// SPDX-License-Identifier: MIT // Copyright (c) 2015-2021 Zig Contributors // This file is part of [zig](https://ziglang.org/), which is MIT licensed. // The MIT license requires this copyright notice to be included in all copies // and substantial portions of the software. const std = @import("std.zig"); const builtin = @import("builtin"); const debug = std.debug; const mem = std.mem; const math = std.math; const testing = std.testing; const root = @import("root"); pub const trait = @import("meta/trait.zig"); pub const TrailerFlags = @import("meta/trailer_flags.zig").TrailerFlags; const TypeInfo = builtin.TypeInfo; pub fn tagName(v: anytype) []const u8 { const T = @TypeOf(v); switch (@typeInfo(T)) { .ErrorSet => return @errorName(v), else => return @tagName(v), } } test "std.meta.tagName" { const E1 = enum { A, B, }; const E2 = enum(u8) { C = 33, D, }; const U1 = union(enum) { G: u8, H: u16, }; const U2 = union(E2) { C: u8, D: u16, }; var u1g = U1{ .G = 0 }; var u1h = U1{ .H = 0 }; var u2a = U2{ .C = 0 }; var u2b = U2{ .D = 0 }; testing.expect(mem.eql(u8, tagName(E1.A), "A")); testing.expect(mem.eql(u8, tagName(E1.B), "B")); testing.expect(mem.eql(u8, tagName(E2.C), "C")); testing.expect(mem.eql(u8, tagName(E2.D), "D")); testing.expect(mem.eql(u8, tagName(error.E), "E")); testing.expect(mem.eql(u8, tagName(error.F), "F")); testing.expect(mem.eql(u8, tagName(u1g), "G")); testing.expect(mem.eql(u8, tagName(u1h), "H")); testing.expect(mem.eql(u8, tagName(u2a), "C")); testing.expect(mem.eql(u8, tagName(u2b), "D")); } pub fn stringToEnum(comptime T: type, str: []const u8) ?T { // Using ComptimeStringMap here is more performant, but it will start to take too // long to compile if the enum is large enough, due to the current limits of comptime // performance when doing things like constructing lookup maps at comptime. // TODO The '100' here is arbitrary and should be increased when possible: // - https://github.com/ziglang/zig/issues/4055 // - https://github.com/ziglang/zig/issues/3863 if (@typeInfo(T).Enum.fields.len <= 100) { const kvs = comptime build_kvs: { // In order to generate an array of structs that play nice with anonymous // list literals, we need to give them "0" and "1" field names. // TODO https://github.com/ziglang/zig/issues/4335 const EnumKV = struct { @"0": []const u8, @"1": T, }; var kvs_array: [@typeInfo(T).Enum.fields.len]EnumKV = undefined; inline for (@typeInfo(T).Enum.fields) |enumField, i| { kvs_array[i] = .{ .@"0" = enumField.name, .@"1" = @field(T, enumField.name) }; } break :build_kvs kvs_array[0..]; }; const map = std.ComptimeStringMap(T, kvs); return map.get(str); } else { inline for (@typeInfo(T).Enum.fields) |enumField| { if (mem.eql(u8, str, enumField.name)) { return @field(T, enumField.name); } } return null; } } test "std.meta.stringToEnum" { const E1 = enum { A, B, }; testing.expect(E1.A == stringToEnum(E1, "A").?); testing.expect(E1.B == stringToEnum(E1, "B").?); testing.expect(null == stringToEnum(E1, "C")); } pub fn bitCount(comptime T: type) comptime_int { return switch (@typeInfo(T)) { .Bool => 1, .Int => |info| info.bits, .Float => |info| info.bits, else => @compileError("Expected bool, int or float type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.bitCount" { testing.expect(bitCount(u8) == 8); testing.expect(bitCount(f32) == 32); } pub fn alignment(comptime T: type) comptime_int { //@alignOf works on non-pointer types const P = if (comptime trait.is(.Pointer)(T)) T else *T; return @typeInfo(P).Pointer.alignment; } test "std.meta.alignment" { testing.expect(alignment(u8) == 1); testing.expect(alignment(*align(1) u8) == 1); testing.expect(alignment(*align(2) u8) == 2); testing.expect(alignment([]align(1) u8) == 1); testing.expect(alignment([]align(2) u8) == 2); } pub fn Child(comptime T: type) type { return switch (@typeInfo(T)) { .Array => |info| info.child, .Vector => |info| info.child, .Pointer => |info| info.child, .Optional => |info| info.child, else => @compileError("Expected pointer, optional, array or vector type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.Child" { testing.expect(Child([1]u8) == u8); testing.expect(Child(*u8) == u8); testing.expect(Child([]u8) == u8); testing.expect(Child(?u8) == u8); testing.expect(Child(Vector(2, u8)) == u8); } /// Given a "memory span" type, returns the "element type". pub fn Elem(comptime T: type) type { switch (@typeInfo(T)) { .Array => |info| return info.child, .Vector => |info| return info.child, .Pointer => |info| switch (info.size) { .One => switch (@typeInfo(info.child)) { .Array => |array_info| return array_info.child, .Vector => |vector_info| return vector_info.child, else => {}, }, .Many, .C, .Slice => return info.child, }, .Optional => |info| switch (@typeInfo(info.child)) { .Pointer => |ptr_info| switch (ptr_info.size) { .Many => return ptr_info.child, else => {}, }, else => {}, }, else => {}, } @compileError("Expected pointer, slice, array or vector type, found '" ++ @typeName(T) ++ "'"); } test "std.meta.Elem" { testing.expect(Elem([1]u8) == u8); testing.expect(Elem([*]u8) == u8); testing.expect(Elem([]u8) == u8); testing.expect(Elem(*[10]u8) == u8); testing.expect(Elem(Vector(2, u8)) == u8); testing.expect(Elem(*Vector(2, u8)) == u8); testing.expect(Elem(?[*]u8) == u8); } /// Given a type which can have a sentinel e.g. `[:0]u8`, returns the sentinel value, /// or `null` if there is not one. /// Types which cannot possibly have a sentinel will be a compile error. pub fn sentinel(comptime T: type) ?Elem(T) { switch (@typeInfo(T)) { .Array => |info| return info.sentinel, .Pointer => |info| { switch (info.size) { .Many, .Slice => return info.sentinel, .One => switch (@typeInfo(info.child)) { .Array => |array_info| return array_info.sentinel, else => {}, }, else => {}, } }, else => {}, } @compileError("type '" ++ @typeName(T) ++ "' cannot possibly have a sentinel"); } test "std.meta.sentinel" { testSentinel(); comptime testSentinel(); } fn testSentinel() void { testing.expectEqual(@as(u8, 0), sentinel([:0]u8).?); testing.expectEqual(@as(u8, 0), sentinel([*:0]u8).?); testing.expectEqual(@as(u8, 0), sentinel([5:0]u8).?); testing.expectEqual(@as(u8, 0), sentinel(*const [5:0]u8).?); testing.expect(sentinel([]u8) == null); testing.expect(sentinel([*]u8) == null); testing.expect(sentinel([5]u8) == null); testing.expect(sentinel(*const [5]u8) == null); } /// Given a "memory span" type, returns the same type except with the given sentinel value. pub fn Sentinel(comptime T: type, comptime sentinel_val: Elem(T)) type { switch (@typeInfo(T)) { .Pointer => |info| switch (info.size) { .One => switch (@typeInfo(info.child)) { .Array => |array_info| return @Type(.{ .Pointer = .{ .size = info.size, .is_const = info.is_const, .is_volatile = info.is_volatile, .alignment = info.alignment, .child = @Type(.{ .Array = .{ .len = array_info.len, .child = array_info.child, .sentinel = sentinel_val, }, }), .is_allowzero = info.is_allowzero, .sentinel = info.sentinel, }, }), else => {}, }, .Many, .Slice => return @Type(.{ .Pointer = .{ .size = info.size, .is_const = info.is_const, .is_volatile = info.is_volatile, .alignment = info.alignment, .child = info.child, .is_allowzero = info.is_allowzero, .sentinel = sentinel_val, }, }), else => {}, }, .Optional => |info| switch (@typeInfo(info.child)) { .Pointer => |ptr_info| switch (ptr_info.size) { .Many => return @Type(.{ .Optional = .{ .child = @Type(.{ .Pointer = .{ .size = ptr_info.size, .is_const = ptr_info.is_const, .is_volatile = ptr_info.is_volatile, .alignment = ptr_info.alignment, .child = ptr_info.child, .is_allowzero = ptr_info.is_allowzero, .sentinel = sentinel_val, }, }), }, }), else => {}, }, else => {}, }, else => {}, } @compileError("Unable to derive a sentinel pointer type from " ++ @typeName(T)); } /// Takes a Slice or Many Pointer and returns it with the Type modified to have the given sentinel value. /// This function assumes the caller has verified the memory contains the sentinel value. pub fn assumeSentinel(p: anytype, comptime sentinel_val: Elem(@TypeOf(p))) Sentinel(@TypeOf(p), sentinel_val) { const T = @TypeOf(p); const ReturnType = Sentinel(T, sentinel_val); switch (@typeInfo(T)) { .Pointer => |info| switch (info.size) { .Slice => return @bitCast(ReturnType, p), .Many, .One => return @ptrCast(ReturnType, p), .C => {}, }, .Optional => |info| switch (@typeInfo(info.child)) { .Pointer => |ptr_info| switch (ptr_info.size) { .Many => return @ptrCast(ReturnType, p), else => {}, }, else => {}, }, else => {}, } @compileError("Unable to derive a sentinel pointer type from " ++ @typeName(T)); } test "std.meta.assumeSentinel" { testing.expect([*:0]u8 == @TypeOf(assumeSentinel(@as([*]u8, undefined), 0))); testing.expect([:0]u8 == @TypeOf(assumeSentinel(@as([]u8, undefined), 0))); testing.expect([*:0]const u8 == @TypeOf(assumeSentinel(@as([*]const u8, undefined), 0))); testing.expect([:0]const u8 == @TypeOf(assumeSentinel(@as([]const u8, undefined), 0))); testing.expect([*:0]u16 == @TypeOf(assumeSentinel(@as([*]u16, undefined), 0))); testing.expect([:0]const u16 == @TypeOf(assumeSentinel(@as([]const u16, undefined), 0))); testing.expect([*:3]u8 == @TypeOf(assumeSentinel(@as([*:1]u8, undefined), 3))); testing.expect([:null]?[*]u8 == @TypeOf(assumeSentinel(@as([]?[*]u8, undefined), null))); testing.expect([*:null]?[*]u8 == @TypeOf(assumeSentinel(@as([*]?[*]u8, undefined), null))); testing.expect(*[10:0]u8 == @TypeOf(assumeSentinel(@as(*[10]u8, undefined), 0))); testing.expect(?[*:0]u8 == @TypeOf(assumeSentinel(@as(?[*]u8, undefined), 0))); } pub fn containerLayout(comptime T: type) TypeInfo.ContainerLayout { return switch (@typeInfo(T)) { .Struct => |info| info.layout, .Enum => |info| info.layout, .Union => |info| info.layout, else => @compileError("Expected struct, enum or union type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.containerLayout" { const E1 = enum { A, }; const E2 = packed enum { A, }; const E3 = extern enum { A, }; const S1 = struct {}; const S2 = packed struct {}; const S3 = extern struct {}; const U1 = union { a: u8, }; const U2 = packed union { a: u8, }; const U3 = extern union { a: u8, }; testing.expect(containerLayout(E1) == .Auto); testing.expect(containerLayout(E2) == .Packed); testing.expect(containerLayout(E3) == .Extern); testing.expect(containerLayout(S1) == .Auto); testing.expect(containerLayout(S2) == .Packed); testing.expect(containerLayout(S3) == .Extern); testing.expect(containerLayout(U1) == .Auto); testing.expect(containerLayout(U2) == .Packed); testing.expect(containerLayout(U3) == .Extern); } pub fn declarations(comptime T: type) []const TypeInfo.Declaration { return switch (@typeInfo(T)) { .Struct => |info| info.decls, .Enum => |info| info.decls, .Union => |info| info.decls, .Opaque => |info| info.decls, else => @compileError("Expected struct, enum, union, or opaque type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.declarations" { const E1 = enum { A, fn a() void {} }; const S1 = struct { fn a() void {} }; const U1 = union { a: u8, fn a() void {} }; const O1 = opaque { fn a() void {} }; const decls = comptime [_][]const TypeInfo.Declaration{ declarations(E1), declarations(S1), declarations(U1), declarations(O1), }; inline for (decls) |decl| { testing.expect(decl.len == 1); testing.expect(comptime mem.eql(u8, decl[0].name, "a")); } } pub fn declarationInfo(comptime T: type, comptime decl_name: []const u8) TypeInfo.Declaration { inline for (comptime declarations(T)) |decl| { if (comptime mem.eql(u8, decl.name, decl_name)) return decl; } @compileError("'" ++ @typeName(T) ++ "' has no declaration '" ++ decl_name ++ "'"); } test "std.meta.declarationInfo" { const E1 = enum { A, fn a() void {} }; const S1 = struct { fn a() void {} }; const U1 = union { a: u8, fn a() void {} }; const infos = comptime [_]TypeInfo.Declaration{ declarationInfo(E1, "a"), declarationInfo(S1, "a"), declarationInfo(U1, "a"), }; inline for (infos) |info| { testing.expect(comptime mem.eql(u8, info.name, "a")); testing.expect(!info.is_pub); } } pub fn fields(comptime T: type) switch (@typeInfo(T)) { .Struct => []const TypeInfo.StructField, .Union => []const TypeInfo.UnionField, .ErrorSet => []const TypeInfo.Error, .Enum => []const TypeInfo.EnumField, else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"), } { return switch (@typeInfo(T)) { .Struct => |info| info.fields, .Union => |info| info.fields, .Enum => |info| info.fields, .ErrorSet => |errors| errors.?, // must be non global error set else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.fields" { const E1 = enum { A, }; const E2 = error{A}; const S1 = struct { a: u8, }; const U1 = union { a: u8, }; const e1f = comptime fields(E1); const e2f = comptime fields(E2); const sf = comptime fields(S1); const uf = comptime fields(U1); testing.expect(e1f.len == 1); testing.expect(e2f.len == 1); testing.expect(sf.len == 1); testing.expect(uf.len == 1); testing.expect(mem.eql(u8, e1f[0].name, "A")); testing.expect(mem.eql(u8, e2f[0].name, "A")); testing.expect(mem.eql(u8, sf[0].name, "a")); testing.expect(mem.eql(u8, uf[0].name, "a")); testing.expect(comptime sf[0].field_type == u8); testing.expect(comptime uf[0].field_type == u8); } pub fn fieldInfo(comptime T: type, comptime field: FieldEnum(T)) switch (@typeInfo(T)) { .Struct => TypeInfo.StructField, .Union => TypeInfo.UnionField, .ErrorSet => TypeInfo.Error, .Enum => TypeInfo.EnumField, else => @compileError("Expected struct, union, error set or enum type, found '" ++ @typeName(T) ++ "'"), } { return fields(T)[@enumToInt(field)]; } test "std.meta.fieldInfo" { const E1 = enum { A, }; const E2 = error{A}; const S1 = struct { a: u8, }; const U1 = union { a: u8, }; const e1f = fieldInfo(E1, .A); const e2f = fieldInfo(E2, .A); const sf = fieldInfo(S1, .a); const uf = fieldInfo(U1, .a); testing.expect(mem.eql(u8, e1f.name, "A")); testing.expect(mem.eql(u8, e2f.name, "A")); testing.expect(mem.eql(u8, sf.name, "a")); testing.expect(mem.eql(u8, uf.name, "a")); testing.expect(comptime sf.field_type == u8); testing.expect(comptime uf.field_type == u8); } pub fn fieldNames(comptime T: type) *const [fields(T).len][]const u8 { comptime { const fieldInfos = fields(T); var names: [fieldInfos.len][]const u8 = undefined; for (fieldInfos) |field, i| { names[i] = field.name; } return &names; } } test "std.meta.fieldNames" { const E1 = enum { A, B }; const E2 = error{A}; const S1 = struct { a: u8, }; const U1 = union { a: u8, b: void, }; const e1names = fieldNames(E1); const e2names = fieldNames(E2); const s1names = fieldNames(S1); const u1names = fieldNames(U1); testing.expect(e1names.len == 2); testing.expectEqualSlices(u8, e1names[0], "A"); testing.expectEqualSlices(u8, e1names[1], "B"); testing.expect(e2names.len == 1); testing.expectEqualSlices(u8, e2names[0], "A"); testing.expect(s1names.len == 1); testing.expectEqualSlices(u8, s1names[0], "a"); testing.expect(u1names.len == 2); testing.expectEqualSlices(u8, u1names[0], "a"); testing.expectEqualSlices(u8, u1names[1], "b"); } pub fn FieldEnum(comptime T: type) type { const fieldInfos = fields(T); var enumFields: [fieldInfos.len]std.builtin.TypeInfo.EnumField = undefined; var decls = [_]std.builtin.TypeInfo.Declaration{}; inline for (fieldInfos) |field, i| { enumFields[i] = .{ .name = field.name, .value = i, }; } return @Type(.{ .Enum = .{ .layout = .Auto, .tag_type = std.math.IntFittingRange(0, fieldInfos.len - 1), .fields = &enumFields, .decls = &decls, .is_exhaustive = true, }, }); } fn expectEqualEnum(expected: anytype, actual: @TypeOf(expected)) void { // TODO: https://github.com/ziglang/zig/issues/7419 // testing.expectEqual(@typeInfo(expected).Enum, @typeInfo(actual).Enum); testing.expectEqual(@typeInfo(expected).Enum.layout, @typeInfo(actual).Enum.layout); testing.expectEqual(@typeInfo(expected).Enum.tag_type, @typeInfo(actual).Enum.tag_type); comptime testing.expectEqualSlices(std.builtin.TypeInfo.EnumField, @typeInfo(expected).Enum.fields, @typeInfo(actual).Enum.fields); comptime testing.expectEqualSlices(std.builtin.TypeInfo.Declaration, @typeInfo(expected).Enum.decls, @typeInfo(actual).Enum.decls); testing.expectEqual(@typeInfo(expected).Enum.is_exhaustive, @typeInfo(actual).Enum.is_exhaustive); } test "std.meta.FieldEnum" { expectEqualEnum(enum { a }, FieldEnum(struct { a: u8 })); expectEqualEnum(enum { a, b, c }, FieldEnum(struct { a: u8, b: void, c: f32 })); expectEqualEnum(enum { a, b, c }, FieldEnum(union { a: u8, b: void, c: f32 })); } // Deprecated: use Tag pub const TagType = Tag; pub fn Tag(comptime T: type) type { return switch (@typeInfo(T)) { .Enum => |info| info.tag_type, .Union => |info| info.tag_type orelse @compileError(@typeName(T) ++ " has no tag type"), else => @compileError("expected enum or union type, found '" ++ @typeName(T) ++ "'"), }; } test "std.meta.Tag" { const E = enum(u8) { C = 33, D, }; const U = union(E) { C: u8, D: u16, }; testing.expect(Tag(E) == u8); testing.expect(Tag(U) == E); } ///Returns the active tag of a tagged union pub fn activeTag(u: anytype) Tag(@TypeOf(u)) { const T = @TypeOf(u); return @as(Tag(T), u); } test "std.meta.activeTag" { const UE = enum { Int, Float, }; const U = union(UE) { Int: u32, Float: f32, }; var u = U{ .Int = 32 }; testing.expect(activeTag(u) == UE.Int); u = U{ .Float = 112.9876 }; testing.expect(activeTag(u) == UE.Float); } const TagPayloadType = TagPayload; ///Given a tagged union type, and an enum, return the type of the union /// field corresponding to the enum tag. pub fn TagPayload(comptime U: type, tag: Tag(U)) type { testing.expect(trait.is(.Union)(U)); const info = @typeInfo(U).Union; const tag_info = @typeInfo(Tag(U)).Enum; inline for (info.fields) |field_info| { if (comptime mem.eql(u8, field_info.name, @tagName(tag))) return field_info.field_type; } unreachable; } test "std.meta.TagPayload" { const Event = union(enum) { Moved: struct { from: i32, to: i32, }, }; const MovedEvent = TagPayload(Event, Event.Moved); var e: Event = undefined; testing.expect(MovedEvent == @TypeOf(e.Moved)); } /// Compares two of any type for equality. Containers are compared on a field-by-field basis, /// where possible. Pointers are not followed. pub fn eql(a: anytype, b: @TypeOf(a)) bool { const T = @TypeOf(a); switch (@typeInfo(T)) { .Struct => |info| { inline for (info.fields) |field_info| { if (!eql(@field(a, field_info.name), @field(b, field_info.name))) return false; } return true; }, .ErrorUnion => { if (a) |a_p| { if (b) |b_p| return eql(a_p, b_p) else |_| return false; } else |a_e| { if (b) |_| return false else |b_e| return a_e == b_e; } }, .Union => |info| { if (info.tag_type) |UnionTag| { const tag_a = activeTag(a); const tag_b = activeTag(b); if (tag_a != tag_b) return false; inline for (info.fields) |field_info| { if (@field(UnionTag, field_info.name) == tag_a) { return eql(@field(a, field_info.name), @field(b, field_info.name)); } } return false; } @compileError("cannot compare untagged union type " ++ @typeName(T)); }, .Array => { if (a.len != b.len) return false; for (a) |e, i| if (!eql(e, b[i])) return false; return true; }, .Vector => |info| { var i: usize = 0; while (i < info.len) : (i += 1) { if (!eql(a[i], b[i])) return false; } return true; }, .Pointer => |info| { return switch (info.size) { .One, .Many, .C => a == b, .Slice => a.ptr == b.ptr and a.len == b.len, }; }, .Optional => { if (a == null and b == null) return true; if (a == null or b == null) return false; return eql(a.?, b.?); }, else => return a == b, } } test "std.meta.eql" { const S = struct { a: u32, b: f64, c: [5]u8, }; const U = union(enum) { s: S, f: ?f32, }; const s_1 = S{ .a = 134, .b = 123.3, .c = "12345".*, }; const s_2 = S{ .a = 1, .b = 123.3, .c = "54321".*, }; var s_3 = S{ .a = 134, .b = 123.3, .c = "12345".*, }; const u_1 = U{ .f = 24 }; const u_2 = U{ .s = s_1 }; const u_3 = U{ .f = 24 }; testing.expect(eql(s_1, s_3)); testing.expect(eql(&s_1, &s_1)); testing.expect(!eql(&s_1, &s_3)); testing.expect(eql(u_1, u_3)); testing.expect(!eql(u_1, u_2)); var a1 = "abcdef".*; var a2 = "abcdef".*; var a3 = "ghijkl".*; testing.expect(eql(a1, a2)); testing.expect(!eql(a1, a3)); testing.expect(!eql(a1[0..], a2[0..])); const EU = struct { fn tst(err: bool) !u8 { if (err) return error.Error; return @as(u8, 5); } }; testing.expect(eql(EU.tst(true), EU.tst(true))); testing.expect(eql(EU.tst(false), EU.tst(false))); testing.expect(!eql(EU.tst(false), EU.tst(true))); var v1 = @splat(4, @as(u32, 1)); var v2 = @splat(4, @as(u32, 1)); var v3 = @splat(4, @as(u32, 2)); testing.expect(eql(v1, v2)); testing.expect(!eql(v1, v3)); } test "intToEnum with error return" { const E1 = enum { A, }; const E2 = enum { A, B, }; var zero: u8 = 0; var one: u16 = 1; testing.expect(intToEnum(E1, zero) catch unreachable == E1.A); testing.expect(intToEnum(E2, one) catch unreachable == E2.B); testing.expectError(error.InvalidEnumTag, intToEnum(E1, one)); } pub const IntToEnumError = error{InvalidEnumTag}; pub fn intToEnum(comptime EnumTag: type, tag_int: anytype) IntToEnumError!EnumTag { inline for (@typeInfo(EnumTag).Enum.fields) |f| { const this_tag_value = @field(EnumTag, f.name); if (tag_int == @enumToInt(this_tag_value)) { return this_tag_value; } } return error.InvalidEnumTag; } /// Given a type and a name, return the field index according to source order. /// Returns `null` if the field is not found. pub fn fieldIndex(comptime T: type, comptime name: []const u8) ?comptime_int { inline for (fields(T)) |field, i| { if (mem.eql(u8, field.name, name)) return i; } return null; } pub const refAllDecls = @compileError("refAllDecls has been moved from std.meta to std.testing"); /// Returns a slice of pointers to public declarations of a namespace. pub fn declList(comptime Namespace: type, comptime Decl: type) []const *const Decl { const S = struct { fn declNameLessThan(context: void, lhs: *const Decl, rhs: *const Decl) bool { return mem.lessThan(u8, lhs.name, rhs.name); } }; comptime { const decls = declarations(Namespace); var array: [decls.len]*const Decl = undefined; for (decls) |decl, i| { array[i] = &@field(Namespace, decl.name); } std.sort.sort(*const Decl, &array, {}, S.declNameLessThan); return &array; } } pub const IntType = @compileError("replaced by std.meta.Int"); pub fn Int(comptime signedness: builtin.Signedness, comptime bit_count: u16) type { return @Type(TypeInfo{ .Int = .{ .signedness = signedness, .bits = bit_count, }, }); } pub fn Vector(comptime len: u32, comptime child: type) type { return @Type(TypeInfo{ .Vector = .{ .len = len, .child = child, }, }); } /// Given a type and value, cast the value to the type as c would. /// This is for translate-c and is not intended for general use. pub fn cast(comptime DestType: type, target: anytype) DestType { // this function should behave like transCCast in translate-c, except it's for macros const SourceType = @TypeOf(target); switch (@typeInfo(DestType)) { .Pointer => { switch (@typeInfo(SourceType)) { .Int, .ComptimeInt => { return @intToPtr(DestType, target); }, .Pointer => { return castPtr(DestType, target); }, .Optional => |opt| { if (@typeInfo(opt.child) == .Pointer) { return castPtr(DestType, target); } }, else => {}, } }, .Optional => |dest_opt| { if (@typeInfo(dest_opt.child) == .Pointer) { switch (@typeInfo(SourceType)) { .Int, .ComptimeInt => { return @intToPtr(DestType, target); }, .Pointer => { return castPtr(DestType, target); }, .Optional => |target_opt| { if (@typeInfo(target_opt.child) == .Pointer) { return castPtr(DestType, target); } }, else => {}, } } }, .Enum => { if (@typeInfo(SourceType) == .Int or @typeInfo(SourceType) == .ComptimeInt) { return @intToEnum(DestType, target); } }, .Int => { switch (@typeInfo(SourceType)) { .Pointer => { return castInt(DestType, @ptrToInt(target)); }, .Optional => |opt| { if (@typeInfo(opt.child) == .Pointer) { return castInt(DestType, @ptrToInt(target)); } }, .Enum => { return castInt(DestType, @enumToInt(target)); }, .Int => { return castInt(DestType, target); }, else => {}, } }, else => {}, } return @as(DestType, target); } fn castInt(comptime DestType: type, target: anytype) DestType { const dest = @typeInfo(DestType).Int; const source = @typeInfo(@TypeOf(target)).Int; if (dest.bits < source.bits) return @bitCast(DestType, @truncate(Int(source.signedness, dest.bits), target)) else return @bitCast(DestType, @as(Int(source.signedness, dest.bits), target)); } fn castPtr(comptime DestType: type, target: anytype) DestType { const dest = ptrInfo(DestType); const source = ptrInfo(@TypeOf(target)); if (source.is_const and !dest.is_const or source.is_volatile and !dest.is_volatile) return @intToPtr(DestType, @ptrToInt(target)) else if (@typeInfo(dest.child) == .Opaque) // dest.alignment would error out return @ptrCast(DestType, target) else return @ptrCast(DestType, @alignCast(dest.alignment, target)); } fn ptrInfo(comptime PtrType: type) TypeInfo.Pointer { return switch (@typeInfo(PtrType)) { .Optional => |opt_info| @typeInfo(opt_info.child).Pointer, .Pointer => |ptr_info| ptr_info, else => unreachable, }; } test "std.meta.cast" { const E = enum(u2) { Zero, One, Two, }; var i = @as(i64, 10); testing.expect(cast(*u8, 16) == @intToPtr(*u8, 16)); testing.expect(cast(*u64, &i).* == @as(u64, 10)); testing.expect(cast(*i64, @as(?*align(1) i64, &i)) == &i); testing.expect(cast(?*u8, 2) == @intToPtr(*u8, 2)); testing.expect(cast(?*i64, @as(*align(1) i64, &i)) == &i); testing.expect(cast(?*i64, @as(?*align(1) i64, &i)) == &i); testing.expect(cast(E, 1) == .One); testing.expectEqual(@as(u32, 4), cast(u32, @intToPtr(*u32, 4))); testing.expectEqual(@as(u32, 4), cast(u32, @intToPtr(?*u32, 4))); testing.expectEqual(@as(u32, 10), cast(u32, @as(u64, 10))); testing.expectEqual(@as(u8, 2), cast(u8, E.Two)); testing.expectEqual(@bitCast(i32, @as(u32, 0x8000_0000)), cast(i32, @as(u32, 0x8000_0000))); testing.expectEqual(@intToPtr(*u8, 2), cast(*u8, @intToPtr(*const u8, 2))); testing.expectEqual(@intToPtr(*u8, 2), cast(*u8, @intToPtr(*volatile u8, 2))); testing.expectEqual(@intToPtr(?*c_void, 2), cast(?*c_void, @intToPtr(*u8, 2))); } /// Given a value returns its size as C's sizeof operator would. /// This is for translate-c and is not intended for general use. pub fn sizeof(target: anytype) usize { const T: type = if (@TypeOf(target) == type) target else @TypeOf(target); switch (@typeInfo(T)) { .Float, .Int, .Struct, .Union, .Enum, .Array, .Bool, .Vector => return @sizeOf(T), .Fn => { // sizeof(main) returns 1, sizeof(&main) returns pointer size. // We cannot distinguish those types in Zig, so use pointer size. return @sizeOf(T); }, .Null => return @sizeOf(*c_void), .Void => { // Note: sizeof(void) is 1 on clang/gcc and 0 on MSVC. return 1; }, .Opaque => { if (T == c_void) { // Note: sizeof(void) is 1 on clang/gcc and 0 on MSVC. return 1; } else { @compileError("Cannot use C sizeof on opaque type " ++ @typeName(T)); } }, .Optional => |opt| { if (@typeInfo(opt.child) == .Pointer) { return sizeof(opt.child); } else { @compileError("Cannot use C sizeof on non-pointer optional " ++ @typeName(T)); } }, .Pointer => |ptr| { if (ptr.size == .Slice) { @compileError("Cannot use C sizeof on slice type " ++ @typeName(T)); } // for strings, sizeof("a") returns 2. // normal pointer decay scenarios from C are handled // in the .Array case above, but strings remain literals // and are therefore always pointers, so they need to be // specially handled here. if (ptr.size == .One and ptr.is_const and @typeInfo(ptr.child) == .Array) { const array_info = @typeInfo(ptr.child).Array; if ((array_info.child == u8 or array_info.child == u16) and array_info.sentinel != null and array_info.sentinel.? == 0) { // length of the string plus one for the null terminator. return (array_info.len + 1) * @sizeOf(array_info.child); } } // When zero sized pointers are removed, this case will no // longer be reachable and can be deleted. if (@sizeOf(T) == 0) { return @sizeOf(*c_void); } return @sizeOf(T); }, .ComptimeFloat => return @sizeOf(f64), // TODO c_double #3999 .ComptimeInt => { // TODO to get the correct result we have to translate // `1073741824 * 4` as `int(1073741824) *% int(4)` since // sizeof(1073741824 * 4) != sizeof(4294967296). // TODO test if target fits in int, long or long long return @sizeOf(c_int); }, else => @compileError("std.meta.sizeof does not support type " ++ @typeName(T)), } } test "sizeof" { const E = extern enum(c_int) { One, _ }; const S = extern struct { a: u32 }; const ptr_size = @sizeOf(*c_void); testing.expect(sizeof(u32) == 4); testing.expect(sizeof(@as(u32, 2)) == 4); testing.expect(sizeof(2) == @sizeOf(c_int)); testing.expect(sizeof(2.0) == @sizeOf(f64)); testing.expect(sizeof(E) == @sizeOf(c_int)); testing.expect(sizeof(E.One) == @sizeOf(c_int)); testing.expect(sizeof(S) == 4); testing.expect(sizeof([_]u32{ 4, 5, 6 }) == 12); testing.expect(sizeof([3]u32) == 12); testing.expect(sizeof([3:0]u32) == 16); testing.expect(sizeof(&[_]u32{ 4, 5, 6 }) == ptr_size); testing.expect(sizeof(*u32) == ptr_size); testing.expect(sizeof([*]u32) == ptr_size); testing.expect(sizeof([*c]u32) == ptr_size); testing.expect(sizeof(?*u32) == ptr_size); testing.expect(sizeof(?[*]u32) == ptr_size); testing.expect(sizeof(*c_void) == ptr_size); testing.expect(sizeof(*void) == ptr_size); testing.expect(sizeof(null) == ptr_size); testing.expect(sizeof("foobar") == 7); testing.expect(sizeof(&[_:0]u16{ 'f', 'o', 'o', 'b', 'a', 'r' }) == 14); testing.expect(sizeof(*const [4:0]u8) == 5); testing.expect(sizeof(*[4:0]u8) == ptr_size); testing.expect(sizeof([*]const [4:0]u8) == ptr_size); testing.expect(sizeof(*const *const [4:0]u8) == ptr_size); testing.expect(sizeof(*const [4]u8) == ptr_size); testing.expect(sizeof(sizeof) == @sizeOf(@TypeOf(sizeof))); testing.expect(sizeof(void) == 1); testing.expect(sizeof(c_void) == 1); } pub const CIntLiteralRadix = enum { decimal, octal, hexadecimal }; fn PromoteIntLiteralReturnType(comptime SuffixType: type, comptime number: comptime_int, comptime radix: CIntLiteralRadix) type { const signed_decimal = [_]type{ c_int, c_long, c_longlong }; const signed_oct_hex = [_]type{ c_int, c_uint, c_long, c_ulong, c_longlong, c_ulonglong }; const unsigned = [_]type{ c_uint, c_ulong, c_ulonglong }; const list: []const type = if (@typeInfo(SuffixType).Int.signedness == .unsigned) &unsigned else if (radix == .decimal) &signed_decimal else &signed_oct_hex; var pos = mem.indexOfScalar(type, list, SuffixType).?; while (pos < list.len) : (pos += 1) { if (number >= math.minInt(list[pos]) and number <= math.maxInt(list[pos])) { return list[pos]; } } @compileError("Integer literal is too large"); } /// Promote the type of an integer literal until it fits as C would. /// This is for translate-c and is not intended for general use. pub fn promoteIntLiteral( comptime SuffixType: type, comptime number: comptime_int, comptime radix: CIntLiteralRadix, ) PromoteIntLiteralReturnType(SuffixType, number, radix) { return number; } test "promoteIntLiteral" { const signed_hex = promoteIntLiteral(c_int, math.maxInt(c_int) + 1, .hexadecimal); testing.expectEqual(c_uint, @TypeOf(signed_hex)); if (math.maxInt(c_longlong) == math.maxInt(c_int)) return; const signed_decimal = promoteIntLiteral(c_int, math.maxInt(c_int) + 1, .decimal); const unsigned = promoteIntLiteral(c_uint, math.maxInt(c_uint) + 1, .hexadecimal); if (math.maxInt(c_long) > math.maxInt(c_int)) { testing.expectEqual(c_long, @TypeOf(signed_decimal)); testing.expectEqual(c_ulong, @TypeOf(unsigned)); } else { testing.expectEqual(c_longlong, @TypeOf(signed_decimal)); testing.expectEqual(c_ulonglong, @TypeOf(unsigned)); } } /// For a given function type, returns a tuple type which fields will /// correspond to the argument types. /// /// Examples: /// - `ArgsTuple(fn() void)` ⇒ `tuple { }` /// - `ArgsTuple(fn(a: u32) u32)` ⇒ `tuple { u32 }` /// - `ArgsTuple(fn(a: u32, b: f16) noreturn)` ⇒ `tuple { u32, f16 }` pub fn ArgsTuple(comptime Function: type) type { const info = @typeInfo(Function); if (info != .Fn) @compileError("ArgsTuple expects a function type"); const function_info = info.Fn; if (function_info.is_generic) @compileError("Cannot create ArgsTuple for generic function"); if (function_info.is_var_args) @compileError("Cannot create ArgsTuple for variadic function"); var argument_field_list: [function_info.args.len]std.builtin.TypeInfo.StructField = undefined; inline for (function_info.args) |arg, i| { const T = arg.arg_type.?; @setEvalBranchQuota(10_000); var num_buf: [128]u8 = undefined; argument_field_list[i] = std.builtin.TypeInfo.StructField{ .name = std.fmt.bufPrint(&num_buf, "{d}", .{i}) catch unreachable, .field_type = T, .default_value = @as(?T, null), .is_comptime = false, .alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0, }; } return @Type(std.builtin.TypeInfo{ .Struct = std.builtin.TypeInfo.Struct{ .is_tuple = true, .layout = .Auto, .decls = &[_]std.builtin.TypeInfo.Declaration{}, .fields = &argument_field_list, }, }); } /// For a given anonymous list of types, returns a new tuple type /// with those types as fields. /// /// Examples: /// - `Tuple(&[_]type {})` ⇒ `tuple { }` /// - `Tuple(&[_]type {f32})` ⇒ `tuple { f32 }` /// - `Tuple(&[_]type {f32,u32})` ⇒ `tuple { f32, u32 }` pub fn Tuple(comptime types: []const type) type { var tuple_fields: [types.len]std.builtin.TypeInfo.StructField = undefined; inline for (types) |T, i| { @setEvalBranchQuota(10_000); var num_buf: [128]u8 = undefined; tuple_fields[i] = std.builtin.TypeInfo.StructField{ .name = std.fmt.bufPrint(&num_buf, "{d}", .{i}) catch unreachable, .field_type = T, .default_value = @as(?T, null), .is_comptime = false, .alignment = if (@sizeOf(T) > 0) @alignOf(T) else 0, }; } return @Type(std.builtin.TypeInfo{ .Struct = std.builtin.TypeInfo.Struct{ .is_tuple = true, .layout = .Auto, .decls = &[_]std.builtin.TypeInfo.Declaration{}, .fields = &tuple_fields, }, }); } const TupleTester = struct { fn assertTypeEqual(comptime Expected: type, comptime Actual: type) void { if (Expected != Actual) @compileError("Expected type " ++ @typeName(Expected) ++ ", but got type " ++ @typeName(Actual)); } fn assertTuple(comptime expected: anytype, comptime Actual: type) void { const info = @typeInfo(Actual); if (info != .Struct) @compileError("Expected struct type"); if (!info.Struct.is_tuple) @compileError("Struct type must be a tuple type"); const fields_list = std.meta.fields(Actual); if (expected.len != fields_list.len) @compileError("Argument count mismatch"); inline for (fields_list) |fld, i| { if (expected[i] != fld.field_type) { @compileError("Field " ++ fld.name ++ " expected to be type " ++ @typeName(expected[i]) ++ ", but was type " ++ @typeName(fld.field_type)); } } } }; test "ArgsTuple" { TupleTester.assertTuple(.{}, ArgsTuple(fn () void)); TupleTester.assertTuple(.{u32}, ArgsTuple(fn (a: u32) []const u8)); TupleTester.assertTuple(.{ u32, f16 }, ArgsTuple(fn (a: u32, b: f16) noreturn)); TupleTester.assertTuple(.{ u32, f16, []const u8, void }, ArgsTuple(fn (a: u32, b: f16, c: []const u8, void) noreturn)); } test "Tuple" { TupleTester.assertTuple(.{}, Tuple(&[_]type{})); TupleTester.assertTuple(.{u32}, Tuple(&[_]type{u32})); TupleTester.assertTuple(.{ u32, f16 }, Tuple(&[_]type{ u32, f16 })); TupleTester.assertTuple(.{ u32, f16, []const u8, void }, Tuple(&[_]type{ u32, f16, []const u8, void })); } /// TODO: https://github.com/ziglang/zig/issues/425 pub fn globalOption(comptime name: []const u8, comptime T: type) ?T { if (!@hasDecl(root, name)) return null; return @as(T, @field(root, name)); } /// This function is for translate-c and is not intended for general use. /// Convert from clang __builtin_shufflevector index to Zig @shuffle index /// clang requires __builtin_shufflevector index arguments to be integer constants. /// negative values for `this_index` indicate "don't care" so we arbitrarily choose 0 /// clang enforces that `this_index` is less than the total number of vector elements /// See https://ziglang.org/documentation/master/#shuffle /// See https://clang.llvm.org/docs/LanguageExtensions.html#langext-builtin-shufflevector pub fn shuffleVectorIndex(comptime this_index: c_int, comptime source_vector_len: usize) i32 { if (this_index <= 0) return 0; const positive_index = @intCast(usize, this_index); if (positive_index < source_vector_len) return @intCast(i32, this_index); const b_index = positive_index - source_vector_len; return ~@intCast(i32, b_index); } test "shuffleVectorIndex" { const vector_len: usize = 4; testing.expect(shuffleVectorIndex(-1, vector_len) == 0); testing.expect(shuffleVectorIndex(0, vector_len) == 0); testing.expect(shuffleVectorIndex(1, vector_len) == 1); testing.expect(shuffleVectorIndex(2, vector_len) == 2); testing.expect(shuffleVectorIndex(3, vector_len) == 3); testing.expect(shuffleVectorIndex(4, vector_len) == -1); testing.expect(shuffleVectorIndex(5, vector_len) == -2); testing.expect(shuffleVectorIndex(6, vector_len) == -3); testing.expect(shuffleVectorIndex(7, vector_len) == -4); } /// Returns whether `error_union` contains an error. pub fn isError(error_union: anytype) bool { return if (error_union) |_| false else |_| true; } test "isError" { std.testing.expect(isError(math.absInt(@as(i8, -128)))); std.testing.expect(!isError(math.absInt(@as(i8, -127)))); }