const std = @import("std"); const Allocator = std.mem.Allocator; const ArrayList = std.ArrayList; const assert = std.debug.assert; const testing = std.testing; const leb = std.leb; const mem = std.mem; const wasm = std.wasm; const log = std.log.scoped(.codegen); const codegen = @import("../../codegen.zig"); const Module = @import("../../Module.zig"); const Decl = Module.Decl; const Type = @import("../../type.zig").Type; const Value = @import("../../value.zig").Value; const Compilation = @import("../../Compilation.zig"); const LazySrcLoc = Module.LazySrcLoc; const link = @import("../../link.zig"); const TypedValue = @import("../../TypedValue.zig"); const Air = @import("../../Air.zig"); const Liveness = @import("../../Liveness.zig"); const Mir = @import("Mir.zig"); const Emit = @import("Emit.zig"); const abi = @import("abi.zig"); /// Wasm Value, created when generating an instruction const WValue = union(enum) { /// May be referenced but is unused none: void, /// Index of the local variable local: u32, /// An immediate 32bit value imm32: u32, /// An immediate 64bit value imm64: u64, /// A constant 32bit float value float32: f32, /// A constant 64bit float value float64: f64, /// A value that represents a pointer to the data section /// Note: The value contains the symbol index, rather than the actual address /// as we use this to perform the relocation. memory: u32, /// A value that represents a parent pointer and an offset /// from that pointer. i.e. when slicing with constant values. memory_offset: struct { /// The symbol of the parent pointer pointer: u32, /// Offset will be set as addend when relocating offset: u32, }, /// Represents a function pointer /// In wasm function pointers are indexes into a function table, /// rather than an address in the data section. function_index: u32, /// Offset from the bottom of the stack, with the offset /// pointing to where the value lives. stack_offset: u32, /// Returns the offset from the bottom of the stack. This is useful when /// we use the load or store instruction to ensure we retrieve the value /// from the correct position, rather than the value that lives at the /// bottom of the stack. For instances where `WValue` is not `stack_value` /// this will return 0, which allows us to simply call this function for all /// loads and stores without requiring checks everywhere. fn offset(self: WValue) u32 { switch (self) { .stack_offset => |stack_offset| return stack_offset, else => return 0, } } }; /// Wasm ops, but without input/output/signedness information /// Used for `buildOpcode` const Op = enum { @"unreachable", nop, block, loop, @"if", @"else", end, br, br_if, br_table, @"return", call, call_indirect, drop, select, local_get, local_set, local_tee, global_get, global_set, load, store, memory_size, memory_grow, @"const", eqz, eq, ne, lt, gt, le, ge, clz, ctz, popcnt, add, sub, mul, div, rem, @"and", @"or", xor, shl, shr, rotl, rotr, abs, neg, ceil, floor, trunc, nearest, sqrt, min, max, copysign, wrap, convert, demote, promote, reinterpret, extend, }; /// Contains the settings needed to create an `Opcode` using `buildOpcode`. /// /// The fields correspond to the opcode name. Here is an example /// i32_trunc_f32_s /// ^ ^ ^ ^ /// | | | | /// valtype1 | | | /// = .i32 | | | /// | | | /// op | | /// = .trunc | | /// | | /// valtype2 | /// = .f32 | /// | /// width | /// = null | /// | /// signed /// = true /// /// There can be missing fields, here are some more examples: /// i64_load8_u /// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false } /// i32_mul /// --> .{ .valtype1 = .i32, .op = .trunc } /// nop /// --> .{ .op = .nop } const OpcodeBuildArguments = struct { /// First valtype in the opcode (usually represents the type of the output) valtype1: ?wasm.Valtype = null, /// The operation (e.g. call, unreachable, div, min, sqrt, etc.) op: Op, /// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s) width: ?u8 = null, /// Second valtype in the opcode name (usually represents the type of the input) valtype2: ?wasm.Valtype = null, /// Signedness of the op signedness: ?std.builtin.Signedness = null, }; /// Helper function that builds an Opcode given the arguments needed fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode { switch (args.op) { .@"unreachable" => return .@"unreachable", .nop => return .nop, .block => return .block, .loop => return .loop, .@"if" => return .@"if", .@"else" => return .@"else", .end => return .end, .br => return .br, .br_if => return .br_if, .br_table => return .br_table, .@"return" => return .@"return", .call => return .call, .call_indirect => return .call_indirect, .drop => return .drop, .select => return .select, .local_get => return .local_get, .local_set => return .local_set, .local_tee => return .local_tee, .global_get => return .global_get, .global_set => return .global_set, .load => if (args.width) |width| switch (width) { 8 => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u, .i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u, .f32, .f64 => unreachable, }, 16 => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u, .i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u, .f32 => return .f32_load, .f64 => unreachable, }, 32 => switch (args.valtype1.?) { .i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u, .i32 => return .i32_load, .f32 => return .f32_load, .f64 => unreachable, }, 64 => switch (args.valtype1.?) { .i64 => return .i64_load, .f64 => return .f64_load, else => unreachable, }, else => unreachable, } else switch (args.valtype1.?) { .i32 => return .i32_load, .i64 => return .i64_load, .f32 => return .f32_load, .f64 => return .f64_load, }, .store => if (args.width) |width| { switch (width) { 8 => switch (args.valtype1.?) { .i32 => return .i32_store8, .i64 => return .i64_store8, .f32, .f64 => unreachable, }, 16 => switch (args.valtype1.?) { .i32 => return .i32_store16, .i64 => return .i64_store16, .f32 => return .f32_store, .f64 => unreachable, }, 32 => switch (args.valtype1.?) { .i64 => return .i64_store32, .i32 => return .i32_store, .f32 => return .f32_store, .f64 => unreachable, }, 64 => switch (args.valtype1.?) { .i64 => return .i64_store, .f64 => return .f64_store, else => unreachable, }, else => unreachable, } } else { switch (args.valtype1.?) { .i32 => return .i32_store, .i64 => return .i64_store, .f32 => return .f32_store, .f64 => return .f64_store, } }, .memory_size => return .memory_size, .memory_grow => return .memory_grow, .@"const" => switch (args.valtype1.?) { .i32 => return .i32_const, .i64 => return .i64_const, .f32 => return .f32_const, .f64 => return .f64_const, }, .eqz => switch (args.valtype1.?) { .i32 => return .i32_eqz, .i64 => return .i64_eqz, .f32, .f64 => unreachable, }, .eq => switch (args.valtype1.?) { .i32 => return .i32_eq, .i64 => return .i64_eq, .f32 => return .f32_eq, .f64 => return .f64_eq, }, .ne => switch (args.valtype1.?) { .i32 => return .i32_ne, .i64 => return .i64_ne, .f32 => return .f32_ne, .f64 => return .f64_ne, }, .lt => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u, .i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u, .f32 => return .f32_lt, .f64 => return .f64_lt, }, .gt => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u, .i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u, .f32 => return .f32_gt, .f64 => return .f64_gt, }, .le => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u, .i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u, .f32 => return .f32_le, .f64 => return .f64_le, }, .ge => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u, .i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u, .f32 => return .f32_ge, .f64 => return .f64_ge, }, .clz => switch (args.valtype1.?) { .i32 => return .i32_clz, .i64 => return .i64_clz, .f32, .f64 => unreachable, }, .ctz => switch (args.valtype1.?) { .i32 => return .i32_ctz, .i64 => return .i64_ctz, .f32, .f64 => unreachable, }, .popcnt => switch (args.valtype1.?) { .i32 => return .i32_popcnt, .i64 => return .i64_popcnt, .f32, .f64 => unreachable, }, .add => switch (args.valtype1.?) { .i32 => return .i32_add, .i64 => return .i64_add, .f32 => return .f32_add, .f64 => return .f64_add, }, .sub => switch (args.valtype1.?) { .i32 => return .i32_sub, .i64 => return .i64_sub, .f32 => return .f32_sub, .f64 => return .f64_sub, }, .mul => switch (args.valtype1.?) { .i32 => return .i32_mul, .i64 => return .i64_mul, .f32 => return .f32_mul, .f64 => return .f64_mul, }, .div => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u, .i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u, .f32 => return .f32_div, .f64 => return .f64_div, }, .rem => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u, .i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u, .f32, .f64 => unreachable, }, .@"and" => switch (args.valtype1.?) { .i32 => return .i32_and, .i64 => return .i64_and, .f32, .f64 => unreachable, }, .@"or" => switch (args.valtype1.?) { .i32 => return .i32_or, .i64 => return .i64_or, .f32, .f64 => unreachable, }, .xor => switch (args.valtype1.?) { .i32 => return .i32_xor, .i64 => return .i64_xor, .f32, .f64 => unreachable, }, .shl => switch (args.valtype1.?) { .i32 => return .i32_shl, .i64 => return .i64_shl, .f32, .f64 => unreachable, }, .shr => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u, .i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u, .f32, .f64 => unreachable, }, .rotl => switch (args.valtype1.?) { .i32 => return .i32_rotl, .i64 => return .i64_rotl, .f32, .f64 => unreachable, }, .rotr => switch (args.valtype1.?) { .i32 => return .i32_rotr, .i64 => return .i64_rotr, .f32, .f64 => unreachable, }, .abs => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_abs, .f64 => return .f64_abs, }, .neg => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_neg, .f64 => return .f64_neg, }, .ceil => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_ceil, .f64 => return .f64_ceil, }, .floor => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_floor, .f64 => return .f64_floor, }, .trunc => switch (args.valtype1.?) { .i32 => switch (args.valtype2.?) { .i32 => unreachable, .i64 => unreachable, .f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u, .f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u, }, .i64 => unreachable, .f32 => return .f32_trunc, .f64 => return .f64_trunc, }, .nearest => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_nearest, .f64 => return .f64_nearest, }, .sqrt => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_sqrt, .f64 => return .f64_sqrt, }, .min => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_min, .f64 => return .f64_min, }, .max => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_max, .f64 => return .f64_max, }, .copysign => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_copysign, .f64 => return .f64_copysign, }, .wrap => switch (args.valtype1.?) { .i32 => switch (args.valtype2.?) { .i32 => unreachable, .i64 => return .i32_wrap_i64, .f32, .f64 => unreachable, }, .i64, .f32, .f64 => unreachable, }, .convert => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => switch (args.valtype2.?) { .i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u, .i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u, .f32, .f64 => unreachable, }, .f64 => switch (args.valtype2.?) { .i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u, .i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u, .f32, .f64 => unreachable, }, }, .demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable, .promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable, .reinterpret => switch (args.valtype1.?) { .i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable, .i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable, .f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable, .f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable, }, .extend => switch (args.valtype1.?) { .i32 => switch (args.width.?) { 8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable, 16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable, else => unreachable, }, .i64 => switch (args.width.?) { 8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable, 16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable, 32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable, else => unreachable, }, .f32, .f64 => unreachable, }, } } test "Wasm - buildOpcode" { // Make sure buildOpcode is referenced, and test some examples const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 }); const end = buildOpcode(.{ .op = .end }); const local_get = buildOpcode(.{ .op = .local_get }); const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed }); const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 }); try testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const); try testing.expectEqual(@as(wasm.Opcode, .end), end); try testing.expectEqual(@as(wasm.Opcode, .local_get), local_get); try testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s); try testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64); } pub const Result = union(enum) { /// The codegen bytes have been appended to `Context.code` appended: void, /// The data is managed externally and are part of the `Result` externally_managed: []const u8, }; /// Hashmap to store generated `WValue` for each `Air.Inst.Ref` pub const ValueTable = std.AutoHashMapUnmanaged(Air.Inst.Ref, WValue); const Self = @This(); /// Reference to the function declaration the code /// section belongs to decl: *Decl, decl_index: Decl.Index, /// Current block depth. Used to calculate the relative difference between a break /// and block block_depth: u32 = 0, air: Air, liveness: Liveness, gpa: mem.Allocator, debug_output: codegen.DebugInfoOutput, mod_fn: *const Module.Fn, /// Table to save `WValue`'s generated by an `Air.Inst` values: ValueTable, /// Mapping from Air.Inst.Index to block ids blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct { label: u32, value: WValue, }) = .{}, /// `bytes` contains the wasm bytecode belonging to the 'code' section. code: *ArrayList(u8), /// The index the next local generated will have /// NOTE: arguments share the index with locals therefore the first variable /// will have the index that comes after the last argument's index local_index: u32 = 0, /// The index of the current argument. /// Used to track which argument is being referenced in `airArg`. arg_index: u32 = 0, /// If codegen fails, an error messages will be allocated and saved in `err_msg` err_msg: *Module.ErrorMsg, /// List of all locals' types generated throughout this declaration /// used to emit locals count at start of 'code' section. locals: std.ArrayListUnmanaged(u8), /// The Target we're emitting (used to call intInfo) target: std.Target, /// Represents the wasm binary file that is being linked. bin_file: *link.File.Wasm, /// List of MIR Instructions mir_instructions: std.MultiArrayList(Mir.Inst) = .{}, /// Contains extra data for MIR mir_extra: std.ArrayListUnmanaged(u32) = .{}, /// When a function is executing, we store the the current stack pointer's value within this local. /// This value is then used to restore the stack pointer to the original value at the return of the function. initial_stack_value: WValue = .none, /// The current stack pointer substracted with the stack size. From this value, we will calculate /// all offsets of the stack values. bottom_stack_value: WValue = .none, /// Arguments of this function declaration /// This will be set after `resolveCallingConventionValues` args: []WValue = &.{}, /// This will only be `.none` if the function returns void, or returns an immediate. /// When it returns a pointer to the stack, the `.local` tag will be active and must be populated /// before this function returns its execution to the caller. return_value: WValue = .none, /// The size of the stack this function occupies. In the function prologue /// we will move the stack pointer by this number, forward aligned with the `stack_alignment`. stack_size: u32 = 0, /// The stack alignment, which is 16 bytes by default. This is specified by the /// tool-conventions: https://github.com/WebAssembly/tool-conventions/blob/main/BasicCABI.md /// and also what the llvm backend will emit. /// However, local variables or the usage of `@setAlignStack` can overwrite this default. stack_alignment: u32 = 16, const InnerError = error{ OutOfMemory, /// An error occured when trying to lower AIR to MIR. CodegenFail, /// Can occur when dereferencing a pointer that points to a `Decl` of which the analysis has failed AnalysisFail, /// Compiler implementation could not handle a large integer. Overflow, }; pub fn deinit(self: *Self) void { self.values.deinit(self.gpa); self.blocks.deinit(self.gpa); self.locals.deinit(self.gpa); self.mir_instructions.deinit(self.gpa); self.mir_extra.deinit(self.gpa); self.* = undefined; } /// Sets `err_msg` on `CodeGen` and returns `error.CodegenFail` which is caught in link/Wasm.zig fn fail(self: *Self, comptime fmt: []const u8, args: anytype) InnerError { const src: LazySrcLoc = .{ .node_offset = 0 }; const src_loc = src.toSrcLoc(self.decl); self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, fmt, args); return error.CodegenFail; } /// Resolves the `WValue` for the given instruction `inst` /// When the given instruction has a `Value`, it returns a constant instead fn resolveInst(self: *Self, ref: Air.Inst.Ref) InnerError!WValue { const gop = try self.values.getOrPut(self.gpa, ref); if (gop.found_existing) return gop.value_ptr.*; // when we did not find an existing instruction, it // means we must generate it from a constant. const val = self.air.value(ref).?; const ty = self.air.typeOf(ref); if (!ty.hasRuntimeBitsIgnoreComptime() and !ty.isInt()) { gop.value_ptr.* = WValue{ .none = {} }; return gop.value_ptr.*; } // When we need to pass the value by reference (such as a struct), we will // leverage `generateSymbol` to lower the constant to bytes and emit it // to the 'rodata' section. We then return the index into the section as `WValue`. // // In the other cases, we will simply lower the constant to a value that fits // into a single local (such as a pointer, integer, bool, etc). const result = if (isByRef(ty, self.target)) blk: { const sym_index = try self.bin_file.lowerUnnamedConst(.{ .ty = ty, .val = val }, self.decl_index); break :blk WValue{ .memory = sym_index }; } else try self.lowerConstant(val, ty); gop.value_ptr.* = result; return result; } /// Appends a MIR instruction and returns its index within the list of instructions fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!void { try self.mir_instructions.append(self.gpa, inst); } fn addTag(self: *Self, tag: Mir.Inst.Tag) error{OutOfMemory}!void { try self.addInst(.{ .tag = tag, .data = .{ .tag = {} } }); } fn addExtended(self: *Self, opcode: wasm.PrefixedOpcode) error{OutOfMemory}!void { try self.addInst(.{ .tag = .extended, .secondary = @enumToInt(opcode), .data = .{ .tag = {} } }); } fn addLabel(self: *Self, tag: Mir.Inst.Tag, label: u32) error{OutOfMemory}!void { try self.addInst(.{ .tag = tag, .data = .{ .label = label } }); } fn addImm32(self: *Self, imm: i32) error{OutOfMemory}!void { try self.addInst(.{ .tag = .i32_const, .data = .{ .imm32 = imm } }); } /// Accepts an unsigned 64bit integer rather than a signed integer to /// prevent us from having to bitcast multiple times as most values /// within codegen are represented as unsigned rather than signed. fn addImm64(self: *Self, imm: u64) error{OutOfMemory}!void { const extra_index = try self.addExtra(Mir.Imm64.fromU64(imm)); try self.addInst(.{ .tag = .i64_const, .data = .{ .payload = extra_index } }); } fn addFloat64(self: *Self, float: f64) error{OutOfMemory}!void { const extra_index = try self.addExtra(Mir.Float64.fromFloat64(float)); try self.addInst(.{ .tag = .f64_const, .data = .{ .payload = extra_index } }); } /// Inserts an instruction to load/store from/to wasm's linear memory dependent on the given `tag`. fn addMemArg(self: *Self, tag: Mir.Inst.Tag, mem_arg: Mir.MemArg) error{OutOfMemory}!void { const extra_index = try self.addExtra(mem_arg); try self.addInst(.{ .tag = tag, .data = .{ .payload = extra_index } }); } /// Appends entries to `mir_extra` based on the type of `extra`. /// Returns the index into `mir_extra` fn addExtra(self: *Self, extra: anytype) error{OutOfMemory}!u32 { const fields = std.meta.fields(@TypeOf(extra)); try self.mir_extra.ensureUnusedCapacity(self.gpa, fields.len); return self.addExtraAssumeCapacity(extra); } /// Appends entries to `mir_extra` based on the type of `extra`. /// Returns the index into `mir_extra` fn addExtraAssumeCapacity(self: *Self, extra: anytype) error{OutOfMemory}!u32 { const fields = std.meta.fields(@TypeOf(extra)); const result = @intCast(u32, self.mir_extra.items.len); inline for (fields) |field| { self.mir_extra.appendAssumeCapacity(switch (field.field_type) { u32 => @field(extra, field.name), else => |field_type| @compileError("Unsupported field type " ++ @typeName(field_type)), }); } return result; } /// Using a given `Type`, returns the corresponding type fn typeToValtype(ty: Type, target: std.Target) wasm.Valtype { return switch (ty.zigTypeTag()) { .Float => blk: { const bits = ty.floatBits(target); if (bits == 16 or bits == 32) break :blk wasm.Valtype.f32; if (bits == 64) break :blk wasm.Valtype.f64; if (bits == 128) break :blk wasm.Valtype.i64; return wasm.Valtype.i32; // represented as pointer to stack }, .Int, .Enum => blk: { const info = ty.intInfo(target); if (info.bits <= 32) break :blk wasm.Valtype.i32; if (info.bits > 32 and info.bits <= 128) break :blk wasm.Valtype.i64; break :blk wasm.Valtype.i32; // represented as pointer to stack }, else => wasm.Valtype.i32, // all represented as reference/immediate }; } /// Using a given `Type`, returns the byte representation of its wasm value type fn genValtype(ty: Type, target: std.Target) u8 { return wasm.valtype(typeToValtype(ty, target)); } /// Using a given `Type`, returns the corresponding wasm value type /// Differently from `genValtype` this also allows `void` to create a block /// with no return type fn genBlockType(ty: Type, target: std.Target) u8 { return switch (ty.tag()) { .void, .noreturn => wasm.block_empty, else => genValtype(ty, target), }; } /// Writes the bytecode depending on the given `WValue` in `val` fn emitWValue(self: *Self, value: WValue) InnerError!void { switch (value) { .none => {}, // no-op .local => |idx| try self.addLabel(.local_get, idx), .imm32 => |val| try self.addImm32(@bitCast(i32, val)), .imm64 => |val| try self.addImm64(val), .float32 => |val| try self.addInst(.{ .tag = .f32_const, .data = .{ .float32 = val } }), .float64 => |val| try self.addFloat64(val), .memory => |ptr| { const extra_index = try self.addExtra(Mir.Memory{ .pointer = ptr, .offset = 0 }); try self.addInst(.{ .tag = .memory_address, .data = .{ .payload = extra_index } }); }, .memory_offset => |mem_off| { const extra_index = try self.addExtra(Mir.Memory{ .pointer = mem_off.pointer, .offset = mem_off.offset }); try self.addInst(.{ .tag = .memory_address, .data = .{ .payload = extra_index } }); }, .function_index => |index| try self.addLabel(.function_index, index), // write function index and generate relocation .stack_offset => try self.addLabel(.local_get, self.bottom_stack_value.local), // caller must ensure to address the offset } } /// Creates one locals for a given `Type`. /// Returns a corresponding `Wvalue` with `local` as active tag fn allocLocal(self: *Self, ty: Type) InnerError!WValue { const initial_index = self.local_index; const valtype = genValtype(ty, self.target); try self.locals.append(self.gpa, valtype); self.local_index += 1; return WValue{ .local = initial_index }; } /// Generates a `wasm.Type` from a given function type. /// Memory is owned by the caller. fn genFunctype(gpa: Allocator, fn_info: Type.Payload.Function.Data, target: std.Target) !wasm.Type { var params = std.ArrayList(wasm.Valtype).init(gpa); defer params.deinit(); var returns = std.ArrayList(wasm.Valtype).init(gpa); defer returns.deinit(); if (firstParamSRet(fn_info, target)) { try params.append(typeToValtype(fn_info.return_type, target)); } else if (fn_info.return_type.hasRuntimeBitsIgnoreComptime()) { if (fn_info.cc == .C) { const res_classes = abi.classifyType(fn_info.return_type, target); assert(res_classes[0] == .direct and res_classes[1] == .none); const scalar_type = abi.scalarType(fn_info.return_type, target); try returns.append(typeToValtype(scalar_type, target)); } else { try returns.append(typeToValtype(fn_info.return_type, target)); } } // param types if (fn_info.param_types.len != 0) { for (fn_info.param_types) |param_type| { if (!param_type.hasRuntimeBitsIgnoreComptime()) continue; switch (fn_info.cc) { .C => { const param_classes = abi.classifyType(param_type, target); for (param_classes) |class| { if (class == .none) continue; if (class == .direct) { const scalar_type = abi.scalarType(param_type, target); try params.append(typeToValtype(scalar_type, target)); } else { try params.append(typeToValtype(param_type, target)); } } }, else => try params.append(typeToValtype(param_type, target)), } } } return wasm.Type{ .params = params.toOwnedSlice(), .returns = returns.toOwnedSlice(), }; } pub fn generate( bin_file: *link.File, src_loc: Module.SrcLoc, func: *Module.Fn, air: Air, liveness: Liveness, code: *std.ArrayList(u8), debug_output: codegen.DebugInfoOutput, ) codegen.GenerateSymbolError!codegen.FnResult { _ = debug_output; // TODO _ = src_loc; var code_gen: Self = .{ .gpa = bin_file.allocator, .air = air, .liveness = liveness, .values = .{}, .code = code, .decl_index = func.owner_decl, .decl = bin_file.options.module.?.declPtr(func.owner_decl), .err_msg = undefined, .locals = .{}, .target = bin_file.options.target, .bin_file = bin_file.cast(link.File.Wasm).?, .debug_output = debug_output, .mod_fn = func, }; defer code_gen.deinit(); genFunc(&code_gen) catch |err| switch (err) { error.CodegenFail => return codegen.FnResult{ .fail = code_gen.err_msg }, else => |e| return e, }; return codegen.FnResult{ .appended = {} }; } fn genFunc(self: *Self) InnerError!void { var func_type = try genFunctype(self.gpa, self.decl.ty.fnInfo(), self.target); defer func_type.deinit(self.gpa); self.decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type); var cc_result = try self.resolveCallingConventionValues(self.decl.ty); defer cc_result.deinit(self.gpa); self.args = cc_result.args; self.return_value = cc_result.return_value; try self.addTag(.dbg_prologue_end); // Generate MIR for function body try self.genBody(self.air.getMainBody()); // In case we have a return value, but the last instruction is a noreturn (such as a while loop) // we emit an unreachable instruction to tell the stack validator that part will never be reached. if (func_type.returns.len != 0 and self.air.instructions.len > 0) { const inst = @intCast(u32, self.air.instructions.len - 1); const last_inst_ty = self.air.typeOfIndex(inst); if (!last_inst_ty.hasRuntimeBitsIgnoreComptime() or last_inst_ty.isNoReturn()) { try self.addTag(.@"unreachable"); } } // End of function body try self.addTag(.end); try self.addTag(.dbg_epilogue_begin); // check if we have to initialize and allocate anything into the stack frame. // If so, create enough stack space and insert the instructions at the front of the list. if (self.stack_size > 0) { var prologue = std.ArrayList(Mir.Inst).init(self.gpa); defer prologue.deinit(); // load stack pointer try prologue.append(.{ .tag = .global_get, .data = .{ .label = 0 } }); // store stack pointer so we can restore it when we return from the function try prologue.append(.{ .tag = .local_tee, .data = .{ .label = self.initial_stack_value.local } }); // get the total stack size const aligned_stack = std.mem.alignForwardGeneric(u32, self.stack_size, self.stack_alignment); try prologue.append(.{ .tag = .i32_const, .data = .{ .imm32 = @intCast(i32, aligned_stack) } }); // substract it from the current stack pointer try prologue.append(.{ .tag = .i32_sub, .data = .{ .tag = {} } }); // Get negative stack aligment try prologue.append(.{ .tag = .i32_const, .data = .{ .imm32 = @intCast(i32, self.stack_alignment) * -1 } }); // Bitwise-and the value to get the new stack pointer to ensure the pointers are aligned with the abi alignment try prologue.append(.{ .tag = .i32_and, .data = .{ .tag = {} } }); // store the current stack pointer as the bottom, which will be used to calculate all stack pointer offsets try prologue.append(.{ .tag = .local_tee, .data = .{ .label = self.bottom_stack_value.local } }); // Store the current stack pointer value into the global stack pointer so other function calls will // start from this value instead and not overwrite the current stack. try prologue.append(.{ .tag = .global_set, .data = .{ .label = 0 } }); // reserve space and insert all prologue instructions at the front of the instruction list // We insert them in reserve order as there is no insertSlice in multiArrayList. try self.mir_instructions.ensureUnusedCapacity(self.gpa, prologue.items.len); for (prologue.items) |_, index| { const inst = prologue.items[prologue.items.len - 1 - index]; self.mir_instructions.insertAssumeCapacity(0, inst); } } var mir: Mir = .{ .instructions = self.mir_instructions.toOwnedSlice(), .extra = self.mir_extra.toOwnedSlice(self.gpa), }; defer mir.deinit(self.gpa); var emit: Emit = .{ .mir = mir, .bin_file = &self.bin_file.base, .code = self.code, .locals = self.locals.items, .decl = self.decl, .dbg_output = self.debug_output, .prev_di_line = 0, .prev_di_column = 0, .prev_di_offset = 0, }; emit.emitMir() catch |err| switch (err) { error.EmitFail => { self.err_msg = emit.error_msg.?; return error.CodegenFail; }, else => |e| return e, }; } const CallWValues = struct { args: []WValue, return_value: WValue, fn deinit(self: *CallWValues, gpa: Allocator) void { gpa.free(self.args); self.* = undefined; } }; fn resolveCallingConventionValues(self: *Self, fn_ty: Type) InnerError!CallWValues { const cc = fn_ty.fnCallingConvention(); const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen()); defer self.gpa.free(param_types); fn_ty.fnParamTypes(param_types); var result: CallWValues = .{ .args = &.{}, .return_value = .none, }; if (cc == .Naked) return result; var args = std.ArrayList(WValue).init(self.gpa); defer args.deinit(); // Check if we store the result as a pointer to the stack rather than // by value if (firstParamSRet(fn_ty.fnInfo(), self.target)) { // the sret arg will be passed as first argument, therefore we // set the `return_value` before allocating locals for regular args. result.return_value = .{ .local = self.local_index }; self.local_index += 1; } switch (cc) { .Unspecified => { for (param_types) |ty| { if (!ty.hasRuntimeBitsIgnoreComptime()) { continue; } try args.append(.{ .local = self.local_index }); self.local_index += 1; } }, .C => { for (param_types) |ty| { const ty_classes = abi.classifyType(ty, self.target); for (ty_classes) |class| { if (class == .none) continue; try args.append(.{ .local = self.local_index }); self.local_index += 1; } } }, else => return self.fail("calling convention '{s}' not supported for Wasm", .{@tagName(cc)}), } result.args = args.toOwnedSlice(); return result; } fn firstParamSRet(fn_info: Type.Payload.Function.Data, target: std.Target) bool { switch (fn_info.cc) { .Unspecified, .Inline => return isByRef(fn_info.return_type, target), .C => { const ty_classes = abi.classifyType(fn_info.return_type, target); if (ty_classes[0] == .indirect) return true; if (ty_classes[0] == .direct and ty_classes[1] == .direct) return true; return false; }, else => return false, } } /// For a given `Type`, add debug information to .debug_info at the current position. /// The actual bytes will be written to the position after relocation. fn addDbgInfoTypeReloc(self: *Self, ty: Type) !void { switch (self.debug_output) { .dwarf => |dwarf| { assert(ty.hasRuntimeBitsIgnoreComptime()); const dbg_info = &dwarf.dbg_info; const index = dbg_info.items.len; try dbg_info.resize(index + 4); const atom = &self.decl.link.wasm.dbg_info_atom; try dwarf.addTypeReloc(atom, ty, @intCast(u32, index), null); }, .plan9 => unreachable, .none => {}, } } /// Lowers a Zig type and its value based on a given calling convention to ensure /// it matches the ABI. fn lowerArg(self: *Self, cc: std.builtin.CallingConvention, ty: Type, value: WValue) !void { if (cc != .C) { return self.lowerToStack(value); } const ty_classes = abi.classifyType(ty, self.target); assert(ty_classes[0] != .none); switch (ty.zigTypeTag()) { .Struct, .Union => { if (ty_classes[0] == .indirect) { return self.lowerToStack(value); } assert(ty_classes[0] == .direct); const scalar_type = abi.scalarType(ty, self.target); const abi_size = scalar_type.abiSize(self.target); const opcode = buildOpcode(.{ .op = .load, .width = @intCast(u8, abi_size), .signedness = if (scalar_type.isSignedInt()) .signed else .unsigned, .valtype1 = typeToValtype(scalar_type, self.target), }); try self.emitWValue(value); try self.addMemArg(Mir.Inst.Tag.fromOpcode(opcode), .{ .offset = value.offset(), .alignment = scalar_type.abiAlignment(self.target), }); }, .Int, .Float => { if (ty_classes[1] == .none) { return self.lowerToStack(value); } assert(ty_classes[0] == .direct and ty_classes[1] == .direct); assert(ty.abiSize(self.target) == 16); // in this case we have an integer or float that must be lowered as 2 i64's. try self.emitWValue(value); try self.addMemArg(.i64_load, .{ .offset = value.offset(), .alignment = 16 }); try self.emitWValue(value); try self.addMemArg(.i64_load, .{ .offset = value.offset() + 8, .alignment = 16 }); }, else => return self.lowerToStack(value), } } /// Lowers a `WValue` to the stack. This means when the `value` results in /// `.stack_offset` we calculate the pointer of this offset and use that. /// The value is left on the stack, and not stored in any temporary. fn lowerToStack(self: *Self, value: WValue) !void { switch (value) { .stack_offset => |offset| { try self.emitWValue(value); if (offset > 0) { switch (self.arch()) { .wasm32 => { try self.addImm32(@bitCast(i32, offset)); try self.addTag(.i32_add); }, .wasm64 => { try self.addImm64(offset); try self.addTag(.i64_add); }, else => unreachable, } } }, else => try self.emitWValue(value), } } /// Creates a local for the initial stack value /// Asserts `initial_stack_value` is `.none` fn initializeStack(self: *Self) !void { assert(self.initial_stack_value == .none); // Reserve a local to store the current stack pointer // We can later use this local to set the stack pointer back to the value // we have stored here. self.initial_stack_value = try self.allocLocal(Type.usize); // Also reserve a local to store the bottom stack value self.bottom_stack_value = try self.allocLocal(Type.usize); } /// Reads the stack pointer from `Context.initial_stack_value` and writes it /// to the global stack pointer variable fn restoreStackPointer(self: *Self) !void { // only restore the pointer if it was initialized if (self.initial_stack_value == .none) return; // Get the original stack pointer's value try self.emitWValue(self.initial_stack_value); // save its value in the global stack pointer try self.addLabel(.global_set, 0); } /// From a given type, will create space on the virtual stack to store the value of such type. /// This returns a `WValue` with its active tag set to `local`, containing the index to the local /// that points to the position on the virtual stack. This function should be used instead of /// moveStack unless a local was already created to store the pointer. /// /// Asserts Type has codegenbits fn allocStack(self: *Self, ty: Type) !WValue { assert(ty.hasRuntimeBitsIgnoreComptime()); if (self.initial_stack_value == .none) { try self.initializeStack(); } const abi_size = std.math.cast(u32, ty.abiSize(self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Type {} with ABI size of {d} exceeds stack frame size", .{ ty.fmt(module), ty.abiSize(self.target), }); }; const abi_align = ty.abiAlignment(self.target); if (abi_align > self.stack_alignment) { self.stack_alignment = abi_align; } const offset = std.mem.alignForwardGeneric(u32, self.stack_size, abi_align); defer self.stack_size = offset + abi_size; return WValue{ .stack_offset = offset }; } /// From a given AIR instruction generates a pointer to the stack where /// the value of its type will live. /// This is different from allocStack where this will use the pointer's alignment /// if it is set, to ensure the stack alignment will be set correctly. fn allocStackPtr(self: *Self, inst: Air.Inst.Index) !WValue { const ptr_ty = self.air.typeOfIndex(inst); const pointee_ty = ptr_ty.childType(); if (self.initial_stack_value == .none) { try self.initializeStack(); } if (!pointee_ty.hasRuntimeBitsIgnoreComptime()) { return self.allocStack(Type.usize); // create a value containing just the stack pointer. } const abi_alignment = ptr_ty.ptrAlignment(self.target); const abi_size = std.math.cast(u32, pointee_ty.abiSize(self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Type {} with ABI size of {d} exceeds stack frame size", .{ pointee_ty.fmt(module), pointee_ty.abiSize(self.target), }); }; if (abi_alignment > self.stack_alignment) { self.stack_alignment = abi_alignment; } const offset = std.mem.alignForwardGeneric(u32, self.stack_size, abi_alignment); defer self.stack_size = offset + abi_size; return WValue{ .stack_offset = offset }; } /// From given zig bitsize, returns the wasm bitsize fn toWasmBits(bits: u16) ?u16 { return for ([_]u16{ 32, 64, 128 }) |wasm_bits| { if (bits <= wasm_bits) return wasm_bits; } else null; } /// Performs a copy of bytes for a given type. Copying all bytes /// from rhs to lhs. fn memcpy(self: *Self, dst: WValue, src: WValue, len: WValue) !void { // When bulk_memory is enabled, we lower it to wasm's memcpy instruction. // If not, we lower it ourselves manually if (std.Target.wasm.featureSetHas(self.target.cpu.features, .bulk_memory)) { switch (dst) { .stack_offset => try self.emitWValue(try self.buildPointerOffset(dst, 0, .new)), else => try self.emitWValue(dst), } switch (src) { .stack_offset => try self.emitWValue(try self.buildPointerOffset(src, 0, .new)), else => try self.emitWValue(src), } try self.emitWValue(len); try self.addExtended(.memory_copy); return; } // when the length is comptime-known, rather than a runtime value, we can optimize the generated code by having // the loop during codegen, rather than inserting a runtime loop into the binary. switch (len) { .imm32, .imm64 => { const length = switch (len) { .imm32 => |val| val, .imm64 => |val| val, else => unreachable, }; var offset: u32 = 0; const lhs_base = dst.offset(); const rhs_base = src.offset(); while (offset < length) : (offset += 1) { // get dst's address to store the result try self.emitWValue(dst); // load byte from src's address try self.emitWValue(src); switch (self.arch()) { .wasm32 => { try self.addMemArg(.i32_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 }); try self.addMemArg(.i32_store8, .{ .offset = lhs_base + offset, .alignment = 1 }); }, .wasm64 => { try self.addMemArg(.i64_load8_u, .{ .offset = rhs_base + offset, .alignment = 1 }); try self.addMemArg(.i64_store8, .{ .offset = lhs_base + offset, .alignment = 1 }); }, else => unreachable, } } }, else => { // TODO: We should probably lower this to a call to compiler_rt // But for now, we implement it manually const offset = try self.allocLocal(Type.usize); // local for counter // outer block to jump to when loop is done try self.startBlock(.block, wasm.block_empty); try self.startBlock(.loop, wasm.block_empty); // loop condition (offset == length -> break) { try self.emitWValue(offset); try self.emitWValue(len); switch (self.arch()) { .wasm32 => try self.addTag(.i32_eq), .wasm64 => try self.addTag(.i64_eq), else => unreachable, } try self.addLabel(.br_if, 1); // jump out of loop into outer block (finished) } // get dst ptr { try self.emitWValue(dst); try self.emitWValue(offset); switch (self.arch()) { .wasm32 => try self.addTag(.i32_add), .wasm64 => try self.addTag(.i64_add), else => unreachable, } } // get src value and also store in dst { try self.emitWValue(src); try self.emitWValue(offset); switch (self.arch()) { .wasm32 => { try self.addTag(.i32_add); try self.addMemArg(.i32_load8_u, .{ .offset = src.offset(), .alignment = 1 }); try self.addMemArg(.i32_store8, .{ .offset = dst.offset(), .alignment = 1 }); }, .wasm64 => { try self.addTag(.i64_add); try self.addMemArg(.i64_load8_u, .{ .offset = src.offset(), .alignment = 1 }); try self.addMemArg(.i64_store8, .{ .offset = dst.offset(), .alignment = 1 }); }, else => unreachable, } } // increment loop counter { try self.emitWValue(offset); switch (self.arch()) { .wasm32 => { try self.addImm32(1); try self.addTag(.i32_add); }, .wasm64 => { try self.addImm64(1); try self.addTag(.i64_add); }, else => unreachable, } try self.addLabel(.local_set, offset.local); try self.addLabel(.br, 0); // jump to start of loop } try self.endBlock(); // close off loop block try self.endBlock(); // close off outer block }, } } fn ptrSize(self: *const Self) u16 { return @divExact(self.target.cpu.arch.ptrBitWidth(), 8); } fn arch(self: *const Self) std.Target.Cpu.Arch { return self.target.cpu.arch; } /// For a given `Type`, will return true when the type will be passed /// by reference, rather than by value fn isByRef(ty: Type, target: std.Target) bool { switch (ty.zigTypeTag()) { .Type, .ComptimeInt, .ComptimeFloat, .EnumLiteral, .Undefined, .Null, .BoundFn, .Opaque, => unreachable, .NoReturn, .Void, .Bool, .ErrorSet, .Fn, .Enum, .AnyFrame, => return false, .Array, .Vector, .Struct, .Frame, .Union, => return ty.hasRuntimeBitsIgnoreComptime(), .Int => return ty.intInfo(target).bits > 64, .Float => return ty.floatBits(target) > 64, .ErrorUnion => { const has_tag = ty.errorUnionSet().hasRuntimeBitsIgnoreComptime(); const has_pl = ty.errorUnionPayload().hasRuntimeBitsIgnoreComptime(); if (!has_tag or !has_pl) return false; return ty.hasRuntimeBitsIgnoreComptime(); }, .Optional => { if (ty.isPtrLikeOptional()) return false; var buf: Type.Payload.ElemType = undefined; return ty.optionalChild(&buf).hasRuntimeBitsIgnoreComptime(); }, .Pointer => { // Slices act like struct and will be passed by reference if (ty.isSlice()) return true; return false; }, } } /// Creates a new local for a pointer that points to memory with given offset. /// This can be used to get a pointer to a struct field, error payload, etc. /// By providing `modify` as action, it will modify the given `ptr_value` instead of making a new /// local value to store the pointer. This allows for local re-use and improves binary size. fn buildPointerOffset(self: *Self, ptr_value: WValue, offset: u64, action: enum { modify, new }) InnerError!WValue { // do not perform arithmetic when offset is 0. if (offset == 0 and ptr_value.offset() == 0 and action == .modify) return ptr_value; const result_ptr: WValue = switch (action) { .new => try self.allocLocal(Type.usize), .modify => ptr_value, }; try self.emitWValue(ptr_value); if (offset + ptr_value.offset() > 0) { switch (self.arch()) { .wasm32 => { try self.addImm32(@bitCast(i32, @intCast(u32, offset + ptr_value.offset()))); try self.addTag(.i32_add); }, .wasm64 => { try self.addImm64(offset + ptr_value.offset()); try self.addTag(.i64_add); }, else => unreachable, } } try self.addLabel(.local_set, result_ptr.local); return result_ptr; } fn genInst(self: *Self, inst: Air.Inst.Index) !WValue { const air_tags = self.air.instructions.items(.tag); return switch (air_tags[inst]) { .constant => unreachable, .const_ty => unreachable, .add => self.airBinOp(inst, .add), .addwrap => self.airWrapBinOp(inst, .add), .sub => self.airBinOp(inst, .sub), .subwrap => self.airWrapBinOp(inst, .sub), .mul => self.airBinOp(inst, .mul), .mulwrap => self.airWrapBinOp(inst, .mul), .div_trunc => self.airBinOp(inst, .div), .bit_and => self.airBinOp(inst, .@"and"), .bit_or => self.airBinOp(inst, .@"or"), .bool_and => self.airBinOp(inst, .@"and"), .bool_or => self.airBinOp(inst, .@"or"), .rem => self.airBinOp(inst, .rem), .shl => self.airWrapBinOp(inst, .shl), .shl_exact => self.airBinOp(inst, .shl), .shr, .shr_exact => self.airBinOp(inst, .shr), .xor => self.airBinOp(inst, .xor), .max => self.airMaxMin(inst, .max), .min => self.airMaxMin(inst, .min), .mul_add => self.airMulAdd(inst), .add_with_overflow => self.airAddSubWithOverflow(inst, .add), .sub_with_overflow => self.airAddSubWithOverflow(inst, .sub), .shl_with_overflow => self.airShlWithOverflow(inst), .mul_with_overflow => self.airMulWithOverflow(inst), .clz => self.airClz(inst), .ctz => self.airCtz(inst), .cmp_eq => self.airCmp(inst, .eq), .cmp_gte => self.airCmp(inst, .gte), .cmp_gt => self.airCmp(inst, .gt), .cmp_lte => self.airCmp(inst, .lte), .cmp_lt => self.airCmp(inst, .lt), .cmp_neq => self.airCmp(inst, .neq), .cmp_vector => self.airCmpVector(inst), .cmp_lt_errors_len => self.airCmpLtErrorsLen(inst), .array_elem_val => self.airArrayElemVal(inst), .array_to_slice => self.airArrayToSlice(inst), .alloc => self.airAlloc(inst), .arg => self.airArg(inst), .bitcast => self.airBitcast(inst), .block => self.airBlock(inst), .breakpoint => self.airBreakpoint(inst), .br => self.airBr(inst), .bool_to_int => self.airBoolToInt(inst), .cond_br => self.airCondBr(inst), .intcast => self.airIntcast(inst), .fptrunc => self.airFptrunc(inst), .fpext => self.airFpext(inst), .float_to_int => self.airFloatToInt(inst), .int_to_float => self.airIntToFloat(inst), .get_union_tag => self.airGetUnionTag(inst), // TODO .dbg_inline_begin, .dbg_inline_end, .dbg_block_begin, .dbg_block_end, => WValue.none, .dbg_var_ptr => self.airDbgVar(inst, true), .dbg_var_val => self.airDbgVar(inst, false), .dbg_stmt => self.airDbgStmt(inst), .call => self.airCall(inst, .auto), .call_always_tail => self.airCall(inst, .always_tail), .call_never_tail => self.airCall(inst, .never_tail), .call_never_inline => self.airCall(inst, .never_inline), .is_err => self.airIsErr(inst, .i32_ne), .is_non_err => self.airIsErr(inst, .i32_eq), .is_null => self.airIsNull(inst, .i32_eq, .value), .is_non_null => self.airIsNull(inst, .i32_ne, .value), .is_null_ptr => self.airIsNull(inst, .i32_eq, .ptr), .is_non_null_ptr => self.airIsNull(inst, .i32_ne, .ptr), .load => self.airLoad(inst), .loop => self.airLoop(inst), .memset => self.airMemset(inst), .not => self.airNot(inst), .optional_payload => self.airOptionalPayload(inst), .optional_payload_ptr => self.airOptionalPayloadPtr(inst), .optional_payload_ptr_set => self.airOptionalPayloadPtrSet(inst), .ptr_add => self.airPtrBinOp(inst, .add), .ptr_sub => self.airPtrBinOp(inst, .sub), .ptr_elem_ptr => self.airPtrElemPtr(inst), .ptr_elem_val => self.airPtrElemVal(inst), .ptrtoint => self.airPtrToInt(inst), .ret => self.airRet(inst), .ret_ptr => self.airRetPtr(inst), .ret_load => self.airRetLoad(inst), .splat => self.airSplat(inst), .select => self.airSelect(inst), .shuffle => self.airShuffle(inst), .reduce => self.airReduce(inst), .aggregate_init => self.airAggregateInit(inst), .union_init => self.airUnionInit(inst), .prefetch => self.airPrefetch(inst), .popcount => self.airPopcount(inst), .slice => self.airSlice(inst), .slice_len => self.airSliceLen(inst), .slice_elem_val => self.airSliceElemVal(inst), .slice_elem_ptr => self.airSliceElemPtr(inst), .slice_ptr => self.airSlicePtr(inst), .ptr_slice_len_ptr => self.airPtrSliceFieldPtr(inst, self.ptrSize()), .ptr_slice_ptr_ptr => self.airPtrSliceFieldPtr(inst, 0), .store => self.airStore(inst), .set_union_tag => self.airSetUnionTag(inst), .struct_field_ptr => self.airStructFieldPtr(inst), .struct_field_ptr_index_0 => self.airStructFieldPtrIndex(inst, 0), .struct_field_ptr_index_1 => self.airStructFieldPtrIndex(inst, 1), .struct_field_ptr_index_2 => self.airStructFieldPtrIndex(inst, 2), .struct_field_ptr_index_3 => self.airStructFieldPtrIndex(inst, 3), .struct_field_val => self.airStructFieldVal(inst), .field_parent_ptr => self.airFieldParentPtr(inst), .switch_br => self.airSwitchBr(inst), .trunc => self.airTrunc(inst), .unreach => self.airUnreachable(inst), .wrap_optional => self.airWrapOptional(inst), .unwrap_errunion_payload => self.airUnwrapErrUnionPayload(inst, false), .unwrap_errunion_payload_ptr => self.airUnwrapErrUnionPayload(inst, true), .unwrap_errunion_err => self.airUnwrapErrUnionError(inst, false), .unwrap_errunion_err_ptr => self.airUnwrapErrUnionError(inst, true), .wrap_errunion_payload => self.airWrapErrUnionPayload(inst), .wrap_errunion_err => self.airWrapErrUnionErr(inst), .errunion_payload_ptr_set => self.airErrUnionPayloadPtrSet(inst), .error_name => self.airErrorName(inst), .wasm_memory_size => self.airWasmMemorySize(inst), .wasm_memory_grow => self.airWasmMemoryGrow(inst), .memcpy => self.airMemcpy(inst), .add_sat, .sub_sat, .mul_sat, .div_float, .div_floor, .div_exact, .mod, .assembly, .shl_sat, .ret_addr, .frame_addr, .byte_swap, .bit_reverse, .is_err_ptr, .is_non_err_ptr, .sqrt, .sin, .cos, .tan, .exp, .exp2, .log, .log2, .log10, .fabs, .floor, .ceil, .round, .trunc_float, .cmpxchg_weak, .cmpxchg_strong, .fence, .atomic_load, .atomic_store_unordered, .atomic_store_monotonic, .atomic_store_release, .atomic_store_seq_cst, .atomic_rmw, .tag_name, .err_return_trace, .set_err_return_trace, => |tag| return self.fail("TODO: Implement wasm inst: {s}", .{@tagName(tag)}), }; } fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void { for (body) |inst| { const result = try self.genInst(inst); try self.values.putNoClobber(self.gpa, Air.indexToRef(inst), result); } } fn airRet(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const ret_ty = self.decl.ty.fnReturnType(); // result must be stored in the stack and we return a pointer // to the stack instead if (self.return_value != .none) { try self.store(self.return_value, operand, self.decl.ty.fnReturnType(), 0); } else if (self.decl.ty.fnInfo().cc == .C and ret_ty.hasRuntimeBitsIgnoreComptime()) { switch (ret_ty.zigTypeTag()) { // Aggregate types can be lowered as a singular value .Struct, .Union => { const scalar_type = abi.scalarType(ret_ty, self.target); try self.emitWValue(operand); const opcode = buildOpcode(.{ .op = .load, .width = @intCast(u8, scalar_type.abiSize(self.target)), .signedness = if (scalar_type.isSignedInt()) .signed else .unsigned, .valtype1 = typeToValtype(scalar_type, self.target), }); try self.addMemArg(Mir.Inst.Tag.fromOpcode(opcode), .{ .offset = operand.offset(), .alignment = scalar_type.abiAlignment(self.target), }); }, else => try self.emitWValue(operand), } } else { try self.emitWValue(operand); } try self.restoreStackPointer(); try self.addTag(.@"return"); return WValue{ .none = {} }; } fn airRetPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const child_type = self.air.typeOfIndex(inst).childType(); if (!child_type.isFnOrHasRuntimeBitsIgnoreComptime()) { return self.allocStack(Type.usize); // create pointer to void } if (firstParamSRet(self.decl.ty.fnInfo(), self.target)) { return self.return_value; } return self.allocStackPtr(inst); } fn airRetLoad(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const ret_ty = self.air.typeOf(un_op).childType(); if (!ret_ty.hasRuntimeBitsIgnoreComptime()) return WValue.none; if (!firstParamSRet(self.decl.ty.fnInfo(), self.target)) { const result = try self.load(operand, ret_ty, 0); try self.emitWValue(result); } try self.restoreStackPointer(); try self.addTag(.@"return"); return .none; } fn airCall(self: *Self, inst: Air.Inst.Index, modifier: std.builtin.CallOptions.Modifier) InnerError!WValue { if (modifier == .always_tail) return self.fail("TODO implement tail calls for wasm", .{}); const pl_op = self.air.instructions.items(.data)[inst].pl_op; const extra = self.air.extraData(Air.Call, pl_op.payload); const args = self.air.extra[extra.end..][0..extra.data.args_len]; const ty = self.air.typeOf(pl_op.operand); const fn_ty = switch (ty.zigTypeTag()) { .Fn => ty, .Pointer => ty.childType(), else => unreachable, }; const ret_ty = fn_ty.fnReturnType(); const first_param_sret = firstParamSRet(fn_ty.fnInfo(), self.target); const callee: ?*Decl = blk: { const func_val = self.air.value(pl_op.operand) orelse break :blk null; const module = self.bin_file.base.options.module.?; if (func_val.castTag(.function)) |func| { break :blk module.declPtr(func.data.owner_decl); } else if (func_val.castTag(.extern_fn)) |extern_fn| { const ext_decl = module.declPtr(extern_fn.data.owner_decl); var func_type = try genFunctype(self.gpa, ext_decl.ty.fnInfo(), self.target); defer func_type.deinit(self.gpa); ext_decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type); try self.bin_file.addOrUpdateImport(ext_decl); break :blk ext_decl; } else if (func_val.castTag(.decl_ref)) |decl_ref| { break :blk module.declPtr(decl_ref.data); } return self.fail("Expected a function, but instead found type '{s}'", .{func_val.tag()}); }; const sret = if (first_param_sret) blk: { const sret_local = try self.allocStack(ret_ty); const ptr_offset = try self.buildPointerOffset(sret_local, 0, .new); try self.emitWValue(ptr_offset); break :blk sret_local; } else WValue{ .none = {} }; for (args) |arg| { const arg_ref = @intToEnum(Air.Inst.Ref, arg); const arg_val = try self.resolveInst(arg_ref); const arg_ty = self.air.typeOf(arg_ref); if (!arg_ty.hasRuntimeBitsIgnoreComptime()) continue; try self.lowerArg(fn_ty.fnInfo().cc, arg_ty, arg_val); } if (callee) |direct| { try self.addLabel(.call, direct.link.wasm.sym_index); } else { // in this case we call a function pointer // so load its value onto the stack std.debug.assert(ty.zigTypeTag() == .Pointer); const operand = try self.resolveInst(pl_op.operand); try self.emitWValue(operand); var fn_type = try genFunctype(self.gpa, fn_ty.fnInfo(), self.target); defer fn_type.deinit(self.gpa); const fn_type_index = try self.bin_file.putOrGetFuncType(fn_type); try self.addLabel(.call_indirect, fn_type_index); } if (self.liveness.isUnused(inst) or !ret_ty.hasRuntimeBitsIgnoreComptime()) { return WValue.none; } else if (ret_ty.isNoReturn()) { try self.addTag(.@"unreachable"); return WValue.none; } else if (first_param_sret) { return sret; // TODO: Make this less fragile and optimize } else if (fn_ty.fnInfo().cc == .C and ret_ty.zigTypeTag() == .Struct or ret_ty.zigTypeTag() == .Union) { const result_local = try self.allocLocal(ret_ty); try self.addLabel(.local_set, result_local.local); const scalar_type = abi.scalarType(ret_ty, self.target); const result = try self.allocStack(scalar_type); try self.store(result, result_local, scalar_type, 0); return result; } else { const result_local = try self.allocLocal(ret_ty); try self.addLabel(.local_set, result_local.local); return result_local; } } fn airAlloc(self: *Self, inst: Air.Inst.Index) InnerError!WValue { return self.allocStackPtr(inst); } fn airStore(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const ty = self.air.typeOf(bin_op.lhs).childType(); try self.store(lhs, rhs, ty, 0); return .none; } fn store(self: *Self, lhs: WValue, rhs: WValue, ty: Type, offset: u32) InnerError!void { switch (ty.zigTypeTag()) { .ErrorUnion => { const err_ty = ty.errorUnionSet(); const pl_ty = ty.errorUnionPayload(); if (!pl_ty.hasRuntimeBitsIgnoreComptime()) { return self.store(lhs, rhs, err_ty, 0); } const len = @intCast(u32, ty.abiSize(self.target)); return self.memcpy(lhs, rhs, .{ .imm32 = len }); }, .Optional => { if (ty.isPtrLikeOptional()) { return self.store(lhs, rhs, Type.usize, 0); } var buf: Type.Payload.ElemType = undefined; const pl_ty = ty.optionalChild(&buf); if (!pl_ty.hasRuntimeBitsIgnoreComptime()) { return self.store(lhs, rhs, Type.u8, 0); } const len = @intCast(u32, ty.abiSize(self.target)); return self.memcpy(lhs, rhs, .{ .imm32 = len }); }, .Struct, .Array, .Union, .Vector => { const len = @intCast(u32, ty.abiSize(self.target)); return self.memcpy(lhs, rhs, .{ .imm32 = len }); }, .Pointer => { if (ty.isSlice()) { // store pointer first const ptr_local = try self.load(rhs, Type.usize, 0); try self.store(lhs, ptr_local, Type.usize, 0); // retrieve length from rhs, and store that alongside lhs as well const len_local = try self.load(rhs, Type.usize, self.ptrSize()); try self.store(lhs, len_local, Type.usize, self.ptrSize()); return; } }, .Int => if (ty.intInfo(self.target).bits > 64) { const lsb = try self.load(rhs, Type.u64, 0); const msb = try self.load(rhs, Type.u64, 8); try self.store(lhs, lsb, Type.u64, 0); try self.store(lhs, msb, Type.u64, 8); return; }, else => {}, } try self.emitWValue(lhs); // In this case we're actually interested in storing the stack position // into lhs, so we calculate that and emit that instead if (rhs == .stack_offset) { try self.emitWValue(try self.buildPointerOffset(rhs, 0, .new)); } else { try self.emitWValue(rhs); } const valtype = typeToValtype(ty, self.target); const abi_size = @intCast(u8, ty.abiSize(self.target)); const opcode = buildOpcode(.{ .valtype1 = valtype, .width = abi_size * 8, .op = .store, }); // store rhs value at stack pointer's location in memory try self.addMemArg( Mir.Inst.Tag.fromOpcode(opcode), .{ .offset = offset + lhs.offset(), .alignment = ty.abiAlignment(self.target) }, ); } fn airLoad(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const ty = self.air.getRefType(ty_op.ty); if (!ty.hasRuntimeBitsIgnoreComptime()) return WValue{ .none = {} }; if (isByRef(ty, self.target)) { const new_local = try self.allocStack(ty); try self.store(new_local, operand, ty, 0); return new_local; } return self.load(operand, ty, 0); } fn load(self: *Self, operand: WValue, ty: Type, offset: u32) InnerError!WValue { // load local's value from memory by its stack position try self.emitWValue(operand); const abi_size = @intCast(u8, ty.abiSize(self.target)); const opcode = buildOpcode(.{ .valtype1 = typeToValtype(ty, self.target), .width = abi_size * 8, .op = .load, .signedness = .unsigned, }); try self.addMemArg( Mir.Inst.Tag.fromOpcode(opcode), .{ .offset = offset + operand.offset(), .alignment = ty.abiAlignment(self.target) }, ); // store the result in a local const result = try self.allocLocal(ty); try self.addLabel(.local_set, result.local); return result; } fn airArg(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const arg_index = self.arg_index; const arg = self.args[arg_index]; const cc = self.decl.ty.fnInfo().cc; if (cc == .C) { const ty = self.air.typeOfIndex(inst); const arg_classes = abi.classifyType(ty, self.target); for (arg_classes) |class| { if (class != .none) { self.arg_index += 1; } } } else { self.arg_index += 1; } switch (self.debug_output) { .dwarf => |dwarf| { // TODO: Get the original arg index rather than wasm arg index const name = self.mod_fn.getParamName(arg_index); const leb_size = link.File.Wasm.getULEB128Size(arg.local); const dbg_info = &dwarf.dbg_info; try dbg_info.ensureUnusedCapacity(3 + leb_size + 5 + name.len + 1); // wasm locations are encoded as follow: // DW_OP_WASM_location wasm-op // where wasm-op is defined as // wasm-op := wasm-local | wasm-global | wasm-operand_stack // where each argument is encoded as // i:uleb128 dbg_info.appendSliceAssumeCapacity(&.{ @enumToInt(link.File.Dwarf.AbbrevKind.parameter), std.dwarf.OP.WASM_location, std.dwarf.OP.WASM_local, }); leb.writeULEB128(dbg_info.writer(), arg.local) catch unreachable; try self.addDbgInfoTypeReloc(self.air.typeOfIndex(inst)); dbg_info.appendSliceAssumeCapacity(name); dbg_info.appendAssumeCapacity(0); }, else => {}, } return arg; } fn airBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const operand_ty = self.air.typeOfIndex(inst); const ty = self.air.typeOf(bin_op.lhs); if (isByRef(operand_ty, self.target)) { return self.fail("TODO: Implement binary operation for type: {}", .{operand_ty.fmtDebug()}); } return self.binOp(lhs, rhs, ty, op); } fn binOp(self: *Self, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue { try self.emitWValue(lhs); try self.emitWValue(rhs); const opcode: wasm.Opcode = buildOpcode(.{ .op = op, .valtype1 = typeToValtype(ty, self.target), .signedness = if (ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); // save the result in a temporary const bin_local = try self.allocLocal(ty); try self.addLabel(.local_set, bin_local.local); return bin_local; } fn airWrapBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const ty = self.air.typeOf(bin_op.lhs); if (ty.zigTypeTag() == .Vector) { return self.fail("TODO: Implement wrapping arithmetic for vectors", .{}); } else if (ty.abiSize(self.target) > 8) { return self.fail("TODO: Implement wrapping arithmetic for bitsize > 64", .{}); } return self.wrapBinOp(lhs, rhs, ty, op); } fn wrapBinOp(self: *Self, lhs: WValue, rhs: WValue, ty: Type, op: Op) InnerError!WValue { try self.emitWValue(lhs); try self.emitWValue(rhs); const opcode: wasm.Opcode = buildOpcode(.{ .op = op, .valtype1 = typeToValtype(ty, self.target), .signedness = if (ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const bin_local = try self.allocLocal(ty); try self.addLabel(.local_set, bin_local.local); return self.wrapOperand(bin_local, ty); } /// Wraps an operand based on a given type's bitsize. /// Asserts `Type` is <= 64bits. fn wrapOperand(self: *Self, operand: WValue, ty: Type) InnerError!WValue { assert(ty.abiSize(self.target) <= 8); const result_local = try self.allocLocal(ty); const bitsize = ty.intInfo(self.target).bits; const result = @intCast(u64, (@as(u65, 1) << @intCast(u7, bitsize)) - 1); try self.emitWValue(operand); if (bitsize <= 32) { try self.addImm32(@bitCast(i32, @intCast(u32, result))); try self.addTag(.i32_and); } else { try self.addImm64(result); try self.addTag(.i64_and); } try self.addLabel(.local_set, result_local.local); return result_local; } fn lowerParentPtr(self: *Self, ptr_val: Value, ptr_child_ty: Type) InnerError!WValue { switch (ptr_val.tag()) { .decl_ref_mut => { const decl_index = ptr_val.castTag(.decl_ref_mut).?.data.decl_index; return self.lowerParentPtrDecl(ptr_val, decl_index); }, .decl_ref => { const decl_index = ptr_val.castTag(.decl_ref).?.data; return self.lowerParentPtrDecl(ptr_val, decl_index); }, .variable => { const decl_index = ptr_val.castTag(.variable).?.data.owner_decl; return self.lowerParentPtrDecl(ptr_val, decl_index); }, .field_ptr => { const field_ptr = ptr_val.castTag(.field_ptr).?.data; const parent_ty = field_ptr.container_ty; const parent_ptr = try self.lowerParentPtr(field_ptr.container_ptr, parent_ty); const offset = switch (parent_ty.zigTypeTag()) { .Struct => blk: { const offset = parent_ty.structFieldOffset(field_ptr.field_index, self.target); break :blk offset; }, .Union => blk: { const layout: Module.Union.Layout = parent_ty.unionGetLayout(self.target); if (layout.payload_size == 0) break :blk 0; if (layout.payload_align > layout.tag_align) break :blk 0; // tag is stored first so calculate offset from where payload starts const offset = @intCast(u32, std.mem.alignForwardGeneric(u64, layout.tag_size, layout.tag_align)); break :blk offset; }, else => unreachable, }; return switch (parent_ptr) { .memory => |ptr| WValue{ .memory_offset = .{ .pointer = ptr, .offset = @intCast(u32, offset), }, }, .memory_offset => |mem_off| WValue{ .memory_offset = .{ .pointer = mem_off.pointer, .offset = @intCast(u32, offset) + mem_off.offset, }, }, else => unreachable, }; }, .elem_ptr => { const elem_ptr = ptr_val.castTag(.elem_ptr).?.data; const index = elem_ptr.index; const offset = index * ptr_child_ty.abiSize(self.target); const array_ptr = try self.lowerParentPtr(elem_ptr.array_ptr, elem_ptr.elem_ty); return WValue{ .memory_offset = .{ .pointer = array_ptr.memory, .offset = @intCast(u32, offset), } }; }, .opt_payload_ptr => { const payload_ptr = ptr_val.castTag(.opt_payload_ptr).?.data; const parent_ptr = try self.lowerParentPtr(payload_ptr.container_ptr, payload_ptr.container_ty); var buf: Type.Payload.ElemType = undefined; const payload_ty = payload_ptr.container_ty.optionalChild(&buf); if (!payload_ty.hasRuntimeBitsIgnoreComptime() or payload_ty.isPtrLikeOptional()) { return parent_ptr; } const abi_size = payload_ptr.container_ty.abiSize(self.target); const offset = abi_size - payload_ty.abiSize(self.target); return WValue{ .memory_offset = .{ .pointer = parent_ptr.memory, .offset = @intCast(u32, offset), } }; }, else => |tag| return self.fail("TODO: Implement lowerParentPtr for tag: {}", .{tag}), } } fn lowerParentPtrDecl(self: *Self, ptr_val: Value, decl_index: Module.Decl.Index) InnerError!WValue { const module = self.bin_file.base.options.module.?; const decl = module.declPtr(decl_index); module.markDeclAlive(decl); var ptr_ty_payload: Type.Payload.ElemType = .{ .base = .{ .tag = .single_mut_pointer }, .data = decl.ty, }; const ptr_ty = Type.initPayload(&ptr_ty_payload.base); return self.lowerDeclRefValue(.{ .ty = ptr_ty, .val = ptr_val }, decl_index); } fn lowerDeclRefValue(self: *Self, tv: TypedValue, decl_index: Module.Decl.Index) InnerError!WValue { if (tv.ty.isSlice()) { return WValue{ .memory = try self.bin_file.lowerUnnamedConst(tv, decl_index) }; } const module = self.bin_file.base.options.module.?; const decl = module.declPtr(decl_index); if (decl.ty.zigTypeTag() != .Fn and !decl.ty.hasRuntimeBitsIgnoreComptime()) { return WValue{ .imm32 = 0xaaaaaaaa }; } module.markDeclAlive(decl); const target_sym_index = decl.link.wasm.sym_index; if (decl.ty.zigTypeTag() == .Fn) { try self.bin_file.addTableFunction(target_sym_index); return WValue{ .function_index = target_sym_index }; } else return WValue{ .memory = target_sym_index }; } /// Converts a signed integer to its 2's complement form and returns /// an unsigned integer instead. /// Asserts bitsize <= 64 fn toTwosComplement(value: anytype, bits: u7) std.meta.Int(.unsigned, @typeInfo(@TypeOf(value)).Int.bits) { const T = @TypeOf(value); comptime assert(@typeInfo(T) == .Int); comptime assert(@typeInfo(T).Int.signedness == .signed); assert(bits <= 64); const WantedT = std.meta.Int(.unsigned, @typeInfo(T).Int.bits); if (value >= 0) return @bitCast(WantedT, value); const max_value = @intCast(u64, (@as(u65, 1) << bits) - 1); const flipped = (~-value) + 1; const result = @bitCast(WantedT, flipped) & max_value; return @intCast(WantedT, result); } fn lowerConstant(self: *Self, val: Value, ty: Type) InnerError!WValue { if (val.isUndefDeep()) return self.emitUndefined(ty); if (val.castTag(.decl_ref)) |decl_ref| { const decl_index = decl_ref.data; return self.lowerDeclRefValue(.{ .ty = ty, .val = val }, decl_index); } if (val.castTag(.decl_ref_mut)) |decl_ref_mut| { const decl_index = decl_ref_mut.data.decl_index; return self.lowerDeclRefValue(.{ .ty = ty, .val = val }, decl_index); } const target = self.target; switch (ty.zigTypeTag()) { .Int => { const int_info = ty.intInfo(self.target); switch (int_info.signedness) { .signed => switch (int_info.bits) { 0...32 => return WValue{ .imm32 = @intCast(u32, toTwosComplement( val.toSignedInt(), @intCast(u6, int_info.bits), )) }, 33...64 => return WValue{ .imm64 = @bitCast(u64, val.toSignedInt()) }, else => unreachable, }, .unsigned => switch (int_info.bits) { 0...32 => return WValue{ .imm32 = @intCast(u32, val.toUnsignedInt(target)) }, 33...64 => return WValue{ .imm64 = val.toUnsignedInt(target) }, else => unreachable, }, } }, .Bool => return WValue{ .imm32 = @intCast(u32, val.toUnsignedInt(target)) }, .Float => switch (ty.floatBits(self.target)) { 0...32 => return WValue{ .float32 = val.toFloat(f32) }, 33...64 => return WValue{ .float64 = val.toFloat(f64) }, else => unreachable, }, .Pointer => switch (val.tag()) { .field_ptr, .elem_ptr, .opt_payload_ptr => { return self.lowerParentPtr(val, ty.childType()); }, .int_u64, .one => return WValue{ .imm32 = @intCast(u32, val.toUnsignedInt(target)) }, .zero, .null_value => return WValue{ .imm32 = 0 }, else => return self.fail("Wasm TODO: lowerConstant for other const pointer tag {s}", .{val.tag()}), }, .Enum => { if (val.castTag(.enum_field_index)) |field_index| { switch (ty.tag()) { .enum_simple => return WValue{ .imm32 = field_index.data }, .enum_full, .enum_nonexhaustive => { const enum_full = ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { const tag_val = enum_full.values.keys()[field_index.data]; return self.lowerConstant(tag_val, enum_full.tag_ty); } else { return WValue{ .imm32 = field_index.data }; } }, .enum_numbered => { const index = field_index.data; const enum_data = ty.castTag(.enum_numbered).?.data; const enum_val = enum_data.values.keys()[index]; return self.lowerConstant(enum_val, enum_data.tag_ty); }, else => return self.fail("TODO: lowerConstant for enum tag: {}", .{ty.tag()}), } } else { var int_tag_buffer: Type.Payload.Bits = undefined; const int_tag_ty = ty.intTagType(&int_tag_buffer); return self.lowerConstant(val, int_tag_ty); } }, .ErrorSet => switch (val.tag()) { .@"error" => { const kv = try self.bin_file.base.options.module.?.getErrorValue(val.getError().?); return WValue{ .imm32 = kv.value }; }, else => return WValue{ .imm32 = 0 }, }, .ErrorUnion => { const error_type = ty.errorUnionSet(); const is_pl = val.errorUnionIsPayload(); const err_val = if (!is_pl) val else Value.initTag(.zero); return self.lowerConstant(err_val, error_type); }, .Optional => if (ty.isPtrLikeOptional()) { var buf: Type.Payload.ElemType = undefined; const pl_ty = ty.optionalChild(&buf); if (val.castTag(.opt_payload)) |payload| { return self.lowerConstant(payload.data, pl_ty); } else if (val.isNull()) { return WValue{ .imm32 = 0 }; } else { return self.lowerConstant(val, pl_ty); } } else { const is_pl = val.tag() == .opt_payload; return WValue{ .imm32 = if (is_pl) @as(u32, 1) else 0 }; }, else => |zig_type| return self.fail("Wasm TODO: LowerConstant for zigTypeTag {s}", .{zig_type}), } } fn emitUndefined(self: *Self, ty: Type) InnerError!WValue { switch (ty.zigTypeTag()) { .Bool, .ErrorSet => return WValue{ .imm32 = 0xaaaaaaaa }, .Int => switch (ty.intInfo(self.target).bits) { 0...32 => return WValue{ .imm32 = 0xaaaaaaaa }, 33...64 => return WValue{ .imm64 = 0xaaaaaaaaaaaaaaaa }, else => unreachable, }, .Float => switch (ty.floatBits(self.target)) { 0...32 => return WValue{ .float32 = @bitCast(f32, @as(u32, 0xaaaaaaaa)) }, 33...64 => return WValue{ .float64 = @bitCast(f64, @as(u64, 0xaaaaaaaaaaaaaaaa)) }, else => unreachable, }, .Pointer => switch (self.arch()) { .wasm32 => return WValue{ .imm32 = 0xaaaaaaaa }, .wasm64 => return WValue{ .imm64 = 0xaaaaaaaaaaaaaaaa }, else => unreachable, }, .Optional => { var buf: Type.Payload.ElemType = undefined; const pl_ty = ty.optionalChild(&buf); if (ty.isPtrLikeOptional()) { return self.emitUndefined(pl_ty); } return WValue{ .imm32 = 0xaaaaaaaa }; }, .ErrorUnion => { return WValue{ .imm32 = 0xaaaaaaaa }; }, else => return self.fail("Wasm TODO: emitUndefined for type: {}\n", .{ty.zigTypeTag()}), } } /// Returns a `Value` as a signed 32 bit value. /// It's illegal to provide a value with a type that cannot be represented /// as an integer value. fn valueAsI32(self: Self, val: Value, ty: Type) i32 { const target = self.target; switch (ty.zigTypeTag()) { .Enum => { if (val.castTag(.enum_field_index)) |field_index| { switch (ty.tag()) { .enum_simple => return @bitCast(i32, field_index.data), .enum_full, .enum_nonexhaustive => { const enum_full = ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { const tag_val = enum_full.values.keys()[field_index.data]; return self.valueAsI32(tag_val, enum_full.tag_ty); } else return @bitCast(i32, field_index.data); }, .enum_numbered => { const index = field_index.data; const enum_data = ty.castTag(.enum_numbered).?.data; return self.valueAsI32(enum_data.values.keys()[index], enum_data.tag_ty); }, else => unreachable, } } else { var int_tag_buffer: Type.Payload.Bits = undefined; const int_tag_ty = ty.intTagType(&int_tag_buffer); return self.valueAsI32(val, int_tag_ty); } }, .Int => switch (ty.intInfo(self.target).signedness) { .signed => return @truncate(i32, val.toSignedInt()), .unsigned => return @bitCast(i32, @truncate(u32, val.toUnsignedInt(target))), }, .ErrorSet => { const kv = self.bin_file.base.options.module.?.getErrorValue(val.getError().?) catch unreachable; // passed invalid `Value` to function return @bitCast(i32, kv.value); }, .Bool => return @intCast(i32, val.toSignedInt()), .Pointer => return @intCast(i32, val.toSignedInt()), else => unreachable, // Programmer called this function for an illegal type } } fn airBlock(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const block_ty = genBlockType(self.air.getRefType(ty_pl.ty), self.target); const extra = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[extra.end..][0..extra.data.body_len]; // if block_ty is non-empty, we create a register to store the temporary value const block_result: WValue = if (block_ty != wasm.block_empty) try self.allocLocal(self.air.getRefType(ty_pl.ty)) else WValue.none; try self.startBlock(.block, wasm.block_empty); // Here we set the current block idx, so breaks know the depth to jump // to when breaking out. try self.blocks.putNoClobber(self.gpa, inst, .{ .label = self.block_depth, .value = block_result, }); try self.genBody(body); try self.endBlock(); return block_result; } /// appends a new wasm block to the code section and increases the `block_depth` by 1 fn startBlock(self: *Self, block_tag: wasm.Opcode, valtype: u8) !void { self.block_depth += 1; try self.addInst(.{ .tag = Mir.Inst.Tag.fromOpcode(block_tag), .data = .{ .block_type = valtype }, }); } /// Ends the current wasm block and decreases the `block_depth` by 1 fn endBlock(self: *Self) !void { try self.addTag(.end); self.block_depth -= 1; } fn airLoop(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const loop = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[loop.end..][0..loop.data.body_len]; // result type of loop is always 'noreturn', meaning we can always // emit the wasm type 'block_empty'. try self.startBlock(.loop, wasm.block_empty); try self.genBody(body); // breaking to the index of a loop block will continue the loop instead try self.addLabel(.br, 0); try self.endBlock(); return .none; } fn airCondBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const condition = try self.resolveInst(pl_op.operand); const extra = self.air.extraData(Air.CondBr, pl_op.payload); const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len]; const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; // TODO: Handle death instructions for then and else body // result type is always noreturn, so use `block_empty` as type. try self.startBlock(.block, wasm.block_empty); // emit the conditional value try self.emitWValue(condition); // we inserted the block in front of the condition // so now check if condition matches. If not, break outside this block // and continue with the then codepath try self.addLabel(.br_if, 0); try self.genBody(else_body); try self.endBlock(); // Outer block that matches the condition try self.genBody(then_body); return .none; } fn airCmp(self: *Self, inst: Air.Inst.Index, op: std.math.CompareOperator) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const operand_ty = self.air.typeOf(bin_op.lhs); return self.cmp(lhs, rhs, operand_ty, op); } fn cmp(self: *Self, lhs: WValue, rhs: WValue, ty: Type, op: std.math.CompareOperator) InnerError!WValue { if (ty.zigTypeTag() == .Optional and !ty.isPtrLikeOptional()) { var buf: Type.Payload.ElemType = undefined; const payload_ty = ty.optionalChild(&buf); if (payload_ty.hasRuntimeBitsIgnoreComptime()) { // When we hit this case, we must check the value of optionals // that are not pointers. This means first checking against non-null for // both lhs and rhs, as well as checking the payload are matching of lhs and rhs return self.cmpOptionals(lhs, rhs, ty, op); } } else if (isByRef(ty, self.target)) { return self.cmpBigInt(lhs, rhs, ty, op); } // ensure that when we compare pointers, we emit // the true pointer of a stack value, rather than the stack pointer. switch (lhs) { .stack_offset => try self.emitWValue(try self.buildPointerOffset(lhs, 0, .new)), else => try self.emitWValue(lhs), } switch (rhs) { .stack_offset => try self.emitWValue(try self.buildPointerOffset(rhs, 0, .new)), else => try self.emitWValue(rhs), } const signedness: std.builtin.Signedness = blk: { // by default we tell the operand type is unsigned (i.e. bools and enum values) if (ty.zigTypeTag() != .Int) break :blk .unsigned; // incase of an actual integer, we emit the correct signedness break :blk ty.intInfo(self.target).signedness; }; const opcode: wasm.Opcode = buildOpcode(.{ .valtype1 = typeToValtype(ty, self.target), .op = switch (op) { .lt => .lt, .lte => .le, .eq => .eq, .neq => .ne, .gte => .ge, .gt => .gt, }, .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const cmp_tmp = try self.allocLocal(Type.initTag(.i32)); // bool is always i32 try self.addLabel(.local_set, cmp_tmp.local); return cmp_tmp; } fn airCmpVector(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = inst; return self.fail("TODO implement airCmpVector for wasm", .{}); } fn airCmpLtErrorsLen(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); _ = operand; return self.fail("TODO implement airCmpLtErrorsLen for wasm", .{}); } fn airBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const br = self.air.instructions.items(.data)[inst].br; const block = self.blocks.get(br.block_inst).?; // if operand has codegen bits we should break with a value if (self.air.typeOf(br.operand).hasRuntimeBitsIgnoreComptime()) { const operand = try self.resolveInst(br.operand); const op = switch (operand) { .stack_offset => try self.buildPointerOffset(operand, 0, .new), else => operand, }; try self.emitWValue(op); if (block.value != .none) { try self.addLabel(.local_set, block.value.local); } } // We map every block to its block index. // We then determine how far we have to jump to it by subtracting it from current block depth const idx: u32 = self.block_depth - block.label; try self.addLabel(.br, idx); return .none; } fn airNot(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); try self.emitWValue(operand); // wasm does not have booleans nor the `not` instruction, therefore compare with 0 // to create the same logic try self.addTag(.i32_eqz); // save the result in the local const not_tmp = try self.allocLocal(Type.initTag(.i32)); try self.addLabel(.local_set, not_tmp.local); return not_tmp; } fn airBreakpoint(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = self; _ = inst; // unsupported by wasm itself. Can be implemented once we support DWARF // for wasm return .none; } fn airUnreachable(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = inst; try self.addTag(.@"unreachable"); return .none; } fn airBitcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; return self.resolveInst(ty_op.operand); } fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.StructField, ty_pl.payload); const struct_ptr = try self.resolveInst(extra.data.struct_operand); const struct_ty = self.air.typeOf(extra.data.struct_operand).childType(); const offset = std.math.cast(u32, struct_ty.structFieldOffset(extra.data.field_index, self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Field type '{}' too big to fit into stack frame", .{ struct_ty.structFieldType(extra.data.field_index).fmt(module), }); }; return self.structFieldPtr(struct_ptr, offset); } fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u32) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const struct_ptr = try self.resolveInst(ty_op.operand); const struct_ty = self.air.typeOf(ty_op.operand).childType(); const field_ty = struct_ty.structFieldType(index); const offset = std.math.cast(u32, struct_ty.structFieldOffset(index, self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Field type '{}' too big to fit into stack frame", .{ field_ty.fmt(module), }); }; return self.structFieldPtr(struct_ptr, offset); } fn structFieldPtr(self: *Self, struct_ptr: WValue, offset: u32) InnerError!WValue { switch (struct_ptr) { .stack_offset => |stack_offset| { return WValue{ .stack_offset = stack_offset + offset }; }, else => return self.buildPointerOffset(struct_ptr, offset, .new), } } fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data; const struct_ty = self.air.typeOf(struct_field.struct_operand); const operand = try self.resolveInst(struct_field.struct_operand); const field_index = struct_field.field_index; const field_ty = struct_ty.structFieldType(field_index); if (!field_ty.hasRuntimeBitsIgnoreComptime()) return WValue{ .none = {} }; const offset = std.math.cast(u32, struct_ty.structFieldOffset(field_index, self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Field type '{}' too big to fit into stack frame", .{field_ty.fmt(module)}); }; if (isByRef(field_ty, self.target)) { switch (operand) { .stack_offset => |stack_offset| { return WValue{ .stack_offset = stack_offset + offset }; }, else => return self.buildPointerOffset(operand, offset, .new), } } return self.load(operand, field_ty, offset); } fn airSwitchBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { // result type is always 'noreturn' const blocktype = wasm.block_empty; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const target = try self.resolveInst(pl_op.operand); const target_ty = self.air.typeOf(pl_op.operand); const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload); var extra_index: usize = switch_br.end; var case_i: u32 = 0; // a list that maps each value with its value and body based on the order inside the list. const CaseValue = struct { integer: i32, value: Value }; var case_list = try std.ArrayList(struct { values: []const CaseValue, body: []const Air.Inst.Index, }).initCapacity(self.gpa, switch_br.data.cases_len); defer for (case_list.items) |case| { self.gpa.free(case.values); } else case_list.deinit(); var lowest_maybe: ?i32 = null; var highest_maybe: ?i32 = null; while (case_i < switch_br.data.cases_len) : (case_i += 1) { const case = self.air.extraData(Air.SwitchBr.Case, extra_index); const items = @ptrCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]); const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len]; extra_index = case.end + items.len + case_body.len; const values = try self.gpa.alloc(CaseValue, items.len); errdefer self.gpa.free(values); for (items) |ref, i| { const item_val = self.air.value(ref).?; const int_val = self.valueAsI32(item_val, target_ty); if (lowest_maybe == null or int_val < lowest_maybe.?) { lowest_maybe = int_val; } if (highest_maybe == null or int_val > highest_maybe.?) { highest_maybe = int_val; } values[i] = .{ .integer = int_val, .value = item_val }; } case_list.appendAssumeCapacity(.{ .values = values, .body = case_body }); try self.startBlock(.block, blocktype); } // When highest and lowest are null, we have no cases and can use a jump table const lowest = lowest_maybe orelse 0; const highest = highest_maybe orelse 0; // When the highest and lowest values are seperated by '50', // we define it as sparse and use an if/else-chain, rather than a jump table. // When the target is an integer size larger than u32, we have no way to use the value // as an index, therefore we also use an if/else-chain for those cases. // TODO: Benchmark this to find a proper value, LLVM seems to draw the line at '40~45'. const is_sparse = highest - lowest > 50 or target_ty.bitSize(self.target) > 32; const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len]; const has_else_body = else_body.len != 0; if (has_else_body) { try self.startBlock(.block, blocktype); } if (!is_sparse) { // Generate the jump table 'br_table' when the prongs are not sparse. // The value 'target' represents the index into the table. // Each index in the table represents a label to the branch // to jump to. try self.startBlock(.block, blocktype); try self.emitWValue(target); if (lowest < 0) { // since br_table works using indexes, starting from '0', we must ensure all values // we put inside, are atleast 0. try self.addImm32(lowest * -1); try self.addTag(.i32_add); } else if (lowest > 0) { // make the index start from 0 by substracting the lowest value try self.addImm32(lowest); try self.addTag(.i32_sub); } // Account for default branch so always add '1' const depth = @intCast(u32, highest - lowest + @boolToInt(has_else_body)) + 1; const jump_table: Mir.JumpTable = .{ .length = depth }; const table_extra_index = try self.addExtra(jump_table); try self.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } }); try self.mir_extra.ensureUnusedCapacity(self.gpa, depth); var value = lowest; while (value <= highest) : (value += 1) { // idx represents the branch we jump to const idx = blk: { for (case_list.items) |case, idx| { for (case.values) |case_value| { if (case_value.integer == value) break :blk @intCast(u32, idx); } } // error sets are almost always sparse so we use the default case // for errors that are not present in any branch. This is fine as this default // case will never be hit for those cases but we do save runtime cost and size // by using a jump table for this instead of if-else chains. break :blk if (has_else_body or target_ty.zigTypeTag() == .ErrorSet) case_i else unreachable; }; self.mir_extra.appendAssumeCapacity(idx); } else if (has_else_body) { self.mir_extra.appendAssumeCapacity(case_i); // default branch } try self.endBlock(); } const signedness: std.builtin.Signedness = blk: { // by default we tell the operand type is unsigned (i.e. bools and enum values) if (target_ty.zigTypeTag() != .Int) break :blk .unsigned; // incase of an actual integer, we emit the correct signedness break :blk target_ty.intInfo(self.target).signedness; }; for (case_list.items) |case| { // when sparse, we use if/else-chain, so emit conditional checks if (is_sparse) { // for single value prong we can emit a simple if if (case.values.len == 1) { try self.emitWValue(target); const val = try self.lowerConstant(case.values[0].value, target_ty); try self.emitWValue(val); const opcode = buildOpcode(.{ .valtype1 = typeToValtype(target_ty, self.target), .op = .ne, // not equal, because we want to jump out of this block if it does not match the condition. .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); try self.addLabel(.br_if, 0); } else { // in multi-value prongs we must check if any prongs match the target value. try self.startBlock(.block, blocktype); for (case.values) |value| { try self.emitWValue(target); const val = try self.lowerConstant(value.value, target_ty); try self.emitWValue(val); const opcode = buildOpcode(.{ .valtype1 = typeToValtype(target_ty, self.target), .op = .eq, .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); try self.addLabel(.br_if, 0); } // value did not match any of the prong values try self.addLabel(.br, 1); try self.endBlock(); } } try self.genBody(case.body); try self.endBlock(); } if (has_else_body) { try self.genBody(else_body); try self.endBlock(); } return .none; } fn airIsErr(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const err_ty = self.air.typeOf(un_op); const pl_ty = err_ty.errorUnionPayload(); // load the error tag value try self.emitWValue(operand); if (pl_ty.hasRuntimeBitsIgnoreComptime()) { try self.addMemArg(.i32_load16_u, .{ .offset = operand.offset(), .alignment = err_ty.errorUnionSet().abiAlignment(self.target), }); } // Compare the error value with '0' try self.addImm32(0); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const is_err_tmp = try self.allocLocal(Type.initTag(.i32)); // result is always an i32 try self.addLabel(.local_set, is_err_tmp.local); return is_err_tmp; } fn airUnwrapErrUnionPayload(self: *Self, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const op_ty = self.air.typeOf(ty_op.operand); const err_ty = if (op_is_ptr) op_ty.childType() else op_ty; const payload_ty = err_ty.errorUnionPayload(); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) return WValue{ .none = {} }; const err_align = err_ty.abiAlignment(self.target); const set_size = err_ty.errorUnionSet().abiSize(self.target); const offset = mem.alignForwardGeneric(u64, set_size, err_align); if (op_is_ptr or isByRef(payload_ty, self.target)) { return self.buildPointerOffset(operand, offset, .new); } return self.load(operand, payload_ty, @intCast(u32, offset)); } fn airUnwrapErrUnionError(self: *Self, inst: Air.Inst.Index, op_is_ptr: bool) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const op_ty = self.air.typeOf(ty_op.operand); const err_ty = if (op_is_ptr) op_ty.childType() else op_ty; const payload_ty = err_ty.errorUnionPayload(); if (op_is_ptr or !payload_ty.hasRuntimeBitsIgnoreComptime()) { return operand; } return self.load(operand, err_ty.errorUnionSet(), 0); } fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const op_ty = self.air.typeOf(ty_op.operand); if (!op_ty.hasRuntimeBitsIgnoreComptime()) return operand; const err_union_ty = self.air.getRefType(ty_op.ty); const err_align = err_union_ty.abiAlignment(self.target); const set_size = err_union_ty.errorUnionSet().abiSize(self.target); const offset = mem.alignForwardGeneric(u64, set_size, err_align); const err_union = try self.allocStack(err_union_ty); const payload_ptr = try self.buildPointerOffset(err_union, offset, .new); try self.store(payload_ptr, operand, op_ty, 0); // ensure we also write '0' to the error part, so any present stack value gets overwritten by it. try self.emitWValue(err_union); try self.addImm32(0); try self.addMemArg(.i32_store16, .{ .offset = err_union.offset(), .alignment = 2 }); return err_union; } fn airWrapErrUnionErr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const err_ty = self.air.getRefType(ty_op.ty); if (!err_ty.errorUnionPayload().hasRuntimeBitsIgnoreComptime()) return operand; const err_union = try self.allocStack(err_ty); try self.store(err_union, operand, err_ty.errorUnionSet(), 0); // write 'undefined' to the payload const err_align = err_ty.abiAlignment(self.target); const set_size = err_ty.errorUnionSet().abiSize(self.target); const offset = mem.alignForwardGeneric(u64, set_size, err_align); const payload_ptr = try self.buildPointerOffset(err_union, offset, .new); const len = @intCast(u32, err_ty.errorUnionPayload().abiSize(self.target)); try self.memset(payload_ptr, .{ .imm32 = len }, .{ .imm32 = 0xaaaaaaaa }); return err_union; } fn airIntcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const ty = self.air.getRefType(ty_op.ty); const operand = try self.resolveInst(ty_op.operand); const operand_ty = self.air.typeOf(ty_op.operand); if (ty.zigTypeTag() == .Vector or operand_ty.zigTypeTag() == .Vector) { return self.fail("todo Wasm intcast for vectors", .{}); } if (ty.abiSize(self.target) > 16 or operand_ty.abiSize(self.target) > 16) { return self.fail("todo Wasm intcast for bitsize > 128", .{}); } return self.intcast(operand, operand_ty, ty); } /// Upcasts or downcasts an integer based on the given and wanted types, /// and stores the result in a new operand. /// Asserts type's bitsize <= 128 fn intcast(self: *Self, operand: WValue, given: Type, wanted: Type) InnerError!WValue { const given_info = given.intInfo(self.target); const wanted_info = wanted.intInfo(self.target); assert(given_info.bits <= 128); assert(wanted_info.bits <= 128); const op_bits = toWasmBits(given_info.bits).?; const wanted_bits = toWasmBits(wanted_info.bits).?; if (op_bits == wanted_bits) return operand; if (op_bits > 32 and op_bits <= 64 and wanted_bits == 32) { try self.emitWValue(operand); try self.addTag(.i32_wrap_i64); } else if (op_bits == 32 and wanted_bits > 32 and wanted_bits <= 64) { try self.emitWValue(operand); try self.addTag(switch (wanted_info.signedness) { .signed => .i64_extend_i32_s, .unsigned => .i64_extend_i32_u, }); } else if (wanted_bits == 128) { // for 128bit integers we store the integer in the virtual stack, rather than a local const stack_ptr = try self.allocStack(wanted); // for 32 bit integers, we first coerce the value into a 64 bit integer before storing it // meaning less store operations are required. const lhs = if (op_bits == 32) blk: { const tmp = try self.intcast( operand, given, if (wanted.isSignedInt()) Type.i64 else Type.u64, ); break :blk tmp; } else operand; // store msb first try self.store(stack_ptr, lhs, Type.u64, 0); // For signed integers we shift msb by 63 (64bit integer - 1 sign bit) and store remaining value if (wanted.isSignedInt()) { const shr = try self.binOp(lhs, .{ .imm64 = 63 }, Type.i64, .shr); try self.store(stack_ptr, shr, Type.u64, 8); } else { // Ensure memory of lsb is zero'd try self.store(stack_ptr, .{ .imm64 = 0 }, Type.u64, 8); } return stack_ptr; } else unreachable; const result = try self.allocLocal(wanted); try self.addLabel(.local_set, result.local); return result; } fn airIsNull(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode, op_kind: enum { value, ptr }) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); const op_ty = self.air.typeOf(un_op); const optional_ty = if (op_kind == .ptr) op_ty.childType() else op_ty; return self.isNull(operand, optional_ty, opcode); } fn isNull(self: *Self, operand: WValue, optional_ty: Type, opcode: wasm.Opcode) InnerError!WValue { try self.emitWValue(operand); if (!optional_ty.isPtrLikeOptional()) { var buf: Type.Payload.ElemType = undefined; const payload_ty = optional_ty.optionalChild(&buf); // When payload is zero-bits, we can treat operand as a value, rather than // a pointer to the stack value if (payload_ty.hasRuntimeBitsIgnoreComptime()) { try self.addMemArg(.i32_load8_u, .{ .offset = operand.offset(), .alignment = 1 }); } } // Compare the null value with '0' try self.addImm32(0); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const is_null_tmp = try self.allocLocal(Type.initTag(.i32)); try self.addLabel(.local_set, is_null_tmp.local); return is_null_tmp; } fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const opt_ty = self.air.typeOf(ty_op.operand); const payload_ty = self.air.typeOfIndex(inst); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) return WValue{ .none = {} }; if (opt_ty.isPtrLikeOptional()) return operand; const offset = opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target); if (isByRef(payload_ty, self.target)) { return self.buildPointerOffset(operand, offset, .new); } return self.load(operand, payload_ty, @intCast(u32, offset)); } fn airOptionalPayloadPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const opt_ty = self.air.typeOf(ty_op.operand).childType(); var buf: Type.Payload.ElemType = undefined; const payload_ty = opt_ty.optionalChild(&buf); if (!payload_ty.hasRuntimeBitsIgnoreComptime() or opt_ty.isPtrLikeOptional()) { return operand; } const offset = opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target); return self.buildPointerOffset(operand, offset, .new); } fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const opt_ty = self.air.typeOf(ty_op.operand).childType(); var buf: Type.Payload.ElemType = undefined; const payload_ty = opt_ty.optionalChild(&buf); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { return self.fail("TODO: Implement OptionalPayloadPtrSet for optional with zero-sized type {}", .{payload_ty.fmtDebug()}); } if (opt_ty.isPtrLikeOptional()) { return operand; } const offset = std.math.cast(u32, opt_ty.abiSize(self.target) - payload_ty.abiSize(self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Optional type {} too big to fit into stack frame", .{opt_ty.fmt(module)}); }; try self.emitWValue(operand); try self.addImm32(1); try self.addMemArg(.i32_store8, .{ .offset = operand.offset(), .alignment = 1 }); return self.buildPointerOffset(operand, offset, .new); } fn airWrapOptional(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const payload_ty = self.air.typeOf(ty_op.operand); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { const non_null_bit = try self.allocStack(Type.initTag(.u1)); try self.emitWValue(non_null_bit); try self.addImm32(1); try self.addMemArg(.i32_store8, .{ .offset = non_null_bit.offset(), .alignment = 1 }); return non_null_bit; } const operand = try self.resolveInst(ty_op.operand); const op_ty = self.air.typeOfIndex(inst); if (op_ty.isPtrLikeOptional()) { return operand; } const offset = std.math.cast(u32, op_ty.abiSize(self.target) - payload_ty.abiSize(self.target)) catch { const module = self.bin_file.base.options.module.?; return self.fail("Optional type {} too big to fit into stack frame", .{op_ty.fmt(module)}); }; // Create optional type, set the non-null bit, and store the operand inside the optional type const result = try self.allocStack(op_ty); try self.emitWValue(result); try self.addImm32(1); try self.addMemArg(.i32_store8, .{ .offset = result.offset(), .alignment = 1 }); const payload_ptr = try self.buildPointerOffset(result, offset, .new); try self.store(payload_ptr, operand, payload_ty, 0); return result; } fn airSlice(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const slice_ty = self.air.typeOfIndex(inst); const slice = try self.allocStack(slice_ty); try self.store(slice, lhs, Type.usize, 0); try self.store(slice, rhs, Type.usize, self.ptrSize()); return slice; } fn airSliceLen(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); return self.load(operand, Type.usize, self.ptrSize()); } fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const slice_ty = self.air.typeOf(bin_op.lhs); const slice = try self.resolveInst(bin_op.lhs); const index = try self.resolveInst(bin_op.rhs); const elem_ty = slice_ty.childType(); const elem_size = elem_ty.abiSize(self.target); // load pointer onto stack const slice_ptr = try self.load(slice, Type.usize, 0); try self.addLabel(.local_get, slice_ptr.local); // calculate index into slice try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const result = try self.allocLocal(elem_ty); try self.addLabel(.local_set, result.local); if (isByRef(elem_ty, self.target)) { return result; } return self.load(result, elem_ty, 0); } fn airSliceElemPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue.none; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const elem_ty = self.air.getRefType(ty_pl.ty).childType(); const elem_size = elem_ty.abiSize(self.target); const slice = try self.resolveInst(bin_op.lhs); const index = try self.resolveInst(bin_op.rhs); const slice_ptr = try self.load(slice, Type.usize, 0); try self.addLabel(.local_get, slice_ptr.local); // calculate index into slice try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const result = try self.allocLocal(Type.initTag(.i32)); try self.addLabel(.local_set, result.local); return result; } fn airSlicePtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); return self.load(operand, Type.usize, 0); } fn airTrunc(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const wanted_ty = self.air.getRefType(ty_op.ty); const int_info = wanted_ty.intInfo(self.target); const wanted_bits = int_info.bits; _ = toWasmBits(wanted_bits) orelse { return self.fail("TODO: Implement wasm integer truncation for integer bitsize: {d}", .{wanted_bits}); }; return self.wrapOperand(operand, wanted_ty); } fn airBoolToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; return self.resolveInst(un_op); } fn airArrayToSlice(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const array_ty = self.air.typeOf(ty_op.operand).childType(); const slice_ty = self.air.getRefType(ty_op.ty); // create a slice on the stack const slice_local = try self.allocStack(slice_ty); // store the array ptr in the slice if (array_ty.hasRuntimeBitsIgnoreComptime()) { try self.store(slice_local, operand, Type.usize, 0); } // store the length of the array in the slice const len = WValue{ .imm32 = @intCast(u32, array_ty.arrayLen()) }; try self.store(slice_local, len, Type.usize, self.ptrSize()); return slice_local; } fn airPtrToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); switch (operand) { // for stack offset, return a pointer to this offset. .stack_offset => return self.buildPointerOffset(operand, 0, .new), else => return operand, } } fn airPtrElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const ptr_ty = self.air.typeOf(bin_op.lhs); const ptr = try self.resolveInst(bin_op.lhs); const index = try self.resolveInst(bin_op.rhs); const elem_ty = ptr_ty.childType(); const elem_size = elem_ty.abiSize(self.target); // load pointer onto the stack if (ptr_ty.isSlice()) { const ptr_local = try self.load(ptr, Type.usize, 0); try self.addLabel(.local_get, ptr_local.local); } else { const pointer = switch (ptr) { .stack_offset => try self.buildPointerOffset(ptr, 0, .new), else => ptr, }; try self.emitWValue(pointer); } // calculate index into slice try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const result = try self.allocLocal(elem_ty); try self.addLabel(.local_set, result.local); if (isByRef(elem_ty, self.target)) { return result; } return self.load(result, elem_ty, 0); } fn airPtrElemPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const ptr_ty = self.air.typeOf(bin_op.lhs); const elem_ty = self.air.getRefType(ty_pl.ty).childType(); const elem_size = elem_ty.abiSize(self.target); const ptr = try self.resolveInst(bin_op.lhs); const index = try self.resolveInst(bin_op.rhs); // load pointer onto the stack if (ptr_ty.isSlice()) { const ptr_local = try self.load(ptr, Type.usize, 0); try self.addLabel(.local_get, ptr_local.local); } else { const pointer = switch (ptr) { .stack_offset => try self.buildPointerOffset(ptr, 0, .new), else => ptr, }; try self.emitWValue(pointer); } // calculate index into ptr try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const result = try self.allocLocal(Type.initTag(.i32)); try self.addLabel(.local_set, result.local); return result; } fn airPtrBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const ptr = try self.resolveInst(bin_op.lhs); const offset = try self.resolveInst(bin_op.rhs); const ptr_ty = self.air.typeOf(bin_op.lhs); const pointee_ty = switch (ptr_ty.ptrSize()) { .One => ptr_ty.childType().childType(), // ptr to array, so get array element type else => ptr_ty.childType(), }; const valtype = typeToValtype(Type.usize, self.target); const mul_opcode = buildOpcode(.{ .valtype1 = valtype, .op = .mul }); const bin_opcode = buildOpcode(.{ .valtype1 = valtype, .op = op }); const pointer = switch (ptr) { .stack_offset => try self.buildPointerOffset(ptr, 0, .new), else => ptr, }; try self.emitWValue(pointer); try self.emitWValue(offset); try self.addImm32(@bitCast(i32, @intCast(u32, pointee_ty.abiSize(self.target)))); try self.addTag(Mir.Inst.Tag.fromOpcode(mul_opcode)); try self.addTag(Mir.Inst.Tag.fromOpcode(bin_opcode)); const result = try self.allocLocal(Type.usize); try self.addLabel(.local_set, result.local); return result; } fn airMemset(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const bin_op = self.air.extraData(Air.Bin, pl_op.payload).data; const ptr = try self.resolveInst(pl_op.operand); const value = try self.resolveInst(bin_op.lhs); const len = try self.resolveInst(bin_op.rhs); try self.memset(ptr, len, value); return WValue{ .none = {} }; } /// Sets a region of memory at `ptr` to the value of `value` /// When the user has enabled the bulk_memory feature, we lower /// this to wasm's memset instruction. When the feature is not present, /// we implement it manually. fn memset(self: *Self, ptr: WValue, len: WValue, value: WValue) InnerError!void { // When bulk_memory is enabled, we lower it to wasm's memset instruction. // If not, we lower it ourselves if (std.Target.wasm.featureSetHas(self.target.cpu.features, .bulk_memory)) { switch (ptr) { .stack_offset => try self.emitWValue(try self.buildPointerOffset(ptr, 0, .new)), else => try self.emitWValue(ptr), } try self.emitWValue(value); try self.emitWValue(len); try self.addExtended(.memory_fill); return; } // When the length is comptime-known we do the loop at codegen, rather // than emitting a runtime loop into the binary switch (len) { .imm32, .imm64 => { const length = switch (len) { .imm32 => |val| val, .imm64 => |val| val, else => unreachable, }; var offset: u32 = 0; const base = ptr.offset(); while (offset < length) : (offset += 1) { try self.emitWValue(ptr); try self.emitWValue(value); switch (self.arch()) { .wasm32 => { try self.addMemArg(.i32_store8, .{ .offset = base + offset, .alignment = 1 }); }, .wasm64 => { try self.addMemArg(.i64_store8, .{ .offset = base + offset, .alignment = 1 }); }, else => unreachable, } } }, else => { // TODO: We should probably lower this to a call to compiler_rt // But for now, we implement it manually const offset = try self.allocLocal(Type.usize); // local for counter // outer block to jump to when loop is done try self.startBlock(.block, wasm.block_empty); try self.startBlock(.loop, wasm.block_empty); try self.emitWValue(offset); try self.emitWValue(len); switch (self.arch()) { .wasm32 => try self.addTag(.i32_eq), .wasm64 => try self.addTag(.i64_eq), else => unreachable, } try self.addLabel(.br_if, 1); // jump out of loop into outer block (finished) try self.emitWValue(ptr); try self.emitWValue(offset); switch (self.arch()) { .wasm32 => try self.addTag(.i32_add), .wasm64 => try self.addTag(.i64_add), else => unreachable, } try self.emitWValue(value); const mem_store_op: Mir.Inst.Tag = switch (self.arch()) { .wasm32 => .i32_store8, .wasm64 => .i64_store8, else => unreachable, }; try self.addMemArg(mem_store_op, .{ .offset = ptr.offset(), .alignment = 1 }); try self.emitWValue(offset); try self.addImm32(1); switch (self.arch()) { .wasm32 => try self.addTag(.i32_add), .wasm64 => try self.addTag(.i64_add), else => unreachable, } try self.addLabel(.local_set, offset.local); try self.addLabel(.br, 0); // jump to start of loop try self.endBlock(); try self.endBlock(); }, } } fn airArrayElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const array_ty = self.air.typeOf(bin_op.lhs); const array = try self.resolveInst(bin_op.lhs); const index = try self.resolveInst(bin_op.rhs); const elem_ty = array_ty.childType(); const elem_size = elem_ty.abiSize(self.target); const array_ptr = switch (array) { .stack_offset => try self.buildPointerOffset(array, 0, .new), else => array, }; try self.emitWValue(array_ptr); try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const result = try self.allocLocal(Type.usize); try self.addLabel(.local_set, result.local); if (isByRef(elem_ty, self.target)) { return result; } return self.load(result, elem_ty, 0); } fn airFloatToInt(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const dest_ty = self.air.typeOfIndex(inst); const op_ty = self.air.typeOf(ty_op.operand); try self.emitWValue(operand); const op = buildOpcode(.{ .op = .trunc, .valtype1 = typeToValtype(dest_ty, self.target), .valtype2 = typeToValtype(op_ty, self.target), .signedness = if (dest_ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(op)); const result = try self.allocLocal(dest_ty); try self.addLabel(.local_set, result.local); return self.wrapOperand(result, dest_ty); } fn airIntToFloat(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const dest_ty = self.air.typeOfIndex(inst); const op_ty = self.air.typeOf(ty_op.operand); try self.emitWValue(operand); const op = buildOpcode(.{ .op = .convert, .valtype1 = typeToValtype(dest_ty, self.target), .valtype2 = typeToValtype(op_ty, self.target), .signedness = if (op_ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(op)); const result = try self.allocLocal(dest_ty); try self.addLabel(.local_set, result.local); return result; } fn airSplat(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); _ = operand; return self.fail("TODO: Implement wasm airSplat", .{}); } fn airSelect(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const operand = try self.resolveInst(pl_op.operand); _ = operand; return self.fail("TODO: Implement wasm airSelect", .{}); } fn airShuffle(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); _ = operand; return self.fail("TODO: Implement wasm airShuffle", .{}); } fn airReduce(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const reduce = self.air.instructions.items(.data)[inst].reduce; const operand = try self.resolveInst(reduce.operand); _ = operand; return self.fail("TODO: Implement wasm airReduce", .{}); } fn airAggregateInit(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const result_ty = self.air.typeOfIndex(inst); const len = @intCast(usize, result_ty.arrayLen()); const elements = @ptrCast([]const Air.Inst.Ref, self.air.extra[ty_pl.payload..][0..len]); switch (result_ty.zigTypeTag()) { .Vector => return self.fail("TODO: Wasm backend: implement airAggregateInit for vectors", .{}), .Array => { const result = try self.allocStack(result_ty); const elem_ty = result_ty.childType(); const elem_size = @intCast(u32, elem_ty.abiSize(self.target)); // When the element type is by reference, we must copy the entire // value. It is therefore safer to move the offset pointer and store // each value individually, instead of using store offsets. if (isByRef(elem_ty, self.target)) { // copy stack pointer into a temporary local, which is // moved for each element to store each value in the right position. const offset = try self.buildPointerOffset(result, 0, .new); for (elements) |elem, elem_index| { const elem_val = try self.resolveInst(elem); try self.store(offset, elem_val, elem_ty, 0); if (elem_index < elements.len - 1) { _ = try self.buildPointerOffset(offset, elem_size, .modify); } } } else { var offset: u32 = 0; for (elements) |elem| { const elem_val = try self.resolveInst(elem); try self.store(result, elem_val, elem_ty, offset); offset += elem_size; } } return result; }, .Struct => { const result = try self.allocStack(result_ty); const offset = try self.buildPointerOffset(result, 0, .new); // pointer to offset for (elements) |elem, elem_index| { if (result_ty.structFieldValueComptime(elem_index) != null) continue; const elem_ty = result_ty.structFieldType(elem_index); const elem_size = @intCast(u32, elem_ty.abiSize(self.target)); const value = try self.resolveInst(elem); try self.store(offset, value, elem_ty, 0); if (elem_index < elements.len - 1) { _ = try self.buildPointerOffset(offset, elem_size, .modify); } } return result; }, else => unreachable, } } fn airUnionInit(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data; const union_ty = self.air.typeOfIndex(inst); const layout = union_ty.unionGetLayout(self.target); if (layout.payload_size == 0) { if (layout.tag_size == 0) { return WValue{ .none = {} }; } assert(!isByRef(union_ty, self.target)); return WValue{ .imm32 = extra.field_index }; } assert(isByRef(union_ty, self.target)); const result_ptr = try self.allocStack(union_ty); const payload = try self.resolveInst(extra.init); const union_obj = union_ty.cast(Type.Payload.Union).?.data; assert(union_obj.haveFieldTypes()); const field = union_obj.fields.values()[extra.field_index]; if (layout.tag_align >= layout.payload_align) { const payload_ptr = try self.buildPointerOffset(result_ptr, layout.tag_size, .new); try self.store(payload_ptr, payload, field.ty, 0); } else { try self.store(result_ptr, payload, field.ty, 0); } return result_ptr; } fn airPrefetch(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const prefetch = self.air.instructions.items(.data)[inst].prefetch; _ = prefetch; return WValue{ .none = {} }; } fn airWasmMemorySize(self: *Self, inst: Air.Inst.Index) !WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const result = try self.allocLocal(self.air.typeOfIndex(inst)); try self.addLabel(.memory_size, pl_op.payload); try self.addLabel(.local_set, result.local); return result; } fn airWasmMemoryGrow(self: *Self, inst: Air.Inst.Index) !WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const operand = try self.resolveInst(pl_op.operand); const result = try self.allocLocal(self.air.typeOfIndex(inst)); try self.emitWValue(operand); try self.addLabel(.memory_grow, pl_op.payload); try self.addLabel(.local_set, result.local); return result; } fn cmpOptionals(self: *Self, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue { assert(operand_ty.hasRuntimeBitsIgnoreComptime()); assert(op == .eq or op == .neq); var buf: Type.Payload.ElemType = undefined; const payload_ty = operand_ty.optionalChild(&buf); const offset = @intCast(u32, operand_ty.abiSize(self.target) - payload_ty.abiSize(self.target)); const lhs_is_null = try self.isNull(lhs, operand_ty, .i32_eq); const rhs_is_null = try self.isNull(rhs, operand_ty, .i32_eq); // We store the final result in here that will be validated // if the optional is truly equal. const result = try self.allocLocal(Type.initTag(.i32)); try self.startBlock(.block, wasm.block_empty); try self.emitWValue(lhs_is_null); try self.emitWValue(rhs_is_null); try self.addTag(.i32_ne); // inverse so we can exit early try self.addLabel(.br_if, 0); const lhs_pl = try self.load(lhs, payload_ty, offset); const rhs_pl = try self.load(rhs, payload_ty, offset); try self.emitWValue(lhs_pl); try self.emitWValue(rhs_pl); const opcode = buildOpcode(.{ .op = .ne, .valtype1 = typeToValtype(payload_ty, self.target) }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); try self.addLabel(.br_if, 0); try self.addImm32(1); try self.addLabel(.local_set, result.local); try self.endBlock(); try self.emitWValue(result); try self.addImm32(0); try self.addTag(if (op == .eq) .i32_ne else .i32_eq); try self.addLabel(.local_set, result.local); return result; } /// Compares big integers by checking both its high bits and low bits. /// TODO: Lower this to compiler_rt call fn cmpBigInt(self: *Self, lhs: WValue, rhs: WValue, operand_ty: Type, op: std.math.CompareOperator) InnerError!WValue { if (operand_ty.intInfo(self.target).bits > 128) { return self.fail("TODO: Support cmpBigInt for integer bitsize: '{d}'", .{operand_ty.intInfo(self.target).bits}); } const result = try self.allocLocal(Type.initTag(.i32)); { try self.startBlock(.block, wasm.block_empty); const lhs_high_bit = try self.load(lhs, Type.u64, 0); const lhs_low_bit = try self.load(lhs, Type.u64, 8); const rhs_high_bit = try self.load(rhs, Type.u64, 0); const rhs_low_bit = try self.load(rhs, Type.u64, 8); try self.emitWValue(lhs_high_bit); try self.emitWValue(rhs_high_bit); try self.addTag(.i64_ne); try self.addLabel(.br_if, 0); try self.emitWValue(lhs_low_bit); try self.emitWValue(rhs_low_bit); try self.addTag(.i64_ne); try self.addLabel(.br_if, 0); try self.addImm32(1); try self.addLabel(.local_set, result.local); try self.endBlock(); } try self.emitWValue(result); try self.addImm32(0); try self.addTag(if (op == .eq) .i32_ne else .i32_eq); try self.addLabel(.local_set, result.local); return result; } fn airSetUnionTag(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const un_ty = self.air.typeOf(bin_op.lhs).childType(); const tag_ty = self.air.typeOf(bin_op.rhs); const layout = un_ty.unionGetLayout(self.target); if (layout.tag_size == 0) return WValue{ .none = {} }; const union_ptr = try self.resolveInst(bin_op.lhs); const new_tag = try self.resolveInst(bin_op.rhs); if (layout.payload_size == 0) { try self.store(union_ptr, new_tag, tag_ty, 0); return WValue{ .none = {} }; } // when the tag alignment is smaller than the payload, the field will be stored // after the payload. const offset = if (layout.tag_align < layout.payload_align) blk: { break :blk @intCast(u32, layout.payload_size); } else @as(u32, 0); try self.store(union_ptr, new_tag, tag_ty, offset); return WValue{ .none = {} }; } fn airGetUnionTag(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const un_ty = self.air.typeOf(ty_op.operand); const tag_ty = self.air.typeOfIndex(inst); const layout = un_ty.unionGetLayout(self.target); if (layout.tag_size == 0) return WValue{ .none = {} }; const operand = try self.resolveInst(ty_op.operand); // when the tag alignment is smaller than the payload, the field will be stored // after the payload. const offset = if (layout.tag_align < layout.payload_align) blk: { break :blk @intCast(u32, layout.payload_size); } else @as(u32, 0); return self.load(operand, tag_ty, offset); } fn airFpext(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const dest_ty = self.air.typeOfIndex(inst); const dest_bits = dest_ty.floatBits(self.target); const src_bits = self.air.typeOf(ty_op.operand).floatBits(self.target); const operand = try self.resolveInst(ty_op.operand); if (dest_bits == 64 and src_bits == 32) { const result = try self.allocLocal(dest_ty); try self.emitWValue(operand); try self.addTag(.f64_promote_f32); try self.addLabel(.local_set, result.local); return result; } else { // TODO: Emit a call to compiler-rt to extend the float. e.g. __extendhfsf2 return self.fail("TODO: Implement 'fpext' for floats with bitsize: {d}", .{dest_bits}); } } fn airFptrunc(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const dest_ty = self.air.typeOfIndex(inst); const dest_bits = dest_ty.floatBits(self.target); const src_bits = self.air.typeOf(ty_op.operand).floatBits(self.target); const operand = try self.resolveInst(ty_op.operand); if (dest_bits == 32 and src_bits == 64) { const result = try self.allocLocal(dest_ty); try self.emitWValue(operand); try self.addTag(.f32_demote_f64); try self.addLabel(.local_set, result.local); return result; } else { // TODO: Emit a call to compiler-rt to trunc the float. e.g. __truncdfhf2 return self.fail("TODO: Implement 'fptrunc' for floats with bitsize: {d}", .{dest_bits}); } } fn airErrUnionPayloadPtrSet(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const err_set_ty = self.air.typeOf(ty_op.operand).childType(); const err_ty = err_set_ty.errorUnionSet(); const payload_ty = err_set_ty.errorUnionPayload(); const operand = try self.resolveInst(ty_op.operand); // set error-tag to '0' to annotate error union is non-error try self.store(operand, .{ .imm32 = 0 }, err_ty, 0); if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { return operand; } const err_align = err_set_ty.abiAlignment(self.target); const set_size = err_ty.abiSize(self.target); const offset = mem.alignForwardGeneric(u64, set_size, err_align); return self.buildPointerOffset(operand, @intCast(u32, offset), .new); } fn airFieldParentPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data; const field_ptr = try self.resolveInst(extra.field_ptr); const struct_ty = self.air.getRefType(ty_pl.ty).childType(); const field_offset = struct_ty.structFieldOffset(extra.field_index, self.target); if (field_offset == 0) { return field_ptr; } const base = try self.buildPointerOffset(field_ptr, 0, .new); try self.addLabel(.local_get, base.local); try self.addImm32(@bitCast(i32, @intCast(u32, field_offset))); try self.addTag(.i32_sub); try self.addLabel(.local_set, base.local); return base; } fn airMemcpy(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const bin_op = self.air.extraData(Air.Bin, pl_op.payload).data; const dst = try self.resolveInst(pl_op.operand); const src = try self.resolveInst(bin_op.lhs); const len = try self.resolveInst(bin_op.rhs); try self.memcpy(dst, src, len); return WValue{ .none = {} }; } fn airPopcount(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = try self.resolveInst(ty_op.operand); const op_ty = self.air.typeOf(ty_op.operand); if (op_ty.zigTypeTag() == .Vector) { return self.fail("TODO: Implement @popCount for vectors", .{}); } const int_info = op_ty.intInfo(self.target); const bits = int_info.bits; const wasm_bits = toWasmBits(bits) orelse { return self.fail("TODO: Implement @popCount for integers with bitsize '{d}'", .{bits}); }; try self.emitWValue(operand); // for signed integers we first mask the signedness bit if (int_info.signedness == .signed and wasm_bits != bits) { switch (wasm_bits) { 32 => { const mask = (@as(u32, 1) << @intCast(u5, bits)) - 1; try self.addImm32(@bitCast(i32, mask)); try self.addTag(.i32_and); }, 64 => { const mask = (@as(u64, 1) << @intCast(u6, bits)) - 1; try self.addImm64(mask); try self.addTag(.i64_and); }, else => unreachable, } } switch (wasm_bits) { 32 => try self.addTag(.i32_popcnt), 64 => try self.addTag(.i64_popcnt), else => unreachable, } const result = try self.allocLocal(op_ty); try self.addLabel(.local_set, result.local); return result; } fn airErrorName(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = try self.resolveInst(un_op); // First retrieve the symbol index to the error name table // that will be used to emit a relocation for the pointer // to the error name table. // // Each entry to this table is a slice (ptr+len). // The operand in this instruction represents the index within this table. // This means to get the final name, we emit the base pointer and then perform // pointer arithmetic to find the pointer to this slice and return that. // // As the names are global and the slice elements are constant, we do not have // to make a copy of the ptr+value but can point towards them directly. const error_table_symbol = try self.bin_file.getErrorTableSymbol(); const name_ty = Type.initTag(.const_slice_u8_sentinel_0); const abi_size = name_ty.abiSize(self.target); const error_name_value: WValue = .{ .memory = error_table_symbol }; // emitting this will create a relocation try self.emitWValue(error_name_value); try self.emitWValue(operand); switch (self.arch()) { .wasm32 => { try self.addImm32(@bitCast(i32, @intCast(u32, abi_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); }, .wasm64 => { try self.addImm64(abi_size); try self.addTag(.i64_mul); try self.addTag(.i64_add); }, else => unreachable, } const result_ptr = try self.allocLocal(Type.usize); try self.addLabel(.local_set, result_ptr.local); return result_ptr; } fn airPtrSliceFieldPtr(self: *Self, inst: Air.Inst.Index, offset: u32) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const slice_ptr = try self.resolveInst(ty_op.operand); return self.buildPointerOffset(slice_ptr, offset, .new); } fn airAddSubWithOverflow(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { assert(op == .add or op == .sub); const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const lhs_op = try self.resolveInst(extra.lhs); const rhs_op = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); if (lhs_ty.zigTypeTag() == .Vector) { return self.fail("TODO: Implement overflow arithmetic for vectors", .{}); } const int_info = lhs_ty.intInfo(self.target); const is_signed = int_info.signedness == .signed; const wasm_bits = toWasmBits(int_info.bits) orelse { return self.fail("TODO: Implement {{add/sub}}_with_overflow for integer bitsize: {d}", .{int_info.bits}); }; const zero = switch (wasm_bits) { 32 => WValue{ .imm32 = 0 }, 64 => WValue{ .imm64 = 0 }, else => unreachable, }; const shift_amt = wasm_bits - int_info.bits; const shift_val = switch (wasm_bits) { 32 => WValue{ .imm32 = shift_amt }, 64 => WValue{ .imm64 = shift_amt }, else => unreachable, }; // for signed integers, we first apply signed shifts by the difference in bits // to get the signed value, as we store it internally as 2's complement. const lhs = if (wasm_bits != int_info.bits and is_signed) blk: { const shl = try self.binOp(lhs_op, shift_val, lhs_ty, .shl); break :blk try self.binOp(shl, shift_val, lhs_ty, .shr); } else lhs_op; const rhs = if (wasm_bits != int_info.bits and is_signed) blk: { const shl = try self.binOp(rhs_op, shift_val, lhs_ty, .shl); break :blk try self.binOp(shl, shift_val, lhs_ty, .shr); } else rhs_op; const bin_op = try self.binOp(lhs, rhs, lhs_ty, op); const result = if (wasm_bits != int_info.bits) blk: { break :blk try self.wrapOperand(bin_op, lhs_ty); } else bin_op; const cmp_op: std.math.CompareOperator = if (op == .sub) .gt else .lt; const overflow_bit: WValue = if (is_signed) blk: { if (wasm_bits == int_info.bits) { const cmp_zero = try self.cmp(rhs, zero, lhs_ty, cmp_op); const lt = try self.cmp(bin_op, lhs, lhs_ty, .lt); break :blk try self.binOp(cmp_zero, lt, Type.u32, .xor); // result of cmp_zero and lt is always 32bit } const shl = try self.binOp(bin_op, shift_val, lhs_ty, .shl); const shr = try self.binOp(shl, shift_val, lhs_ty, .shr); break :blk try self.cmp(shr, bin_op, lhs_ty, .neq); } else if (wasm_bits == int_info.bits) try self.cmp(bin_op, lhs, lhs_ty, cmp_op) else try self.cmp(bin_op, result, lhs_ty, .neq); const result_ptr = try self.allocStack(self.air.typeOfIndex(inst)); try self.store(result_ptr, result, lhs_ty, 0); const offset = @intCast(u32, lhs_ty.abiSize(self.target)); try self.store(result_ptr, overflow_bit, Type.initTag(.u1), offset); return result_ptr; } fn airShlWithOverflow(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try self.resolveInst(extra.lhs); const rhs = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); if (lhs_ty.zigTypeTag() == .Vector) { return self.fail("TODO: Implement overflow arithmetic for vectors", .{}); } const int_info = lhs_ty.intInfo(self.target); const is_signed = int_info.signedness == .signed; const wasm_bits = toWasmBits(int_info.bits) orelse { return self.fail("TODO: Implement shl_with_overflow for integer bitsize: {d}", .{int_info.bits}); }; const shl = try self.binOp(lhs, rhs, lhs_ty, .shl); const result = if (wasm_bits != int_info.bits) blk: { break :blk try self.wrapOperand(shl, lhs_ty); } else shl; const overflow_bit = if (wasm_bits != int_info.bits and is_signed) blk: { const shift_amt = wasm_bits - int_info.bits; const shift_val = switch (wasm_bits) { 32 => WValue{ .imm32 = shift_amt }, 64 => WValue{ .imm64 = shift_amt }, else => unreachable, }; const secondary_shl = try self.binOp(shl, shift_val, lhs_ty, .shl); const initial_shr = try self.binOp(secondary_shl, shift_val, lhs_ty, .shr); const shr = try self.wrapBinOp(initial_shr, rhs, lhs_ty, .shr); break :blk try self.cmp(lhs, shr, lhs_ty, .neq); } else blk: { const shr = try self.binOp(result, rhs, lhs_ty, .shr); break :blk try self.cmp(lhs, shr, lhs_ty, .neq); }; const result_ptr = try self.allocStack(self.air.typeOfIndex(inst)); try self.store(result_ptr, result, lhs_ty, 0); const offset = @intCast(u32, lhs_ty.abiSize(self.target)); try self.store(result_ptr, overflow_bit, Type.initTag(.u1), offset); return result_ptr; } fn airMulWithOverflow(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try self.resolveInst(extra.lhs); const rhs = try self.resolveInst(extra.rhs); const lhs_ty = self.air.typeOf(extra.lhs); if (lhs_ty.zigTypeTag() == .Vector) { return self.fail("TODO: Implement overflow arithmetic for vectors", .{}); } // We store the bit if it's overflowed or not in this. As it's zero-initialized // we only need to update it if an overflow (or underflow) occured. const overflow_bit = try self.allocLocal(Type.initTag(.u1)); const int_info = lhs_ty.intInfo(self.target); const wasm_bits = toWasmBits(int_info.bits) orelse { return self.fail("TODO: Implement overflow arithmetic for integer bitsize: {d}", .{int_info.bits}); }; if (wasm_bits == 64) { return self.fail("TODO: Implement `@mulWithOverflow` for integer bitsize: {d}", .{int_info.bits}); } const zero = switch (wasm_bits) { 32 => WValue{ .imm32 = 0 }, 64 => WValue{ .imm64 = 0 }, else => unreachable, }; // for 32 bit integers we upcast it to a 64bit integer const bin_op = if (int_info.bits == 32) blk: { const new_ty = if (int_info.signedness == .signed) Type.i64 else Type.u64; const lhs_upcast = try self.intcast(lhs, lhs_ty, new_ty); const rhs_upcast = try self.intcast(rhs, lhs_ty, new_ty); const bin_op = try self.binOp(lhs_upcast, rhs_upcast, new_ty, .mul); if (int_info.signedness == .unsigned) { const shr = try self.binOp(bin_op, .{ .imm64 = int_info.bits }, new_ty, .shr); const wrap = try self.intcast(shr, new_ty, lhs_ty); const cmp_res = try self.cmp(wrap, zero, lhs_ty, .neq); try self.emitWValue(cmp_res); try self.addLabel(.local_set, overflow_bit.local); break :blk try self.intcast(bin_op, new_ty, lhs_ty); } else { const down_cast = try self.intcast(bin_op, new_ty, lhs_ty); const shr = try self.binOp(down_cast, .{ .imm32 = int_info.bits - 1 }, lhs_ty, .shr); const shr_res = try self.binOp(bin_op, .{ .imm64 = int_info.bits }, new_ty, .shr); const down_shr_res = try self.intcast(shr_res, new_ty, lhs_ty); const cmp_res = try self.cmp(down_shr_res, shr, lhs_ty, .neq); try self.emitWValue(cmp_res); try self.addLabel(.local_set, overflow_bit.local); break :blk down_cast; } } else if (int_info.signedness == .signed) blk: { const shift_imm = if (wasm_bits == 32) WValue{ .imm32 = wasm_bits - int_info.bits } else WValue{ .imm64 = wasm_bits - int_info.bits }; const lhs_shl = try self.binOp(lhs, shift_imm, lhs_ty, .shl); const lhs_shr = try self.binOp(lhs_shl, shift_imm, lhs_ty, .shr); const rhs_shl = try self.binOp(rhs, shift_imm, lhs_ty, .shl); const rhs_shr = try self.binOp(rhs_shl, shift_imm, lhs_ty, .shr); const bin_op = try self.binOp(lhs_shr, rhs_shr, lhs_ty, .mul); const shl = try self.binOp(bin_op, shift_imm, lhs_ty, .shl); const shr = try self.binOp(shl, shift_imm, lhs_ty, .shr); const cmp_op = try self.cmp(shr, bin_op, lhs_ty, .neq); try self.emitWValue(cmp_op); try self.addLabel(.local_set, overflow_bit.local); break :blk try self.wrapOperand(bin_op, lhs_ty); } else blk: { const bin_op = try self.binOp(lhs, rhs, lhs_ty, .mul); const shift_imm = if (wasm_bits == 32) WValue{ .imm32 = int_info.bits } else WValue{ .imm64 = int_info.bits }; const shr = try self.binOp(bin_op, shift_imm, lhs_ty, .shr); const cmp_op = try self.cmp(shr, zero, lhs_ty, .neq); try self.emitWValue(cmp_op); try self.addLabel(.local_set, overflow_bit.local); break :blk try self.wrapOperand(bin_op, lhs_ty); }; const result_ptr = try self.allocStack(self.air.typeOfIndex(inst)); try self.store(result_ptr, bin_op, lhs_ty, 0); const offset = @intCast(u32, lhs_ty.abiSize(self.target)); try self.store(result_ptr, overflow_bit, Type.initTag(.u1), offset); return result_ptr; } fn airMaxMin(self: *Self, inst: Air.Inst.Index, op: enum { max, min }) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const ty = self.air.typeOfIndex(inst); if (ty.zigTypeTag() == .Vector) { return self.fail("TODO: `@maximum` and `@minimum` for vectors", .{}); } if (ty.abiSize(self.target) > 8) { return self.fail("TODO: `@maximum` and `@minimum` for types larger than 8 bytes", .{}); } const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); // operands to select from try self.emitWValue(lhs); try self.emitWValue(rhs); // operands to compare try self.emitWValue(lhs); try self.emitWValue(rhs); const opcode = buildOpcode(.{ .op = if (op == .max) .gt else .lt, .signedness = if (ty.isSignedInt()) .signed else .unsigned, .valtype1 = typeToValtype(ty, self.target), }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); // based on the result from comparison, return operand 0 or 1. try self.addTag(.select); // store result in local const result = try self.allocLocal(ty); try self.addLabel(.local_set, result.local); return result; } fn airMulAdd(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const bin_op = self.air.extraData(Air.Bin, pl_op.payload).data; const ty = self.air.typeOfIndex(inst); if (ty.zigTypeTag() == .Vector) { return self.fail("TODO: `@mulAdd` for vectors", .{}); } if (ty.floatBits(self.target) == 16) { return self.fail("TODO: `@mulAdd` for f16", .{}); } const addend = try self.resolveInst(pl_op.operand); const lhs = try self.resolveInst(bin_op.lhs); const rhs = try self.resolveInst(bin_op.rhs); const mul_result = try self.binOp(lhs, rhs, ty, .mul); return self.binOp(mul_result, addend, ty, .add); } fn airClz(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const ty = self.air.typeOf(ty_op.operand); const result_ty = self.air.typeOfIndex(inst); if (ty.zigTypeTag() == .Vector) { return self.fail("TODO: `@clz` for vectors", .{}); } const operand = try self.resolveInst(ty_op.operand); const int_info = ty.intInfo(self.target); const wasm_bits = toWasmBits(int_info.bits) orelse { return self.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits}); }; try self.emitWValue(operand); switch (wasm_bits) { 32 => { try self.addTag(.i32_clz); if (wasm_bits != int_info.bits) { const tmp = try self.allocLocal(ty); try self.addLabel(.local_set, tmp.local); const val: i32 = -@intCast(i32, wasm_bits - int_info.bits); return self.wrapBinOp(tmp, .{ .imm32 = @bitCast(u32, val) }, ty, .add); } }, 64 => { try self.addTag(.i64_clz); if (wasm_bits != int_info.bits) { const tmp = try self.allocLocal(ty); try self.addLabel(.local_set, tmp.local); const val: i64 = -@intCast(i64, wasm_bits - int_info.bits); return self.wrapBinOp(tmp, .{ .imm64 = @bitCast(u64, val) }, ty, .add); } }, else => unreachable, } const result = try self.allocLocal(result_ty); try self.addLabel(.local_set, result.local); return result; } fn airCtz(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue{ .none = {} }; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const ty = self.air.typeOf(ty_op.operand); const result_ty = self.air.typeOfIndex(inst); if (ty.zigTypeTag() == .Vector) { return self.fail("TODO: `@ctz` for vectors", .{}); } const operand = try self.resolveInst(ty_op.operand); const int_info = ty.intInfo(self.target); const wasm_bits = toWasmBits(int_info.bits) orelse { return self.fail("TODO: `@clz` for integers with bitsize '{d}'", .{int_info.bits}); }; switch (wasm_bits) { 32 => { if (wasm_bits != int_info.bits) { const val: u32 = @as(u32, 1) << @intCast(u5, int_info.bits); const bin_op = try self.binOp(operand, .{ .imm32 = val }, ty, .@"or"); try self.emitWValue(bin_op); } else try self.emitWValue(operand); try self.addTag(.i32_ctz); }, 64 => { if (wasm_bits != int_info.bits) { const val: u64 = @as(u64, 1) << @intCast(u6, int_info.bits); const bin_op = try self.binOp(operand, .{ .imm64 = val }, ty, .@"or"); try self.emitWValue(bin_op); } else try self.emitWValue(operand); try self.addTag(.i64_ctz); }, else => unreachable, } const result = try self.allocLocal(result_ty); try self.addLabel(.local_set, result.local); return result; } fn airDbgVar(self: *Self, inst: Air.Inst.Index, is_ptr: bool) !WValue { if (self.debug_output != .dwarf) return WValue{ .none = {} }; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const ty = self.air.typeOf(pl_op.operand); const operand = try self.resolveInst(pl_op.operand); const op_ty = if (is_ptr) ty.childType() else ty; log.debug("airDbgVar: %{d}: {}, {}", .{ inst, op_ty.fmtDebug(), operand }); const name = self.air.nullTerminatedString(pl_op.payload); log.debug(" var name = ({s})", .{name}); const dbg_info = &self.debug_output.dwarf.dbg_info; try dbg_info.append(@enumToInt(link.File.Dwarf.AbbrevKind.variable)); switch (operand) { .local => |local| { const leb_size = link.File.Wasm.getULEB128Size(local); try dbg_info.ensureUnusedCapacity(2 + leb_size); // wasm locals are encoded as follow: // DW_OP_WASM_location wasm-op // where wasm-op is defined as // wasm-op := wasm-local | wasm-global | wasm-operand_stack // where wasm-local is encoded as // wasm-local := 0x00 i:uleb128 dbg_info.appendSliceAssumeCapacity(&.{ std.dwarf.OP.WASM_location, std.dwarf.OP.WASM_local, }); leb.writeULEB128(dbg_info.writer(), local) catch unreachable; }, else => {}, // TODO } try dbg_info.ensureUnusedCapacity(5 + name.len + 1); try self.addDbgInfoTypeReloc(op_ty); dbg_info.appendSliceAssumeCapacity(name); dbg_info.appendAssumeCapacity(0); return WValue{ .none = {} }; } fn airDbgStmt(self: *Self, inst: Air.Inst.Index) !WValue { if (self.debug_output != .dwarf) return WValue{ .none = {} }; const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt; try self.addInst(.{ .tag = .dbg_line, .data = .{ .payload = try self.addExtra(Mir.DbgLineColumn{ .line = dbg_stmt.line, .column = dbg_stmt.column, }), } }); return WValue{ .none = {} }; }