const std = @import("std"); const builtin = @import("builtin"); const elf = std.elf; const assert = std.debug.assert; const R_AMD64_RELATIVE = 8; const R_386_RELATIVE = 8; const R_ARC_RELATIVE = 56; const R_ARM_RELATIVE = 23; const R_AARCH64_RELATIVE = 1027; const R_CSKY_RELATIVE = 9; const R_HEXAGON_RELATIVE = 35; const R_LARCH_RELATIVE = 3; const R_68K_RELATIVE = 22; const R_RISCV_RELATIVE = 3; const R_390_RELATIVE = 12; const R_SPARC_RELATIVE = 22; const R_RELATIVE = switch (builtin.cpu.arch) { .x86 => R_386_RELATIVE, .x86_64 => R_AMD64_RELATIVE, .arc => R_ARC_RELATIVE, .arm, .armeb, .thumb, .thumbeb => R_ARM_RELATIVE, .aarch64, .aarch64_be => R_AARCH64_RELATIVE, .csky => R_CSKY_RELATIVE, .hexagon => R_HEXAGON_RELATIVE, .loongarch32, .loongarch64 => R_LARCH_RELATIVE, .m68k => R_68K_RELATIVE, .riscv64 => R_RISCV_RELATIVE, .s390x => R_390_RELATIVE, else => @compileError("Missing R_RELATIVE definition for this target"), }; // Obtain a pointer to the _DYNAMIC array. // We have to compute its address as a PC-relative quantity not to require a // relocation that, at this point, is not yet applied. fn getDynamicSymbol() [*]elf.Dyn { return switch (builtin.cpu.arch) { .x86 => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ call 1f \\ 1: pop %[ret] \\ lea _DYNAMIC-1b(%[ret]), %[ret] : [ret] "=r" (-> [*]elf.Dyn), ), .x86_64 => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ lea _DYNAMIC(%%rip), %[ret] : [ret] "=r" (-> [*]elf.Dyn), ), .arc => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ add %[ret], pcl, _DYNAMIC@pcl : [ret] "=r" (-> [*]elf.Dyn), ), // Work around the limited offset range of `ldr` .arm, .armeb, .thumb, .thumbeb => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ ldr %[ret], 1f \\ add %[ret], pc \\ b 2f \\ 1: .word _DYNAMIC-1b \\ 2: : [ret] "=r" (-> [*]elf.Dyn), ), // A simple `adr` is not enough as it has a limited offset range .aarch64, .aarch64_be => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ adrp %[ret], _DYNAMIC \\ add %[ret], %[ret], #:lo12:_DYNAMIC : [ret] "=r" (-> [*]elf.Dyn), ), // The CSKY ABI requires the gb register to point to the GOT. Additionally, the first // entry in the GOT is defined to hold the address of _DYNAMIC. .csky => asm volatile ( \\ mov %[ret], gb \\ ldw %[ret], %[ret] : [ret] "=r" (-> [*]elf.Dyn), ), .hexagon => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ jump 1f \\ .word _DYNAMIC - . \\ 1: \\ r1 = pc \\ r1 = add(r1, #-4) \\ %[ret] = memw(r1) \\ %[ret] = add(r1, %[ret]) : [ret] "=r" (-> [*]elf.Dyn), : : "r1" ), .loongarch32, .loongarch64 => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ la.local %[ret], _DYNAMIC : [ret] "=r" (-> [*]elf.Dyn), ), // Note that the - 8 is needed because pc in the second lea instruction points into the // middle of that instruction. (The first lea is 6 bytes, the second is 4 bytes.) .m68k => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ lea _DYNAMIC - . - 8, %[ret] \\ lea (%[ret], %%pc), %[ret] : [ret] "=r" (-> [*]elf.Dyn), ), .riscv64 => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ lla %[ret], _DYNAMIC : [ret] "=r" (-> [*]elf.Dyn), ), .s390x => asm volatile ( \\ .weak _DYNAMIC \\ .hidden _DYNAMIC \\ larl %[ret], 1f \\ agf %[ret], 0(%[ret]) \\ b 2f \\ 1: .long _DYNAMIC - . \\ 2: : [ret] "=r" (-> [*]elf.Dyn), ), else => { @compileError("PIE startup is not yet supported for this target!"); }, }; } pub fn relocate(phdrs: []elf.Phdr) void { @setRuntimeSafety(false); @disableInstrumentation(); const dynv = getDynamicSymbol(); // Recover the delta applied by the loader by comparing the effective and // the theoretical load addresses for the `_DYNAMIC` symbol. const base_addr = base: { for (phdrs) |*phdr| { if (phdr.p_type != elf.PT_DYNAMIC) continue; break :base @intFromPtr(dynv) - phdr.p_vaddr; } // This is not supposed to happen for well-formed binaries. @trap(); }; var rel_addr: usize = 0; var rela_addr: usize = 0; var rel_size: usize = 0; var rela_size: usize = 0; { var i: usize = 0; while (dynv[i].d_tag != elf.DT_NULL) : (i += 1) { switch (dynv[i].d_tag) { elf.DT_REL => rel_addr = base_addr + dynv[i].d_val, elf.DT_RELA => rela_addr = base_addr + dynv[i].d_val, elf.DT_RELSZ => rel_size = dynv[i].d_val, elf.DT_RELASZ => rela_size = dynv[i].d_val, else => {}, } } } // Apply the relocations. if (rel_addr != 0) { const rel = std.mem.bytesAsSlice(elf.Rel, @as([*]u8, @ptrFromInt(rel_addr))[0..rel_size]); for (rel) |r| { if (r.r_type() != R_RELATIVE) continue; @as(*usize, @ptrFromInt(base_addr + r.r_offset)).* += base_addr; } } if (rela_addr != 0) { const rela = std.mem.bytesAsSlice(elf.Rela, @as([*]u8, @ptrFromInt(rela_addr))[0..rela_size]); for (rela) |r| { if (r.r_type() != R_RELATIVE) continue; @as(*usize, @ptrFromInt(base_addr + r.r_offset)).* = base_addr + @as(usize, @bitCast(r.r_addend)); } } }