const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; pub const Sign = enum(u1) { positive, negative }; pub fn FloatRepr(comptime Float: type) type { const fractional_bits = floatFractionalBits(Float); const exponent_bits = floatExponentBits(Float); return packed struct { const Repr = @This(); mantissa: StoredMantissa, exponent: BiasedExponent, sign: Sign, pub const StoredMantissa = @Type(.{ .int = .{ .signedness = .unsigned, .bits = floatMantissaBits(Float), } }); pub const Mantissa = @Type(.{ .int = .{ .signedness = .unsigned, .bits = 1 + fractional_bits, } }); pub const Exponent = @Type(.{ .int = .{ .signedness = .signed, .bits = exponent_bits, } }); pub const BiasedExponent = enum(@Type(.{ .int = .{ .signedness = .unsigned, .bits = exponent_bits, } })) { denormal = 0, min_normal = 1, zero = (1 << (exponent_bits - 1)) - 1, max_normal = (1 << exponent_bits) - 2, infinite = (1 << exponent_bits) - 1, _, pub const Int = @typeInfo(BiasedExponent).@"enum".tag_type; pub fn unbias(biased: BiasedExponent) Exponent { switch (biased) { .denormal => unreachable, else => return @bitCast(@intFromEnum(biased) -% @intFromEnum(BiasedExponent.zero)), .infinite => unreachable, } } pub fn bias(unbiased: Exponent) BiasedExponent { return @enumFromInt(@intFromEnum(BiasedExponent.zero) +% @as(Int, @bitCast(unbiased))); } }; pub const Normalized = struct { fraction: Fraction, exponent: Normalized.Exponent, pub const Fraction = @Type(.{ .int = .{ .signedness = .unsigned, .bits = fractional_bits, } }); pub const Exponent = @Type(.{ .int = .{ .signedness = .signed, .bits = 1 + exponent_bits, } }); /// This currently truncates denormal values, which needs to be fixed before this can be used to /// produce a rounded value. pub fn reconstruct(normalized: Normalized, sign: Sign) Float { if (normalized.exponent > BiasedExponent.max_normal.unbias()) return @bitCast(Repr{ .mantissa = 0, .exponent = .infinite, .sign = sign, }); const mantissa = @as(Mantissa, 1 << fractional_bits) | normalized.fraction; if (normalized.exponent < BiasedExponent.min_normal.unbias()) return @bitCast(Repr{ .mantissa = @truncate(std.math.shr( Mantissa, mantissa, BiasedExponent.min_normal.unbias() - normalized.exponent, )), .exponent = .denormal, .sign = sign, }); return @bitCast(Repr{ .mantissa = @truncate(mantissa), .exponent = .bias(@intCast(normalized.exponent)), .sign = sign, }); } }; pub const Classified = union(enum) { normalized: Normalized, infinity, nan, invalid }; fn classify(repr: Repr) Classified { return switch (repr.exponent) { .denormal => { const mantissa: Mantissa = repr.mantissa; const shift = @clz(mantissa); return .{ .normalized = .{ .fraction = @truncate(mantissa << shift), .exponent = @as(Normalized.Exponent, comptime BiasedExponent.min_normal.unbias()) - shift, } }; }, else => if (repr.mantissa <= std.math.maxInt(Normalized.Fraction)) .{ .normalized = .{ .fraction = @intCast(repr.mantissa), .exponent = repr.exponent.unbias(), } } else .invalid, .infinite => switch (repr.mantissa) { 0 => .infinity, else => .nan, }, }; } }; } /// Creates a raw "1.0" mantissa for floating point type T. Used to dedupe f80 logic. inline fn mantissaOne(comptime T: type) comptime_int { return if (@typeInfo(T).float.bits == 80) 1 << floatFractionalBits(T) else 0; } /// Creates floating point type T from an unbiased exponent and raw mantissa. inline fn reconstructFloat(comptime T: type, comptime exponent: comptime_int, comptime mantissa: comptime_int) T { const TBits = @Type(.{ .int = .{ .signedness = .unsigned, .bits = @bitSizeOf(T) } }); const biased_exponent = @as(TBits, exponent + floatExponentMax(T)); return @as(T, @bitCast((biased_exponent << floatMantissaBits(T)) | @as(TBits, mantissa))); } /// Returns the number of bits in the exponent of floating point type T. pub inline fn floatExponentBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .float); return switch (@typeInfo(T).float.bits) { 16 => 5, 32 => 8, 64 => 11, 80 => 15, 128 => 15, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } /// Returns the number of bits in the mantissa of floating point type T. pub inline fn floatMantissaBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .float); return switch (@typeInfo(T).float.bits) { 16 => 10, 32 => 23, 64 => 52, 80 => 64, 128 => 112, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } /// Returns the number of fractional bits in the mantissa of floating point type T. pub inline fn floatFractionalBits(comptime T: type) comptime_int { comptime assert(@typeInfo(T) == .float); // standard IEEE floats have an implicit 0.m or 1.m integer part // f80 is special and has an explicitly stored bit in the MSB // this function corresponds to `MANT_DIG - 1' from C return switch (@typeInfo(T).float.bits) { 16 => 10, 32 => 23, 64 => 52, 80 => 63, 128 => 112, else => @compileError("unknown floating point type " ++ @typeName(T)), }; } /// Returns the minimum exponent that can represent /// a normalised value in floating point type T. pub inline fn floatExponentMin(comptime T: type) comptime_int { return -floatExponentMax(T) + 1; } /// Returns the maximum exponent that can represent /// a normalised value in floating point type T. pub inline fn floatExponentMax(comptime T: type) comptime_int { return (1 << (floatExponentBits(T) - 1)) - 1; } /// Returns the smallest subnormal number representable in floating point type T. pub inline fn floatTrueMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T) - 1, 1); } /// Returns the smallest normal number representable in floating point type T. pub inline fn floatMin(comptime T: type) T { return reconstructFloat(T, floatExponentMin(T), mantissaOne(T)); } /// Returns the largest normal number representable in floating point type T. pub inline fn floatMax(comptime T: type) T { const all1s_mantissa = (1 << floatMantissaBits(T)) - 1; return reconstructFloat(T, floatExponentMax(T), all1s_mantissa); } /// Returns the machine epsilon of floating point type T. pub inline fn floatEps(comptime T: type) T { return reconstructFloat(T, -floatFractionalBits(T), mantissaOne(T)); } /// Returns the local epsilon of floating point type T. pub inline fn floatEpsAt(comptime T: type, x: T) T { switch (@typeInfo(T)) { .float => |F| { const U: type = @Type(.{ .int = .{ .signedness = .unsigned, .bits = F.bits } }); const u: U = @bitCast(x); const y: T = @bitCast(u ^ 1); return @abs(x - y); }, else => @compileError("floatEpsAt only supports floats"), } } /// Returns the inf value for a floating point `Type`. pub inline fn inf(comptime Type: type) Type { const RuntimeType = switch (Type) { else => Type, comptime_float => f128, // any float type will do }; return reconstructFloat(RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType)); } /// Returns the canonical quiet NaN representation for a floating point `Type`. pub inline fn nan(comptime Type: type) Type { const RuntimeType = switch (Type) { else => Type, comptime_float => f128, // any float type will do }; return reconstructFloat( RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 1), ); } /// Returns a signalling NaN representation for a floating point `Type`. /// /// TODO: LLVM is known to miscompile on some architectures to quiet NaN - /// this is tracked by https://github.com/ziglang/zig/issues/14366 pub inline fn snan(comptime Type: type) Type { const RuntimeType = switch (Type) { else => Type, comptime_float => f128, // any float type will do }; return reconstructFloat( RuntimeType, floatExponentMax(RuntimeType) + 1, mantissaOne(RuntimeType) | 1 << (floatFractionalBits(RuntimeType) - 2), ); } fn floatBits(comptime Type: type) !void { // (1 +) for the sign bit, since it is separate from the other bits const size = 1 + floatExponentBits(Type) + floatMantissaBits(Type); try expect(@bitSizeOf(Type) == size); try expect(floatFractionalBits(Type) <= floatMantissaBits(Type)); // for machine epsilon, assert expmin <= -prec <= expmax try expect(floatExponentMin(Type) <= -floatFractionalBits(Type)); try expect(-floatFractionalBits(Type) <= floatExponentMax(Type)); } test floatBits { try floatBits(f16); try floatBits(f32); try floatBits(f64); try floatBits(f80); try floatBits(f128); try floatBits(c_longdouble); } test inf { const inf_u16: u16 = 0x7C00; const inf_u32: u32 = 0x7F800000; const inf_u64: u64 = 0x7FF0000000000000; const inf_u80: u80 = 0x7FFF8000000000000000; const inf_u128: u128 = 0x7FFF0000000000000000000000000000; try expectEqual(inf_u16, @as(u16, @bitCast(inf(f16)))); try expectEqual(inf_u32, @as(u32, @bitCast(inf(f32)))); try expectEqual(inf_u64, @as(u64, @bitCast(inf(f64)))); try expectEqual(inf_u80, @as(u80, @bitCast(inf(f80)))); try expectEqual(inf_u128, @as(u128, @bitCast(inf(f128)))); } test nan { const qnan_u16: u16 = 0x7E00; const qnan_u32: u32 = 0x7FC00000; const qnan_u64: u64 = 0x7FF8000000000000; const qnan_u80: u80 = 0x7FFFC000000000000000; const qnan_u128: u128 = 0x7FFF8000000000000000000000000000; try expectEqual(qnan_u16, @as(u16, @bitCast(nan(f16)))); try expectEqual(qnan_u32, @as(u32, @bitCast(nan(f32)))); try expectEqual(qnan_u64, @as(u64, @bitCast(nan(f64)))); try expectEqual(qnan_u80, @as(u80, @bitCast(nan(f80)))); try expectEqual(qnan_u128, @as(u128, @bitCast(nan(f128)))); } test snan { const snan_u16: u16 = 0x7D00; const snan_u32: u32 = 0x7FA00000; const snan_u64: u64 = 0x7FF4000000000000; const snan_u80: u80 = 0x7FFFA000000000000000; const snan_u128: u128 = 0x7FFF4000000000000000000000000000; try expectEqual(snan_u16, @as(u16, @bitCast(snan(f16)))); try expectEqual(snan_u32, @as(u32, @bitCast(snan(f32)))); try expectEqual(snan_u64, @as(u64, @bitCast(snan(f64)))); try expectEqual(snan_u80, @as(u80, @bitCast(snan(f80)))); try expectEqual(snan_u128, @as(u128, @bitCast(snan(f128)))); }