const std = @import("std"); const Type = @import("type.zig").Type; const log2 = std.math.log2; const assert = std.debug.assert; const BigIntConst = std.math.big.int.Const; const BigIntMutable = std.math.big.int.Mutable; const Target = std.Target; const Allocator = std.mem.Allocator; const Module = @import("Module.zig"); const Air = @import("Air.zig"); /// This is the raw data, with no bookkeeping, no memory awareness, /// no de-duplication, and no type system awareness. /// It's important for this type to be small. /// This union takes advantage of the fact that the first page of memory /// is unmapped, giving us 4096 possible enum tags that have no payload. pub const Value = extern union { /// If the tag value is less than Tag.no_payload_count, then no pointer /// dereference is needed. tag_if_small_enough: usize, ptr_otherwise: *Payload, pub const Tag = enum { // The first section of this enum are tags that require no payload. u1_type, u8_type, i8_type, u16_type, i16_type, u32_type, i32_type, u64_type, i64_type, u128_type, i128_type, usize_type, isize_type, c_short_type, c_ushort_type, c_int_type, c_uint_type, c_long_type, c_ulong_type, c_longlong_type, c_ulonglong_type, c_longdouble_type, f16_type, f32_type, f64_type, f128_type, c_void_type, bool_type, void_type, type_type, anyerror_type, comptime_int_type, comptime_float_type, noreturn_type, anyframe_type, null_type, undefined_type, enum_literal_type, atomic_ordering_type, atomic_rmw_op_type, calling_convention_type, float_mode_type, reduce_op_type, call_options_type, export_options_type, extern_options_type, type_info_type, manyptr_u8_type, manyptr_const_u8_type, fn_noreturn_no_args_type, fn_void_no_args_type, fn_naked_noreturn_no_args_type, fn_ccc_void_no_args_type, single_const_pointer_to_comptime_int_type, const_slice_u8_type, anyerror_void_error_union_type, generic_poison_type, undef, zero, one, void_value, unreachable_value, null_value, bool_true, bool_false, generic_poison, abi_align_default, empty_struct_value, empty_array, // See last_no_payload_tag below. // After this, the tag requires a payload. ty, int_type, int_u64, int_i64, int_big_positive, int_big_negative, function, extern_fn, variable, /// Represents a pointer to a Decl. /// When machine codegen backend sees this, it must set the Decl's `alive` field to true. decl_ref, /// Pointer to a Decl, but allows comptime code to mutate the Decl's Value. /// This Tag will never be seen by machine codegen backends. It is changed into a /// `decl_ref` when a comptime variable goes out of scope. decl_ref_mut, elem_ptr, field_ptr, /// A slice of u8 whose memory is managed externally. bytes, /// This value is repeated some number of times. The amount of times to repeat /// is stored externally. repeated, /// Each element stored as a `Value`. array, /// Pointer and length as sub `Value` objects. slice, float_16, float_32, float_64, float_128, enum_literal, /// A specific enum tag, indicated by the field index (declaration order). enum_field_index, @"error", /// When the type is error union: /// * If the tag is `.@"error"`, the error union is an error. /// * If the tag is `.eu_payload`, the error union is a payload. /// * A nested error such as `anyerror!(anyerror!T)` in which the the outer error union /// is non-error, but the inner error union is an error, is represented as /// a tag of `.eu_payload`, with a sub-tag of `.@"error"`. eu_payload, /// A pointer to the payload of an error union, based on a pointer to an error union. eu_payload_ptr, /// When the type is optional: /// * If the tag is `.null_value`, the optional is null. /// * If the tag is `.opt_payload`, the optional is a payload. /// * A nested optional such as `??T` in which the the outer optional /// is non-null, but the inner optional is null, is represented as /// a tag of `.opt_payload`, with a sub-tag of `.null_value`. opt_payload, /// A pointer to the payload of an optional, based on a pointer to an optional. opt_payload_ptr, /// An instance of a struct. @"struct", /// An instance of a union. @"union", /// This is a special value that tracks a set of types that have been stored /// to an inferred allocation. It does not support any of the normal value queries. inferred_alloc, /// Used to coordinate alloc_inferred, store_to_inferred_ptr, and resolve_inferred_alloc /// instructions for comptime code. inferred_alloc_comptime, pub const last_no_payload_tag = Tag.empty_array; pub const no_payload_count = @enumToInt(last_no_payload_tag) + 1; pub fn Type(comptime t: Tag) type { return switch (t) { .u1_type, .u8_type, .i8_type, .u16_type, .i16_type, .u32_type, .i32_type, .u64_type, .i64_type, .u128_type, .i128_type, .usize_type, .isize_type, .c_short_type, .c_ushort_type, .c_int_type, .c_uint_type, .c_long_type, .c_ulong_type, .c_longlong_type, .c_ulonglong_type, .c_longdouble_type, .f16_type, .f32_type, .f64_type, .f128_type, .c_void_type, .bool_type, .void_type, .type_type, .anyerror_type, .comptime_int_type, .comptime_float_type, .noreturn_type, .null_type, .undefined_type, .fn_noreturn_no_args_type, .fn_void_no_args_type, .fn_naked_noreturn_no_args_type, .fn_ccc_void_no_args_type, .single_const_pointer_to_comptime_int_type, .anyframe_type, .const_slice_u8_type, .anyerror_void_error_union_type, .generic_poison_type, .enum_literal_type, .undef, .zero, .one, .void_value, .unreachable_value, .empty_struct_value, .empty_array, .null_value, .bool_true, .bool_false, .abi_align_default, .manyptr_u8_type, .manyptr_const_u8_type, .atomic_ordering_type, .atomic_rmw_op_type, .calling_convention_type, .float_mode_type, .reduce_op_type, .call_options_type, .export_options_type, .extern_options_type, .type_info_type, .generic_poison, => @compileError("Value Tag " ++ @tagName(t) ++ " has no payload"), .int_big_positive, .int_big_negative, => Payload.BigInt, .extern_fn, .decl_ref, .inferred_alloc_comptime, => Payload.Decl, .repeated, .eu_payload, .eu_payload_ptr, .opt_payload, .opt_payload_ptr, => Payload.SubValue, .bytes, .enum_literal, => Payload.Bytes, .array => Payload.Array, .slice => Payload.Slice, .enum_field_index => Payload.U32, .ty => Payload.Ty, .int_type => Payload.IntType, .int_u64 => Payload.U64, .int_i64 => Payload.I64, .function => Payload.Function, .variable => Payload.Variable, .decl_ref_mut => Payload.DeclRefMut, .elem_ptr => Payload.ElemPtr, .field_ptr => Payload.FieldPtr, .float_16 => Payload.Float_16, .float_32 => Payload.Float_32, .float_64 => Payload.Float_64, .float_128 => Payload.Float_128, .@"error" => Payload.Error, .inferred_alloc => Payload.InferredAlloc, .@"struct" => Payload.Struct, .@"union" => Payload.Union, }; } pub fn create(comptime t: Tag, ally: *Allocator, data: Data(t)) error{OutOfMemory}!Value { const ptr = try ally.create(t.Type()); ptr.* = .{ .base = .{ .tag = t }, .data = data, }; return Value{ .ptr_otherwise = &ptr.base }; } pub fn Data(comptime t: Tag) type { return std.meta.fieldInfo(t.Type(), .data).field_type; } }; pub fn initTag(small_tag: Tag) Value { assert(@enumToInt(small_tag) < Tag.no_payload_count); return .{ .tag_if_small_enough = @enumToInt(small_tag) }; } pub fn initPayload(payload: *Payload) Value { assert(@enumToInt(payload.tag) >= Tag.no_payload_count); return .{ .ptr_otherwise = payload }; } pub fn tag(self: Value) Tag { if (self.tag_if_small_enough < Tag.no_payload_count) { return @intToEnum(Tag, @intCast(std.meta.Tag(Tag), self.tag_if_small_enough)); } else { return self.ptr_otherwise.tag; } } /// Prefer `castTag` to this. pub fn cast(self: Value, comptime T: type) ?*T { if (@hasField(T, "base_tag")) { return base.castTag(T.base_tag); } if (self.tag_if_small_enough < Tag.no_payload_count) { return null; } inline for (@typeInfo(Tag).Enum.fields) |field| { if (field.value < Tag.no_payload_count) continue; const t = @intToEnum(Tag, field.value); if (self.ptr_otherwise.tag == t) { if (T == t.Type()) { return @fieldParentPtr(T, "base", self.ptr_otherwise); } return null; } } unreachable; } pub fn castTag(self: Value, comptime t: Tag) ?*t.Type() { if (self.tag_if_small_enough < Tag.no_payload_count) return null; if (self.ptr_otherwise.tag == t) return @fieldParentPtr(t.Type(), "base", self.ptr_otherwise); return null; } pub fn copy(self: Value, allocator: *Allocator) error{OutOfMemory}!Value { if (self.tag_if_small_enough < Tag.no_payload_count) { return Value{ .tag_if_small_enough = self.tag_if_small_enough }; } else switch (self.ptr_otherwise.tag) { .u1_type, .u8_type, .i8_type, .u16_type, .i16_type, .u32_type, .i32_type, .u64_type, .i64_type, .u128_type, .i128_type, .usize_type, .isize_type, .c_short_type, .c_ushort_type, .c_int_type, .c_uint_type, .c_long_type, .c_ulong_type, .c_longlong_type, .c_ulonglong_type, .c_longdouble_type, .f16_type, .f32_type, .f64_type, .f128_type, .c_void_type, .bool_type, .void_type, .type_type, .anyerror_type, .comptime_int_type, .comptime_float_type, .noreturn_type, .null_type, .undefined_type, .fn_noreturn_no_args_type, .fn_void_no_args_type, .fn_naked_noreturn_no_args_type, .fn_ccc_void_no_args_type, .single_const_pointer_to_comptime_int_type, .anyframe_type, .const_slice_u8_type, .anyerror_void_error_union_type, .generic_poison_type, .enum_literal_type, .undef, .zero, .one, .void_value, .unreachable_value, .empty_array, .null_value, .bool_true, .bool_false, .empty_struct_value, .abi_align_default, .manyptr_u8_type, .manyptr_const_u8_type, .atomic_ordering_type, .atomic_rmw_op_type, .calling_convention_type, .float_mode_type, .reduce_op_type, .call_options_type, .export_options_type, .extern_options_type, .type_info_type, .generic_poison, => unreachable, .ty => { const payload = self.castTag(.ty).?; const new_payload = try allocator.create(Payload.Ty); new_payload.* = .{ .base = payload.base, .data = try payload.data.copy(allocator), }; return Value{ .ptr_otherwise = &new_payload.base }; }, .int_type => return self.copyPayloadShallow(allocator, Payload.IntType), .int_u64 => return self.copyPayloadShallow(allocator, Payload.U64), .int_i64 => return self.copyPayloadShallow(allocator, Payload.I64), .int_big_positive, .int_big_negative => { const old_payload = self.cast(Payload.BigInt).?; const new_payload = try allocator.create(Payload.BigInt); new_payload.* = .{ .base = .{ .tag = self.ptr_otherwise.tag }, .data = try allocator.dupe(std.math.big.Limb, old_payload.data), }; return Value{ .ptr_otherwise = &new_payload.base }; }, .function => return self.copyPayloadShallow(allocator, Payload.Function), .extern_fn => return self.copyPayloadShallow(allocator, Payload.Decl), .variable => return self.copyPayloadShallow(allocator, Payload.Variable), .decl_ref => return self.copyPayloadShallow(allocator, Payload.Decl), .decl_ref_mut => return self.copyPayloadShallow(allocator, Payload.DeclRefMut), .elem_ptr => { const payload = self.castTag(.elem_ptr).?; const new_payload = try allocator.create(Payload.ElemPtr); new_payload.* = .{ .base = payload.base, .data = .{ .array_ptr = try payload.data.array_ptr.copy(allocator), .index = payload.data.index, }, }; return Value{ .ptr_otherwise = &new_payload.base }; }, .field_ptr => { const payload = self.castTag(.field_ptr).?; const new_payload = try allocator.create(Payload.FieldPtr); new_payload.* = .{ .base = payload.base, .data = .{ .container_ptr = try payload.data.container_ptr.copy(allocator), .field_index = payload.data.field_index, }, }; return Value{ .ptr_otherwise = &new_payload.base }; }, .bytes => return self.copyPayloadShallow(allocator, Payload.Bytes), .repeated, .eu_payload, .eu_payload_ptr, .opt_payload, .opt_payload_ptr, => { const payload = self.cast(Payload.SubValue).?; const new_payload = try allocator.create(Payload.SubValue); new_payload.* = .{ .base = payload.base, .data = try payload.data.copy(allocator), }; return Value{ .ptr_otherwise = &new_payload.base }; }, .array => { const payload = self.castTag(.array).?; const new_payload = try allocator.create(Payload.Array); new_payload.* = .{ .base = payload.base, .data = try allocator.alloc(Value, payload.data.len), }; std.mem.copy(Value, new_payload.data, payload.data); return Value{ .ptr_otherwise = &new_payload.base }; }, .slice => { const payload = self.castTag(.slice).?; const new_payload = try allocator.create(Payload.Slice); new_payload.* = .{ .base = payload.base, .data = .{ .ptr = try payload.data.ptr.copy(allocator), .len = try payload.data.len.copy(allocator), }, }; return Value{ .ptr_otherwise = &new_payload.base }; }, .float_16 => return self.copyPayloadShallow(allocator, Payload.Float_16), .float_32 => return self.copyPayloadShallow(allocator, Payload.Float_32), .float_64 => return self.copyPayloadShallow(allocator, Payload.Float_64), .float_128 => return self.copyPayloadShallow(allocator, Payload.Float_128), .enum_literal => { const payload = self.castTag(.enum_literal).?; const new_payload = try allocator.create(Payload.Bytes); new_payload.* = .{ .base = payload.base, .data = try allocator.dupe(u8, payload.data), }; return Value{ .ptr_otherwise = &new_payload.base }; }, .enum_field_index => return self.copyPayloadShallow(allocator, Payload.U32), .@"error" => return self.copyPayloadShallow(allocator, Payload.Error), .@"struct" => @panic("TODO can't copy struct value without knowing the type"), .@"union" => @panic("TODO can't copy union value without knowing the type"), .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, } } fn copyPayloadShallow(self: Value, allocator: *Allocator, comptime T: type) error{OutOfMemory}!Value { const payload = self.cast(T).?; const new_payload = try allocator.create(T); new_payload.* = payload.*; return Value{ .ptr_otherwise = &new_payload.base }; } /// TODO this should become a debug dump() function. In order to print values in a meaningful way /// we also need access to the type. pub fn format( start_val: Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, out_stream: anytype, ) !void { comptime assert(fmt.len == 0); var val = start_val; while (true) switch (val.tag()) { .u1_type => return out_stream.writeAll("u1"), .u8_type => return out_stream.writeAll("u8"), .i8_type => return out_stream.writeAll("i8"), .u16_type => return out_stream.writeAll("u16"), .i16_type => return out_stream.writeAll("i16"), .u32_type => return out_stream.writeAll("u32"), .i32_type => return out_stream.writeAll("i32"), .u64_type => return out_stream.writeAll("u64"), .i64_type => return out_stream.writeAll("i64"), .u128_type => return out_stream.writeAll("u128"), .i128_type => return out_stream.writeAll("i128"), .isize_type => return out_stream.writeAll("isize"), .usize_type => return out_stream.writeAll("usize"), .c_short_type => return out_stream.writeAll("c_short"), .c_ushort_type => return out_stream.writeAll("c_ushort"), .c_int_type => return out_stream.writeAll("c_int"), .c_uint_type => return out_stream.writeAll("c_uint"), .c_long_type => return out_stream.writeAll("c_long"), .c_ulong_type => return out_stream.writeAll("c_ulong"), .c_longlong_type => return out_stream.writeAll("c_longlong"), .c_ulonglong_type => return out_stream.writeAll("c_ulonglong"), .c_longdouble_type => return out_stream.writeAll("c_longdouble"), .f16_type => return out_stream.writeAll("f16"), .f32_type => return out_stream.writeAll("f32"), .f64_type => return out_stream.writeAll("f64"), .f128_type => return out_stream.writeAll("f128"), .c_void_type => return out_stream.writeAll("c_void"), .bool_type => return out_stream.writeAll("bool"), .void_type => return out_stream.writeAll("void"), .type_type => return out_stream.writeAll("type"), .anyerror_type => return out_stream.writeAll("anyerror"), .comptime_int_type => return out_stream.writeAll("comptime_int"), .comptime_float_type => return out_stream.writeAll("comptime_float"), .noreturn_type => return out_stream.writeAll("noreturn"), .null_type => return out_stream.writeAll("@Type(.Null)"), .undefined_type => return out_stream.writeAll("@Type(.Undefined)"), .fn_noreturn_no_args_type => return out_stream.writeAll("fn() noreturn"), .fn_void_no_args_type => return out_stream.writeAll("fn() void"), .fn_naked_noreturn_no_args_type => return out_stream.writeAll("fn() callconv(.Naked) noreturn"), .fn_ccc_void_no_args_type => return out_stream.writeAll("fn() callconv(.C) void"), .single_const_pointer_to_comptime_int_type => return out_stream.writeAll("*const comptime_int"), .anyframe_type => return out_stream.writeAll("anyframe"), .const_slice_u8_type => return out_stream.writeAll("[]const u8"), .anyerror_void_error_union_type => return out_stream.writeAll("anyerror!void"), .generic_poison_type => return out_stream.writeAll("(generic poison type)"), .generic_poison => return out_stream.writeAll("(generic poison)"), .enum_literal_type => return out_stream.writeAll("@Type(.EnumLiteral)"), .manyptr_u8_type => return out_stream.writeAll("[*]u8"), .manyptr_const_u8_type => return out_stream.writeAll("[*]const u8"), .atomic_ordering_type => return out_stream.writeAll("std.builtin.AtomicOrdering"), .atomic_rmw_op_type => return out_stream.writeAll("std.builtin.AtomicRmwOp"), .calling_convention_type => return out_stream.writeAll("std.builtin.CallingConvention"), .float_mode_type => return out_stream.writeAll("std.builtin.FloatMode"), .reduce_op_type => return out_stream.writeAll("std.builtin.ReduceOp"), .call_options_type => return out_stream.writeAll("std.builtin.CallOptions"), .export_options_type => return out_stream.writeAll("std.builtin.ExportOptions"), .extern_options_type => return out_stream.writeAll("std.builtin.ExternOptions"), .type_info_type => return out_stream.writeAll("std.builtin.TypeInfo"), .abi_align_default => return out_stream.writeAll("(default ABI alignment)"), .empty_struct_value => return out_stream.writeAll("struct {}{}"), .@"struct" => { return out_stream.writeAll("(struct value)"); }, .@"union" => { return out_stream.writeAll("(union value)"); }, .null_value => return out_stream.writeAll("null"), .undef => return out_stream.writeAll("undefined"), .zero => return out_stream.writeAll("0"), .one => return out_stream.writeAll("1"), .void_value => return out_stream.writeAll("{}"), .unreachable_value => return out_stream.writeAll("unreachable"), .bool_true => return out_stream.writeAll("true"), .bool_false => return out_stream.writeAll("false"), .ty => return val.castTag(.ty).?.data.format("", options, out_stream), .int_type => { const int_type = val.castTag(.int_type).?.data; return out_stream.print("{s}{d}", .{ if (int_type.signed) "s" else "u", int_type.bits, }); }, .int_u64 => return std.fmt.formatIntValue(val.castTag(.int_u64).?.data, "", options, out_stream), .int_i64 => return std.fmt.formatIntValue(val.castTag(.int_i64).?.data, "", options, out_stream), .int_big_positive => return out_stream.print("{}", .{val.castTag(.int_big_positive).?.asBigInt()}), .int_big_negative => return out_stream.print("{}", .{val.castTag(.int_big_negative).?.asBigInt()}), .function => return out_stream.print("(function '{s}')", .{val.castTag(.function).?.data.owner_decl.name}), .extern_fn => return out_stream.writeAll("(extern function)"), .variable => return out_stream.writeAll("(variable)"), .decl_ref_mut => { const decl = val.castTag(.decl_ref_mut).?.data.decl; return out_stream.print("(decl_ref_mut '{s}')", .{decl.name}); }, .decl_ref => return out_stream.writeAll("(decl ref)"), .elem_ptr => { const elem_ptr = val.castTag(.elem_ptr).?.data; try out_stream.print("&[{}] ", .{elem_ptr.index}); val = elem_ptr.array_ptr; }, .field_ptr => { const field_ptr = val.castTag(.field_ptr).?.data; try out_stream.print("fieldptr({d}) ", .{field_ptr.field_index}); val = field_ptr.container_ptr; }, .empty_array => return out_stream.writeAll(".{}"), .enum_literal => return out_stream.print(".{}", .{std.zig.fmtId(val.castTag(.enum_literal).?.data)}), .enum_field_index => return out_stream.print("(enum field {d})", .{val.castTag(.enum_field_index).?.data}), .bytes => return out_stream.print("\"{}\"", .{std.zig.fmtEscapes(val.castTag(.bytes).?.data)}), .repeated => { try out_stream.writeAll("(repeated) "); val = val.castTag(.repeated).?.data; }, .array => return out_stream.writeAll("(array)"), .slice => return out_stream.writeAll("(slice)"), .float_16 => return out_stream.print("{}", .{val.castTag(.float_16).?.data}), .float_32 => return out_stream.print("{}", .{val.castTag(.float_32).?.data}), .float_64 => return out_stream.print("{}", .{val.castTag(.float_64).?.data}), .float_128 => return out_stream.print("{}", .{val.castTag(.float_128).?.data}), .@"error" => return out_stream.print("error.{s}", .{val.castTag(.@"error").?.data.name}), // TODO to print this it should be error{ Set, Items }!T(val), but we need the type for that .eu_payload => { try out_stream.writeAll("(eu_payload) "); val = val.castTag(.eu_payload).?.data; }, .opt_payload => { try out_stream.writeAll("(opt_payload) "); val = val.castTag(.opt_payload).?.data; }, .inferred_alloc => return out_stream.writeAll("(inferred allocation value)"), .inferred_alloc_comptime => return out_stream.writeAll("(inferred comptime allocation value)"), .eu_payload_ptr => { try out_stream.writeAll("(eu_payload_ptr)"); val = val.castTag(.eu_payload_ptr).?.data; }, .opt_payload_ptr => { try out_stream.writeAll("(opt_payload_ptr)"); val = val.castTag(.opt_payload_ptr).?.data; }, }; } /// Asserts that the value is representable as an array of bytes. /// Copies the value into a freshly allocated slice of memory, which is owned by the caller. pub fn toAllocatedBytes(self: Value, allocator: *Allocator) ![]u8 { if (self.castTag(.bytes)) |payload| { return std.mem.dupe(allocator, u8, payload.data); } if (self.castTag(.enum_literal)) |payload| { return std.mem.dupe(allocator, u8, payload.data); } if (self.castTag(.repeated)) |payload| { _ = payload; @panic("TODO implement toAllocatedBytes for this Value tag"); } if (self.castTag(.decl_ref)) |payload| { const val = try payload.data.value(); return val.toAllocatedBytes(allocator); } unreachable; } pub const ToTypeBuffer = Type.Payload.Bits; /// Asserts that the value is representable as a type. pub fn toType(self: Value, buffer: *ToTypeBuffer) Type { return switch (self.tag()) { .ty => self.castTag(.ty).?.data, .u1_type => Type.initTag(.u1), .u8_type => Type.initTag(.u8), .i8_type => Type.initTag(.i8), .u16_type => Type.initTag(.u16), .i16_type => Type.initTag(.i16), .u32_type => Type.initTag(.u32), .i32_type => Type.initTag(.i32), .u64_type => Type.initTag(.u64), .i64_type => Type.initTag(.i64), .u128_type => Type.initTag(.u128), .i128_type => Type.initTag(.i128), .usize_type => Type.initTag(.usize), .isize_type => Type.initTag(.isize), .c_short_type => Type.initTag(.c_short), .c_ushort_type => Type.initTag(.c_ushort), .c_int_type => Type.initTag(.c_int), .c_uint_type => Type.initTag(.c_uint), .c_long_type => Type.initTag(.c_long), .c_ulong_type => Type.initTag(.c_ulong), .c_longlong_type => Type.initTag(.c_longlong), .c_ulonglong_type => Type.initTag(.c_ulonglong), .c_longdouble_type => Type.initTag(.c_longdouble), .f16_type => Type.initTag(.f16), .f32_type => Type.initTag(.f32), .f64_type => Type.initTag(.f64), .f128_type => Type.initTag(.f128), .c_void_type => Type.initTag(.c_void), .bool_type => Type.initTag(.bool), .void_type => Type.initTag(.void), .type_type => Type.initTag(.type), .anyerror_type => Type.initTag(.anyerror), .comptime_int_type => Type.initTag(.comptime_int), .comptime_float_type => Type.initTag(.comptime_float), .noreturn_type => Type.initTag(.noreturn), .null_type => Type.initTag(.@"null"), .undefined_type => Type.initTag(.@"undefined"), .fn_noreturn_no_args_type => Type.initTag(.fn_noreturn_no_args), .fn_void_no_args_type => Type.initTag(.fn_void_no_args), .fn_naked_noreturn_no_args_type => Type.initTag(.fn_naked_noreturn_no_args), .fn_ccc_void_no_args_type => Type.initTag(.fn_ccc_void_no_args), .single_const_pointer_to_comptime_int_type => Type.initTag(.single_const_pointer_to_comptime_int), .anyframe_type => Type.initTag(.@"anyframe"), .const_slice_u8_type => Type.initTag(.const_slice_u8), .anyerror_void_error_union_type => Type.initTag(.anyerror_void_error_union), .generic_poison_type => Type.initTag(.generic_poison), .enum_literal_type => Type.initTag(.enum_literal), .manyptr_u8_type => Type.initTag(.manyptr_u8), .manyptr_const_u8_type => Type.initTag(.manyptr_const_u8), .atomic_ordering_type => Type.initTag(.atomic_ordering), .atomic_rmw_op_type => Type.initTag(.atomic_rmw_op), .calling_convention_type => Type.initTag(.calling_convention), .float_mode_type => Type.initTag(.float_mode), .reduce_op_type => Type.initTag(.reduce_op), .call_options_type => Type.initTag(.call_options), .export_options_type => Type.initTag(.export_options), .extern_options_type => Type.initTag(.extern_options), .type_info_type => Type.initTag(.type_info), .int_type => { const payload = self.castTag(.int_type).?.data; buffer.* = .{ .base = .{ .tag = if (payload.signed) .int_signed else .int_unsigned, }, .data = payload.bits, }; return Type.initPayload(&buffer.base); }, else => unreachable, }; } /// Asserts the type is an enum type. pub fn toEnum(val: Value, comptime E: type) E { switch (val.tag()) { .enum_field_index => { const field_index = val.castTag(.enum_field_index).?.data; // TODO should `@intToEnum` do this `@intCast` for you? return @intToEnum(E, @intCast(@typeInfo(E).Enum.tag_type, field_index)); }, else => unreachable, } } pub fn enumToInt(val: Value, ty: Type, buffer: *Payload.U64) Value { if (val.castTag(.enum_field_index)) |enum_field_payload| { const field_index = enum_field_payload.data; switch (ty.tag()) { .enum_full, .enum_nonexhaustive => { const enum_full = ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { return enum_full.values.keys()[field_index]; } else { // Field index and integer values are the same. buffer.* = .{ .base = .{ .tag = .int_u64 }, .data = field_index, }; return Value.initPayload(&buffer.base); } }, .enum_simple => { // Field index and integer values are the same. buffer.* = .{ .base = .{ .tag = .int_u64 }, .data = field_index, }; return Value.initPayload(&buffer.base); }, else => unreachable, } } // Assume it is already an integer and return it directly. return val; } /// Asserts the value is an integer. pub fn toBigInt(self: Value, space: *BigIntSpace) BigIntConst { switch (self.tag()) { .zero, .bool_false, => return BigIntMutable.init(&space.limbs, 0).toConst(), .one, .bool_true, => return BigIntMutable.init(&space.limbs, 1).toConst(), .int_u64 => return BigIntMutable.init(&space.limbs, self.castTag(.int_u64).?.data).toConst(), .int_i64 => return BigIntMutable.init(&space.limbs, self.castTag(.int_i64).?.data).toConst(), .int_big_positive => return self.castTag(.int_big_positive).?.asBigInt(), .int_big_negative => return self.castTag(.int_big_negative).?.asBigInt(), .undef => unreachable, else => unreachable, } } /// Asserts the value is an integer and it fits in a u64 pub fn toUnsignedInt(self: Value) u64 { switch (self.tag()) { .zero, .bool_false, => return 0, .one, .bool_true, => return 1, .int_u64 => return self.castTag(.int_u64).?.data, .int_i64 => return @intCast(u64, self.castTag(.int_i64).?.data), .int_big_positive => return self.castTag(.int_big_positive).?.asBigInt().to(u64) catch unreachable, .int_big_negative => return self.castTag(.int_big_negative).?.asBigInt().to(u64) catch unreachable, .undef => unreachable, else => unreachable, } } /// Asserts the value is an integer and it fits in a i64 pub fn toSignedInt(self: Value) i64 { switch (self.tag()) { .zero, .bool_false, => return 0, .one, .bool_true, => return 1, .int_u64 => return @intCast(i64, self.castTag(.int_u64).?.data), .int_i64 => return self.castTag(.int_i64).?.data, .int_big_positive => return self.castTag(.int_big_positive).?.asBigInt().to(i64) catch unreachable, .int_big_negative => return self.castTag(.int_big_negative).?.asBigInt().to(i64) catch unreachable, .undef => unreachable, else => unreachable, } } pub fn toBool(self: Value) bool { return switch (self.tag()) { .bool_true => true, .bool_false, .zero => false, else => unreachable, }; } /// Asserts that the value is a float or an integer. pub fn toFloat(self: Value, comptime T: type) T { return switch (self.tag()) { .float_16 => @panic("TODO soft float"), .float_32 => @floatCast(T, self.castTag(.float_32).?.data), .float_64 => @floatCast(T, self.castTag(.float_64).?.data), .float_128 => @floatCast(T, self.castTag(.float_128).?.data), .zero => 0, .one => 1, .int_u64 => @intToFloat(T, self.castTag(.int_u64).?.data), .int_i64 => @intToFloat(T, self.castTag(.int_i64).?.data), .int_big_positive, .int_big_negative => @panic("big int to f128"), else => unreachable, }; } /// Asserts the value is an integer and not undefined. /// Returns the number of bits the value requires to represent stored in twos complement form. pub fn intBitCountTwosComp(self: Value) usize { switch (self.tag()) { .zero, .bool_false, => return 0, .one, .bool_true, => return 1, .int_u64 => { const x = self.castTag(.int_u64).?.data; if (x == 0) return 0; return @intCast(usize, std.math.log2(x) + 1); }, .int_i64 => { @panic("TODO implement i64 intBitCountTwosComp"); }, .int_big_positive => return self.castTag(.int_big_positive).?.asBigInt().bitCountTwosComp(), .int_big_negative => return self.castTag(.int_big_negative).?.asBigInt().bitCountTwosComp(), else => unreachable, } } /// Asserts the value is an integer, and the destination type is ComptimeInt or Int. pub fn intFitsInType(self: Value, ty: Type, target: Target) bool { switch (self.tag()) { .zero, .undef, .bool_false, => return true, .one, .bool_true, => { const info = ty.intInfo(target); return switch (info.signedness) { .signed => info.bits >= 2, .unsigned => info.bits >= 1, }; }, .int_u64 => switch (ty.zigTypeTag()) { .Int => { const x = self.castTag(.int_u64).?.data; if (x == 0) return true; const info = ty.intInfo(target); const needed_bits = std.math.log2(x) + 1 + @boolToInt(info.signedness == .signed); return info.bits >= needed_bits; }, .ComptimeInt => return true, else => unreachable, }, .int_i64 => switch (ty.zigTypeTag()) { .Int => { const x = self.castTag(.int_i64).?.data; if (x == 0) return true; const info = ty.intInfo(target); if (info.signedness == .unsigned and x < 0) return false; @panic("TODO implement i64 intFitsInType"); }, .ComptimeInt => return true, else => unreachable, }, .int_big_positive => switch (ty.zigTypeTag()) { .Int => { const info = ty.intInfo(target); return self.castTag(.int_big_positive).?.asBigInt().fitsInTwosComp(info.signedness, info.bits); }, .ComptimeInt => return true, else => unreachable, }, .int_big_negative => switch (ty.zigTypeTag()) { .Int => { const info = ty.intInfo(target); return self.castTag(.int_big_negative).?.asBigInt().fitsInTwosComp(info.signedness, info.bits); }, .ComptimeInt => return true, else => unreachable, }, else => unreachable, } } /// Converts an integer or a float to a float. /// Returns `error.Overflow` if the value does not fit in the new type. pub fn floatCast(self: Value, allocator: *Allocator, dest_ty: Type) !Value { switch (dest_ty.tag()) { .f16 => { @panic("TODO add __trunctfhf2 to compiler-rt"); //const res = try Value.Tag.float_16.create(allocator, self.toFloat(f16)); //if (!self.eql(res)) // return error.Overflow; //return res; }, .f32 => { const res = try Value.Tag.float_32.create(allocator, self.toFloat(f32)); if (!self.eql(res, dest_ty)) return error.Overflow; return res; }, .f64 => { const res = try Value.Tag.float_64.create(allocator, self.toFloat(f64)); if (!self.eql(res, dest_ty)) return error.Overflow; return res; }, .f128, .comptime_float, .c_longdouble => { return Value.Tag.float_128.create(allocator, self.toFloat(f128)); }, else => unreachable, } } /// Asserts the value is a float pub fn floatHasFraction(self: Value) bool { return switch (self.tag()) { .zero, .one, => false, .float_16 => @rem(self.castTag(.float_16).?.data, 1) != 0, .float_32 => @rem(self.castTag(.float_32).?.data, 1) != 0, .float_64 => @rem(self.castTag(.float_64).?.data, 1) != 0, // .float_128 => @rem(self.castTag(.float_128).?.data, 1) != 0, .float_128 => @panic("TODO lld: error: undefined symbol: fmodl"), else => unreachable, }; } /// Asserts the value is numeric pub fn isZero(self: Value) bool { return switch (self.tag()) { .zero => true, .one => false, .int_u64 => self.castTag(.int_u64).?.data == 0, .int_i64 => self.castTag(.int_i64).?.data == 0, .float_16 => self.castTag(.float_16).?.data == 0, .float_32 => self.castTag(.float_32).?.data == 0, .float_64 => self.castTag(.float_64).?.data == 0, .float_128 => self.castTag(.float_128).?.data == 0, .int_big_positive => self.castTag(.int_big_positive).?.asBigInt().eqZero(), .int_big_negative => self.castTag(.int_big_negative).?.asBigInt().eqZero(), else => unreachable, }; } pub fn orderAgainstZero(lhs: Value) std.math.Order { return switch (lhs.tag()) { .zero, .bool_false, => .eq, .one, .bool_true, => .gt, .int_u64 => std.math.order(lhs.castTag(.int_u64).?.data, 0), .int_i64 => std.math.order(lhs.castTag(.int_i64).?.data, 0), .int_big_positive => lhs.castTag(.int_big_positive).?.asBigInt().orderAgainstScalar(0), .int_big_negative => lhs.castTag(.int_big_negative).?.asBigInt().orderAgainstScalar(0), .float_16 => std.math.order(lhs.castTag(.float_16).?.data, 0), .float_32 => std.math.order(lhs.castTag(.float_32).?.data, 0), .float_64 => std.math.order(lhs.castTag(.float_64).?.data, 0), .float_128 => std.math.order(lhs.castTag(.float_128).?.data, 0), else => unreachable, }; } /// Asserts the value is comparable. pub fn order(lhs: Value, rhs: Value) std.math.Order { const lhs_tag = lhs.tag(); const rhs_tag = rhs.tag(); const lhs_is_zero = lhs_tag == .zero; const rhs_is_zero = rhs_tag == .zero; if (lhs_is_zero) return rhs.orderAgainstZero().invert(); if (rhs_is_zero) return lhs.orderAgainstZero(); const lhs_float = lhs.isFloat(); const rhs_float = rhs.isFloat(); if (lhs_float and rhs_float) { if (lhs_tag == rhs_tag) { return switch (lhs.tag()) { .float_16 => return std.math.order(lhs.castTag(.float_16).?.data, rhs.castTag(.float_16).?.data), .float_32 => return std.math.order(lhs.castTag(.float_32).?.data, rhs.castTag(.float_32).?.data), .float_64 => return std.math.order(lhs.castTag(.float_64).?.data, rhs.castTag(.float_64).?.data), .float_128 => return std.math.order(lhs.castTag(.float_128).?.data, rhs.castTag(.float_128).?.data), else => unreachable, }; } } if (lhs_float or rhs_float) { const lhs_f128 = lhs.toFloat(f128); const rhs_f128 = rhs.toFloat(f128); return std.math.order(lhs_f128, rhs_f128); } var lhs_bigint_space: BigIntSpace = undefined; var rhs_bigint_space: BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_bigint_space); const rhs_bigint = rhs.toBigInt(&rhs_bigint_space); return lhs_bigint.order(rhs_bigint); } /// Asserts the value is comparable. Does not take a type parameter because it supports /// comparisons between heterogeneous types. pub fn compareHetero(lhs: Value, op: std.math.CompareOperator, rhs: Value) bool { return order(lhs, rhs).compare(op); } /// Asserts the value is comparable. Both operands have type `ty`. pub fn compare(lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type) bool { return switch (op) { .eq => lhs.eql(rhs, ty), .neq => !lhs.eql(rhs, ty), else => compareHetero(lhs, op, rhs), }; } /// Asserts the value is comparable. pub fn compareWithZero(lhs: Value, op: std.math.CompareOperator) bool { return orderAgainstZero(lhs).compare(op); } pub fn eql(a: Value, b: Value, ty: Type) bool { const a_tag = a.tag(); const b_tag = b.tag(); assert(a_tag != .undef); assert(b_tag != .undef); if (a_tag == b_tag) { switch (a_tag) { .void_value, .null_value => return true, .enum_literal => { const a_name = a.castTag(.enum_literal).?.data; const b_name = b.castTag(.enum_literal).?.data; return std.mem.eql(u8, a_name, b_name); }, .enum_field_index => { const a_field_index = a.castTag(.enum_field_index).?.data; const b_field_index = b.castTag(.enum_field_index).?.data; return a_field_index == b_field_index; }, else => {}, } } if (ty.zigTypeTag() == .Type) { var buf_a: ToTypeBuffer = undefined; var buf_b: ToTypeBuffer = undefined; const a_type = a.toType(&buf_a); const b_type = b.toType(&buf_b); return a_type.eql(b_type); } return order(a, b).compare(.eq); } pub fn hash(val: Value, ty: Type, hasher: *std.hash.Wyhash) void { const zig_ty_tag = ty.zigTypeTag(); std.hash.autoHash(hasher, zig_ty_tag); switch (zig_ty_tag) { .BoundFn => unreachable, // TODO remove this from the language .Void, .NoReturn, .Undefined, .Null, => {}, .Type => { var buf: ToTypeBuffer = undefined; return val.toType(&buf).hashWithHasher(hasher); }, .Bool => { std.hash.autoHash(hasher, val.toBool()); }, .Int, .ComptimeInt => { var space: BigIntSpace = undefined; const big = val.toBigInt(&space); std.hash.autoHash(hasher, big.positive); for (big.limbs) |limb| { std.hash.autoHash(hasher, limb); } }, .Float, .ComptimeFloat => { // TODO double check the lang spec. should we to bitwise hashing here, // or a hash that normalizes the float value? const float = val.toFloat(f128); std.hash.autoHash(hasher, @bitCast(u128, float)); }, .Pointer => { @panic("TODO implement hashing pointer values"); }, .Array, .Vector => { @panic("TODO implement hashing array/vector values"); }, .Struct => { @panic("TODO implement hashing struct values"); }, .Optional => { if (val.castTag(.opt_payload)) |payload| { std.hash.autoHash(hasher, true); // non-null const sub_val = payload.data; var buffer: Type.Payload.ElemType = undefined; const sub_ty = ty.optionalChild(&buffer); sub_val.hash(sub_ty, hasher); } else { std.hash.autoHash(hasher, false); // non-null } }, .ErrorUnion => { @panic("TODO implement hashing error union values"); }, .ErrorSet => { @panic("TODO implement hashing error set values"); }, .Enum => { var enum_space: Payload.U64 = undefined; const int_val = val.enumToInt(ty, &enum_space); var space: BigIntSpace = undefined; const big = int_val.toBigInt(&space); std.hash.autoHash(hasher, big.positive); for (big.limbs) |limb| { std.hash.autoHash(hasher, limb); } }, .Union => { @panic("TODO implement hashing union values"); }, .Fn => { @panic("TODO implement hashing function values"); }, .Opaque => { @panic("TODO implement hashing opaque values"); }, .Frame => { @panic("TODO implement hashing frame values"); }, .AnyFrame => { @panic("TODO implement hashing anyframe values"); }, .EnumLiteral => { @panic("TODO implement hashing enum literal values"); }, } } pub const ArrayHashContext = struct { ty: Type, pub fn hash(self: @This(), val: Value) u32 { const other_context: HashContext = .{ .ty = self.ty }; return @truncate(u32, other_context.hash(val)); } pub fn eql(self: @This(), a: Value, b: Value) bool { return a.eql(b, self.ty); } }; pub const HashContext = struct { ty: Type, pub fn hash(self: @This(), val: Value) u64 { var hasher = std.hash.Wyhash.init(0); val.hash(self.ty, &hasher); return hasher.final(); } pub fn eql(self: @This(), a: Value, b: Value) bool { return a.eql(b, self.ty); } }; /// Asserts the value is a pointer and dereferences it. /// Returns error.AnalysisFail if the pointer points to a Decl that failed semantic analysis. pub fn pointerDeref( self: Value, allocator: *Allocator, ) error{ AnalysisFail, OutOfMemory }!?Value { const sub_val: Value = switch (self.tag()) { .decl_ref_mut => val: { // The decl whose value we are obtaining here may be overwritten with // a different value, which would invalidate this memory. So we must // copy here. const val = try self.castTag(.decl_ref_mut).?.data.decl.value(); break :val try val.copy(allocator); }, .decl_ref => try self.castTag(.decl_ref).?.data.value(), .elem_ptr => blk: { const elem_ptr = self.castTag(.elem_ptr).?.data; const array_val = (try elem_ptr.array_ptr.pointerDeref(allocator)) orelse return null; break :blk try array_val.elemValue(allocator, elem_ptr.index); }, .field_ptr => blk: { const field_ptr = self.castTag(.field_ptr).?.data; const container_val = (try field_ptr.container_ptr.pointerDeref(allocator)) orelse return null; break :blk try container_val.fieldValue(allocator, field_ptr.field_index); }, .eu_payload_ptr => blk: { const err_union_ptr = self.castTag(.eu_payload_ptr).?.data; const err_union_val = (try err_union_ptr.pointerDeref(allocator)) orelse return null; break :blk err_union_val.castTag(.eu_payload).?.data; }, .opt_payload_ptr => blk: { const opt_ptr = self.castTag(.opt_payload_ptr).?.data; const opt_val = (try opt_ptr.pointerDeref(allocator)) orelse return null; break :blk opt_val.castTag(.opt_payload).?.data; }, .zero, .one, .int_u64, .int_i64, .int_big_positive, .int_big_negative, .variable, .extern_fn, .function, => return null, else => unreachable, }; if (sub_val.tag() == .variable) { // This would be loading a runtime value at compile-time so we return // the indicator that this pointer dereference requires being done at runtime. return null; } return sub_val; } pub fn sliceLen(val: Value) u64 { return switch (val.tag()) { .empty_array => 0, .bytes => val.castTag(.bytes).?.data.len, .array => val.castTag(.array).?.data.len, .slice => val.castTag(.slice).?.data.len.toUnsignedInt(), .decl_ref => { const decl = val.castTag(.decl_ref).?.data; if (decl.ty.zigTypeTag() == .Array) { return decl.ty.arrayLen(); } else { return 1; } }, else => unreachable, }; } /// Asserts the value is a single-item pointer to an array, or an array, /// or an unknown-length pointer, and returns the element value at the index. pub fn elemValue(self: Value, allocator: *Allocator, index: usize) error{OutOfMemory}!Value { switch (self.tag()) { .empty_array => unreachable, // out of bounds array index .bytes => return Tag.int_u64.create(allocator, self.castTag(.bytes).?.data[index]), // No matter the index; all the elements are the same! .repeated => return self.castTag(.repeated).?.data, .array => return self.castTag(.array).?.data[index], .slice => return self.castTag(.slice).?.data.ptr.elemValue(allocator, index), else => unreachable, } } pub fn fieldValue(val: Value, allocator: *Allocator, index: usize) error{OutOfMemory}!Value { _ = allocator; switch (val.tag()) { .@"struct" => { const field_values = val.castTag(.@"struct").?.data; return field_values[index]; }, .@"union" => { const payload = val.castTag(.@"union").?.data; // TODO assert the tag is correct return payload.val; }, else => unreachable, } } /// Returns a pointer to the element value at the index. pub fn elemPtr(self: Value, allocator: *Allocator, index: usize) !Value { if (self.castTag(.elem_ptr)) |elem_ptr| { return Tag.elem_ptr.create(allocator, .{ .array_ptr = elem_ptr.data.array_ptr, .index = elem_ptr.data.index + index, }); } return Tag.elem_ptr.create(allocator, .{ .array_ptr = self, .index = index, }); } pub fn isUndef(self: Value) bool { return self.tag() == .undef; } /// Valid for all types. Asserts the value is not undefined and not unreachable. pub fn isNull(self: Value) bool { return switch (self.tag()) { .null_value => true, .opt_payload => false, .undef => unreachable, .unreachable_value => unreachable, .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, else => unreachable, }; } /// Valid for all types. Asserts the value is not undefined and not unreachable. /// Prefer `errorUnionIsPayload` to find out whether something is an error or not /// because it works without having to figure out the string. pub fn getError(self: Value) ?[]const u8 { return switch (self.tag()) { .@"error" => self.castTag(.@"error").?.data.name, .int_u64 => @panic("TODO"), .int_i64 => @panic("TODO"), .int_big_positive => @panic("TODO"), .int_big_negative => @panic("TODO"), .one => @panic("TODO"), .undef => unreachable, .unreachable_value => unreachable, .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, else => null, }; } /// Assumes the type is an error union. Returns true if and only if the value is /// the error union payload, not an error. pub fn errorUnionIsPayload(val: Value) bool { return switch (val.tag()) { .eu_payload => true, else => false, .undef => unreachable, .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, }; } /// Valid for all types. Asserts the value is not undefined. pub fn isFloat(self: Value) bool { return switch (self.tag()) { .undef => unreachable, .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, .float_16, .float_32, .float_64, .float_128, => true, else => false, }; } pub fn intAdd(lhs: Value, rhs: Value, allocator: *Allocator) !Value { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_space); const rhs_bigint = rhs.toBigInt(&rhs_space); const limbs = try allocator.alloc( std.math.big.Limb, std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1, ); var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined }; result_bigint.add(lhs_bigint, rhs_bigint); const result_limbs = result_bigint.limbs[0..result_bigint.len]; if (result_bigint.positive) { return Value.Tag.int_big_positive.create(allocator, result_limbs); } else { return Value.Tag.int_big_negative.create(allocator, result_limbs); } } pub fn intSub(lhs: Value, rhs: Value, allocator: *Allocator) !Value { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_space); const rhs_bigint = rhs.toBigInt(&rhs_space); const limbs = try allocator.alloc( std.math.big.Limb, std.math.max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1, ); var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined }; result_bigint.sub(lhs_bigint, rhs_bigint); const result_limbs = result_bigint.limbs[0..result_bigint.len]; if (result_bigint.positive) { return Value.Tag.int_big_positive.create(allocator, result_limbs); } else { return Value.Tag.int_big_negative.create(allocator, result_limbs); } } pub fn intDiv(lhs: Value, rhs: Value, allocator: *Allocator) !Value { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_space); const rhs_bigint = rhs.toBigInt(&rhs_space); const limbs_q = try allocator.alloc( std.math.big.Limb, lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1, ); const limbs_r = try allocator.alloc( std.math.big.Limb, lhs_bigint.limbs.len, ); const limbs_buffer = try allocator.alloc( std.math.big.Limb, std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len), ); var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined }; var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined }; result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer, null); const result_limbs = result_q.limbs[0..result_q.len]; if (result_q.positive) { return Value.Tag.int_big_positive.create(allocator, result_limbs); } else { return Value.Tag.int_big_negative.create(allocator, result_limbs); } } pub fn intMul(lhs: Value, rhs: Value, allocator: *Allocator) !Value { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_space); const rhs_bigint = rhs.toBigInt(&rhs_space); const limbs = try allocator.alloc( std.math.big.Limb, lhs_bigint.limbs.len + rhs_bigint.limbs.len + 1, ); var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined }; var limbs_buffer = try allocator.alloc( std.math.big.Limb, std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1), ); defer allocator.free(limbs_buffer); result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, allocator); const result_limbs = result_bigint.limbs[0..result_bigint.len]; if (result_bigint.positive) { return Value.Tag.int_big_positive.create(allocator, result_limbs); } else { return Value.Tag.int_big_negative.create(allocator, result_limbs); } } pub fn intTrunc(val: Value, arena: *Allocator, bits: u16) !Value { const x = val.toUnsignedInt(); // TODO: implement comptime truncate on big ints if (bits == 64) return val; const mask = (@as(u64, 1) << @intCast(u6, bits)) - 1; const truncated = x & mask; return Tag.int_u64.create(arena, truncated); } pub fn shr(lhs: Value, rhs: Value, allocator: *Allocator) !Value { // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; const lhs_bigint = lhs.toBigInt(&lhs_space); const shift = rhs.toUnsignedInt(); const limbs = try allocator.alloc( std.math.big.Limb, lhs_bigint.limbs.len - (shift / (@sizeOf(std.math.big.Limb) * 8)), ); var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined, }; result_bigint.shiftRight(lhs_bigint, shift); const result_limbs = result_bigint.limbs[0..result_bigint.len]; if (result_bigint.positive) { return Value.Tag.int_big_positive.create(allocator, result_limbs); } else { return Value.Tag.int_big_negative.create(allocator, result_limbs); } } pub fn floatAdd( lhs: Value, rhs: Value, float_type: Type, arena: *Allocator, ) !Value { switch (float_type.tag()) { .f16 => { @panic("TODO add __trunctfhf2 to compiler-rt"); //const lhs_val = lhs.toFloat(f16); //const rhs_val = rhs.toFloat(f16); //return Value.Tag.float_16.create(arena, lhs_val + rhs_val); }, .f32 => { const lhs_val = lhs.toFloat(f32); const rhs_val = rhs.toFloat(f32); return Value.Tag.float_32.create(arena, lhs_val + rhs_val); }, .f64 => { const lhs_val = lhs.toFloat(f64); const rhs_val = rhs.toFloat(f64); return Value.Tag.float_64.create(arena, lhs_val + rhs_val); }, .f128, .comptime_float, .c_longdouble => { const lhs_val = lhs.toFloat(f128); const rhs_val = rhs.toFloat(f128); return Value.Tag.float_128.create(arena, lhs_val + rhs_val); }, else => unreachable, } } pub fn floatSub( lhs: Value, rhs: Value, float_type: Type, arena: *Allocator, ) !Value { switch (float_type.tag()) { .f16 => { @panic("TODO add __trunctfhf2 to compiler-rt"); //const lhs_val = lhs.toFloat(f16); //const rhs_val = rhs.toFloat(f16); //return Value.Tag.float_16.create(arena, lhs_val - rhs_val); }, .f32 => { const lhs_val = lhs.toFloat(f32); const rhs_val = rhs.toFloat(f32); return Value.Tag.float_32.create(arena, lhs_val - rhs_val); }, .f64 => { const lhs_val = lhs.toFloat(f64); const rhs_val = rhs.toFloat(f64); return Value.Tag.float_64.create(arena, lhs_val - rhs_val); }, .f128, .comptime_float, .c_longdouble => { const lhs_val = lhs.toFloat(f128); const rhs_val = rhs.toFloat(f128); return Value.Tag.float_128.create(arena, lhs_val - rhs_val); }, else => unreachable, } } pub fn floatDiv( lhs: Value, rhs: Value, float_type: Type, arena: *Allocator, ) !Value { switch (float_type.tag()) { .f16 => { @panic("TODO add __trunctfhf2 to compiler-rt"); //const lhs_val = lhs.toFloat(f16); //const rhs_val = rhs.toFloat(f16); //return Value.Tag.float_16.create(arena, lhs_val / rhs_val); }, .f32 => { const lhs_val = lhs.toFloat(f32); const rhs_val = rhs.toFloat(f32); return Value.Tag.float_32.create(arena, lhs_val / rhs_val); }, .f64 => { const lhs_val = lhs.toFloat(f64); const rhs_val = rhs.toFloat(f64); return Value.Tag.float_64.create(arena, lhs_val / rhs_val); }, .f128, .comptime_float, .c_longdouble => { const lhs_val = lhs.toFloat(f128); const rhs_val = rhs.toFloat(f128); return Value.Tag.float_128.create(arena, lhs_val / rhs_val); }, else => unreachable, } } pub fn floatMul( lhs: Value, rhs: Value, float_type: Type, arena: *Allocator, ) !Value { switch (float_type.tag()) { .f16 => { @panic("TODO add __trunctfhf2 to compiler-rt"); //const lhs_val = lhs.toFloat(f16); //const rhs_val = rhs.toFloat(f16); //return Value.Tag.float_16.create(arena, lhs_val * rhs_val); }, .f32 => { const lhs_val = lhs.toFloat(f32); const rhs_val = rhs.toFloat(f32); return Value.Tag.float_32.create(arena, lhs_val * rhs_val); }, .f64 => { const lhs_val = lhs.toFloat(f64); const rhs_val = rhs.toFloat(f64); return Value.Tag.float_64.create(arena, lhs_val * rhs_val); }, .f128, .comptime_float, .c_longdouble => { const lhs_val = lhs.toFloat(f128); const rhs_val = rhs.toFloat(f128); return Value.Tag.float_128.create(arena, lhs_val * rhs_val); }, else => unreachable, } } /// This type is not copyable since it may contain pointers to its inner data. pub const Payload = struct { tag: Tag, pub const U32 = struct { base: Payload, data: u32, }; pub const U64 = struct { base: Payload, data: u64, }; pub const I64 = struct { base: Payload, data: i64, }; pub const BigInt = struct { base: Payload, data: []const std.math.big.Limb, pub fn asBigInt(self: BigInt) BigIntConst { const positive = switch (self.base.tag) { .int_big_positive => true, .int_big_negative => false, else => unreachable, }; return BigIntConst{ .limbs = self.data, .positive = positive }; } }; pub const Function = struct { base: Payload, data: *Module.Fn, }; pub const Decl = struct { base: Payload, data: *Module.Decl, }; pub const Variable = struct { base: Payload, data: *Module.Var, }; pub const SubValue = struct { base: Payload, data: Value, }; pub const DeclRefMut = struct { pub const base_tag = Tag.decl_ref_mut; base: Payload = Payload{ .tag = base_tag }, data: struct { decl: *Module.Decl, runtime_index: u32, }, }; pub const ElemPtr = struct { pub const base_tag = Tag.elem_ptr; base: Payload = Payload{ .tag = base_tag }, data: struct { array_ptr: Value, index: usize, }, }; pub const FieldPtr = struct { pub const base_tag = Tag.field_ptr; base: Payload = Payload{ .tag = base_tag }, data: struct { container_ptr: Value, field_index: usize, }, }; pub const Bytes = struct { base: Payload, data: []const u8, }; pub const Array = struct { base: Payload, data: []Value, }; pub const Slice = struct { base: Payload, data: struct { ptr: Value, len: Value, }, }; pub const Ty = struct { base: Payload, data: Type, }; pub const IntType = struct { pub const base_tag = Tag.int_type; base: Payload = Payload{ .tag = base_tag }, data: struct { bits: u16, signed: bool, }, }; pub const Float_16 = struct { pub const base_tag = Tag.float_16; base: Payload = .{ .tag = base_tag }, data: f16, }; pub const Float_32 = struct { pub const base_tag = Tag.float_32; base: Payload = .{ .tag = base_tag }, data: f32, }; pub const Float_64 = struct { pub const base_tag = Tag.float_64; base: Payload = .{ .tag = base_tag }, data: f64, }; pub const Float_128 = struct { pub const base_tag = Tag.float_128; base: Payload = .{ .tag = base_tag }, data: f128, }; pub const Error = struct { base: Payload = .{ .tag = .@"error" }, data: struct { /// `name` is owned by `Module` and will be valid for the entire /// duration of the compilation. /// TODO revisit this when we have the concept of the error tag type name: []const u8, }, }; pub const InferredAlloc = struct { pub const base_tag = Tag.inferred_alloc; base: Payload = .{ .tag = base_tag }, data: struct { /// The value stored in the inferred allocation. This will go into /// peer type resolution. This is stored in a separate list so that /// the items are contiguous in memory and thus can be passed to /// `Module.resolvePeerTypes`. stored_inst_list: std.ArrayListUnmanaged(Air.Inst.Ref) = .{}, }, }; pub const Struct = struct { pub const base_tag = Tag.@"struct"; base: Payload = .{ .tag = base_tag }, /// Field values. The number and type are according to the struct type. data: [*]Value, }; pub const Union = struct { pub const base_tag = Tag.@"union"; base: Payload = .{ .tag = base_tag }, data: struct { tag: Value, val: Value, }, }; }; /// Big enough to fit any non-BigInt value pub const BigIntSpace = struct { /// The +1 is headroom so that operations such as incrementing once or decrementing once /// are possible without using an allocator. limbs: [(@sizeOf(u64) / @sizeOf(std.math.big.Limb)) + 1]std.math.big.Limb, }; };