20 + x.len); try a.replaceRange(1, 5, &x); try testing.expectEqual(a.len, 29 + x.len - 20 + x.len + x.len - 5); try a.append(10); try testing.expectEqual(a.pop(), 10); try a.append(20); const removed = a.orderedRemove(5); try testing.expectEqual(removed, 1); try testing.expectEqual(a.len, 34); a.set(0, 0xdd); a.set(a.len - 1, 0xee); const swapped = a.swapRemove(0); try testing.expectEqual(swapped, 0xdd); try testing.expectEqual(a.get(0), 0xee); }