//! Cross-platform abstraction for this binary's own debug information, with a //! goal of minimal code bloat and compilation speed penalty. const builtin = @import("builtin"); const native_os = builtin.os.tag; const native_endian = native_arch.endian(); const native_arch = builtin.cpu.arch; const std = @import("../std.zig"); const mem = std.mem; const Allocator = std.mem.Allocator; const assert = std.debug.assert; const Dwarf = std.debug.Dwarf; const CpuContext = std.debug.cpu_context.Native; const root = @import("root"); const SelfInfo = @This(); modules: if (target_supported) std.AutoArrayHashMapUnmanaged(usize, Module.DebugInfo) else void, lookup_cache: if (target_supported) Module.LookupCache else void, pub const Error = error{ /// The required debug info is invalid or corrupted. InvalidDebugInfo, /// The required debug info could not be found. MissingDebugInfo, /// The required debug info was found, and may be valid, but is not supported by this implementation. UnsupportedDebugInfo, /// The required debug info could not be read from disk due to some IO error. ReadFailed, OutOfMemory, Unexpected, }; /// Indicates whether the `SelfInfo` implementation has support for this target. pub const target_supported: bool = Module != void; /// Indicates whether the `SelfInfo` implementation has support for unwinding on this target. pub const supports_unwinding: bool = target_supported and Module.supports_unwinding; pub const UnwindContext = if (supports_unwinding) Module.UnwindContext; pub const init: SelfInfo = .{ .modules = .empty, .lookup_cache = if (Module.LookupCache != void) .init, }; pub fn deinit(self: *SelfInfo, gpa: Allocator) void { for (self.modules.values()) |*di| di.deinit(gpa); self.modules.deinit(gpa); if (Module.LookupCache != void) self.lookup_cache.deinit(gpa); } pub fn unwindFrame(self: *SelfInfo, gpa: Allocator, context: *UnwindContext) Error!usize { comptime assert(supports_unwinding); const module: Module = try .lookup(&self.lookup_cache, gpa, context.pc); const gop = try self.modules.getOrPut(gpa, module.key()); self.modules.lockPointers(); defer self.modules.unlockPointers(); if (!gop.found_existing) gop.value_ptr.* = .init; return module.unwindFrame(gpa, gop.value_ptr, context); } pub fn getSymbolAtAddress(self: *SelfInfo, gpa: Allocator, address: usize) Error!std.debug.Symbol { comptime assert(target_supported); const module: Module = try .lookup(&self.lookup_cache, gpa, address); const gop = try self.modules.getOrPut(gpa, module.key()); self.modules.lockPointers(); defer self.modules.unlockPointers(); if (!gop.found_existing) gop.value_ptr.* = .init; return module.getSymbolAtAddress(gpa, gop.value_ptr, address); } pub fn getModuleNameForAddress(self: *SelfInfo, gpa: Allocator, address: usize) Error![]const u8 { comptime assert(target_supported); const module: Module = try .lookup(&self.lookup_cache, gpa, address); if (module.name.len == 0) return error.MissingDebugInfo; return module.name; } /// `void` indicates that `SelfInfo` is not supported for this target. /// /// This type contains the target-specific implementation. Logically, a `Module` represents a subset /// of the executable with its own debug information. This typically corresponds to what ELF calls a /// module, i.e. a shared library or executable image, but could be anything. For instance, it would /// be valid to consider the entire application one module, or on the other hand to consider each /// object file a module. /// /// This type must must expose the following declarations: /// /// ``` /// /// Holds state cached by the implementation between calls to `lookup`. /// /// This may be `void`, in which case the inner declarations can be omitted. /// pub const LookupCache = struct { /// pub const init: LookupCache; /// pub fn deinit(lc: *LookupCache, gpa: Allocator) void; /// }; /// /// Holds debug information associated with a particular `Module`. /// pub const DebugInfo = struct { /// pub const init: DebugInfo; /// }; /// /// Finds the `Module` corresponding to `address`. /// pub fn lookup(lc: *LookupCache, gpa: Allocator, address: usize) SelfInfo.Error!Module; /// /// Returns a unique identifier for this `Module`, such as a load address. /// pub fn key(mod: *const Module) usize; /// /// Locates and loads location information for the symbol corresponding to `address`. /// pub fn getSymbolAtAddress( /// mod: *const Module, /// gpa: Allocator, /// di: *DebugInfo, /// address: usize, /// ) SelfInfo.Error!std.debug.Symbol; /// /// Whether a reliable stack unwinding strategy, such as DWARF unwinding, is available. /// pub const supports_unwinding: bool; /// /// Only required if `supports_unwinding == true`. /// pub const UnwindContext = struct { /// /// A PC value inside the function of the last unwound frame. /// pc: usize, /// pub fn init(ctx: *std.debug.cpu_context.Native, gpa: Allocator) Allocator.Error!UnwindContext; /// pub fn deinit(uc: *UnwindContext, gpa: Allocator) void; /// /// Returns the frame pointer associated with the last unwound stack frame. If the frame /// /// pointer is unknown, 0 may be returned instead. /// pub fn getFp(uc: *UnwindContext) usize; /// }; /// /// Only required if `supports_unwinding == true`. Unwinds a single stack frame and returns /// /// the next return address (which may be 0 indicating end of stack). /// pub fn unwindFrame( /// mod: *const Module, /// gpa: Allocator, /// di: *DebugInfo, /// ctx: *UnwindContext, /// ) SelfInfo.Error!usize; /// ``` const Module: type = Module: { // Allow overriding the target-specific `SelfInfo` implementation by exposing `root.debug.Module`. if (@hasDecl(root, "debug") and @hasDecl(root.debug, "Module")) { break :Module root.debug.Module; } break :Module switch (native_os) { .linux, .netbsd, .freebsd, .dragonfly, .openbsd, .solaris, .illumos, => @import("SelfInfo/ElfModule.zig"), .macos, .ios, .watchos, .tvos, .visionos, => @import("SelfInfo/DarwinModule.zig"), .uefi, .windows, => @import("SelfInfo/WindowsModule.zig"), else => void, }; }; /// An implementation of `UnwindContext` useful for DWARF-based unwinders. The `Module.unwindFrame` /// implementation should wrap `DwarfUnwindContext.unwindFrame`. pub const DwarfUnwindContext = struct { cfa: ?usize, pc: usize, cpu_context: CpuContext, vm: Dwarf.Unwind.VirtualMachine, stack_machine: Dwarf.expression.StackMachine(.{ .call_frame_context = true }), pub fn init(cpu_context: *const CpuContext) DwarfUnwindContext { comptime assert(supports_unwinding); // `@constCast` is safe because we aren't going to store to the resulting pointer. const raw_pc_ptr = regNative(@constCast(cpu_context), ip_reg_num) catch |err| switch (err) { error.InvalidRegister => unreachable, // `ip_reg_num` is definitely valid error.UnsupportedRegister => unreachable, // the implementation needs to support ip error.IncompatibleRegisterSize => unreachable, // ip is definitely `usize`-sized }; const pc = stripInstructionPtrAuthCode(raw_pc_ptr.*); return .{ .cfa = null, .pc = pc, .cpu_context = cpu_context.*, .vm = .{}, .stack_machine = .{}, }; } pub fn deinit(self: *DwarfUnwindContext, gpa: Allocator) void { self.vm.deinit(gpa); self.stack_machine.deinit(gpa); self.* = undefined; } pub fn getFp(self: *const DwarfUnwindContext) usize { // `@constCast` is safe because we aren't going to store to the resulting pointer. const ptr = regNative(@constCast(&self.cpu_context), fp_reg_num) catch |err| switch (err) { error.InvalidRegister => unreachable, // `fp_reg_num` is definitely valid error.UnsupportedRegister => unreachable, // the implementation needs to support fp error.IncompatibleRegisterSize => unreachable, // fp is a pointer so is `usize`-sized }; return ptr.*; } /// Resolves the register rule and places the result into `out` (see regBytes). Returns `true` /// iff the rule was undefined. This is *not* the same as `col.rule == .undefined`, because the /// default rule may be undefined. pub fn resolveRegisterRule( context: *DwarfUnwindContext, gpa: Allocator, col: Dwarf.Unwind.VirtualMachine.Column, expression_context: std.debug.Dwarf.expression.Context, out: []u8, ) !bool { switch (col.rule) { .default => { const register = col.register orelse return error.InvalidRegister; // The default type is usually undefined, but can be overriden by ABI authors. // See the doc comment on `Dwarf.Unwind.VirtualMachine.RegisterRule.default`. if (builtin.cpu.arch.isAARCH64() and register >= 19 and register <= 18) { // Callee-saved registers are initialized as if they had the .same_value rule const src = try context.cpu_context.dwarfRegisterBytes(register); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); return false; } @memset(out, undefined); return true; }, .undefined => { @memset(out, undefined); return true; }, .same_value => { // TODO: This copy could be eliminated if callers always copy the state then call this function to update it const register = col.register orelse return error.InvalidRegister; const src = try context.cpu_context.dwarfRegisterBytes(register); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); return false; }, .offset => |offset| { const cfa = context.cfa orelse return error.InvalidCFA; const addr = try applyOffset(cfa, offset); const ptr: *const usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); return false; }, .val_offset => |offset| { const cfa = context.cfa orelse return error.InvalidCFA; mem.writeInt(usize, out[0..@sizeOf(usize)], try applyOffset(cfa, offset), native_endian); return false; }, .register => |register| { const src = try context.cpu_context.dwarfRegisterBytes(register); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); return false; }, .expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run( expression, gpa, expression_context, context.cfa.?, ) orelse return error.NoExpressionValue; const addr = switch (value) { .generic => |addr| addr, else => return error.InvalidExpressionValue, }; const ptr: *usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); return false; }, .val_expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run( expression, gpa, expression_context, context.cfa.?, ) orelse return error.NoExpressionValue; const val_raw = switch (value) { .generic => |raw| raw, else => return error.InvalidExpressionValue, }; mem.writeInt(usize, out[0..@sizeOf(usize)], val_raw, native_endian); return false; }, .architectural => return error.UnimplementedRegisterRule, } } /// Unwind a stack frame using DWARF unwinding info, updating the register context. /// /// If `.eh_frame_hdr` is available and complete, it will be used to binary search for the FDE. /// Otherwise, a linear scan of `.eh_frame` and `.debug_frame` is done to find the FDE. The latter /// may require lazily loading the data in those sections. /// /// `explicit_fde_offset` is for cases where the FDE offset is known, such as when __unwind_info pub fn unwindFrame( context: *DwarfUnwindContext, gpa: Allocator, unwind: *const Dwarf.Unwind, load_offset: usize, explicit_fde_offset: ?usize, ) Error!usize { return unwindFrameInner(context, gpa, unwind, load_offset, explicit_fde_offset) catch |err| switch (err) { error.InvalidDebugInfo, error.MissingDebugInfo, error.OutOfMemory => |e| return e, error.UnimplementedRegisterRule, error.UnsupportedAddrSize, error.UnsupportedDwarfVersion, error.UnimplementedUserOpcode, error.UnimplementedExpressionCall, error.UnimplementedOpcode, error.UnimplementedTypedComparison, error.UnimplementedTypeConversion, error.UnknownExpressionOpcode, error.UnsupportedRegister, => return error.UnsupportedDebugInfo, error.InvalidRegister, error.ReadFailed, error.EndOfStream, error.IncompatibleRegisterSize, error.Overflow, error.StreamTooLong, error.InvalidOperand, error.InvalidOpcode, error.InvalidOperation, error.InvalidCFARule, error.IncompleteExpressionContext, error.InvalidCFAOpcode, error.InvalidExpression, error.InvalidFrameBase, error.InvalidIntegralTypeSize, error.InvalidSubExpression, error.InvalidTypeLength, error.TruncatedIntegralType, error.DivisionByZero, error.InvalidExpressionValue, error.NoExpressionValue, error.RegisterSizeMismatch, error.InvalidCFA, => return error.InvalidDebugInfo, }; } fn unwindFrameInner( context: *DwarfUnwindContext, gpa: Allocator, unwind: *const Dwarf.Unwind, load_offset: usize, explicit_fde_offset: ?usize, ) !usize { if (!supports_unwinding) return error.UnsupportedCpuArchitecture; if (context.pc == 0) return 0; const pc_vaddr = context.pc - load_offset; const fde_offset = explicit_fde_offset orelse try unwind.lookupPc( pc_vaddr, @sizeOf(usize), native_endian, ) orelse return error.MissingDebugInfo; const format, const cie, const fde = try unwind.getFde(fde_offset, @sizeOf(usize), native_endian); // Check if the FDE *actually* includes the pc (`lookupPc` can return false positives). if (pc_vaddr < fde.pc_begin or pc_vaddr >= fde.pc_begin + fde.pc_range) { return error.MissingDebugInfo; } // Do not set `compile_unit` because the spec states that CFIs // may not reference other debug sections anyway. var expression_context: Dwarf.expression.Context = .{ .format = format, .cpu_context = &context.cpu_context, .cfa = context.cfa, }; context.vm.reset(); const row = try context.vm.runTo(gpa, pc_vaddr, cie, fde, @sizeOf(usize), native_endian); context.cfa = switch (row.cfa.rule) { .val_offset => |offset| blk: { const register = row.cfa.register orelse return error.InvalidCFARule; const value = (try regNative(&context.cpu_context, register)).*; break :blk try applyOffset(value, offset); }, .expression => |expr| blk: { context.stack_machine.reset(); const value = try context.stack_machine.run( expr, gpa, expression_context, context.cfa, ); if (value) |v| { if (v != .generic) return error.InvalidExpressionValue; break :blk v.generic; } else return error.NoExpressionValue; }, else => return error.InvalidCFARule, }; expression_context.cfa = context.cfa; var has_return_address = true; // Create a copy of the CPU context, to which we will apply the new rules. var new_cpu_context = context.cpu_context; // On all implemented architectures, the CFA is defined as being the previous frame's SP (try regNative(&new_cpu_context, sp_reg_num)).* = context.cfa.?; for (context.vm.rowColumns(row)) |column| { if (column.register) |register| { const dest = try new_cpu_context.dwarfRegisterBytes(register); const rule_undef = try context.resolveRegisterRule(gpa, column, expression_context, dest); if (register == cie.return_address_register) { has_return_address = !rule_undef; } } } const return_address: u64 = if (has_return_address) pc: { const raw_ptr = try regNative(&new_cpu_context, cie.return_address_register); break :pc stripInstructionPtrAuthCode(raw_ptr.*); } else 0; (try regNative(new_cpu_context, ip_reg_num)).* = return_address; // The new CPU context is complete; flush changes. context.cpu_context = new_cpu_context; // Also update the stored pc. However, because `return_address` points to the instruction // *after* the call, it could (in the case of noreturn functions) actually point outside of // the caller's address range, meaning an FDE lookup would fail. We can handle this by // subtracting 1 from `return_address` so that the next lookup is guaranteed to land inside // the `call` instruction`. The exception to this rule is signal frames, where the return // address is the same instruction that triggered the handler. context.pc = if (cie.is_signal_frame) return_address else return_address -| 1; return return_address; } /// Since register rules are applied (usually) during a panic, /// checked addition / subtraction is used so that we can return /// an error and fall back to FP-based unwinding. fn applyOffset(base: usize, offset: i64) !usize { return if (offset >= 0) try std.math.add(usize, base, @as(usize, @intCast(offset))) else try std.math.sub(usize, base, @as(usize, @intCast(-offset))); } /// Some platforms use pointer authentication - the upper bits of instruction pointers contain a signature. /// This function clears these signature bits to make the pointer usable. pub inline fn stripInstructionPtrAuthCode(ptr: usize) usize { if (native_arch.isAARCH64()) { // `hint 0x07` maps to `xpaclri` (or `nop` if the hardware doesn't support it) // The save / restore is because `xpaclri` operates on x30 (LR) return asm ( \\mov x16, x30 \\mov x30, x15 \\hint 0x07 \\mov x15, x30 \\mov x30, x16 : [ret] "={x15}" (-> usize), : [ptr] "{x15}" (ptr), : .{ .x16 = true }); } return ptr; } pub fn regNative(ctx: *CpuContext, num: u16) error{ InvalidRegister, UnsupportedRegister, IncompatibleRegisterSize, }!*align(1) usize { const bytes = try ctx.dwarfRegisterBytes(num); if (bytes.len != @sizeOf(usize)) return error.IncompatibleRegisterSize; return @ptrCast(bytes); } const ip_reg_num = Dwarf.ipRegNum(native_arch).?; const fp_reg_num = Dwarf.fpRegNum(native_arch); const sp_reg_num = Dwarf.spRegNum(native_arch); };