const std = @import("std.zig"); const builtin = @import("builtin"); const io = std.io; const fs = std.fs; const mem = std.mem; const debug = std.debug; const panic = std.debug.panic; const assert = debug.assert; const log = std.log; const ArrayList = std.ArrayList; const StringHashMap = std.StringHashMap; const Allocator = mem.Allocator; const process = std.process; const EnvMap = std.process.EnvMap; const fmt_lib = std.fmt; const File = std.fs.File; const CrossTarget = std.zig.CrossTarget; const NativeTargetInfo = std.zig.system.NativeTargetInfo; const Sha256 = std.crypto.hash.sha2.Sha256; const ThisModule = @This(); pub const CheckFileStep = @import("build/CheckFileStep.zig"); pub const CheckObjectStep = @import("build/CheckObjectStep.zig"); pub const ConfigHeaderStep = @import("build/ConfigHeaderStep.zig"); pub const EmulatableRunStep = @import("build/EmulatableRunStep.zig"); pub const FmtStep = @import("build/FmtStep.zig"); pub const InstallArtifactStep = @import("build/InstallArtifactStep.zig"); pub const InstallDirStep = @import("build/InstallDirStep.zig"); pub const InstallFileStep = @import("build/InstallFileStep.zig"); pub const InstallRawStep = @import("build/InstallRawStep.zig"); pub const LibExeObjStep = @import("build/LibExeObjStep.zig"); pub const LogStep = @import("build/LogStep.zig"); pub const OptionsStep = @import("build/OptionsStep.zig"); pub const RemoveDirStep = @import("build/RemoveDirStep.zig"); pub const RunStep = @import("build/RunStep.zig"); pub const TranslateCStep = @import("build/TranslateCStep.zig"); pub const WriteFileStep = @import("build/WriteFileStep.zig"); pub const Builder = struct { install_tls: TopLevelStep, uninstall_tls: TopLevelStep, allocator: Allocator, user_input_options: UserInputOptionsMap, available_options_map: AvailableOptionsMap, available_options_list: ArrayList(AvailableOption), verbose: bool, verbose_link: bool, verbose_cc: bool, verbose_air: bool, verbose_llvm_ir: bool, verbose_cimport: bool, verbose_llvm_cpu_features: bool, /// The purpose of executing the command is for a human to read compile errors from the terminal prominent_compile_errors: bool, color: enum { auto, on, off } = .auto, reference_trace: ?u32 = null, invalid_user_input: bool, zig_exe: []const u8, default_step: *Step, env_map: *EnvMap, top_level_steps: ArrayList(*TopLevelStep), install_prefix: []const u8, dest_dir: ?[]const u8, lib_dir: []const u8, exe_dir: []const u8, h_dir: []const u8, install_path: []const u8, sysroot: ?[]const u8 = null, search_prefixes: ArrayList([]const u8), libc_file: ?[]const u8 = null, installed_files: ArrayList(InstalledFile), /// Path to the directory containing build.zig. build_root: []const u8, cache_root: []const u8, global_cache_root: []const u8, release_mode: ?std.builtin.Mode, is_release: bool, /// zig lib dir override_lib_dir: ?[]const u8, vcpkg_root: VcpkgRoot = .unattempted, pkg_config_pkg_list: ?(PkgConfigError![]const PkgConfigPkg) = null, args: ?[][]const u8 = null, debug_log_scopes: []const []const u8 = &.{}, debug_compile_errors: bool = false, /// Experimental. Use system Darling installation to run cross compiled macOS build artifacts. enable_darling: bool = false, /// Use system QEMU installation to run cross compiled foreign architecture build artifacts. enable_qemu: bool = false, /// Darwin. Use Rosetta to run x86_64 macOS build artifacts on arm64 macOS. enable_rosetta: bool = false, /// Use system Wasmtime installation to run cross compiled wasm/wasi build artifacts. enable_wasmtime: bool = false, /// Use system Wine installation to run cross compiled Windows build artifacts. enable_wine: bool = false, /// After following the steps in https://github.com/ziglang/zig/wiki/Updating-libc#glibc, /// this will be the directory $glibc-build-dir/install/glibcs /// Given the example of the aarch64 target, this is the directory /// that contains the path `aarch64-linux-gnu/lib/ld-linux-aarch64.so.1`. glibc_runtimes_dir: ?[]const u8 = null, /// Information about the native target. Computed before build() is invoked. host: NativeTargetInfo, dep_prefix: []const u8 = "", pub const ExecError = error{ ReadFailure, ExitCodeFailure, ProcessTerminated, ExecNotSupported, } || std.ChildProcess.SpawnError; pub const PkgConfigError = error{ PkgConfigCrashed, PkgConfigFailed, PkgConfigNotInstalled, PkgConfigInvalidOutput, }; pub const PkgConfigPkg = struct { name: []const u8, desc: []const u8, }; pub const CStd = enum { C89, C99, C11, }; const UserInputOptionsMap = StringHashMap(UserInputOption); const AvailableOptionsMap = StringHashMap(AvailableOption); const AvailableOption = struct { name: []const u8, type_id: TypeId, description: []const u8, /// If the `type_id` is `enum` this provides the list of enum options enum_options: ?[]const []const u8, }; const UserInputOption = struct { name: []const u8, value: UserValue, used: bool, }; const UserValue = union(enum) { flag: void, scalar: []const u8, list: ArrayList([]const u8), }; const TypeId = enum { bool, int, float, @"enum", string, list, }; const TopLevelStep = struct { pub const base_id = .top_level; step: Step, description: []const u8, }; pub const DirList = struct { lib_dir: ?[]const u8 = null, exe_dir: ?[]const u8 = null, include_dir: ?[]const u8 = null, }; pub fn create( allocator: Allocator, zig_exe: []const u8, build_root: []const u8, cache_root: []const u8, global_cache_root: []const u8, ) !*Builder { const env_map = try allocator.create(EnvMap); env_map.* = try process.getEnvMap(allocator); const host = try NativeTargetInfo.detect(.{}); const self = try allocator.create(Builder); self.* = Builder{ .zig_exe = zig_exe, .build_root = build_root, .cache_root = try fs.path.relative(allocator, build_root, cache_root), .global_cache_root = global_cache_root, .verbose = false, .verbose_link = false, .verbose_cc = false, .verbose_air = false, .verbose_llvm_ir = false, .verbose_cimport = false, .verbose_llvm_cpu_features = false, .prominent_compile_errors = false, .invalid_user_input = false, .allocator = allocator, .user_input_options = UserInputOptionsMap.init(allocator), .available_options_map = AvailableOptionsMap.init(allocator), .available_options_list = ArrayList(AvailableOption).init(allocator), .top_level_steps = ArrayList(*TopLevelStep).init(allocator), .default_step = undefined, .env_map = env_map, .search_prefixes = ArrayList([]const u8).init(allocator), .install_prefix = undefined, .lib_dir = undefined, .exe_dir = undefined, .h_dir = undefined, .dest_dir = env_map.get("DESTDIR"), .installed_files = ArrayList(InstalledFile).init(allocator), .install_tls = TopLevelStep{ .step = Step.initNoOp(.top_level, "install", allocator), .description = "Copy build artifacts to prefix path", }, .uninstall_tls = TopLevelStep{ .step = Step.init(.top_level, "uninstall", allocator, makeUninstall), .description = "Remove build artifacts from prefix path", }, .release_mode = null, .is_release = false, .override_lib_dir = null, .install_path = undefined, .args = null, .host = host, }; try self.top_level_steps.append(&self.install_tls); try self.top_level_steps.append(&self.uninstall_tls); self.default_step = &self.install_tls.step; return self; } fn createChild( parent: *Builder, dep_name: []const u8, build_root: []const u8, args: anytype, ) !*Builder { const child = try createChildOnly(parent, dep_name, build_root); try applyArgs(child, args); return child; } fn createChildOnly(parent: *Builder, dep_name: []const u8, build_root: []const u8) !*Builder { const allocator = parent.allocator; const child = try allocator.create(Builder); child.* = .{ .allocator = allocator, .install_tls = .{ .step = Step.initNoOp(.top_level, "install", allocator), .description = "Copy build artifacts to prefix path", }, .uninstall_tls = .{ .step = Step.init(.top_level, "uninstall", allocator, makeUninstall), .description = "Remove build artifacts from prefix path", }, .user_input_options = UserInputOptionsMap.init(allocator), .available_options_map = AvailableOptionsMap.init(allocator), .available_options_list = ArrayList(AvailableOption).init(allocator), .verbose = parent.verbose, .verbose_link = parent.verbose_link, .verbose_cc = parent.verbose_cc, .verbose_air = parent.verbose_air, .verbose_llvm_ir = parent.verbose_llvm_ir, .verbose_cimport = parent.verbose_cimport, .verbose_llvm_cpu_features = parent.verbose_llvm_cpu_features, .prominent_compile_errors = parent.prominent_compile_errors, .color = parent.color, .reference_trace = parent.reference_trace, .invalid_user_input = false, .zig_exe = parent.zig_exe, .default_step = undefined, .env_map = parent.env_map, .top_level_steps = ArrayList(*TopLevelStep).init(allocator), .install_prefix = undefined, .dest_dir = parent.dest_dir, .lib_dir = parent.lib_dir, .exe_dir = parent.exe_dir, .h_dir = parent.h_dir, .install_path = parent.install_path, .sysroot = parent.sysroot, .search_prefixes = ArrayList([]const u8).init(allocator), .libc_file = parent.libc_file, .installed_files = ArrayList(InstalledFile).init(allocator), .build_root = build_root, .cache_root = parent.cache_root, .global_cache_root = parent.global_cache_root, .release_mode = parent.release_mode, .is_release = parent.is_release, .override_lib_dir = parent.override_lib_dir, .debug_log_scopes = parent.debug_log_scopes, .debug_compile_errors = parent.debug_compile_errors, .enable_darling = parent.enable_darling, .enable_qemu = parent.enable_qemu, .enable_rosetta = parent.enable_rosetta, .enable_wasmtime = parent.enable_wasmtime, .enable_wine = parent.enable_wine, .glibc_runtimes_dir = parent.glibc_runtimes_dir, .host = parent.host, .dep_prefix = parent.fmt("{s}{s}.", .{ parent.dep_prefix, dep_name }), }; try child.top_level_steps.append(&child.install_tls); try child.top_level_steps.append(&child.uninstall_tls); child.default_step = &child.install_tls.step; return child; } fn applyArgs(b: *Builder, args: anytype) !void { // TODO this function is the way that a build.zig file communicates // options to its dependencies. It is the programmatic way to give // command line arguments to a build.zig script. _ = args; const Hasher = std.crypto.auth.siphash.SipHash128(1, 3); // Random bytes to make unique. Refresh this with new random bytes when // implementation is modified in a non-backwards-compatible way. var hash = Hasher.init("ZaEsvQ5ClaA2IdH9"); hash.update(b.dep_prefix); // TODO additionally update the hash with `args`. var digest: [16]u8 = undefined; hash.final(&digest); var hash_basename: [digest.len * 2]u8 = undefined; _ = std.fmt.bufPrint(&hash_basename, "{s}", .{std.fmt.fmtSliceHexLower(&digest)}) catch unreachable; const install_prefix = b.pathJoin(&.{ b.cache_root, "i", &hash_basename }); b.resolveInstallPrefix(install_prefix, .{}); } pub fn destroy(self: *Builder) void { self.env_map.deinit(); self.top_level_steps.deinit(); self.allocator.destroy(self); } /// This function is intended to be called by lib/build_runner.zig, not a build.zig file. pub fn resolveInstallPrefix(self: *Builder, install_prefix: ?[]const u8, dir_list: DirList) void { if (self.dest_dir) |dest_dir| { self.install_prefix = install_prefix orelse "/usr"; self.install_path = self.pathJoin(&.{ dest_dir, self.install_prefix }); } else { self.install_prefix = install_prefix orelse (self.pathJoin(&.{ self.build_root, "zig-out" })); self.install_path = self.install_prefix; } var lib_list = [_][]const u8{ self.install_path, "lib" }; var exe_list = [_][]const u8{ self.install_path, "bin" }; var h_list = [_][]const u8{ self.install_path, "include" }; if (dir_list.lib_dir) |dir| { if (std.fs.path.isAbsolute(dir)) lib_list[0] = self.dest_dir orelse ""; lib_list[1] = dir; } if (dir_list.exe_dir) |dir| { if (std.fs.path.isAbsolute(dir)) exe_list[0] = self.dest_dir orelse ""; exe_list[1] = dir; } if (dir_list.include_dir) |dir| { if (std.fs.path.isAbsolute(dir)) h_list[0] = self.dest_dir orelse ""; h_list[1] = dir; } self.lib_dir = self.pathJoin(&lib_list); self.exe_dir = self.pathJoin(&exe_list); self.h_dir = self.pathJoin(&h_list); } fn convertOptionalPathToFileSource(path: ?[]const u8) ?FileSource { return if (path) |p| FileSource{ .path = p } else null; } pub fn addExecutable(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep { return addExecutableSource(self, name, convertOptionalPathToFileSource(root_src)); } pub fn addExecutableSource(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep { return LibExeObjStep.createExecutable(builder, name, root_src); } pub fn addOptions(self: *Builder) *OptionsStep { return OptionsStep.create(self); } pub fn addObject(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep { return addObjectSource(self, name, convertOptionalPathToFileSource(root_src)); } pub fn addObjectSource(builder: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep { return LibExeObjStep.createObject(builder, name, root_src); } pub fn addSharedLibrary( self: *Builder, name: []const u8, root_src: ?[]const u8, kind: LibExeObjStep.SharedLibKind, ) *LibExeObjStep { return addSharedLibrarySource(self, name, convertOptionalPathToFileSource(root_src), kind); } pub fn addSharedLibrarySource( self: *Builder, name: []const u8, root_src: ?FileSource, kind: LibExeObjStep.SharedLibKind, ) *LibExeObjStep { return LibExeObjStep.createSharedLibrary(self, name, root_src, kind); } pub fn addStaticLibrary(self: *Builder, name: []const u8, root_src: ?[]const u8) *LibExeObjStep { return addStaticLibrarySource(self, name, convertOptionalPathToFileSource(root_src)); } pub fn addStaticLibrarySource(self: *Builder, name: []const u8, root_src: ?FileSource) *LibExeObjStep { return LibExeObjStep.createStaticLibrary(self, name, root_src); } pub fn addTest(self: *Builder, root_src: []const u8) *LibExeObjStep { return LibExeObjStep.createTest(self, "test", .{ .path = root_src }); } pub fn addTestSource(self: *Builder, root_src: FileSource) *LibExeObjStep { return LibExeObjStep.createTest(self, "test", root_src.dupe(self)); } pub fn addTestExe(self: *Builder, name: []const u8, root_src: []const u8) *LibExeObjStep { return LibExeObjStep.createTestExe(self, name, .{ .path = root_src }); } pub fn addTestExeSource(self: *Builder, name: []const u8, root_src: FileSource) *LibExeObjStep { return LibExeObjStep.createTestExe(self, name, root_src.dupe(self)); } pub fn addAssemble(self: *Builder, name: []const u8, src: []const u8) *LibExeObjStep { return addAssembleSource(self, name, .{ .path = src }); } pub fn addAssembleSource(self: *Builder, name: []const u8, src: FileSource) *LibExeObjStep { const obj_step = LibExeObjStep.createObject(self, name, null); obj_step.addAssemblyFileSource(src.dupe(self)); return obj_step; } /// Initializes a RunStep with argv, which must at least have the path to the /// executable. More command line arguments can be added with `addArg`, /// `addArgs`, and `addArtifactArg`. /// Be careful using this function, as it introduces a system dependency. /// To run an executable built with zig build, see `LibExeObjStep.run`. pub fn addSystemCommand(self: *Builder, argv: []const []const u8) *RunStep { assert(argv.len >= 1); const run_step = RunStep.create(self, self.fmt("run {s}", .{argv[0]})); run_step.addArgs(argv); return run_step; } pub fn addConfigHeader( b: *Builder, source: FileSource, style: ConfigHeaderStep.Style, values: anytype, ) *ConfigHeaderStep { const config_header_step = ConfigHeaderStep.create(b, source, style); config_header_step.addValues(values); return config_header_step; } /// Allocator.dupe without the need to handle out of memory. pub fn dupe(self: *Builder, bytes: []const u8) []u8 { return self.allocator.dupe(u8, bytes) catch unreachable; } /// Duplicates an array of strings without the need to handle out of memory. pub fn dupeStrings(self: *Builder, strings: []const []const u8) [][]u8 { const array = self.allocator.alloc([]u8, strings.len) catch unreachable; for (strings) |s, i| { array[i] = self.dupe(s); } return array; } /// Duplicates a path and converts all slashes to the OS's canonical path separator. pub fn dupePath(self: *Builder, bytes: []const u8) []u8 { const the_copy = self.dupe(bytes); for (the_copy) |*byte| { switch (byte.*) { '/', '\\' => byte.* = fs.path.sep, else => {}, } } return the_copy; } /// Duplicates a package recursively. pub fn dupePkg(self: *Builder, package: Pkg) Pkg { var the_copy = Pkg{ .name = self.dupe(package.name), .source = package.source.dupe(self), }; if (package.dependencies) |dependencies| { const new_dependencies = self.allocator.alloc(Pkg, dependencies.len) catch unreachable; the_copy.dependencies = new_dependencies; for (dependencies) |dep_package, i| { new_dependencies[i] = self.dupePkg(dep_package); } } return the_copy; } pub fn addWriteFile(self: *Builder, file_path: []const u8, data: []const u8) *WriteFileStep { const write_file_step = self.addWriteFiles(); write_file_step.add(file_path, data); return write_file_step; } pub fn addWriteFiles(self: *Builder) *WriteFileStep { const write_file_step = self.allocator.create(WriteFileStep) catch unreachable; write_file_step.* = WriteFileStep.init(self); return write_file_step; } pub fn addLog(self: *Builder, comptime format: []const u8, args: anytype) *LogStep { const data = self.fmt(format, args); const log_step = self.allocator.create(LogStep) catch unreachable; log_step.* = LogStep.init(self, data); return log_step; } pub fn addRemoveDirTree(self: *Builder, dir_path: []const u8) *RemoveDirStep { const remove_dir_step = self.allocator.create(RemoveDirStep) catch unreachable; remove_dir_step.* = RemoveDirStep.init(self, dir_path); return remove_dir_step; } pub fn addFmt(self: *Builder, paths: []const []const u8) *FmtStep { return FmtStep.create(self, paths); } pub fn addTranslateC(self: *Builder, source: FileSource) *TranslateCStep { return TranslateCStep.create(self, source.dupe(self)); } pub fn version(self: *const Builder, major: u32, minor: u32, patch: u32) LibExeObjStep.SharedLibKind { _ = self; return .{ .versioned = .{ .major = major, .minor = minor, .patch = patch, }, }; } pub fn make(self: *Builder, step_names: []const []const u8) !void { try self.makePath(self.cache_root); var wanted_steps = ArrayList(*Step).init(self.allocator); defer wanted_steps.deinit(); if (step_names.len == 0) { try wanted_steps.append(self.default_step); } else { for (step_names) |step_name| { const s = try self.getTopLevelStepByName(step_name); try wanted_steps.append(s); } } for (wanted_steps.items) |s| { try self.makeOneStep(s); } } pub fn getInstallStep(self: *Builder) *Step { return &self.install_tls.step; } pub fn getUninstallStep(self: *Builder) *Step { return &self.uninstall_tls.step; } fn makeUninstall(uninstall_step: *Step) anyerror!void { const uninstall_tls = @fieldParentPtr(TopLevelStep, "step", uninstall_step); const self = @fieldParentPtr(Builder, "uninstall_tls", uninstall_tls); for (self.installed_files.items) |installed_file| { const full_path = self.getInstallPath(installed_file.dir, installed_file.path); if (self.verbose) { log.info("rm {s}", .{full_path}); } fs.cwd().deleteTree(full_path) catch {}; } // TODO remove empty directories } fn makeOneStep(self: *Builder, s: *Step) anyerror!void { if (s.loop_flag) { log.err("Dependency loop detected:\n {s}", .{s.name}); return error.DependencyLoopDetected; } s.loop_flag = true; for (s.dependencies.items) |dep| { self.makeOneStep(dep) catch |err| { if (err == error.DependencyLoopDetected) { log.err(" {s}", .{s.name}); } return err; }; } s.loop_flag = false; try s.make(); } fn getTopLevelStepByName(self: *Builder, name: []const u8) !*Step { for (self.top_level_steps.items) |top_level_step| { if (mem.eql(u8, top_level_step.step.name, name)) { return &top_level_step.step; } } log.err("Cannot run step '{s}' because it does not exist", .{name}); return error.InvalidStepName; } pub fn option(self: *Builder, comptime T: type, name_raw: []const u8, description_raw: []const u8) ?T { const name = self.dupe(name_raw); const description = self.dupe(description_raw); const type_id = comptime typeToEnum(T); const enum_options = if (type_id == .@"enum") blk: { const fields = comptime std.meta.fields(T); var options = ArrayList([]const u8).initCapacity(self.allocator, fields.len) catch unreachable; inline for (fields) |field| { options.appendAssumeCapacity(field.name); } break :blk options.toOwnedSlice() catch unreachable; } else null; const available_option = AvailableOption{ .name = name, .type_id = type_id, .description = description, .enum_options = enum_options, }; if ((self.available_options_map.fetchPut(name, available_option) catch unreachable) != null) { panic("Option '{s}' declared twice", .{name}); } self.available_options_list.append(available_option) catch unreachable; const option_ptr = self.user_input_options.getPtr(name) orelse return null; option_ptr.used = true; switch (type_id) { .bool => switch (option_ptr.value) { .flag => return true, .scalar => |s| { if (mem.eql(u8, s, "true")) { return true; } else if (mem.eql(u8, s, "false")) { return false; } else { log.err("Expected -D{s} to be a boolean, but received '{s}'\n", .{ name, s }); self.markInvalidUserInput(); return null; } }, .list => { log.err("Expected -D{s} to be a boolean, but received a list.\n", .{name}); self.markInvalidUserInput(); return null; }, }, .int => switch (option_ptr.value) { .flag => { log.err("Expected -D{s} to be an integer, but received a boolean.\n", .{name}); self.markInvalidUserInput(); return null; }, .scalar => |s| { const n = std.fmt.parseInt(T, s, 10) catch |err| switch (err) { error.Overflow => { log.err("-D{s} value {s} cannot fit into type {s}.\n", .{ name, s, @typeName(T) }); self.markInvalidUserInput(); return null; }, else => { log.err("Expected -D{s} to be an integer of type {s}.\n", .{ name, @typeName(T) }); self.markInvalidUserInput(); return null; }, }; return n; }, .list => { log.err("Expected -D{s} to be an integer, but received a list.\n", .{name}); self.markInvalidUserInput(); return null; }, }, .float => switch (option_ptr.value) { .flag => { log.err("Expected -D{s} to be a float, but received a boolean.\n", .{name}); self.markInvalidUserInput(); return null; }, .scalar => |s| { const n = std.fmt.parseFloat(T, s) catch { log.err("Expected -D{s} to be a float of type {s}.\n", .{ name, @typeName(T) }); self.markInvalidUserInput(); return null; }; return n; }, .list => { log.err("Expected -D{s} to be a float, but received a list.\n", .{name}); self.markInvalidUserInput(); return null; }, }, .@"enum" => switch (option_ptr.value) { .flag => { log.err("Expected -D{s} to be a string, but received a boolean.\n", .{name}); self.markInvalidUserInput(); return null; }, .scalar => |s| { if (std.meta.stringToEnum(T, s)) |enum_lit| { return enum_lit; } else { log.err("Expected -D{s} to be of type {s}.\n", .{ name, @typeName(T) }); self.markInvalidUserInput(); return null; } }, .list => { log.err("Expected -D{s} to be a string, but received a list.\n", .{name}); self.markInvalidUserInput(); return null; }, }, .string => switch (option_ptr.value) { .flag => { log.err("Expected -D{s} to be a string, but received a boolean.\n", .{name}); self.markInvalidUserInput(); return null; }, .list => { log.err("Expected -D{s} to be a string, but received a list.\n", .{name}); self.markInvalidUserInput(); return null; }, .scalar => |s| return s, }, .list => switch (option_ptr.value) { .flag => { log.err("Expected -D{s} to be a list, but received a boolean.\n", .{name}); self.markInvalidUserInput(); return null; }, .scalar => |s| { return self.allocator.dupe([]const u8, &[_][]const u8{s}) catch unreachable; }, .list => |lst| return lst.items, }, } } pub fn step(self: *Builder, name: []const u8, description: []const u8) *Step { const step_info = self.allocator.create(TopLevelStep) catch unreachable; step_info.* = TopLevelStep{ .step = Step.initNoOp(.top_level, name, self.allocator), .description = self.dupe(description), }; self.top_level_steps.append(step_info) catch unreachable; return &step_info.step; } /// This provides the -Drelease option to the build user and does not give them the choice. pub fn setPreferredReleaseMode(self: *Builder, mode: std.builtin.Mode) void { if (self.release_mode != null) { @panic("setPreferredReleaseMode must be called before standardReleaseOptions and may not be called twice"); } const description = self.fmt("Create a release build ({s})", .{@tagName(mode)}); self.is_release = self.option(bool, "release", description) orelse false; self.release_mode = if (self.is_release) mode else std.builtin.Mode.Debug; } /// If you call this without first calling `setPreferredReleaseMode` then it gives the build user /// the choice of what kind of release. pub fn standardReleaseOptions(self: *Builder) std.builtin.Mode { if (self.release_mode) |mode| return mode; const release_safe = self.option(bool, "release-safe", "Optimizations on and safety on") orelse false; const release_fast = self.option(bool, "release-fast", "Optimizations on and safety off") orelse false; const release_small = self.option(bool, "release-small", "Size optimizations on and safety off") orelse false; const mode = if (release_safe and !release_fast and !release_small) std.builtin.Mode.ReleaseSafe else if (release_fast and !release_safe and !release_small) std.builtin.Mode.ReleaseFast else if (release_small and !release_fast and !release_safe) std.builtin.Mode.ReleaseSmall else if (!release_fast and !release_safe and !release_small) std.builtin.Mode.Debug else x: { log.err("Multiple release modes (of -Drelease-safe, -Drelease-fast and -Drelease-small)\n", .{}); self.markInvalidUserInput(); break :x std.builtin.Mode.Debug; }; self.is_release = mode != .Debug; self.release_mode = mode; return mode; } pub const StandardTargetOptionsArgs = struct { whitelist: ?[]const CrossTarget = null, default_target: CrossTarget = CrossTarget{}, }; /// Exposes standard `zig build` options for choosing a target. pub fn standardTargetOptions(self: *Builder, args: StandardTargetOptionsArgs) CrossTarget { const maybe_triple = self.option( []const u8, "target", "The CPU architecture, OS, and ABI to build for", ); const mcpu = self.option([]const u8, "cpu", "Target CPU features to add or subtract"); if (maybe_triple == null and mcpu == null) { return args.default_target; } const triple = maybe_triple orelse "native"; var diags: CrossTarget.ParseOptions.Diagnostics = .{}; const selected_target = CrossTarget.parse(.{ .arch_os_abi = triple, .cpu_features = mcpu, .diagnostics = &diags, }) catch |err| switch (err) { error.UnknownCpuModel => { log.err("Unknown CPU: '{s}'\nAvailable CPUs for architecture '{s}':", .{ diags.cpu_name.?, @tagName(diags.arch.?), }); for (diags.arch.?.allCpuModels()) |cpu| { log.err(" {s}", .{cpu.name}); } self.markInvalidUserInput(); return args.default_target; }, error.UnknownCpuFeature => { log.err( \\Unknown CPU feature: '{s}' \\Available CPU features for architecture '{s}': \\ , .{ diags.unknown_feature_name.?, @tagName(diags.arch.?), }); for (diags.arch.?.allFeaturesList()) |feature| { log.err(" {s}: {s}", .{ feature.name, feature.description }); } self.markInvalidUserInput(); return args.default_target; }, error.UnknownOperatingSystem => { log.err( \\Unknown OS: '{s}' \\Available operating systems: \\ , .{diags.os_name.?}); inline for (std.meta.fields(std.Target.Os.Tag)) |field| { log.err(" {s}", .{field.name}); } self.markInvalidUserInput(); return args.default_target; }, else => |e| { log.err("Unable to parse target '{s}': {s}\n", .{ triple, @errorName(e) }); self.markInvalidUserInput(); return args.default_target; }, }; const selected_canonicalized_triple = selected_target.zigTriple(self.allocator) catch unreachable; if (args.whitelist) |list| whitelist_check: { // Make sure it's a match of one of the list. var mismatch_triple = true; var mismatch_cpu_features = true; var whitelist_item = CrossTarget{}; for (list) |t| { mismatch_cpu_features = true; mismatch_triple = true; const t_triple = t.zigTriple(self.allocator) catch unreachable; if (mem.eql(u8, t_triple, selected_canonicalized_triple)) { mismatch_triple = false; whitelist_item = t; if (t.getCpuFeatures().isSuperSetOf(selected_target.getCpuFeatures())) { mismatch_cpu_features = false; break :whitelist_check; } else { break; } } } if (mismatch_triple) { log.err("Chosen target '{s}' does not match one of the supported targets:", .{ selected_canonicalized_triple, }); for (list) |t| { const t_triple = t.zigTriple(self.allocator) catch unreachable; log.err(" {s}", .{t_triple}); } } else { assert(mismatch_cpu_features); const whitelist_cpu = whitelist_item.getCpu(); const selected_cpu = selected_target.getCpu(); log.err("Chosen CPU model '{s}' does not match one of the supported targets:", .{ selected_cpu.model.name, }); log.err(" Supported feature Set: ", .{}); const all_features = whitelist_cpu.arch.allFeaturesList(); var populated_cpu_features = whitelist_cpu.model.features; populated_cpu_features.populateDependencies(all_features); for (all_features) |feature, i_usize| { const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize); const in_cpu_set = populated_cpu_features.isEnabled(i); if (in_cpu_set) { log.err("{s} ", .{feature.name}); } } log.err(" Remove: ", .{}); for (all_features) |feature, i_usize| { const i = @intCast(std.Target.Cpu.Feature.Set.Index, i_usize); const in_cpu_set = populated_cpu_features.isEnabled(i); const in_actual_set = selected_cpu.features.isEnabled(i); if (in_actual_set and !in_cpu_set) { log.err("{s} ", .{feature.name}); } } } self.markInvalidUserInput(); return args.default_target; } return selected_target; } pub fn addUserInputOption(self: *Builder, name_raw: []const u8, value_raw: []const u8) !bool { const name = self.dupe(name_raw); const value = self.dupe(value_raw); const gop = try self.user_input_options.getOrPut(name); if (!gop.found_existing) { gop.value_ptr.* = UserInputOption{ .name = name, .value = .{ .scalar = value }, .used = false, }; return false; } // option already exists switch (gop.value_ptr.value) { .scalar => |s| { // turn it into a list var list = ArrayList([]const u8).init(self.allocator); list.append(s) catch unreachable; list.append(value) catch unreachable; self.user_input_options.put(name, .{ .name = name, .value = .{ .list = list }, .used = false, }) catch unreachable; }, .list => |*list| { // append to the list list.append(value) catch unreachable; self.user_input_options.put(name, .{ .name = name, .value = .{ .list = list.* }, .used = false, }) catch unreachable; }, .flag => { log.warn("Option '-D{s}={s}' conflicts with flag '-D{s}'.", .{ name, value, name }); return true; }, } return false; } pub fn addUserInputFlag(self: *Builder, name_raw: []const u8) !bool { const name = self.dupe(name_raw); const gop = try self.user_input_options.getOrPut(name); if (!gop.found_existing) { gop.value_ptr.* = .{ .name = name, .value = .{ .flag = {} }, .used = false, }; return false; } // option already exists switch (gop.value_ptr.value) { .scalar => |s| { log.err("Flag '-D{s}' conflicts with option '-D{s}={s}'.", .{ name, name, s }); return true; }, .list => { log.err("Flag '-D{s}' conflicts with multiple options of the same name.", .{name}); return true; }, .flag => {}, } return false; } fn typeToEnum(comptime T: type) TypeId { return switch (@typeInfo(T)) { .Int => .int, .Float => .float, .Bool => .bool, .Enum => .@"enum", else => switch (T) { []const u8 => .string, []const []const u8 => .list, else => @compileError("Unsupported type: " ++ @typeName(T)), }, }; } fn markInvalidUserInput(self: *Builder) void { self.invalid_user_input = true; } pub fn validateUserInputDidItFail(self: *Builder) bool { // make sure all args are used var it = self.user_input_options.iterator(); while (it.next()) |entry| { if (!entry.value_ptr.used) { log.err("Invalid option: -D{s}\n", .{entry.key_ptr.*}); self.markInvalidUserInput(); } } return self.invalid_user_input; } pub fn spawnChild(self: *Builder, argv: []const []const u8) !void { return self.spawnChildEnvMap(null, self.env_map, argv); } fn printCmd(cwd: ?[]const u8, argv: []const []const u8) void { if (cwd) |yes_cwd| std.debug.print("cd {s} && ", .{yes_cwd}); for (argv) |arg| { std.debug.print("{s} ", .{arg}); } std.debug.print("\n", .{}); } pub fn spawnChildEnvMap(self: *Builder, cwd: ?[]const u8, env_map: *const EnvMap, argv: []const []const u8) !void { if (self.verbose) { printCmd(cwd, argv); } if (!std.process.can_spawn) return error.ExecNotSupported; var child = std.ChildProcess.init(argv, self.allocator); child.cwd = cwd; child.env_map = env_map; const term = child.spawnAndWait() catch |err| { log.err("Unable to spawn {s}: {s}", .{ argv[0], @errorName(err) }); return err; }; switch (term) { .Exited => |code| { if (code != 0) { log.err("The following command exited with error code {}:", .{code}); printCmd(cwd, argv); return error.UncleanExit; } }, else => { log.err("The following command terminated unexpectedly:", .{}); printCmd(cwd, argv); return error.UncleanExit; }, } } pub fn makePath(self: *Builder, path: []const u8) !void { fs.cwd().makePath(self.pathFromRoot(path)) catch |err| { log.err("Unable to create path {s}: {s}", .{ path, @errorName(err) }); return err; }; } pub fn installArtifact(self: *Builder, artifact: *LibExeObjStep) void { self.getInstallStep().dependOn(&self.addInstallArtifact(artifact).step); } pub fn addInstallArtifact(self: *Builder, artifact: *LibExeObjStep) *InstallArtifactStep { return InstallArtifactStep.create(self, artifact); } ///`dest_rel_path` is relative to prefix path pub fn installFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void { self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .prefix, dest_rel_path).step); } pub fn installDirectory(self: *Builder, options: InstallDirectoryOptions) void { self.getInstallStep().dependOn(&self.addInstallDirectory(options).step); } ///`dest_rel_path` is relative to bin path pub fn installBinFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void { self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .bin, dest_rel_path).step); } ///`dest_rel_path` is relative to lib path pub fn installLibFile(self: *Builder, src_path: []const u8, dest_rel_path: []const u8) void { self.getInstallStep().dependOn(&self.addInstallFileWithDir(.{ .path = src_path }, .lib, dest_rel_path).step); } /// Output format (BIN vs Intel HEX) determined by filename pub fn installRaw(self: *Builder, artifact: *LibExeObjStep, dest_filename: []const u8, options: InstallRawStep.CreateOptions) *InstallRawStep { const raw = self.addInstallRaw(artifact, dest_filename, options); self.getInstallStep().dependOn(&raw.step); return raw; } ///`dest_rel_path` is relative to install prefix path pub fn addInstallFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep { return self.addInstallFileWithDir(source.dupe(self), .prefix, dest_rel_path); } ///`dest_rel_path` is relative to bin path pub fn addInstallBinFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep { return self.addInstallFileWithDir(source.dupe(self), .bin, dest_rel_path); } ///`dest_rel_path` is relative to lib path pub fn addInstallLibFile(self: *Builder, source: FileSource, dest_rel_path: []const u8) *InstallFileStep { return self.addInstallFileWithDir(source.dupe(self), .lib, dest_rel_path); } pub fn addInstallHeaderFile(b: *Builder, src_path: []const u8, dest_rel_path: []const u8) *InstallFileStep { return b.addInstallFileWithDir(.{ .path = src_path }, .header, dest_rel_path); } pub fn addInstallRaw(self: *Builder, artifact: *LibExeObjStep, dest_filename: []const u8, options: InstallRawStep.CreateOptions) *InstallRawStep { return InstallRawStep.create(self, artifact, dest_filename, options); } pub fn addInstallFileWithDir( self: *Builder, source: FileSource, install_dir: InstallDir, dest_rel_path: []const u8, ) *InstallFileStep { if (dest_rel_path.len == 0) { panic("dest_rel_path must be non-empty", .{}); } const install_step = self.allocator.create(InstallFileStep) catch unreachable; install_step.* = InstallFileStep.init(self, source.dupe(self), install_dir, dest_rel_path); return install_step; } pub fn addInstallDirectory(self: *Builder, options: InstallDirectoryOptions) *InstallDirStep { const install_step = self.allocator.create(InstallDirStep) catch unreachable; install_step.* = InstallDirStep.init(self, options); return install_step; } pub fn pushInstalledFile(self: *Builder, dir: InstallDir, dest_rel_path: []const u8) void { const file = InstalledFile{ .dir = dir, .path = dest_rel_path, }; self.installed_files.append(file.dupe(self)) catch unreachable; } pub fn updateFile(self: *Builder, source_path: []const u8, dest_path: []const u8) !void { if (self.verbose) { log.info("cp {s} {s} ", .{ source_path, dest_path }); } const cwd = fs.cwd(); const prev_status = try fs.Dir.updateFile(cwd, source_path, cwd, dest_path, .{}); if (self.verbose) switch (prev_status) { .stale => log.info("# installed", .{}), .fresh => log.info("# up-to-date", .{}), }; } pub fn truncateFile(self: *Builder, dest_path: []const u8) !void { if (self.verbose) { log.info("truncate {s}", .{dest_path}); } const cwd = fs.cwd(); var src_file = cwd.createFile(dest_path, .{}) catch |err| switch (err) { error.FileNotFound => blk: { if (fs.path.dirname(dest_path)) |dirname| { try cwd.makePath(dirname); } break :blk try cwd.createFile(dest_path, .{}); }, else => |e| return e, }; src_file.close(); } pub fn pathFromRoot(self: *Builder, rel_path: []const u8) []u8 { return fs.path.resolve(self.allocator, &[_][]const u8{ self.build_root, rel_path }) catch unreachable; } /// Shorthand for `std.fs.path.join(builder.allocator, paths) catch unreachable` pub fn pathJoin(self: *Builder, paths: []const []const u8) []u8 { return fs.path.join(self.allocator, paths) catch unreachable; } pub fn fmt(self: *Builder, comptime format: []const u8, args: anytype) []u8 { return fmt_lib.allocPrint(self.allocator, format, args) catch unreachable; } pub fn findProgram(self: *Builder, names: []const []const u8, paths: []const []const u8) ![]const u8 { // TODO report error for ambiguous situations const exe_extension = @as(CrossTarget, .{}).exeFileExt(); for (self.search_prefixes.items) |search_prefix| { for (names) |name| { if (fs.path.isAbsolute(name)) { return name; } const full_path = self.pathJoin(&.{ search_prefix, "bin", self.fmt("{s}{s}", .{ name, exe_extension }), }); return fs.realpathAlloc(self.allocator, full_path) catch continue; } } if (self.env_map.get("PATH")) |PATH| { for (names) |name| { if (fs.path.isAbsolute(name)) { return name; } var it = mem.tokenize(u8, PATH, &[_]u8{fs.path.delimiter}); while (it.next()) |path| { const full_path = self.pathJoin(&.{ path, self.fmt("{s}{s}", .{ name, exe_extension }), }); return fs.realpathAlloc(self.allocator, full_path) catch continue; } } } for (names) |name| { if (fs.path.isAbsolute(name)) { return name; } for (paths) |path| { const full_path = self.pathJoin(&.{ path, self.fmt("{s}{s}", .{ name, exe_extension }), }); return fs.realpathAlloc(self.allocator, full_path) catch continue; } } return error.FileNotFound; } pub fn execAllowFail( self: *Builder, argv: []const []const u8, out_code: *u8, stderr_behavior: std.ChildProcess.StdIo, ) ExecError![]u8 { assert(argv.len != 0); if (!std.process.can_spawn) return error.ExecNotSupported; const max_output_size = 400 * 1024; var child = std.ChildProcess.init(argv, self.allocator); child.stdin_behavior = .Ignore; child.stdout_behavior = .Pipe; child.stderr_behavior = stderr_behavior; child.env_map = self.env_map; try child.spawn(); const stdout = child.stdout.?.reader().readAllAlloc(self.allocator, max_output_size) catch { return error.ReadFailure; }; errdefer self.allocator.free(stdout); const term = try child.wait(); switch (term) { .Exited => |code| { if (code != 0) { out_code.* = @truncate(u8, code); return error.ExitCodeFailure; } return stdout; }, .Signal, .Stopped, .Unknown => |code| { out_code.* = @truncate(u8, code); return error.ProcessTerminated; }, } } pub fn execFromStep(self: *Builder, argv: []const []const u8, src_step: ?*Step) ![]u8 { assert(argv.len != 0); if (self.verbose) { printCmd(null, argv); } if (!std.process.can_spawn) { if (src_step) |s| log.err("{s}...", .{s.name}); log.err("Unable to spawn the following command: cannot spawn child process", .{}); printCmd(null, argv); std.os.abort(); } var code: u8 = undefined; return self.execAllowFail(argv, &code, .Inherit) catch |err| switch (err) { error.ExecNotSupported => { if (src_step) |s| log.err("{s}...", .{s.name}); log.err("Unable to spawn the following command: cannot spawn child process", .{}); printCmd(null, argv); std.os.abort(); }, error.FileNotFound => { if (src_step) |s| log.err("{s}...", .{s.name}); log.err("Unable to spawn the following command: file not found", .{}); printCmd(null, argv); std.os.exit(@truncate(u8, code)); }, error.ExitCodeFailure => { if (src_step) |s| log.err("{s}...", .{s.name}); if (self.prominent_compile_errors) { log.err("The step exited with error code {d}", .{code}); } else { log.err("The following command exited with error code {d}:", .{code}); printCmd(null, argv); } std.os.exit(@truncate(u8, code)); }, error.ProcessTerminated => { if (src_step) |s| log.err("{s}...", .{s.name}); log.err("The following command terminated unexpectedly:", .{}); printCmd(null, argv); std.os.exit(@truncate(u8, code)); }, else => |e| return e, }; } pub fn exec(self: *Builder, argv: []const []const u8) ![]u8 { return self.execFromStep(argv, null); } pub fn addSearchPrefix(self: *Builder, search_prefix: []const u8) void { self.search_prefixes.append(self.dupePath(search_prefix)) catch unreachable; } pub fn getInstallPath(self: *Builder, dir: InstallDir, dest_rel_path: []const u8) []const u8 { assert(!fs.path.isAbsolute(dest_rel_path)); // Install paths must be relative to the prefix const base_dir = switch (dir) { .prefix => self.install_path, .bin => self.exe_dir, .lib => self.lib_dir, .header => self.h_dir, .custom => |path| self.pathJoin(&.{ self.install_path, path }), }; return fs.path.resolve( self.allocator, &[_][]const u8{ base_dir, dest_rel_path }, ) catch unreachable; } pub const Dependency = struct { builder: *Builder, pub fn artifact(d: *Dependency, name: []const u8) *LibExeObjStep { var found: ?*LibExeObjStep = null; for (d.builder.install_tls.step.dependencies.items) |dep_step| { const inst = dep_step.cast(InstallArtifactStep) orelse continue; if (mem.eql(u8, inst.artifact.name, name)) { if (found != null) panic("artifact name '{s}' is ambiguous", .{name}); found = inst.artifact; } } return found orelse { for (d.builder.install_tls.step.dependencies.items) |dep_step| { const inst = dep_step.cast(InstallArtifactStep) orelse continue; log.info("available artifact: '{s}'", .{inst.artifact.name}); } panic("unable to find artifact '{s}'", .{name}); }; } }; pub fn dependency(b: *Builder, name: []const u8, args: anytype) *Dependency { const build_runner = @import("root"); const deps = build_runner.dependencies; inline for (@typeInfo(deps.imports).Struct.decls) |decl| { if (mem.startsWith(u8, decl.name, b.dep_prefix) and mem.endsWith(u8, decl.name, name) and decl.name.len == b.dep_prefix.len + name.len) { const build_zig = @field(deps.imports, decl.name); const build_root = @field(deps.build_root, decl.name); return dependencyInner(b, name, build_root, build_zig, args); } } const full_path = b.pathFromRoot("build.zig.ini"); std.debug.print("no dependency named '{s}' in '{s}'\n", .{ name, full_path }); std.process.exit(1); } fn dependencyInner( b: *Builder, name: []const u8, build_root: []const u8, comptime build_zig: type, args: anytype, ) *Dependency { const sub_builder = b.createChild(name, build_root, args) catch unreachable; sub_builder.runBuild(build_zig) catch unreachable; const dep = b.allocator.create(Dependency) catch unreachable; dep.* = .{ .builder = sub_builder }; return dep; } pub fn runBuild(b: *Builder, build_zig: anytype) anyerror!void { switch (@typeInfo(@typeInfo(@TypeOf(build_zig.build)).Fn.return_type.?)) { .Void => build_zig.build(b), .ErrorUnion => try build_zig.build(b), else => @compileError("expected return type of build to be 'void' or '!void'"), } } }; test "builder.findProgram compiles" { if (builtin.os.tag == .wasi) return error.SkipZigTest; var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const builder = try Builder.create( arena.allocator(), "zig", "zig-cache", "zig-cache", "zig-cache", ); defer builder.destroy(); _ = builder.findProgram(&[_][]const u8{}, &[_][]const u8{}) catch null; } pub const Pkg = struct { name: []const u8, source: FileSource, dependencies: ?[]const Pkg = null, }; /// A file that is generated by a build step. /// This struct is an interface that is meant to be used with `@fieldParentPtr` to implement the actual path logic. pub const GeneratedFile = struct { /// The step that generates the file step: *Step, /// The path to the generated file. Must be either absolute or relative to the build root. /// This value must be set in the `fn make()` of the `step` and must not be `null` afterwards. path: ?[]const u8 = null, pub fn getPath(self: GeneratedFile) []const u8 { return self.path orelse std.debug.panic( "getPath() was called on a GeneratedFile that wasn't build yet. Is there a missing Step dependency on step '{s}'?", .{self.step.name}, ); } }; /// A file source is a reference to an existing or future file. /// pub const FileSource = union(enum) { /// A plain file path, relative to build root or absolute. path: []const u8, /// A file that is generated by an interface. Those files usually are /// not available until built by a build step. generated: *const GeneratedFile, /// Returns a new file source that will have a relative path to the build root guaranteed. /// This should be preferred over setting `.path` directly as it documents that the files are in the project directory. pub fn relative(path: []const u8) FileSource { std.debug.assert(!std.fs.path.isAbsolute(path)); return FileSource{ .path = path }; } /// Returns a string that can be shown to represent the file source. /// Either returns the path or `"generated"`. pub fn getDisplayName(self: FileSource) []const u8 { return switch (self) { .path => self.path, .generated => "generated", }; } /// Adds dependencies this file source implies to the given step. pub fn addStepDependencies(self: FileSource, step: *Step) void { switch (self) { .path => {}, .generated => |gen| step.dependOn(gen.step), } } /// Should only be called during make(), returns a path relative to the build root or absolute. pub fn getPath(self: FileSource, builder: *Builder) []const u8 { const path = switch (self) { .path => |p| builder.pathFromRoot(p), .generated => |gen| gen.getPath(), }; return path; } /// Duplicates the file source for a given builder. pub fn dupe(self: FileSource, b: *Builder) FileSource { return switch (self) { .path => |p| .{ .path = b.dupePath(p) }, .generated => |gen| .{ .generated = gen }, }; } }; /// Allocates a new string for assigning a value to a named macro. /// If the value is omitted, it is set to 1. /// `name` and `value` need not live longer than the function call. pub fn constructCMacro(allocator: Allocator, name: []const u8, value: ?[]const u8) []const u8 { var macro = allocator.alloc( u8, name.len + if (value) |value_slice| value_slice.len + 1 else 0, ) catch |err| if (err == error.OutOfMemory) @panic("Out of memory") else unreachable; mem.copy(u8, macro, name); if (value) |value_slice| { macro[name.len] = '='; mem.copy(u8, macro[name.len + 1 ..], value_slice); } return macro; } /// deprecated: use `InstallDirStep.Options` pub const InstallDirectoryOptions = InstallDirStep.Options; pub const Step = struct { id: Id, name: []const u8, makeFn: MakeFn, dependencies: ArrayList(*Step), loop_flag: bool, done_flag: bool, const MakeFn = *const fn (self: *Step) anyerror!void; pub const Id = enum { top_level, lib_exe_obj, install_artifact, install_file, install_dir, log, remove_dir, fmt, translate_c, write_file, run, emulatable_run, check_file, check_object, config_header, install_raw, options, custom, pub fn Type(comptime id: Id) type { return switch (id) { .top_level => Builder.TopLevelStep, .lib_exe_obj => LibExeObjStep, .install_artifact => InstallArtifactStep, .install_file => InstallFileStep, .install_dir => InstallDirStep, .log => LogStep, .remove_dir => RemoveDirStep, .fmt => FmtStep, .translate_c => TranslateCStep, .write_file => WriteFileStep, .run => RunStep, .emulatable_run => EmulatableRunStep, .check_file => CheckFileStep, .check_object => CheckObjectStep, .config_header => ConfigHeaderStep, .install_raw => InstallRawStep, .options => OptionsStep, .custom => @compileError("no type available for custom step"), }; } }; pub fn init(id: Id, name: []const u8, allocator: Allocator, makeFn: MakeFn) Step { return Step{ .id = id, .name = allocator.dupe(u8, name) catch unreachable, .makeFn = makeFn, .dependencies = ArrayList(*Step).init(allocator), .loop_flag = false, .done_flag = false, }; } pub fn initNoOp(id: Id, name: []const u8, allocator: Allocator) Step { return init(id, name, allocator, makeNoOp); } pub fn make(self: *Step) !void { if (self.done_flag) return; try self.makeFn(self); self.done_flag = true; } pub fn dependOn(self: *Step, other: *Step) void { self.dependencies.append(other) catch unreachable; } fn makeNoOp(self: *Step) anyerror!void { _ = self; } pub fn cast(step: *Step, comptime T: type) ?*T { if (step.id == T.base_id) { return @fieldParentPtr(T, "step", step); } return null; } }; pub const VcpkgRoot = union(VcpkgRootStatus) { unattempted: void, not_found: void, found: []const u8, }; pub const VcpkgRootStatus = enum { unattempted, not_found, found, }; pub const InstallDir = union(enum) { prefix: void, lib: void, bin: void, header: void, /// A path relative to the prefix custom: []const u8, /// Duplicates the install directory including the path if set to custom. pub fn dupe(self: InstallDir, builder: *Builder) InstallDir { if (self == .custom) { // Written with this temporary to avoid RLS problems const duped_path = builder.dupe(self.custom); return .{ .custom = duped_path }; } else { return self; } } }; pub const InstalledFile = struct { dir: InstallDir, path: []const u8, /// Duplicates the installed file path and directory. pub fn dupe(self: InstalledFile, builder: *Builder) InstalledFile { return .{ .dir = self.dir.dupe(builder), .path = builder.dupe(self.path), }; } }; test "dupePkg()" { if (builtin.os.tag == .wasi) return error.SkipZigTest; var arena = std.heap.ArenaAllocator.init(std.testing.allocator); defer arena.deinit(); var builder = try Builder.create( arena.allocator(), "test", "test", "test", "test", ); defer builder.destroy(); var pkg_dep = Pkg{ .name = "pkg_dep", .source = .{ .path = "/not/a/pkg_dep.zig" }, }; var pkg_top = Pkg{ .name = "pkg_top", .source = .{ .path = "/not/a/pkg_top.zig" }, .dependencies = &[_]Pkg{pkg_dep}, }; const dupe = builder.dupePkg(pkg_top); const original_deps = pkg_top.dependencies.?; const dupe_deps = dupe.dependencies.?; // probably the same top level package details try std.testing.expectEqualStrings(pkg_top.name, dupe.name); // probably the same dependencies try std.testing.expectEqual(original_deps.len, dupe_deps.len); try std.testing.expectEqual(original_deps[0].name, pkg_dep.name); // could segfault otherwise if pointers in duplicated package's fields are // the same as those in stack allocated package's fields try std.testing.expect(dupe_deps.ptr != original_deps.ptr); try std.testing.expect(dupe.name.ptr != pkg_top.name.ptr); try std.testing.expect(dupe.source.path.ptr != pkg_top.source.path.ptr); try std.testing.expect(dupe_deps[0].name.ptr != pkg_dep.name.ptr); try std.testing.expect(dupe_deps[0].source.path.ptr != pkg_dep.source.path.ptr); } test { _ = CheckFileStep; _ = CheckObjectStep; _ = EmulatableRunStep; _ = FmtStep; _ = InstallArtifactStep; _ = InstallDirStep; _ = InstallFileStep; _ = InstallRawStep; _ = LibExeObjStep; _ = LogStep; _ = OptionsStep; _ = RemoveDirStep; _ = RunStep; _ = TranslateCStep; _ = WriteFileStep; }