const std = @import("std"); const builtin = @import("builtin"); const Pool = @This(); const WaitGroup = @import("WaitGroup.zig"); mutex: std.Thread.Mutex = .{}, cond: std.Thread.Condition = .{}, run_queue: RunQueue = .{}, is_running: bool = true, allocator: std.mem.Allocator, threads: []std.Thread, const RunQueue = std.SinglyLinkedList(Runnable); const Runnable = struct { runFn: RunProto, }; const RunProto = *const fn (*Runnable) void; pub const Options = struct { allocator: std.mem.Allocator, n_jobs: ?u32 = null, }; pub fn init(pool: *Pool, options: Options) !void { const allocator = options.allocator; pool.* = .{ .allocator = allocator, .threads = &[_]std.Thread{}, }; if (builtin.single_threaded) { return; } const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1); // kill and join any threads we spawned and free memory on error. pool.threads = try allocator.alloc(std.Thread, thread_count); var spawned: usize = 0; errdefer pool.join(spawned); for (pool.threads) |*thread| { thread.* = try std.Thread.spawn(.{}, worker, .{pool}); spawned += 1; } } pub fn deinit(pool: *Pool) void { pool.join(pool.threads.len); // kill and join all threads. pool.* = undefined; } fn join(pool: *Pool, spawned: usize) void { if (builtin.single_threaded) { return; } { pool.mutex.lock(); defer pool.mutex.unlock(); // ensure future worker threads exit the dequeue loop pool.is_running = false; } // wake up any sleeping threads (this can be done outside the mutex) // then wait for all the threads we know are spawned to complete. pool.cond.broadcast(); for (pool.threads[0..spawned]) |thread| { thread.join(); } pool.allocator.free(pool.threads); } /// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and /// `WaitGroup.finish` after it returns. /// /// In the case that queuing the function call fails to allocate memory, or the /// target is single-threaded, the function is called directly. pub fn spawnWg(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void { wait_group.start(); if (builtin.single_threaded) { @call(.auto, func, args); wait_group.finish(); return; } const Args = @TypeOf(args); const Closure = struct { arguments: Args, pool: *Pool, run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } }, wait_group: *WaitGroup, fn runFn(runnable: *Runnable) void { const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable); const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node)); @call(.auto, func, closure.arguments); closure.wait_group.finish(); // The thread pool's allocator is protected by the mutex. const mutex = &closure.pool.mutex; mutex.lock(); defer mutex.unlock(); closure.pool.allocator.destroy(closure); } }; { pool.mutex.lock(); const closure = pool.allocator.create(Closure) catch { pool.mutex.unlock(); @call(.auto, func, args); wait_group.finish(); return; }; closure.* = .{ .arguments = args, .pool = pool, .wait_group = wait_group, }; pool.run_queue.prepend(&closure.run_node); pool.mutex.unlock(); } // Notify waiting threads outside the lock to try and keep the critical section small. pool.cond.signal(); } pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) !void { if (builtin.single_threaded) { @call(.auto, func, args); return; } const Args = @TypeOf(args); const Closure = struct { arguments: Args, pool: *Pool, run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } }, fn runFn(runnable: *Runnable) void { const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable); const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node)); @call(.auto, func, closure.arguments); // The thread pool's allocator is protected by the mutex. const mutex = &closure.pool.mutex; mutex.lock(); defer mutex.unlock(); closure.pool.allocator.destroy(closure); } }; { pool.mutex.lock(); defer pool.mutex.unlock(); const closure = try pool.allocator.create(Closure); closure.* = .{ .arguments = args, .pool = pool, }; pool.run_queue.prepend(&closure.run_node); } // Notify waiting threads outside the lock to try and keep the critical section small. pool.cond.signal(); } fn worker(pool: *Pool) void { pool.mutex.lock(); defer pool.mutex.unlock(); while (true) { while (pool.run_queue.popFirst()) |run_node| { // Temporarily unlock the mutex in order to execute the run_node pool.mutex.unlock(); defer pool.mutex.lock(); const runFn = run_node.data.runFn; runFn(&run_node.data); } // Stop executing instead of waiting if the thread pool is no longer running. if (pool.is_running) { pool.cond.wait(&pool.mutex); } else { break; } } } pub fn waitAndWork(pool: *Pool, wait_group: *WaitGroup) void { while (!wait_group.isDone()) { if (blk: { pool.mutex.lock(); defer pool.mutex.unlock(); break :blk pool.run_queue.popFirst(); }) |run_node| { run_node.data.runFn(&run_node.data); continue; } wait_group.wait(); return; } }