const std = @import("std"); const assert = std.debug.assert; const types = @import("types.zig"); const frame = types.frame; const Literals = types.compressed_block.Literals; const Sequences = types.compressed_block.Sequences; const Table = types.compressed_block.Table; const RingBuffer = @import("RingBuffer.zig"); const readInt = std.mem.readIntLittle; const readIntSlice = std.mem.readIntSliceLittle; fn readVarInt(comptime T: type, bytes: []const u8) T { return std.mem.readVarInt(T, bytes, .Little); } const log = std.log.scoped(.Decompress); fn isSkippableMagic(magic: u32) bool { return frame.Skippable.magic_number_min <= magic and magic <= frame.Skippable.magic_number_max; } pub fn getFrameDecompressedSize(src: []const u8) !?usize { switch (try frameType(src)) { .zstandard => { const header = try decodeZStandardHeader(src[4..], null); return header.content_size; }, .skippable => return 0, } } pub fn frameType(src: []const u8) !frame.Kind { const magic = readInt(u32, src[0..4]); return if (magic == frame.ZStandard.magic_number) .zstandard else if (isSkippableMagic(magic)) .skippable else error.BadMagic; } const ReadWriteCount = struct { read_count: usize, write_count: usize, }; pub fn decodeFrame(dest: []u8, src: []const u8, verify_checksum: bool) !ReadWriteCount { return switch (try frameType(src)) { .zstandard => decodeZStandardFrame(dest, src, verify_checksum), .skippable => ReadWriteCount{ .read_count = try skippableFrameSize(src[0..8]) + 8, .write_count = 0, }, }; } const DecodeState = struct { repeat_offsets: [3]u32, offset: StateData(8), match: StateData(9), literal: StateData(9), offset_fse_buffer: []Table.Fse, match_fse_buffer: []Table.Fse, literal_fse_buffer: []Table.Fse, fse_tables_undefined: bool, literal_stream_reader: ReverseBitReader, literal_stream_index: usize, huffman_tree: ?Literals.HuffmanTree, literal_written_count: usize, fn StateData(comptime max_accuracy_log: comptime_int) type { return struct { state: State, table: Table, accuracy_log: u8, const State = std.meta.Int(.unsigned, max_accuracy_log); }; } fn readInitialState(self: *DecodeState, bit_reader: anytype) !void { self.literal.state = try bit_reader.readBitsNoEof(u9, self.literal.accuracy_log); self.offset.state = try bit_reader.readBitsNoEof(u8, self.offset.accuracy_log); self.match.state = try bit_reader.readBitsNoEof(u9, self.match.accuracy_log); log.debug("initial decoder state: literal = {d}, offset = {d} match = {d}", .{ self.literal.state, self.offset.state, self.match.state, }); } fn updateRepeatOffset(self: *DecodeState, offset: u32) void { std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[1]); std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[2]); self.repeat_offsets[0] = offset; } fn useRepeatOffset(self: *DecodeState, index: usize) u32 { if (index == 1) std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[1]) else if (index == 2) { std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[2]); std.mem.swap(u32, &self.repeat_offsets[1], &self.repeat_offsets[2]); } return self.repeat_offsets[0]; } const DataType = enum { offset, match, literal }; fn updateState(self: *DecodeState, comptime choice: DataType, bit_reader: anytype) !void { switch (@field(self, @tagName(choice)).table) { .rle => {}, .fse => |table| { const data = table[@field(self, @tagName(choice)).state]; const T = @TypeOf(@field(self, @tagName(choice))).State; const bits_summand = try bit_reader.readBitsNoEof(T, data.bits); const next_state = data.baseline + bits_summand; @field(self, @tagName(choice)).state = @intCast(@TypeOf(@field(self, @tagName(choice))).State, next_state); }, } } fn updateFseTable( self: *DecodeState, src: []const u8, comptime choice: DataType, mode: Sequences.Header.Mode, ) !usize { const field_name = @tagName(choice); switch (mode) { .predefined => { @field(self, field_name).accuracy_log = @field(types.compressed_block.default_accuracy_log, field_name); @field(self, field_name).table = @field(types.compressed_block, "predefined_" ++ field_name ++ "_fse_table"); return 0; }, .rle => { @field(self, field_name).accuracy_log = 0; @field(self, field_name).table = .{ .rle = src[0] }; return 1; }, .fse => { var stream = std.io.fixedBufferStream(src); var counting_reader = std.io.countingReader(stream.reader()); var bit_reader = bitReader(counting_reader.reader()); const table_size = try decodeFseTable( &bit_reader, @field(types.compressed_block.table_symbol_count_max, field_name), @field(types.compressed_block.table_accuracy_log_max, field_name), @field(self, field_name ++ "_fse_buffer"), ); @field(self, field_name).table = .{ .fse = @field(self, field_name ++ "_fse_buffer")[0..table_size] }; @field(self, field_name).accuracy_log = std.math.log2_int_ceil(usize, table_size); log.debug("decoded fse " ++ field_name ++ " table '{}'", .{ std.fmt.fmtSliceHexUpper(src[0..counting_reader.bytes_read]), }); dumpFseTable(field_name, @field(self, field_name).table.fse); return counting_reader.bytes_read; }, .repeat => return if (self.fse_tables_undefined) error.RepeatModeFirst else 0, } } const Sequence = struct { literal_length: u32, match_length: u32, offset: u32, }; fn nextSequence(self: *DecodeState, bit_reader: anytype) !Sequence { const raw_code = self.getCode(.offset); const offset_code = std.math.cast(u5, raw_code) orelse { log.err("got offset code of {d}", .{raw_code}); return error.OffsetCodeTooLarge; }; const offset_value = (@as(u32, 1) << offset_code) + try bit_reader.readBitsNoEof(u32, offset_code); const match_code = self.getCode(.match); const match = types.compressed_block.match_length_code_table[match_code]; const match_length = match[0] + try bit_reader.readBitsNoEof(u32, match[1]); const literal_code = self.getCode(.literal); const literal = types.compressed_block.literals_length_code_table[literal_code]; const literal_length = literal[0] + try bit_reader.readBitsNoEof(u32, literal[1]); const offset = if (offset_value > 3) offset: { const offset = offset_value - 3; self.updateRepeatOffset(offset); break :offset offset; } else offset: { if (literal_length == 0) { if (offset_value == 3) { const offset = self.repeat_offsets[0] - 1; self.updateRepeatOffset(offset); break :offset offset; } break :offset self.useRepeatOffset(offset_value); } break :offset self.useRepeatOffset(offset_value - 1); }; log.debug("sequence = ({d}, {d}, {d})", .{ literal_length, offset, match_length }); return .{ .literal_length = literal_length, .match_length = match_length, .offset = offset, }; } fn executeSequenceSlice(self: *DecodeState, dest: []u8, write_pos: usize, literals: Literals, sequence: Sequence) !void { try self.decodeLiteralsSlice(dest[write_pos..], literals, sequence.literal_length); // TODO: should we validate offset against max_window_size? assert(sequence.offset <= write_pos + sequence.literal_length); const copy_start = write_pos + sequence.literal_length - sequence.offset; const copy_end = copy_start + sequence.match_length; // NOTE: we ignore the usage message for std.mem.copy and copy with dest.ptr >= src.ptr // to allow repeats std.mem.copy(u8, dest[write_pos + sequence.literal_length ..], dest[copy_start..copy_end]); } fn executeSequenceRingBuffer(self: *DecodeState, dest: *RingBuffer, literals: Literals, sequence: Sequence) !void { try self.decodeLiteralsRingBuffer(dest, literals, sequence.literal_length); // TODO: check that ring buffer window is full enough for match copies const copy_slice = dest.sliceAt(dest.write_index + dest.data.len - sequence.offset, sequence.match_length); // TODO: would std.mem.copy and figuring out dest slice be better/faster? for (copy_slice.first) |b| dest.writeAssumeCapacity(b); for (copy_slice.second) |b| dest.writeAssumeCapacity(b); } fn decodeSequenceSlice( self: *DecodeState, dest: []u8, write_pos: usize, literals: Literals, bit_reader: anytype, last_sequence: bool, ) !usize { const sequence = try self.nextSequence(bit_reader); try self.executeSequenceSlice(dest, write_pos, literals, sequence); log.debug("sequence decompressed into '{x}'", .{ std.fmt.fmtSliceHexUpper(dest[write_pos .. write_pos + sequence.literal_length + sequence.match_length]), }); if (!last_sequence) { try self.updateState(.literal, bit_reader); try self.updateState(.match, bit_reader); try self.updateState(.offset, bit_reader); } return sequence.match_length + sequence.literal_length; } fn decodeSequenceRingBuffer( self: *DecodeState, dest: *RingBuffer, literals: Literals, bit_reader: anytype, last_sequence: bool, ) !usize { const sequence = try self.nextSequence(bit_reader); try self.executeSequenceRingBuffer(dest, literals, sequence); if (std.options.log_level == .debug) { const sequence_length = sequence.literal_length + sequence.match_length; const written_slice = dest.sliceLast(sequence_length); log.debug("sequence decompressed into '{x}{x}'", .{ std.fmt.fmtSliceHexUpper(written_slice.first), std.fmt.fmtSliceHexUpper(written_slice.second), }); } if (!last_sequence) { try self.updateState(.literal, bit_reader); try self.updateState(.match, bit_reader); try self.updateState(.offset, bit_reader); } return sequence.match_length + sequence.literal_length; } fn nextLiteralMultiStream(self: *DecodeState, literals: Literals) !void { self.literal_stream_index += 1; try self.initLiteralStream(literals.streams.four[self.literal_stream_index]); } fn initLiteralStream(self: *DecodeState, bytes: []const u8) !void { log.debug("initing literal stream: {}", .{std.fmt.fmtSliceHexUpper(bytes)}); try self.literal_stream_reader.init(bytes); } fn decodeLiteralsSlice(self: *DecodeState, dest: []u8, literals: Literals, len: usize) !void { if (self.literal_written_count + len > literals.header.regenerated_size) return error.MalformedLiteralsLength; switch (literals.header.block_type) { .raw => { const literal_data = literals.streams.one[self.literal_written_count .. self.literal_written_count + len]; std.mem.copy(u8, dest, literal_data); self.literal_written_count += len; }, .rle => { var i: usize = 0; while (i < len) : (i += 1) { dest[i] = literals.streams.one[0]; } log.debug("rle: {}", .{std.fmt.fmtSliceHexUpper(dest[0..len])}); self.literal_written_count += len; }, .compressed, .treeless => { // const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4; const huffman_tree = self.huffman_tree orelse unreachable; const max_bit_count = huffman_tree.max_bit_count; const starting_bit_count = Literals.HuffmanTree.weightToBitCount( huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight, max_bit_count, ); var bits_read: u4 = 0; var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one; var bit_count_to_read: u4 = starting_bit_count; var i: usize = 0; while (i < len) : (i += 1) { var prefix: u16 = 0; while (true) { const new_bits = self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch |err| switch (err) { error.EndOfStream => if (literals.streams == .four and self.literal_stream_index < 3) bits: { try self.nextLiteralMultiStream(literals); break :bits try self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read); } else { return error.UnexpectedEndOfLiteralStream; }, }; prefix <<= bit_count_to_read; prefix |= new_bits; bits_read += bit_count_to_read; const result = try huffman_tree.query(huffman_tree_index, prefix); switch (result) { .symbol => |sym| { dest[i] = sym; bit_count_to_read = starting_bit_count; bits_read = 0; huffman_tree_index = huffman_tree.symbol_count_minus_one; break; }, .index => |index| { huffman_tree_index = index; const bit_count = Literals.HuffmanTree.weightToBitCount( huffman_tree.nodes[index].weight, max_bit_count, ); bit_count_to_read = bit_count - bits_read; }, } } } self.literal_written_count += len; }, } } fn decodeLiteralsRingBuffer(self: *DecodeState, dest: *RingBuffer, literals: Literals, len: usize) !void { if (self.literal_written_count + len > literals.header.regenerated_size) return error.MalformedLiteralsLength; switch (literals.header.block_type) { .raw => { const literal_data = literals.streams.one[self.literal_written_count .. self.literal_written_count + len]; dest.writeSliceAssumeCapacity(literal_data); self.literal_written_count += len; }, .rle => { var i: usize = 0; while (i < len) : (i += 1) { dest.writeAssumeCapacity(literals.streams.one[0]); } self.literal_written_count += len; }, .compressed, .treeless => { // const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4; const huffman_tree = self.huffman_tree orelse unreachable; const max_bit_count = huffman_tree.max_bit_count; const starting_bit_count = Literals.HuffmanTree.weightToBitCount( huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight, max_bit_count, ); var bits_read: u4 = 0; var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one; var bit_count_to_read: u4 = starting_bit_count; var i: usize = 0; while (i < len) : (i += 1) { var prefix: u16 = 0; while (true) { const new_bits = self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch |err| switch (err) { error.EndOfStream => if (literals.streams == .four and self.literal_stream_index < 3) bits: { try self.nextLiteralMultiStream(literals); break :bits try self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read); } else { return error.UnexpectedEndOfLiteralStream; }, }; prefix <<= bit_count_to_read; prefix |= new_bits; bits_read += bit_count_to_read; const result = try huffman_tree.query(huffman_tree_index, prefix); switch (result) { .symbol => |sym| { dest.writeAssumeCapacity(sym); bit_count_to_read = starting_bit_count; bits_read = 0; huffman_tree_index = huffman_tree.symbol_count_minus_one; break; }, .index => |index| { huffman_tree_index = index; const bit_count = Literals.HuffmanTree.weightToBitCount( huffman_tree.nodes[index].weight, max_bit_count, ); bit_count_to_read = bit_count - bits_read; }, } } } self.literal_written_count += len; }, } } fn getCode(self: *DecodeState, comptime choice: DataType) u32 { return switch (@field(self, @tagName(choice)).table) { .rle => |value| value, .fse => |table| table[@field(self, @tagName(choice)).state].symbol, }; } }; const literal_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.literal; const match_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.match; const offset_table_size_max = 1 << types.compressed_block.table_accuracy_log_max.match; pub fn decodeZStandardFrame(dest: []u8, src: []const u8, verify_checksum: bool) !ReadWriteCount { assert(readInt(u32, src[0..4]) == frame.ZStandard.magic_number); var consumed_count: usize = 4; const frame_header = try decodeZStandardHeader(src[consumed_count..], &consumed_count); if (frame_header.descriptor.dictionary_id_flag != 0) return error.DictionaryIdFlagUnsupported; const content_size = frame_header.content_size orelse return error.UnknownContentSizeUnsupported; // const window_size = frameWindowSize(header) orelse return error.WindowSizeUnknown; if (dest.len < content_size) return error.ContentTooLarge; const should_compute_checksum = frame_header.descriptor.content_checksum_flag and verify_checksum; var hash_state = if (should_compute_checksum) std.hash.XxHash64.init(0) else undefined; // TODO: block_maximum_size should be @min(1 << 17, window_size); const written_count = try decodeFrameBlocks( dest, src[consumed_count..], &consumed_count, if (should_compute_checksum) &hash_state else null, ); if (frame_header.descriptor.content_checksum_flag) { const checksum = readIntSlice(u32, src[consumed_count .. consumed_count + 4]); consumed_count += 4; if (verify_checksum) { const hash = hash_state.final(); const hash_low_bytes = hash & 0xFFFFFFFF; if (checksum != hash_low_bytes) { std.log.err("expected checksum {x}, got {x} (full hash {x})", .{ checksum, hash_low_bytes, hash }); return error.ChecksumFailure; } } } return ReadWriteCount{ .read_count = consumed_count, .write_count = written_count }; } pub fn decodeZStandardFrameAlloc(allocator: std.mem.Allocator, src: []const u8, verify_checksum: bool) ![]u8 { var result = std.ArrayList(u8).init(allocator); assert(readInt(u32, src[0..4]) == frame.ZStandard.magic_number); var consumed_count: usize = 4; const frame_header = try decodeZStandardHeader(src[consumed_count..], &consumed_count); if (frame_header.descriptor.dictionary_id_flag != 0) return error.DictionaryIdFlagUnsupported; const window_size = frameWindowSize(frame_header) orelse return error.WindowSizeUnknown; log.debug("window size = {d}", .{window_size}); const should_compute_checksum = frame_header.descriptor.content_checksum_flag and verify_checksum; var hash = if (should_compute_checksum) std.hash.XxHash64.init(0) else null; const block_size_maximum = @min(1 << 17, window_size); log.debug("block size maximum = {d}", .{block_size_maximum}); var window_data = try allocator.alloc(u8, window_size); defer allocator.free(window_data); var ring_buffer = RingBuffer{ .data = window_data, .write_index = 0, .read_index = 0, }; // These tables take 7680 bytes var literal_fse_data: [literal_table_size_max]Table.Fse = undefined; var match_fse_data: [match_table_size_max]Table.Fse = undefined; var offset_fse_data: [offset_table_size_max]Table.Fse = undefined; var block_header = decodeBlockHeader(src[consumed_count..][0..3]); consumed_count += 3; var decode_state = DecodeState{ .repeat_offsets = .{ types.compressed_block.start_repeated_offset_1, types.compressed_block.start_repeated_offset_2, types.compressed_block.start_repeated_offset_3, }, .offset = undefined, .match = undefined, .literal = undefined, .literal_fse_buffer = &literal_fse_data, .match_fse_buffer = &match_fse_data, .offset_fse_buffer = &offset_fse_data, .fse_tables_undefined = true, .literal_written_count = 0, .literal_stream_reader = undefined, .literal_stream_index = undefined, .huffman_tree = null, }; var written_count: usize = 0; while (true) : ({ block_header = decodeBlockHeader(src[consumed_count..][0..3]); consumed_count += 3; }) { if (block_header.block_size > block_size_maximum) return error.CompressedBlockSizeOverMaximum; const written_size = try decodeBlockRingBuffer( &ring_buffer, src[consumed_count..], block_header, &decode_state, &consumed_count, block_size_maximum, ); if (written_size > block_size_maximum) return error.DecompressedBlockSizeOverMaximum; const written_slice = ring_buffer.sliceLast(written_size); try result.appendSlice(written_slice.first); try result.appendSlice(written_slice.second); if (hash) |*hash_state| { hash_state.update(written_slice.first); hash_state.update(written_slice.second); } written_count += written_size; if (block_header.last_block) break; } return result.toOwnedSlice(); } pub fn decodeFrameBlocks(dest: []u8, src: []const u8, consumed_count: *usize, hash: ?*std.hash.XxHash64) !usize { // These tables take 7680 bytes var literal_fse_data: [literal_table_size_max]Table.Fse = undefined; var match_fse_data: [match_table_size_max]Table.Fse = undefined; var offset_fse_data: [offset_table_size_max]Table.Fse = undefined; var block_header = decodeBlockHeader(src[0..3]); var bytes_read: usize = 3; var decode_state = DecodeState{ .repeat_offsets = .{ types.compressed_block.start_repeated_offset_1, types.compressed_block.start_repeated_offset_2, types.compressed_block.start_repeated_offset_3, }, .offset = undefined, .match = undefined, .literal = undefined, .literal_fse_buffer = &literal_fse_data, .match_fse_buffer = &match_fse_data, .offset_fse_buffer = &offset_fse_data, .fse_tables_undefined = true, .literal_written_count = 0, .literal_stream_reader = undefined, .literal_stream_index = undefined, .huffman_tree = null, }; var written_count: usize = 0; while (true) : ({ block_header = decodeBlockHeader(src[bytes_read..][0..3]); bytes_read += 3; }) { const written_size = try decodeBlock( dest, src[bytes_read..], block_header, &decode_state, &bytes_read, written_count, ); if (hash) |hash_state| hash_state.update(dest[written_count .. written_count + written_size]); written_count += written_size; if (block_header.last_block) break; } consumed_count.* += bytes_read; return written_count; } fn decodeRawBlock(dest: []u8, src: []const u8, block_size: u21, consumed_count: *usize) usize { log.debug("writing raw block - size {d}", .{block_size}); const data = src[0..block_size]; std.mem.copy(u8, dest, data); consumed_count.* += block_size; return block_size; } fn decodeRawBlockRingBuffer(dest: *RingBuffer, src: []const u8, block_size: u21, consumed_count: *usize) usize { log.debug("writing raw block - size {d}", .{block_size}); const data = src[0..block_size]; dest.writeSliceAssumeCapacity(data); consumed_count.* += block_size; return block_size; } fn decodeRleBlock(dest: []u8, src: []const u8, block_size: u21, consumed_count: *usize) usize { log.debug("writing rle block - '{x}'x{d}", .{ src[0], block_size }); var write_pos: usize = 0; while (write_pos < block_size) : (write_pos += 1) { dest[write_pos] = src[0]; } consumed_count.* += 1; return block_size; } fn decodeRleBlockRingBuffer(dest: *RingBuffer, src: []const u8, block_size: u21, consumed_count: *usize) usize { log.debug("writing rle block - '{x}'x{d}", .{ src[0], block_size }); var write_pos: usize = 0; while (write_pos < block_size) : (write_pos += 1) { dest.writeAssumeCapacity(src[0]); } consumed_count.* += 1; return block_size; } fn prepareDecodeState( decode_state: *DecodeState, src: []const u8, literals: Literals, sequences_header: Sequences.Header, ) !usize { if (literals.huffman_tree) |tree| { decode_state.huffman_tree = tree; } else if (literals.header.block_type == .treeless and decode_state.huffman_tree == null) { return error.TreelessLiteralsFirst; } switch (literals.header.block_type) { .raw, .rle => {}, .compressed, .treeless => { decode_state.literal_stream_index = 0; switch (literals.streams) { .one => |slice| try decode_state.initLiteralStream(slice), .four => |streams| try decode_state.initLiteralStream(streams[0]), } }, } if (sequences_header.sequence_count > 0) { var bytes_read = try decode_state.updateFseTable( src, .literal, sequences_header.literal_lengths, ); bytes_read += try decode_state.updateFseTable( src[bytes_read..], .offset, sequences_header.offsets, ); bytes_read += try decode_state.updateFseTable( src[bytes_read..], .match, sequences_header.match_lengths, ); decode_state.fse_tables_undefined = false; return bytes_read; } return 0; } pub fn decodeBlock( dest: []u8, src: []const u8, block_header: frame.ZStandard.Block.Header, decode_state: *DecodeState, consumed_count: *usize, written_count: usize, ) !usize { const block_maximum_size = 1 << 17; // 128KiB const block_size = block_header.block_size; if (block_maximum_size < block_size) return error.BlockSizeOverMaximum; // TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks) switch (block_header.block_type) { .raw => return decodeRawBlock(dest[written_count..], src, block_size, consumed_count), .rle => return decodeRleBlock(dest[written_count..], src, block_size, consumed_count), .compressed => { var bytes_read: usize = 0; const literals = try decodeLiteralsSection(src, &bytes_read); const sequences_header = try decodeSequencesHeader(src[bytes_read..], &bytes_read); bytes_read += try prepareDecodeState(decode_state, src[bytes_read..], literals, sequences_header); var bytes_written: usize = 0; if (sequences_header.sequence_count > 0) { const bit_stream_bytes = src[bytes_read..block_size]; var bit_stream: ReverseBitReader = undefined; try bit_stream.init(bit_stream_bytes); try decode_state.readInitialState(&bit_stream); var i: usize = 0; while (i < sequences_header.sequence_count) : (i += 1) { log.debug("decoding sequence {d}", .{i}); const decompressed_size = try decode_state.decodeSequenceSlice( dest, written_count + bytes_written, literals, &bit_stream, i == sequences_header.sequence_count - 1, ); bytes_written += decompressed_size; } bytes_read += bit_stream_bytes.len; } if (decode_state.literal_written_count < literals.header.regenerated_size) { log.debug("decoding remaining literals", .{}); const len = literals.header.regenerated_size - decode_state.literal_written_count; try decode_state.decodeLiteralsSlice(dest[written_count + bytes_written ..], literals, len); log.debug("remaining decoded literals at {d}: {}", .{ written_count, std.fmt.fmtSliceHexUpper(dest[written_count .. written_count + len]), }); bytes_written += len; } decode_state.literal_written_count = 0; assert(bytes_read == block_header.block_size); consumed_count.* += bytes_read; return bytes_written; }, .reserved => return error.FrameContainsReservedBlock, } } pub fn decodeBlockRingBuffer( dest: *RingBuffer, src: []const u8, block_header: frame.ZStandard.Block.Header, decode_state: *DecodeState, consumed_count: *usize, block_size_maximum: usize, ) !usize { const block_size = block_header.block_size; if (block_size_maximum < block_size) return error.BlockSizeOverMaximum; // TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks) switch (block_header.block_type) { .raw => return decodeRawBlockRingBuffer(dest, src, block_size, consumed_count), .rle => return decodeRleBlockRingBuffer(dest, src, block_size, consumed_count), .compressed => { var bytes_read: usize = 0; const literals = try decodeLiteralsSection(src, &bytes_read); const sequences_header = try decodeSequencesHeader(src[bytes_read..], &bytes_read); bytes_read += try prepareDecodeState(decode_state, src[bytes_read..], literals, sequences_header); var bytes_written: usize = 0; if (sequences_header.sequence_count > 0) { const bit_stream_bytes = src[bytes_read..block_size]; var bit_stream: ReverseBitReader = undefined; try bit_stream.init(bit_stream_bytes); try decode_state.readInitialState(&bit_stream); var i: usize = 0; while (i < sequences_header.sequence_count) : (i += 1) { log.debug("decoding sequence {d}", .{i}); const decompressed_size = try decode_state.decodeSequenceRingBuffer( dest, literals, &bit_stream, i == sequences_header.sequence_count - 1, ); bytes_written += decompressed_size; } bytes_read += bit_stream_bytes.len; } if (decode_state.literal_written_count < literals.header.regenerated_size) { log.debug("decoding remaining literals", .{}); const len = literals.header.regenerated_size - decode_state.literal_written_count; try decode_state.decodeLiteralsRingBuffer(dest, literals, len); const written_slice = dest.sliceLast(len); log.debug("remaining decoded literals at {d}: {}{}", .{ bytes_written, std.fmt.fmtSliceHexUpper(written_slice.first), std.fmt.fmtSliceHexUpper(written_slice.second), }); bytes_written += len; } decode_state.literal_written_count = 0; assert(bytes_read == block_header.block_size); consumed_count.* += bytes_read; return bytes_written; }, .reserved => return error.FrameContainsReservedBlock, } } pub fn decodeSkippableHeader(src: *const [8]u8) frame.Skippable.Header { const magic = readInt(u32, src[0..4]); assert(isSkippableMagic(magic)); const frame_size = readInt(u32, src[4..8]); return .{ .magic_number = magic, .frame_size = frame_size, }; } pub fn skippableFrameSize(src: *const [8]u8) !usize { assert(isSkippableMagic(readInt(u32, src[0..4]))); const frame_size = readInt(u32, src[4..8]); return frame_size; } pub fn frameWindowSize(header: frame.ZStandard.Header) ?u64 { if (header.window_descriptor) |descriptor| { const exponent = (descriptor & 0b11111000) >> 3; const mantissa = descriptor & 0b00000111; const window_log = 10 + exponent; const window_base = @as(u64, 1) << @intCast(u6, window_log); const window_add = (window_base / 8) * mantissa; return window_base + window_add; } else return header.content_size; } pub fn decodeZStandardHeader(src: []const u8, consumed_count: ?*usize) !frame.ZStandard.Header { const descriptor = @bitCast(frame.ZStandard.Header.Descriptor, src[0]); if (descriptor.unused) return error.UnusedBitSet; if (descriptor.reserved) return error.ReservedBitSet; var bytes_read_count: usize = 1; var window_descriptor: ?u8 = null; if (!descriptor.single_segment_flag) { window_descriptor = src[bytes_read_count]; bytes_read_count += 1; } var dictionary_id: ?u32 = null; if (descriptor.dictionary_id_flag > 0) { // if flag is 3 we field_size = 4, else field_size = flag const field_size = (@as(u3, 1) << descriptor.dictionary_id_flag) >> 1; dictionary_id = readVarInt(u32, src[bytes_read_count .. bytes_read_count + field_size]); bytes_read_count += field_size; } var content_size: ?u64 = null; if (descriptor.single_segment_flag or descriptor.content_size_flag > 0) { const field_size = @as(u4, 1) << descriptor.content_size_flag; content_size = readVarInt(u64, src[bytes_read_count .. bytes_read_count + field_size]); if (field_size == 2) content_size.? += 256; bytes_read_count += field_size; } if (consumed_count) |p| p.* += bytes_read_count; const header = frame.ZStandard.Header{ .descriptor = descriptor, .window_descriptor = window_descriptor, .dictionary_id = dictionary_id, .content_size = content_size, }; log.debug( "decoded ZStandard frame header {x}: " ++ "desc = (d={d},c={},r={},u={},s={},cs={d}), win_desc = {?x}, dict_id = {?x}, content_size = {?d}", .{ std.fmt.fmtSliceHexUpper(src[0..bytes_read_count]), header.descriptor.dictionary_id_flag, header.descriptor.content_checksum_flag, header.descriptor.reserved, header.descriptor.unused, header.descriptor.single_segment_flag, header.descriptor.content_size_flag, header.window_descriptor, header.dictionary_id, header.content_size, }, ); return header; } pub fn decodeBlockHeader(src: *const [3]u8) frame.ZStandard.Block.Header { const last_block = src[0] & 1 == 1; const block_type = @intToEnum(frame.ZStandard.Block.Type, (src[0] & 0b110) >> 1); const block_size = ((src[0] & 0b11111000) >> 3) + (@as(u21, src[1]) << 5) + (@as(u21, src[2]) << 13); log.debug("decoded block header {}: last = {}, type = {s}, size = {d}", .{ std.fmt.fmtSliceHexUpper(src), last_block, @tagName(block_type), block_size, }); return .{ .last_block = last_block, .block_type = block_type, .block_size = block_size, }; } pub fn decodeLiteralsSection(src: []const u8, consumed_count: *usize) !Literals { // TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks) var bytes_read: usize = 0; const header = decodeLiteralsHeader(src, &bytes_read); switch (header.block_type) { .raw => { const stream = src[bytes_read .. bytes_read + header.regenerated_size]; consumed_count.* += header.regenerated_size + bytes_read; return Literals{ .header = header, .huffman_tree = null, .streams = .{ .one = stream }, }; }, .rle => { const stream = src[bytes_read .. bytes_read + 1]; consumed_count.* += 1 + bytes_read; return Literals{ .header = header, .huffman_tree = null, .streams = .{ .one = stream }, }; }, .compressed, .treeless => { const huffman_tree_start = bytes_read; const huffman_tree = if (header.block_type == .compressed) try decodeHuffmanTree(src[bytes_read..], &bytes_read) else null; const huffman_tree_size = bytes_read - huffman_tree_start; const total_streams_size = @as(usize, header.compressed_size.?) - huffman_tree_size; log.debug("huffman tree size = {}, total streams size = {}", .{ huffman_tree_size, total_streams_size }); if (huffman_tree) |tree| dumpHuffmanTree(tree); if (header.size_format == 0) { const stream = src[bytes_read .. bytes_read + total_streams_size]; bytes_read += total_streams_size; consumed_count.* += bytes_read; return Literals{ .header = header, .huffman_tree = huffman_tree, .streams = .{ .one = stream }, }; } const stream_data = src[bytes_read .. bytes_read + total_streams_size]; log.debug("jump table: {}", .{std.fmt.fmtSliceHexUpper(stream_data[0..6])}); const stream_1_length = @as(usize, readInt(u16, stream_data[0..2])); const stream_2_length = @as(usize, readInt(u16, stream_data[2..4])); const stream_3_length = @as(usize, readInt(u16, stream_data[4..6])); const stream_4_length = (total_streams_size - 6) - (stream_1_length + stream_2_length + stream_3_length); const stream_1_start = 6; const stream_2_start = stream_1_start + stream_1_length; const stream_3_start = stream_2_start + stream_2_length; const stream_4_start = stream_3_start + stream_3_length; consumed_count.* += total_streams_size + bytes_read; return Literals{ .header = header, .huffman_tree = huffman_tree, .streams = .{ .four = .{ stream_data[stream_1_start .. stream_1_start + stream_1_length], stream_data[stream_2_start .. stream_2_start + stream_2_length], stream_data[stream_3_start .. stream_3_start + stream_3_length], stream_data[stream_4_start .. stream_4_start + stream_4_length], } }, }; }, } } fn decodeHuffmanTree(src: []const u8, consumed_count: *usize) !Literals.HuffmanTree { var bytes_read: usize = 0; bytes_read += 1; const header = src[0]; var symbol_count: usize = undefined; var weights: [256]u4 = undefined; var max_number_of_bits: u4 = undefined; if (header < 128) { // FSE compressed weigths const compressed_size = header; var stream = std.io.fixedBufferStream(src[1 .. compressed_size + 1]); var counting_reader = std.io.countingReader(stream.reader()); var bit_reader = bitReader(counting_reader.reader()); var entries: [1 << 6]Table.Fse = undefined; const table_size = try decodeFseTable(&bit_reader, 256, 6, &entries); const accuracy_log = std.math.log2_int_ceil(usize, table_size); var huff_data = src[1 + counting_reader.bytes_read .. compressed_size + 1]; var huff_bits: ReverseBitReader = undefined; try huff_bits.init(huff_data); dumpFseTable("huffman", entries[0..table_size]); var i: usize = 0; var even_state: u32 = try huff_bits.readBitsNoEof(u32, accuracy_log); var odd_state: u32 = try huff_bits.readBitsNoEof(u32, accuracy_log); while (i < 255) { const even_data = entries[even_state]; var read_bits: usize = 0; const even_bits = try huff_bits.readBits(u32, even_data.bits, &read_bits); weights[i] = @intCast(u4, even_data.symbol); i += 1; if (read_bits < even_data.bits) { weights[i] = @intCast(u4, entries[odd_state].symbol); log.debug("overflow condition: setting weights[{d}] = {d}", .{ i, weights[i] }); i += 1; break; } even_state = even_data.baseline + even_bits; read_bits = 0; const odd_data = entries[odd_state]; const odd_bits = try huff_bits.readBits(u32, odd_data.bits, &read_bits); weights[i] = @intCast(u4, odd_data.symbol); i += 1; if (read_bits < odd_data.bits) { if (i == 256) return error.MalformedHuffmanTree; weights[i] = @intCast(u4, entries[even_state].symbol); log.debug("overflow condition: setting weights[{d}] = {d}", .{ i, weights[i] }); i += 1; break; } odd_state = odd_data.baseline + odd_bits; } else return error.MalformedHuffmanTree; symbol_count = i + 1; // stream contains all but the last symbol bytes_read += compressed_size; } else { const encoded_symbol_count = header - 127; symbol_count = encoded_symbol_count + 1; log.debug("huffman tree symbol count = {d}", .{symbol_count}); const weights_byte_count = (encoded_symbol_count + 1) / 2; log.debug("decoding direct huffman tree: {}|{}", .{ std.fmt.fmtSliceHexUpper(src[0..1]), std.fmt.fmtSliceHexUpper(src[1 .. weights_byte_count + 1]), }); if (src.len < weights_byte_count) return error.MalformedHuffmanTree; var i: usize = 0; while (i < weights_byte_count) : (i += 1) { weights[2 * i] = @intCast(u4, src[i + 1] >> 4); weights[2 * i + 1] = @intCast(u4, src[i + 1] & 0xF); log.debug("weights[{d}] = {d}", .{ 2 * i, weights[2 * i] }); log.debug("weights[{d}] = {d}", .{ 2 * i + 1, weights[2 * i + 1] }); } bytes_read += weights_byte_count; } var weight_power_sum: u16 = 0; for (weights[0 .. symbol_count - 1]) |value| { if (value > 0) { weight_power_sum += @as(u16, 1) << (value - 1); } } log.debug("weight power sum = {d}", .{weight_power_sum}); // advance to next power of two (even if weight_power_sum is a power of 2) max_number_of_bits = @intCast(u4, std.math.log2_int(u16, weight_power_sum) + 1); const next_power_of_two = @as(u16, 1) << max_number_of_bits; weights[symbol_count - 1] = @intCast(u4, std.math.log2_int(u16, next_power_of_two - weight_power_sum) + 1); log.debug("weights[{d}] = {d}", .{ symbol_count - 1, weights[symbol_count - 1] }); var weight_sorted_prefixed_symbols: [256]Literals.HuffmanTree.PrefixedSymbol = undefined; for (weight_sorted_prefixed_symbols[0..symbol_count]) |_, i| { weight_sorted_prefixed_symbols[i] = .{ .symbol = @intCast(u8, i), .weight = undefined, .prefix = undefined, }; } std.sort.sort( Literals.HuffmanTree.PrefixedSymbol, weight_sorted_prefixed_symbols[0..symbol_count], weights, lessThanByWeight, ); var prefix: u16 = 0; var prefixed_symbol_count: usize = 0; var sorted_index: usize = 0; while (sorted_index < symbol_count) { var symbol = weight_sorted_prefixed_symbols[sorted_index].symbol; const weight = weights[symbol]; if (weight == 0) { sorted_index += 1; continue; } while (sorted_index < symbol_count) : ({ sorted_index += 1; prefixed_symbol_count += 1; prefix += 1; }) { symbol = weight_sorted_prefixed_symbols[sorted_index].symbol; if (weights[symbol] != weight) { prefix = ((prefix - 1) >> (weights[symbol] - weight)) + 1; break; } weight_sorted_prefixed_symbols[prefixed_symbol_count].symbol = symbol; weight_sorted_prefixed_symbols[prefixed_symbol_count].prefix = prefix; weight_sorted_prefixed_symbols[prefixed_symbol_count].weight = weight; } } consumed_count.* += bytes_read; const tree = Literals.HuffmanTree{ .max_bit_count = max_number_of_bits, .symbol_count_minus_one = @intCast(u8, prefixed_symbol_count - 1), .nodes = weight_sorted_prefixed_symbols, }; log.debug("decoded huffman tree {}:", .{std.fmt.fmtSliceHexUpper(src[0..bytes_read])}); return tree; } fn lessThanByWeight( weights: [256]u4, lhs: Literals.HuffmanTree.PrefixedSymbol, rhs: Literals.HuffmanTree.PrefixedSymbol, ) bool { // NOTE: this function relies on the use of a stable sorting algorithm, // otherwise a special case of if (weights[lhs] == weights[rhs]) return lhs < rhs; // should be added return weights[lhs.symbol] < weights[rhs.symbol]; } pub fn decodeLiteralsHeader(src: []const u8, consumed_count: *usize) Literals.Header { // TODO: we probably want to enable safety for release-fast and release-small (or insert custom checks) const start = consumed_count.*; const byte0 = src[0]; const block_type = @intToEnum(Literals.BlockType, byte0 & 0b11); const size_format = @intCast(u2, (byte0 & 0b1100) >> 2); var regenerated_size: u20 = undefined; var compressed_size: ?u18 = null; switch (block_type) { .raw, .rle => { switch (size_format) { 0, 2 => { regenerated_size = byte0 >> 3; consumed_count.* += 1; }, 1 => { regenerated_size = (byte0 >> 4) + (@as(u20, src[consumed_count.* + 1]) << 4); consumed_count.* += 2; }, 3 => { regenerated_size = (byte0 >> 4) + (@as(u20, src[consumed_count.* + 1]) << 4) + (@as(u20, src[consumed_count.* + 2]) << 12); consumed_count.* += 3; }, } }, .compressed, .treeless => { const byte1 = src[1]; const byte2 = src[2]; switch (size_format) { 0, 1 => { regenerated_size = (byte0 >> 4) + ((@as(u20, byte1) & 0b00111111) << 4); compressed_size = ((byte1 & 0b11000000) >> 6) + (@as(u18, byte2) << 2); consumed_count.* += 3; }, 2 => { const byte3 = src[3]; regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00000011) << 12); compressed_size = ((byte2 & 0b11111100) >> 2) + (@as(u18, byte3) << 6); consumed_count.* += 4; }, 3 => { const byte3 = src[3]; const byte4 = src[4]; regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00111111) << 12); compressed_size = ((byte2 & 0b11000000) >> 6) + (@as(u18, byte3) << 2) + (@as(u18, byte4) << 10); consumed_count.* += 5; }, } }, } log.debug( "decoded literals section header '{}': type = {s}, size_format = {}, regen_size = {d}, compressed size = {?d}", .{ std.fmt.fmtSliceHexUpper(src[0 .. consumed_count.* - start]), @tagName(block_type), size_format, regenerated_size, compressed_size, }, ); return Literals.Header{ .block_type = block_type, .size_format = size_format, .regenerated_size = regenerated_size, .compressed_size = compressed_size, }; } fn decodeSequencesHeader(src: []const u8, consumed_count: *usize) !Sequences.Header { var sequence_count: u24 = undefined; var bytes_read: usize = 0; const byte0 = src[0]; if (byte0 == 0) { bytes_read += 1; log.debug("decoded sequences header '{}': sequence count = 0", .{std.fmt.fmtSliceHexUpper(src[0..bytes_read])}); consumed_count.* += bytes_read; return Sequences.Header{ .sequence_count = 0, .offsets = undefined, .match_lengths = undefined, .literal_lengths = undefined, }; } else if (byte0 < 128) { sequence_count = byte0; bytes_read += 1; } else if (byte0 < 255) { sequence_count = (@as(u24, (byte0 - 128)) << 8) + src[1]; bytes_read += 2; } else { sequence_count = src[1] + (@as(u24, src[2]) << 8) + 0x7F00; bytes_read += 3; } const compression_modes = src[bytes_read]; bytes_read += 1; consumed_count.* += bytes_read; const matches_mode = @intToEnum(Sequences.Header.Mode, (compression_modes & 0b00001100) >> 2); const offsets_mode = @intToEnum(Sequences.Header.Mode, (compression_modes & 0b00110000) >> 4); const literal_mode = @intToEnum(Sequences.Header.Mode, (compression_modes & 0b11000000) >> 6); log.debug("decoded sequences header '{}': (sc={d},o={s},m={s},l={s})", .{ std.fmt.fmtSliceHexUpper(src[0..bytes_read]), sequence_count, @tagName(offsets_mode), @tagName(matches_mode), @tagName(literal_mode), }); if (compression_modes & 0b11 != 0) return error.ReservedBitSet; return Sequences.Header{ .sequence_count = sequence_count, .offsets = offsets_mode, .match_lengths = matches_mode, .literal_lengths = literal_mode, }; } fn buildFseTable(values: []const u16, entries: []Table.Fse) !void { const total_probability = @intCast(u16, entries.len); const accuracy_log = std.math.log2_int(u16, total_probability); assert(total_probability <= 1 << 9); var less_than_one_count: usize = 0; for (values) |value, i| { if (value == 0) { entries[entries.len - 1 - less_than_one_count] = Table.Fse{ .symbol = @intCast(u8, i), .baseline = 0, .bits = accuracy_log, }; less_than_one_count += 1; } } var position: usize = 0; var temp_states: [1 << 9]u16 = undefined; for (values) |value, symbol| { if (value == 0 or value == 1) continue; const probability = value - 1; const state_share_dividend = try std.math.ceilPowerOfTwo(u16, probability); const share_size = @divExact(total_probability, state_share_dividend); const double_state_count = state_share_dividend - probability; const single_state_count = probability - double_state_count; const share_size_log = std.math.log2_int(u16, share_size); var i: u16 = 0; while (i < probability) : (i += 1) { temp_states[i] = @intCast(u16, position); position += (entries.len >> 1) + (entries.len >> 3) + 3; position &= entries.len - 1; while (position >= entries.len - less_than_one_count) { position += (entries.len >> 1) + (entries.len >> 3) + 3; position &= entries.len - 1; } } std.sort.sort(u16, temp_states[0..probability], {}, std.sort.asc(u16)); i = 0; while (i < probability) : (i += 1) { entries[temp_states[i]] = if (i < double_state_count) Table.Fse{ .symbol = @intCast(u8, symbol), .bits = share_size_log + 1, .baseline = single_state_count * share_size + i * 2 * share_size, } else Table.Fse{ .symbol = @intCast(u8, symbol), .bits = share_size_log, .baseline = (i - double_state_count) * share_size, }; } } } fn decodeFseTable( bit_reader: anytype, expected_symbol_count: usize, max_accuracy_log: u4, entries: []Table.Fse, ) !usize { log.debug("decoding fse table {d} {d}", .{ max_accuracy_log, expected_symbol_count }); const accuracy_log_biased = try bit_reader.readBitsNoEof(u4, 4); log.debug("accuracy_log_biased = {d}", .{accuracy_log_biased}); if (accuracy_log_biased > max_accuracy_log -| 5) return error.MalformedAccuracyLog; const accuracy_log = accuracy_log_biased + 5; var values: [256]u16 = undefined; var value_count: usize = 0; const total_probability = @as(u16, 1) << accuracy_log; log.debug("total probability = {d}", .{total_probability}); var accumulated_probability: u16 = 0; while (accumulated_probability < total_probability) { // WARNING: The RFC in poorly worded, and would suggest std.math.log2_int_ceil is correct here, // but power of two (remaining probabilities + 1) need max bits set to 1 more. const max_bits = @intCast(u4, std.math.log2_int(u16, total_probability - accumulated_probability + 1)) + 1; const small = try bit_reader.readBitsNoEof(u16, max_bits - 1); const cutoff = (@as(u16, 1) << max_bits) - 1 - (total_probability - accumulated_probability + 1); const value = if (small < cutoff) small else value: { const value_read = small + (try bit_reader.readBitsNoEof(u16, 1) << (max_bits - 1)); break :value if (value_read < @as(u16, 1) << (max_bits - 1)) value_read else value_read - cutoff; }; accumulated_probability += if (value != 0) value - 1 else 1; values[value_count] = value; value_count += 1; if (value == 1) { while (true) { const repeat_flag = try bit_reader.readBitsNoEof(u2, 2); var i: usize = 0; while (i < repeat_flag) : (i += 1) { values[value_count] = 1; value_count += 1; } if (repeat_flag < 3) break; } } } bit_reader.alignToByte(); // TODO: check there are at least 2 non-zero probabilities if (accumulated_probability != total_probability) return error.MalformedFseTable; if (value_count > expected_symbol_count) return error.MalformedFseTable; const table_size = total_probability; try buildFseTable(values[0..value_count], entries[0..table_size]); return table_size; } const ReversedByteReader = struct { remaining_bytes: usize, bytes: []const u8, const Reader = std.io.Reader(*ReversedByteReader, error{}, readFn); fn init(bytes: []const u8) ReversedByteReader { return .{ .bytes = bytes, .remaining_bytes = bytes.len, }; } fn reader(self: *ReversedByteReader) Reader { return .{ .context = self }; } fn readFn(ctx: *ReversedByteReader, buffer: []u8) !usize { if (ctx.remaining_bytes == 0) return 0; const byte_index = ctx.remaining_bytes - 1; buffer[0] = ctx.bytes[byte_index]; // buffer[0] = @bitReverse(ctx.bytes[byte_index]); ctx.remaining_bytes = byte_index; return 1; } }; const ReverseBitReader = struct { byte_reader: ReversedByteReader, bit_reader: std.io.BitReader(.Big, ReversedByteReader.Reader), fn init(self: *ReverseBitReader, bytes: []const u8) !void { self.byte_reader = ReversedByteReader.init(bytes); self.bit_reader = std.io.bitReader(.Big, self.byte_reader.reader()); while (0 == self.readBitsNoEof(u1, 1) catch return error.BitStreamHasNoStartBit) {} } fn readBitsNoEof(self: *@This(), comptime U: type, num_bits: usize) !U { return self.bit_reader.readBitsNoEof(U, num_bits); } fn readBits(self: *@This(), comptime U: type, num_bits: usize, out_bits: *usize) !U { return try self.bit_reader.readBits(U, num_bits, out_bits); } fn alignToByte(self: *@This()) void { self.bit_reader.alignToByte(); } }; fn BitReader(comptime Reader: type) type { return struct { underlying: std.io.BitReader(.Little, Reader), fn readBitsNoEof(self: *@This(), comptime U: type, num_bits: usize) !U { return self.underlying.readBitsNoEof(U, num_bits); } fn readBits(self: *@This(), comptime U: type, num_bits: usize, out_bits: *usize) !U { return self.underlying.readBits(U, num_bits, out_bits); } fn alignToByte(self: *@This()) void { self.underlying.alignToByte(); } }; } fn bitReader(reader: anytype) BitReader(@TypeOf(reader)) { return .{ .underlying = std.io.bitReader(.Little, reader) }; } test { std.testing.refAllDecls(@This()); } test buildFseTable { const literals_length_default_values = [36]u16{ 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 2, 2, 2, 2, 0, 0, 0, 0, }; const match_lengths_default_values = [53]u16{ 2, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, }; const offset_codes_default_values = [29]u16{ 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, }; var entries: [64]Table.Fse = undefined; try buildFseTable(&literals_length_default_values, &entries); try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_literal_fse_table.fse, &entries); try buildFseTable(&match_lengths_default_values, &entries); try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_match_fse_table.fse, &entries); try buildFseTable(&offset_codes_default_values, entries[0..32]); try std.testing.expectEqualSlices(Table.Fse, types.compressed_block.predefined_offset_fse_table.fse, entries[0..32]); } fn dumpFseTable(prefix: []const u8, table: []const Table.Fse) void { log.debug("{s} fse table:", .{prefix}); for (table) |entry, i| { log.debug("state = {d} symbol = {d} bl = {d}, bits = {d}", .{ i, entry.symbol, entry.baseline, entry.bits }); } } fn dumpHuffmanTree(tree: Literals.HuffmanTree) void { log.debug("Huffman tree: max bit count = {}, symbol count = {}", .{ tree.max_bit_count, tree.symbol_count_minus_one + 1 }); for (tree.nodes[0 .. tree.symbol_count_minus_one + 1]) |node| { log.debug("symbol = {[symbol]d}, prefix = {[prefix]d}, weight = {[weight]d}", node); } }