const builtin = @import("builtin"); const std = @import("std"); const mem = std.mem; const fs = std.fs; const assert = std.debug.assert; const panic = std.debug.panic; const ArrayList = std.ArrayList; const StringHashMap = std.StringHashMap; const Sha256 = std.crypto.hash.sha2.Sha256; const Allocator = mem.Allocator; const Step = std.Build.Step; const CrossTarget = std.zig.CrossTarget; const NativeTargetInfo = std.zig.system.NativeTargetInfo; const LazyPath = std.Build.LazyPath; const PkgConfigPkg = std.Build.PkgConfigPkg; const PkgConfigError = std.Build.PkgConfigError; const RunError = std.Build.RunError; const Module = std.Build.Module; const VcpkgRoot = std.Build.VcpkgRoot; const InstallDir = std.Build.InstallDir; const GeneratedFile = std.Build.GeneratedFile; const Compile = @This(); pub const base_id: Step.Id = .compile; step: Step, name: []const u8, target: CrossTarget, target_info: NativeTargetInfo, optimize: std.builtin.OptimizeMode, linker_script: ?LazyPath = null, version_script: ?[]const u8 = null, out_filename: []const u8, linkage: ?Linkage = null, version: ?std.SemanticVersion, kind: Kind, major_only_filename: ?[]const u8, name_only_filename: ?[]const u8, strip: ?bool, unwind_tables: ?bool, // keep in sync with src/link.zig:CompressDebugSections compress_debug_sections: enum { none, zlib, zstd } = .none, lib_paths: ArrayList(LazyPath), rpaths: ArrayList(LazyPath), frameworks: StringHashMap(FrameworkLinkInfo), verbose_link: bool, verbose_cc: bool, bundle_compiler_rt: ?bool = null, single_threaded: ?bool, stack_protector: ?bool = null, disable_stack_probing: bool, disable_sanitize_c: bool, sanitize_thread: bool, rdynamic: bool, dwarf_format: ?std.dwarf.Format = null, import_memory: bool = false, export_memory: bool = false, /// For WebAssembly targets, this will allow for undefined symbols to /// be imported from the host environment. import_symbols: bool = false, import_table: bool = false, export_table: bool = false, initial_memory: ?u64 = null, max_memory: ?u64 = null, shared_memory: bool = false, global_base: ?u64 = null, c_std: std.Build.CStd, /// Set via options; intended to be read-only after that. zig_lib_dir: ?LazyPath, /// Set via options; intended to be read-only after that. main_mod_path: ?LazyPath, exec_cmd_args: ?[]const ?[]const u8, filter: ?[]const u8, test_evented_io: bool = false, test_runner: ?[]const u8, test_server_mode: bool, code_model: std.builtin.CodeModel = .default, wasi_exec_model: ?std.builtin.WasiExecModel = null, /// Symbols to be exported when compiling to wasm export_symbol_names: []const []const u8 = &.{}, root_src: ?LazyPath, out_lib_filename: []const u8, modules: std.StringArrayHashMap(*Module), link_objects: ArrayList(LinkObject), include_dirs: ArrayList(IncludeDir), c_macros: ArrayList([]const u8), installed_headers: ArrayList(*Step), is_linking_libc: bool, is_linking_libcpp: bool, vcpkg_bin_path: ?[]const u8 = null, // keep in sync with src/Compilation.zig:RcIncludes /// Behavior of automatic detection of include directories when compiling .rc files. /// any: Use MSVC if available, fall back to MinGW. /// msvc: Use MSVC include paths (must be present on the system). /// gnu: Use MinGW include paths (distributed with Zig). /// none: Do not use any autodetected include paths. rc_includes: enum { any, msvc, gnu, none } = .any, /// (Windows) .manifest file to embed in the compilation /// Set via options; intended to be read-only after that. win32_manifest: ?LazyPath = null, installed_path: ?[]const u8, /// Base address for an executable image. image_base: ?u64 = null, libc_file: ?LazyPath = null, valgrind_support: ?bool = null, each_lib_rpath: ?bool = null, /// On ELF targets, this will emit a link section called ".note.gnu.build-id" /// which can be used to coordinate a stripped binary with its debug symbols. /// As an example, the bloaty project refuses to work unless its inputs have /// build ids, in order to prevent accidental mismatches. /// The default is to not include this section because it slows down linking. build_id: ?BuildId = null, /// Create a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF /// file. link_eh_frame_hdr: bool = false, link_emit_relocs: bool = false, /// Place every function in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_function_sections: bool = false, /// Place every data in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_data_sections: bool = false, /// Remove functions and data that are unreachable by the entry point or /// exported symbols. link_gc_sections: ?bool = null, /// (Windows) Whether or not to enable ASLR. Maps to the /DYNAMICBASE[:NO] linker argument. linker_dynamicbase: bool = true, linker_allow_shlib_undefined: ?bool = null, /// Permit read-only relocations in read-only segments. Disallowed by default. link_z_notext: bool = false, /// Force all relocations to be read-only after processing. link_z_relro: bool = true, /// Allow relocations to be lazily processed after load. link_z_lazy: bool = false, /// Common page size link_z_common_page_size: ?u64 = null, /// Maximum page size link_z_max_page_size: ?u64 = null, /// (Darwin) Install name for the dylib install_name: ?[]const u8 = null, /// (Darwin) Path to entitlements file entitlements: ?[]const u8 = null, /// (Darwin) Size of the pagezero segment. pagezero_size: ?u64 = null, /// (Darwin) Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section. headerpad_size: ?u32 = null, /// (Darwin) Automatically Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section to a value fitting all paths expanded to MAXPATHLEN. headerpad_max_install_names: bool = false, /// (Darwin) Remove dylibs that are unreachable by the entry point or exported symbols. dead_strip_dylibs: bool = false, /// Position Independent Code force_pic: ?bool = null, /// Position Independent Executable pie: ?bool = null, red_zone: ?bool = null, omit_frame_pointer: ?bool = null, dll_export_fns: ?bool = null, subsystem: ?std.Target.SubSystem = null, entry_symbol_name: ?[]const u8 = null, /// List of symbols forced as undefined in the symbol table /// thus forcing their resolution by the linker. /// Corresponds to `-u ` for ELF/MachO and `/include:` for COFF/PE. force_undefined_symbols: std.StringHashMap(void), /// Overrides the default stack size stack_size: ?u64 = null, want_lto: ?bool = null, use_llvm: ?bool, use_lld: ?bool, /// This is an advanced setting that can change the intent of this Compile step. /// If this slice has nonzero length, it means that this Compile step exists to /// check for compile errors and return *success* if they match, and failure /// otherwise. expect_errors: []const []const u8 = &.{}, emit_directory: ?*GeneratedFile, generated_docs: ?*GeneratedFile, generated_asm: ?*GeneratedFile, generated_bin: ?*GeneratedFile, generated_pdb: ?*GeneratedFile, generated_implib: ?*GeneratedFile, generated_llvm_bc: ?*GeneratedFile, generated_llvm_ir: ?*GeneratedFile, generated_h: ?*GeneratedFile, pub const CSourceFiles = struct { dependency: ?*std.Build.Dependency, /// If `dependency` is not null relative to it, /// else relative to the build root. files: []const []const u8, flags: []const []const u8, }; pub const CSourceFile = struct { file: LazyPath, flags: []const []const u8, pub fn dupe(self: CSourceFile, b: *std.Build) CSourceFile { return .{ .file = self.file.dupe(b), .flags = b.dupeStrings(self.flags), }; } }; pub const RcSourceFile = struct { file: LazyPath, /// Any option that rc.exe accepts will work here, with the exception of: /// - `/fo`: The output filename is set by the build system /// - `/p`: Only running the preprocessor is not supported in this context /// - `/:no-preprocess` (non-standard option): Not supported in this context /// - Any MUI-related option /// https://learn.microsoft.com/en-us/windows/win32/menurc/using-rc-the-rc-command-line- /// /// Implicitly defined options: /// /x (ignore the INCLUDE environment variable) /// /D_DEBUG or /DNDEBUG depending on the optimization mode flags: []const []const u8 = &.{}, pub fn dupe(self: RcSourceFile, b: *std.Build) RcSourceFile { return .{ .file = self.file.dupe(b), .flags = b.dupeStrings(self.flags), }; } }; pub const LinkObject = union(enum) { static_path: LazyPath, other_step: *Compile, system_lib: SystemLib, assembly_file: LazyPath, c_source_file: *CSourceFile, c_source_files: *CSourceFiles, win32_resource_file: *RcSourceFile, }; pub const SystemLib = struct { name: []const u8, needed: bool, weak: bool, use_pkg_config: UsePkgConfig, preferred_link_mode: std.builtin.LinkMode, search_strategy: SystemLib.SearchStrategy, pub const UsePkgConfig = enum { /// Don't use pkg-config, just pass -lfoo where foo is name. no, /// Try to get information on how to link the library from pkg-config. /// If that fails, fall back to passing -lfoo where foo is name. yes, /// Try to get information on how to link the library from pkg-config. /// If that fails, error out. force, }; pub const SearchStrategy = enum { paths_first, mode_first, no_fallback }; }; const FrameworkLinkInfo = struct { needed: bool = false, weak: bool = false, }; pub const IncludeDir = union(enum) { path: LazyPath, path_system: LazyPath, path_after: LazyPath, framework_path: LazyPath, framework_path_system: LazyPath, other_step: *Compile, config_header_step: *Step.ConfigHeader, }; pub const Options = struct { name: []const u8, root_source_file: ?LazyPath = null, target: CrossTarget, optimize: std.builtin.OptimizeMode, kind: Kind, linkage: ?Linkage = null, version: ?std.SemanticVersion = null, max_rss: usize = 0, filter: ?[]const u8 = null, test_runner: ?[]const u8 = null, link_libc: ?bool = null, single_threaded: ?bool = null, use_llvm: ?bool = null, use_lld: ?bool = null, zig_lib_dir: ?LazyPath = null, main_mod_path: ?LazyPath = null, /// Embed a `.manifest` file in the compilation if the object format supports it. /// https://learn.microsoft.com/en-us/windows/win32/sbscs/manifest-files-reference /// Manifest files must have the extension `.manifest`. /// Can be set regardless of target. The `.manifest` file will be ignored /// if the target object format does not support embedded manifests. win32_manifest: ?LazyPath = null, /// deprecated; use `main_mod_path`. main_pkg_path: ?LazyPath = null, }; pub const BuildId = union(enum) { none, fast, uuid, sha1, md5, hexstring: HexString, pub fn eql(a: BuildId, b: BuildId) bool { const a_tag = std.meta.activeTag(a); const b_tag = std.meta.activeTag(b); if (a_tag != b_tag) return false; return switch (a) { .none, .fast, .uuid, .sha1, .md5 => true, .hexstring => |a_hexstring| mem.eql(u8, a_hexstring.toSlice(), b.hexstring.toSlice()), }; } pub const HexString = struct { bytes: [32]u8, len: u8, /// Result is byte values, *not* hex-encoded. pub fn toSlice(hs: *const HexString) []const u8 { return hs.bytes[0..hs.len]; } }; /// Input is byte values, *not* hex-encoded. /// Asserts `bytes` fits inside `HexString` pub fn initHexString(bytes: []const u8) BuildId { var result: BuildId = .{ .hexstring = .{ .bytes = undefined, .len = @as(u8, @intCast(bytes.len)), } }; @memcpy(result.hexstring.bytes[0..bytes.len], bytes); return result; } /// Converts UTF-8 text to a `BuildId`. pub fn parse(text: []const u8) !BuildId { if (mem.eql(u8, text, "none")) { return .none; } else if (mem.eql(u8, text, "fast")) { return .fast; } else if (mem.eql(u8, text, "uuid")) { return .uuid; } else if (mem.eql(u8, text, "sha1") or mem.eql(u8, text, "tree")) { return .sha1; } else if (mem.eql(u8, text, "md5")) { return .md5; } else if (mem.startsWith(u8, text, "0x")) { var result: BuildId = .{ .hexstring = undefined }; const slice = try std.fmt.hexToBytes(&result.hexstring.bytes, text[2..]); result.hexstring.len = @as(u8, @intCast(slice.len)); return result; } return error.InvalidBuildIdStyle; } test parse { try std.testing.expectEqual(BuildId.md5, try parse("md5")); try std.testing.expectEqual(BuildId.none, try parse("none")); try std.testing.expectEqual(BuildId.fast, try parse("fast")); try std.testing.expectEqual(BuildId.uuid, try parse("uuid")); try std.testing.expectEqual(BuildId.sha1, try parse("sha1")); try std.testing.expectEqual(BuildId.sha1, try parse("tree")); try std.testing.expect(BuildId.initHexString("").eql(try parse("0x"))); try std.testing.expect(BuildId.initHexString("\x12\x34\x56").eql(try parse("0x123456"))); try std.testing.expectError(error.InvalidLength, parse("0x12-34")); try std.testing.expectError(error.InvalidCharacter, parse("0xfoobbb")); try std.testing.expectError(error.InvalidBuildIdStyle, parse("yaddaxxx")); } }; pub const Kind = enum { exe, lib, obj, @"test", }; pub const Linkage = enum { dynamic, static }; pub fn create(owner: *std.Build, options: Options) *Compile { const name = owner.dupe(options.name); const root_src: ?LazyPath = if (options.root_source_file) |rsrc| rsrc.dupe(owner) else null; if (mem.indexOf(u8, name, "/") != null or mem.indexOf(u8, name, "\\") != null) { panic("invalid name: '{s}'. It looks like a file path, but it is supposed to be the library or application name.", .{name}); } // Avoid the common case of the step name looking like "zig test test". const name_adjusted = if (options.kind == .@"test" and mem.eql(u8, name, "test")) "" else owner.fmt("{s} ", .{name}); const step_name = owner.fmt("{s} {s}{s} {s}", .{ switch (options.kind) { .exe => "zig build-exe", .lib => "zig build-lib", .obj => "zig build-obj", .@"test" => "zig test", }, name_adjusted, @tagName(options.optimize), options.target.zigTriple(owner.allocator) catch @panic("OOM"), }); const target_info = NativeTargetInfo.detect(options.target) catch @panic("unhandled error"); const out_filename = std.zig.binNameAlloc(owner.allocator, .{ .root_name = name, .target = target_info.target, .output_mode = switch (options.kind) { .lib => .Lib, .obj => .Obj, .exe, .@"test" => .Exe, }, .link_mode = if (options.linkage) |some| @as(std.builtin.LinkMode, switch (some) { .dynamic => .Dynamic, .static => .Static, }) else null, .version = options.version, }) catch @panic("OOM"); const self = owner.allocator.create(Compile) catch @panic("OOM"); self.* = .{ .strip = null, .unwind_tables = null, .verbose_link = false, .verbose_cc = false, .optimize = options.optimize, .target = options.target, .linkage = options.linkage, .kind = options.kind, .root_src = root_src, .name = name, .frameworks = StringHashMap(FrameworkLinkInfo).init(owner.allocator), .step = Step.init(.{ .id = base_id, .name = step_name, .owner = owner, .makeFn = make, .max_rss = options.max_rss, }), .version = options.version, .out_filename = out_filename, .out_lib_filename = undefined, .major_only_filename = null, .name_only_filename = null, .modules = std.StringArrayHashMap(*Module).init(owner.allocator), .include_dirs = ArrayList(IncludeDir).init(owner.allocator), .link_objects = ArrayList(LinkObject).init(owner.allocator), .c_macros = ArrayList([]const u8).init(owner.allocator), .lib_paths = ArrayList(LazyPath).init(owner.allocator), .rpaths = ArrayList(LazyPath).init(owner.allocator), .installed_headers = ArrayList(*Step).init(owner.allocator), .c_std = std.Build.CStd.C99, .zig_lib_dir = null, .main_mod_path = null, .exec_cmd_args = null, .filter = options.filter, .test_runner = options.test_runner, .test_server_mode = options.test_runner == null, .disable_stack_probing = false, .disable_sanitize_c = false, .sanitize_thread = false, .rdynamic = false, .installed_path = null, .force_undefined_symbols = StringHashMap(void).init(owner.allocator), .emit_directory = null, .generated_docs = null, .generated_asm = null, .generated_bin = null, .generated_pdb = null, .generated_implib = null, .generated_llvm_bc = null, .generated_llvm_ir = null, .generated_h = null, .target_info = target_info, .is_linking_libc = options.link_libc orelse false, .is_linking_libcpp = false, .single_threaded = options.single_threaded, .use_llvm = options.use_llvm, .use_lld = options.use_lld, }; if (options.zig_lib_dir) |lp| { self.zig_lib_dir = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } if (options.main_mod_path orelse options.main_pkg_path) |lp| { self.main_mod_path = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } // Only the PE/COFF format has a Resource Table which is where the manifest // gets embedded, so for any other target the manifest file is just ignored. if (self.target.getObjectFormat() == .coff) { if (options.win32_manifest) |lp| { self.win32_manifest = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } } if (self.kind == .lib) { if (self.linkage != null and self.linkage.? == .static) { self.out_lib_filename = self.out_filename; } else if (self.version) |version| { if (target_info.target.isDarwin()) { self.major_only_filename = owner.fmt("lib{s}.{d}.dylib", .{ self.name, version.major, }); self.name_only_filename = owner.fmt("lib{s}.dylib", .{self.name}); self.out_lib_filename = self.out_filename; } else if (target_info.target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.major_only_filename = owner.fmt("lib{s}.so.{d}", .{ self.name, version.major }); self.name_only_filename = owner.fmt("lib{s}.so", .{self.name}); self.out_lib_filename = self.out_filename; } } else { if (target_info.target.isDarwin()) { self.out_lib_filename = self.out_filename; } else if (target_info.target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.out_lib_filename = self.out_filename; } } } if (root_src) |rs| rs.addStepDependencies(&self.step); return self; } pub fn installHeader(cs: *Compile, src_path: []const u8, dest_rel_path: []const u8) void { const b = cs.step.owner; const install_file = b.addInstallHeaderFile(src_path, dest_rel_path); b.getInstallStep().dependOn(&install_file.step); cs.installed_headers.append(&install_file.step) catch @panic("OOM"); } pub const InstallConfigHeaderOptions = struct { install_dir: InstallDir = .header, dest_rel_path: ?[]const u8 = null, }; pub fn installConfigHeader( cs: *Compile, config_header: *Step.ConfigHeader, options: InstallConfigHeaderOptions, ) void { const dest_rel_path = options.dest_rel_path orelse config_header.include_path; const b = cs.step.owner; const install_file = b.addInstallFileWithDir( .{ .generated = &config_header.output_file }, options.install_dir, dest_rel_path, ); install_file.step.dependOn(&config_header.step); b.getInstallStep().dependOn(&install_file.step); cs.installed_headers.append(&install_file.step) catch @panic("OOM"); } pub fn installHeadersDirectory( a: *Compile, src_dir_path: []const u8, dest_rel_path: []const u8, ) void { return installHeadersDirectoryOptions(a, .{ .source_dir = .{ .path = src_dir_path }, .install_dir = .header, .install_subdir = dest_rel_path, }); } pub fn installHeadersDirectoryOptions( cs: *Compile, options: std.Build.Step.InstallDir.Options, ) void { const b = cs.step.owner; const install_dir = b.addInstallDirectory(options); b.getInstallStep().dependOn(&install_dir.step); cs.installed_headers.append(&install_dir.step) catch @panic("OOM"); } pub fn installLibraryHeaders(cs: *Compile, l: *Compile) void { assert(l.kind == .lib); const b = cs.step.owner; const install_step = b.getInstallStep(); // Copy each element from installed_headers, modifying the builder // to be the new parent's builder. for (l.installed_headers.items) |step| { const step_copy = switch (step.id) { inline .install_file, .install_dir => |id| blk: { const T = id.Type(); const ptr = b.allocator.create(T) catch @panic("OOM"); ptr.* = step.cast(T).?.*; ptr.dest_builder = b; break :blk &ptr.step; }, else => unreachable, }; cs.installed_headers.append(step_copy) catch @panic("OOM"); install_step.dependOn(step_copy); } cs.installed_headers.appendSlice(l.installed_headers.items) catch @panic("OOM"); } pub fn addObjCopy(cs: *Compile, options: Step.ObjCopy.Options) *Step.ObjCopy { const b = cs.step.owner; var copy = options; if (copy.basename == null) { if (options.format) |f| { copy.basename = b.fmt("{s}.{s}", .{ cs.name, @tagName(f) }); } else { copy.basename = cs.name; } } return b.addObjCopy(cs.getEmittedBin(), copy); } /// This function would run in the context of the package that created the executable, /// which is undesirable when running an executable provided by a dependency package. pub const run = @compileError("deprecated; use std.Build.addRunArtifact"); /// This function would install in the context of the package that created the artifact, /// which is undesirable when installing an artifact provided by a dependency package. pub const install = @compileError("deprecated; use std.Build.installArtifact"); pub fn checkObject(self: *Compile) *Step.CheckObject { return Step.CheckObject.create(self.step.owner, self.getEmittedBin(), self.target_info.target.ofmt); } /// deprecated: use `setLinkerScript` pub const setLinkerScriptPath = setLinkerScript; pub fn setLinkerScript(self: *Compile, source: LazyPath) void { const b = self.step.owner; self.linker_script = source.dupe(b); source.addStepDependencies(&self.step); } pub fn forceUndefinedSymbol(self: *Compile, symbol_name: []const u8) void { const b = self.step.owner; self.force_undefined_symbols.put(b.dupe(symbol_name), {}) catch @panic("OOM"); } pub fn linkFramework(self: *Compile, framework_name: []const u8) void { const b = self.step.owner; self.frameworks.put(b.dupe(framework_name), .{}) catch @panic("OOM"); } pub fn linkFrameworkNeeded(self: *Compile, framework_name: []const u8) void { const b = self.step.owner; self.frameworks.put(b.dupe(framework_name), .{ .needed = true, }) catch @panic("OOM"); } pub fn linkFrameworkWeak(self: *Compile, framework_name: []const u8) void { const b = self.step.owner; self.frameworks.put(b.dupe(framework_name), .{ .weak = true, }) catch @panic("OOM"); } /// Returns whether the library, executable, or object depends on a particular system library. pub fn dependsOnSystemLibrary(self: Compile, name: []const u8) bool { if (isLibCLibrary(name)) { return self.is_linking_libc; } if (isLibCppLibrary(name)) { return self.is_linking_libcpp; } for (self.link_objects.items) |link_object| { switch (link_object) { .system_lib => |lib| if (mem.eql(u8, lib.name, name)) return true, else => continue, } } return false; } pub fn linkLibrary(self: *Compile, lib: *Compile) void { assert(lib.kind == .lib); self.linkLibraryOrObject(lib); } pub fn isDynamicLibrary(self: *Compile) bool { return self.kind == .lib and self.linkage == Linkage.dynamic; } pub fn isStaticLibrary(self: *Compile) bool { return self.kind == .lib and self.linkage != Linkage.dynamic; } pub fn producesPdbFile(self: *Compile) bool { // TODO: Is this right? Isn't PDB for *any* PE/COFF file? // TODO: just share this logic with the compiler, silly! if (!self.target.isWindows() and !self.target.isUefi()) return false; if (self.target.getObjectFormat() == .c) return false; if (self.strip == true or (self.strip == null and self.optimize == .ReleaseSmall)) return false; return self.isDynamicLibrary() or self.kind == .exe or self.kind == .@"test"; } pub fn producesImplib(self: *Compile) bool { return self.isDynamicLibrary() and self.target.isWindows(); } pub fn linkLibC(self: *Compile) void { self.is_linking_libc = true; } pub fn linkLibCpp(self: *Compile) void { self.is_linking_libcpp = true; } /// If the value is omitted, it is set to 1. /// `name` and `value` need not live longer than the function call. pub fn defineCMacro(self: *Compile, name: []const u8, value: ?[]const u8) void { const b = self.step.owner; const macro = std.Build.constructCMacro(b.allocator, name, value); self.c_macros.append(macro) catch @panic("OOM"); } /// name_and_value looks like [name]=[value]. If the value is omitted, it is set to 1. pub fn defineCMacroRaw(self: *Compile, name_and_value: []const u8) void { const b = self.step.owner; self.c_macros.append(b.dupe(name_and_value)) catch @panic("OOM"); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryName(self: *Compile, name: []const u8) void { return linkSystemLibrary2(self, name, .{ .use_pkg_config = .no }); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryNeededName(self: *Compile, name: []const u8) void { return linkSystemLibrary2(self, name, .{ .needed = true, .use_pkg_config = .no }); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryWeakName(self: *Compile, name: []const u8) void { return linkSystemLibrary2(self, name, .{ .weak = true, .use_pkg_config = .no }); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryPkgConfigOnly(self: *Compile, lib_name: []const u8) void { return linkSystemLibrary2(self, lib_name, .{ .use_pkg_config = .force }); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryNeededPkgConfigOnly(self: *Compile, lib_name: []const u8) void { return linkSystemLibrary2(self, lib_name, .{ .needed = true, .use_pkg_config = .force }); } /// Run pkg-config for the given library name and parse the output, returning the arguments /// that should be passed to zig to link the given library. fn runPkgConfig(self: *Compile, lib_name: []const u8) ![]const []const u8 { const b = self.step.owner; const pkg_name = match: { // First we have to map the library name to pkg config name. Unfortunately, // there are several examples where this is not straightforward: // -lSDL2 -> pkg-config sdl2 // -lgdk-3 -> pkg-config gdk-3.0 // -latk-1.0 -> pkg-config atk const pkgs = try getPkgConfigList(b); // Exact match means instant winner. for (pkgs) |pkg| { if (mem.eql(u8, pkg.name, lib_name)) { break :match pkg.name; } } // Next we'll try ignoring case. for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, lib_name)) { break :match pkg.name; } } // Now try appending ".0". for (pkgs) |pkg| { if (std.ascii.indexOfIgnoreCase(pkg.name, lib_name)) |pos| { if (pos != 0) continue; if (mem.eql(u8, pkg.name[lib_name.len..], ".0")) { break :match pkg.name; } } } // Trimming "-1.0". if (mem.endsWith(u8, lib_name, "-1.0")) { const trimmed_lib_name = lib_name[0 .. lib_name.len - "-1.0".len]; for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, trimmed_lib_name)) { break :match pkg.name; } } } return error.PackageNotFound; }; var code: u8 = undefined; const stdout = if (b.runAllowFail(&[_][]const u8{ "pkg-config", pkg_name, "--cflags", "--libs", }, &code, .Ignore)) |stdout| stdout else |err| switch (err) { error.ProcessTerminated => return error.PkgConfigCrashed, error.ExecNotSupported => return error.PkgConfigFailed, error.ExitCodeFailure => return error.PkgConfigFailed, error.FileNotFound => return error.PkgConfigNotInstalled, else => return err, }; var zig_args = ArrayList([]const u8).init(b.allocator); defer zig_args.deinit(); var it = mem.tokenizeAny(u8, stdout, " \r\n\t"); while (it.next()) |tok| { if (mem.eql(u8, tok, "-I")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-I", dir }); } else if (mem.startsWith(u8, tok, "-I")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-L")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-L", dir }); } else if (mem.startsWith(u8, tok, "-L")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-l")) { const lib = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-l", lib }); } else if (mem.startsWith(u8, tok, "-l")) { try zig_args.append(tok); } else if (mem.eql(u8, tok, "-D")) { const macro = it.next() orelse return error.PkgConfigInvalidOutput; try zig_args.appendSlice(&[_][]const u8{ "-D", macro }); } else if (mem.startsWith(u8, tok, "-D")) { try zig_args.append(tok); } else if (b.debug_pkg_config) { return self.step.fail("unknown pkg-config flag '{s}'", .{tok}); } } return zig_args.toOwnedSlice(); } pub fn linkSystemLibrary(self: *Compile, name: []const u8) void { self.linkSystemLibrary2(name, .{}); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryNeeded(self: *Compile, name: []const u8) void { return linkSystemLibrary2(self, name, .{ .needed = true }); } /// deprecated: use linkSystemLibrary2 pub fn linkSystemLibraryWeak(self: *Compile, name: []const u8) void { return linkSystemLibrary2(self, name, .{ .weak = true }); } pub const LinkSystemLibraryOptions = struct { needed: bool = false, weak: bool = false, use_pkg_config: SystemLib.UsePkgConfig = .yes, preferred_link_mode: std.builtin.LinkMode = .Dynamic, search_strategy: SystemLib.SearchStrategy = .paths_first, }; pub fn linkSystemLibrary2( self: *Compile, name: []const u8, options: LinkSystemLibraryOptions, ) void { const b = self.step.owner; if (isLibCLibrary(name)) { self.linkLibC(); return; } if (isLibCppLibrary(name)) { self.linkLibCpp(); return; } self.link_objects.append(.{ .system_lib = .{ .name = b.dupe(name), .needed = options.needed, .weak = options.weak, .use_pkg_config = options.use_pkg_config, .preferred_link_mode = options.preferred_link_mode, .search_strategy = options.search_strategy, }, }) catch @panic("OOM"); } pub const AddCSourceFilesOptions = struct { /// When provided, `files` are relative to `dependency` rather than the package that owns the `Compile` step. dependency: ?*std.Build.Dependency = null, files: []const []const u8, flags: []const []const u8 = &.{}, }; /// Handy when you have many C/C++ source files and want them all to have the same flags. pub fn addCSourceFiles(self: *Compile, options: AddCSourceFilesOptions) void { const b = self.step.owner; const c_source_files = b.allocator.create(CSourceFiles) catch @panic("OOM"); const files_copy = b.dupeStrings(options.files); const flags_copy = b.dupeStrings(options.flags); c_source_files.* = .{ .dependency = options.dependency, .files = files_copy, .flags = flags_copy, }; self.link_objects.append(.{ .c_source_files = c_source_files }) catch @panic("OOM"); } pub fn addCSourceFile(self: *Compile, source: CSourceFile) void { const b = self.step.owner; const c_source_file = b.allocator.create(CSourceFile) catch @panic("OOM"); c_source_file.* = source.dupe(b); self.link_objects.append(.{ .c_source_file = c_source_file }) catch @panic("OOM"); source.file.addStepDependencies(&self.step); } /// Resource files must have the extension `.rc`. /// Can be called regardless of target. The .rc file will be ignored /// if the target object format does not support embedded resources. pub fn addWin32ResourceFile(self: *Compile, source: RcSourceFile) void { // Only the PE/COFF format has a Resource Table, so for any other target // the resource file is just ignored. if (self.target.getObjectFormat() != .coff) return; const b = self.step.owner; const rc_source_file = b.allocator.create(RcSourceFile) catch @panic("OOM"); rc_source_file.* = source.dupe(b); self.link_objects.append(.{ .win32_resource_file = rc_source_file }) catch @panic("OOM"); source.file.addStepDependencies(&self.step); } pub fn setVerboseLink(self: *Compile, value: bool) void { self.verbose_link = value; } pub fn setVerboseCC(self: *Compile, value: bool) void { self.verbose_cc = value; } pub fn setLibCFile(self: *Compile, libc_file: ?LazyPath) void { const b = self.step.owner; self.libc_file = if (libc_file) |f| f.dupe(b) else null; } fn getEmittedFileGeneric(self: *Compile, output_file: *?*GeneratedFile) LazyPath { if (output_file.*) |g| { return .{ .generated = g }; } const arena = self.step.owner.allocator; const generated_file = arena.create(GeneratedFile) catch @panic("OOM"); generated_file.* = .{ .step = &self.step }; output_file.* = generated_file; return .{ .generated = generated_file }; } /// deprecated: use `getEmittedBinDirectory` pub const getOutputDirectorySource = getEmittedBinDirectory; /// Returns the path to the directory that contains the emitted binary file. pub fn getEmittedBinDirectory(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.emit_directory); } /// deprecated: use `getEmittedBin` pub const getOutputSource = getEmittedBin; /// Returns the path to the generated executable, library or object file. /// To run an executable built with zig build, use `run`, or create an install step and invoke it. pub fn getEmittedBin(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_bin); } /// deprecated: use `getEmittedImplib` pub const getOutputLibSource = getEmittedImplib; /// Returns the path to the generated import library. /// This function can only be called for libraries. pub fn getEmittedImplib(self: *Compile) LazyPath { assert(self.kind == .lib); return self.getEmittedFileGeneric(&self.generated_implib); } /// deprecated: use `getEmittedH` pub const getOutputHSource = getEmittedH; /// Returns the path to the generated header file. /// This function can only be called for libraries or objects. pub fn getEmittedH(self: *Compile) LazyPath { assert(self.kind != .exe and self.kind != .@"test"); return self.getEmittedFileGeneric(&self.generated_h); } /// deprecated: use `getEmittedPdb`. pub const getOutputPdbSource = getEmittedPdb; /// Returns the generated PDB file. /// If the compilation does not produce a PDB file, this causes a FileNotFound error /// at build time. pub fn getEmittedPdb(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.generated_pdb); } /// Returns the path to the generated documentation directory. pub fn getEmittedDocs(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_docs); } /// Returns the path to the generated assembly code. pub fn getEmittedAsm(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_asm); } /// Returns the path to the generated LLVM IR. pub fn getEmittedLlvmIr(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_ir); } /// Returns the path to the generated LLVM BC. pub fn getEmittedLlvmBc(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_bc); } pub fn addAssemblyFile(self: *Compile, source: LazyPath) void { const b = self.step.owner; const source_duped = source.dupe(b); self.link_objects.append(.{ .assembly_file = source_duped }) catch @panic("OOM"); source_duped.addStepDependencies(&self.step); } pub fn addObjectFile(self: *Compile, source: LazyPath) void { const b = self.step.owner; self.link_objects.append(.{ .static_path = source.dupe(b) }) catch @panic("OOM"); source.addStepDependencies(&self.step); } pub fn addObject(self: *Compile, obj: *Compile) void { assert(obj.kind == .obj); self.linkLibraryOrObject(obj); } pub fn addAfterIncludePath(self: *Compile, path: LazyPath) void { const b = self.step.owner; self.include_dirs.append(IncludeDir{ .path_after = path.dupe(b) }) catch @panic("OOM"); path.addStepDependencies(&self.step); } pub fn addSystemIncludePath(self: *Compile, path: LazyPath) void { const b = self.step.owner; self.include_dirs.append(IncludeDir{ .path_system = path.dupe(b) }) catch @panic("OOM"); path.addStepDependencies(&self.step); } pub fn addIncludePath(self: *Compile, path: LazyPath) void { const b = self.step.owner; self.include_dirs.append(IncludeDir{ .path = path.dupe(b) }) catch @panic("OOM"); path.addStepDependencies(&self.step); } pub fn addConfigHeader(self: *Compile, config_header: *Step.ConfigHeader) void { self.step.dependOn(&config_header.step); self.include_dirs.append(.{ .config_header_step = config_header }) catch @panic("OOM"); } pub fn addLibraryPath(self: *Compile, directory_source: LazyPath) void { const b = self.step.owner; self.lib_paths.append(directory_source.dupe(b)) catch @panic("OOM"); directory_source.addStepDependencies(&self.step); } pub fn addRPath(self: *Compile, directory_source: LazyPath) void { const b = self.step.owner; self.rpaths.append(directory_source.dupe(b)) catch @panic("OOM"); directory_source.addStepDependencies(&self.step); } pub fn addSystemFrameworkPath(self: *Compile, directory_source: LazyPath) void { const b = self.step.owner; self.include_dirs.append(IncludeDir{ .framework_path_system = directory_source.dupe(b) }) catch @panic("OOM"); directory_source.addStepDependencies(&self.step); } pub fn addFrameworkPath(self: *Compile, directory_source: LazyPath) void { const b = self.step.owner; self.include_dirs.append(IncludeDir{ .framework_path = directory_source.dupe(b) }) catch @panic("OOM"); directory_source.addStepDependencies(&self.step); } /// Adds a module to be used with `@import` and exposing it in the current /// package's module table using `name`. pub fn addModule(cs: *Compile, name: []const u8, module: *Module) void { const b = cs.step.owner; cs.modules.put(b.dupe(name), module) catch @panic("OOM"); var done = std.AutoHashMap(*Module, void).init(b.allocator); defer done.deinit(); cs.addRecursiveBuildDeps(module, &done) catch @panic("OOM"); } /// Adds a module to be used with `@import` without exposing it in the current /// package's module table. pub fn addAnonymousModule(cs: *Compile, name: []const u8, options: std.Build.CreateModuleOptions) void { const b = cs.step.owner; const module = b.createModule(options); return addModule(cs, name, module); } pub fn addOptions(cs: *Compile, module_name: []const u8, options: *Step.Options) void { addModule(cs, module_name, options.createModule()); } fn addRecursiveBuildDeps(cs: *Compile, module: *Module, done: *std.AutoHashMap(*Module, void)) !void { if (done.contains(module)) return; try done.put(module, {}); module.source_file.addStepDependencies(&cs.step); for (module.dependencies.values()) |dep| { try cs.addRecursiveBuildDeps(dep, done); } } /// If Vcpkg was found on the system, it will be added to include and lib /// paths for the specified target. pub fn addVcpkgPaths(self: *Compile, linkage: Compile.Linkage) !void { const b = self.step.owner; // Ideally in the Unattempted case we would call the function recursively // after findVcpkgRoot and have only one switch statement, but the compiler // cannot resolve the error set. switch (b.vcpkg_root) { .unattempted => { b.vcpkg_root = if (try findVcpkgRoot(b.allocator)) |root| VcpkgRoot{ .found = root } else .not_found; }, .not_found => return error.VcpkgNotFound, .found => {}, } switch (b.vcpkg_root) { .unattempted => unreachable, .not_found => return error.VcpkgNotFound, .found => |root| { const allocator = b.allocator; const triplet = try self.target.vcpkgTriplet(allocator, if (linkage == .static) .Static else .Dynamic); defer b.allocator.free(triplet); const include_path = b.pathJoin(&.{ root, "installed", triplet, "include" }); errdefer allocator.free(include_path); try self.include_dirs.append(IncludeDir{ .path = .{ .path = include_path } }); const lib_path = b.pathJoin(&.{ root, "installed", triplet, "lib" }); try self.lib_paths.append(.{ .path = lib_path }); self.vcpkg_bin_path = b.pathJoin(&.{ root, "installed", triplet, "bin" }); }, } } pub fn setExecCmd(self: *Compile, args: []const ?[]const u8) void { const b = self.step.owner; assert(self.kind == .@"test"); const duped_args = b.allocator.alloc(?[]u8, args.len) catch @panic("OOM"); for (args, 0..) |arg, i| { duped_args[i] = if (arg) |a| b.dupe(a) else null; } self.exec_cmd_args = duped_args; } fn linkLibraryOrObject(self: *Compile, other: *Compile) void { other.getEmittedBin().addStepDependencies(&self.step); if (other.target.isWindows() and other.isDynamicLibrary()) { other.getEmittedImplib().addStepDependencies(&self.step); } self.link_objects.append(.{ .other_step = other }) catch @panic("OOM"); self.include_dirs.append(.{ .other_step = other }) catch @panic("OOM"); for (other.installed_headers.items) |install_step| { self.step.dependOn(install_step); } } fn appendModuleArgs( cs: *Compile, zig_args: *ArrayList([]const u8), ) error{OutOfMemory}!void { const b = cs.step.owner; // First, traverse the whole dependency graph and give every module a unique name, ideally one // named after what it's called somewhere in the graph. It will help here to have both a mapping // from module to name and a set of all the currently-used names. var mod_names = std.AutoHashMap(*Module, []const u8).init(b.allocator); var names = std.StringHashMap(void).init(b.allocator); var to_name = std.ArrayList(struct { name: []const u8, mod: *Module, }).init(b.allocator); { var it = cs.modules.iterator(); while (it.next()) |kv| { // While we're traversing the root dependencies, let's make sure that no module names // have colons in them, since the CLI forbids it. We handle this for transitive // dependencies further down. if (std.mem.indexOfScalar(u8, kv.key_ptr.*, ':') != null) { @panic("Module names cannot contain colons"); } try to_name.append(.{ .name = kv.key_ptr.*, .mod = kv.value_ptr.*, }); } } while (to_name.popOrNull()) |dep| { if (mod_names.contains(dep.mod)) continue; // We'll use this buffer to store the name we decide on var buf = try b.allocator.alloc(u8, dep.name.len + 32); // First, try just the exposed dependency name @memcpy(buf[0..dep.name.len], dep.name); var name = buf[0..dep.name.len]; var n: usize = 0; while (names.contains(name)) { // If that failed, append an incrementing number to the end name = std.fmt.bufPrint(buf, "{s}{}", .{ dep.name, n }) catch unreachable; n += 1; } try mod_names.put(dep.mod, name); try names.put(name, {}); var it = dep.mod.dependencies.iterator(); while (it.next()) |kv| { // Same colon-in-name check as above, but for transitive dependencies. if (std.mem.indexOfScalar(u8, kv.key_ptr.*, ':') != null) { @panic("Module names cannot contain colons"); } try to_name.append(.{ .name = kv.key_ptr.*, .mod = kv.value_ptr.*, }); } } // Since the module names given to the CLI are based off of the exposed names, we already know // that none of the CLI names have colons in them, so there's no need to check that explicitly. // Every module in the graph is now named; output their definitions { var it = mod_names.iterator(); while (it.next()) |kv| { const mod = kv.key_ptr.*; const name = kv.value_ptr.*; const deps_str = try constructDepString(b.allocator, mod_names, mod.dependencies); const src = mod.source_file.getPath(mod.builder); try zig_args.append("--mod"); try zig_args.append(try std.fmt.allocPrint(b.allocator, "{s}:{s}:{s}", .{ name, deps_str, src })); } } // Lastly, output the root dependencies const deps_str = try constructDepString(b.allocator, mod_names, cs.modules); if (deps_str.len > 0) { try zig_args.append("--deps"); try zig_args.append(deps_str); } } fn constructDepString( allocator: std.mem.Allocator, mod_names: std.AutoHashMap(*Module, []const u8), deps: std.StringArrayHashMap(*Module), ) ![]const u8 { var deps_str = std.ArrayList(u8).init(allocator); var it = deps.iterator(); while (it.next()) |kv| { const expose = kv.key_ptr.*; const name = mod_names.get(kv.value_ptr.*).?; if (std.mem.eql(u8, expose, name)) { try deps_str.writer().print("{s},", .{name}); } else { try deps_str.writer().print("{s}={s},", .{ expose, name }); } } if (deps_str.items.len > 0) { return deps_str.items[0 .. deps_str.items.len - 1]; // omit trailing comma } else { return ""; } } fn getGeneratedFilePath(self: *Compile, comptime tag_name: []const u8, asking_step: ?*Step) []const u8 { const maybe_path: ?*GeneratedFile = @field(self, tag_name); const generated_file = maybe_path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic("missing emit option for " ++ tag_name); }; const path = generated_file.path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic(tag_name ++ " is null. Is there a missing step dependency?"); }; return path; } fn make(step: *Step, prog_node: *std.Progress.Node) !void { const b = step.owner; const self = @fieldParentPtr(Compile, "step", step); if (self.root_src == null and self.link_objects.items.len == 0) { return step.fail("the linker needs one or more objects to link", .{}); } var zig_args = ArrayList([]const u8).init(b.allocator); defer zig_args.deinit(); try zig_args.append(b.zig_exe); const cmd = switch (self.kind) { .lib => "build-lib", .exe => "build-exe", .obj => "build-obj", .@"test" => "test", }; try zig_args.append(cmd); if (b.reference_trace) |some| { try zig_args.append(try std.fmt.allocPrint(b.allocator, "-freference-trace={d}", .{some})); } try addFlag(&zig_args, "llvm", self.use_llvm); try addFlag(&zig_args, "lld", self.use_lld); if (self.target.ofmt) |ofmt| { try zig_args.append(try std.fmt.allocPrint(b.allocator, "-ofmt={s}", .{@tagName(ofmt)})); } if (self.entry_symbol_name) |entry| { try zig_args.append("--entry"); try zig_args.append(entry); } { var it = self.force_undefined_symbols.keyIterator(); while (it.next()) |symbol_name| { try zig_args.append("--force_undefined"); try zig_args.append(symbol_name.*); } } if (self.stack_size) |stack_size| { try zig_args.append("--stack"); try zig_args.append(try std.fmt.allocPrint(b.allocator, "{}", .{stack_size})); } if (self.root_src) |root_src| try zig_args.append(root_src.getPath(b)); // We will add link objects from transitive dependencies, but we want to keep // all link objects in the same order provided. // This array is used to keep self.link_objects immutable. var transitive_deps: TransitiveDeps = .{ .link_objects = ArrayList(LinkObject).init(b.allocator), .seen_system_libs = StringHashMap(void).init(b.allocator), .seen_steps = std.AutoHashMap(*const Step, void).init(b.allocator), .is_linking_libcpp = self.is_linking_libcpp, .is_linking_libc = self.is_linking_libc, .frameworks = &self.frameworks, }; try transitive_deps.seen_steps.put(&self.step, {}); try transitive_deps.add(self.link_objects.items); var prev_has_cflags = false; var prev_has_rcflags = false; var prev_search_strategy: SystemLib.SearchStrategy = .paths_first; var prev_preferred_link_mode: std.builtin.LinkMode = .Dynamic; for (transitive_deps.link_objects.items) |link_object| { switch (link_object) { .static_path => |static_path| try zig_args.append(static_path.getPath(b)), .other_step => |other| switch (other.kind) { .exe => @panic("Cannot link with an executable build artifact"), .@"test" => @panic("Cannot link with a test"), .obj => { try zig_args.append(other.getEmittedBin().getPath(b)); }, .lib => l: { if (self.isStaticLibrary() and other.isStaticLibrary()) { // Avoid putting a static library inside a static library. break :l; } // For DLLs, we gotta link against the implib. For // everything else, we directly link against the library file. const full_path_lib = if (other.producesImplib()) other.getGeneratedFilePath("generated_implib", &self.step) else other.getGeneratedFilePath("generated_bin", &self.step); try zig_args.append(full_path_lib); if (other.linkage == Linkage.dynamic and !self.target.isWindows()) { if (fs.path.dirname(full_path_lib)) |dirname| { try zig_args.append("-rpath"); try zig_args.append(dirname); } } }, }, .system_lib => |system_lib| { if ((system_lib.search_strategy != prev_search_strategy or system_lib.preferred_link_mode != prev_preferred_link_mode) and self.linkage != .static) { switch (system_lib.search_strategy) { .no_fallback => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_dylibs_only"), .Static => try zig_args.append("-search_static_only"), }, .paths_first => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_paths_first"), .Static => try zig_args.append("-search_paths_first_static"), }, .mode_first => switch (system_lib.preferred_link_mode) { .Dynamic => try zig_args.append("-search_dylibs_first"), .Static => try zig_args.append("-search_static_first"), }, } prev_search_strategy = system_lib.search_strategy; prev_preferred_link_mode = system_lib.preferred_link_mode; } const prefix: []const u8 = prefix: { if (system_lib.needed) break :prefix "-needed-l"; if (system_lib.weak) break :prefix "-weak-l"; break :prefix "-l"; }; switch (system_lib.use_pkg_config) { .no => try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name })), .yes, .force => { if (self.runPkgConfig(system_lib.name)) |args| { try zig_args.appendSlice(args); } else |err| switch (err) { error.PkgConfigInvalidOutput, error.PkgConfigCrashed, error.PkgConfigFailed, error.PkgConfigNotInstalled, error.PackageNotFound, => switch (system_lib.use_pkg_config) { .yes => { // pkg-config failed, so fall back to linking the library // by name directly. try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name, })); }, .force => { panic("pkg-config failed for library {s}", .{system_lib.name}); }, .no => unreachable, }, else => |e| return e, } }, } }, .assembly_file => |asm_file| { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } try zig_args.append(asm_file.getPath(b)); }, .c_source_file => |c_source_file| { if (c_source_file.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_cflags = true; } try zig_args.append(c_source_file.file.getPath(b)); }, .c_source_files => |c_source_files| { if (c_source_files.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_files.flags) |flag| { try zig_args.append(flag); } try zig_args.append("--"); prev_has_cflags = true; } if (c_source_files.dependency) |dep| { for (c_source_files.files) |file| { try zig_args.append(dep.builder.pathFromRoot(file)); } } else { for (c_source_files.files) |file| { try zig_args.append(b.pathFromRoot(file)); } } }, .win32_resource_file => |rc_source_file| { if (rc_source_file.flags.len == 0) { if (prev_has_rcflags) { try zig_args.append("-rcflags"); try zig_args.append("--"); prev_has_rcflags = false; } } else { try zig_args.append("-rcflags"); for (rc_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_rcflags = true; } try zig_args.append(rc_source_file.file.getPath(b)); }, } } if (self.win32_manifest) |manifest_file| { try zig_args.append(manifest_file.getPath(b)); } if (transitive_deps.is_linking_libcpp) { try zig_args.append("-lc++"); } if (transitive_deps.is_linking_libc) { try zig_args.append("-lc"); } if (self.image_base) |image_base| { try zig_args.append("--image-base"); try zig_args.append(b.fmt("0x{x}", .{image_base})); } if (self.filter) |filter| { try zig_args.append("--test-filter"); try zig_args.append(filter); } if (self.test_evented_io) { try zig_args.append("--test-evented-io"); } if (self.test_runner) |test_runner| { try zig_args.append("--test-runner"); try zig_args.append(b.pathFromRoot(test_runner)); } for (b.debug_log_scopes) |log_scope| { try zig_args.append("--debug-log"); try zig_args.append(log_scope); } if (b.debug_compile_errors) { try zig_args.append("--debug-compile-errors"); } if (b.verbose_cimport) try zig_args.append("--verbose-cimport"); if (b.verbose_air) try zig_args.append("--verbose-air"); if (b.verbose_llvm_ir) |path| try zig_args.append(b.fmt("--verbose-llvm-ir={s}", .{path})); if (b.verbose_llvm_bc) |path| try zig_args.append(b.fmt("--verbose-llvm-bc={s}", .{path})); if (b.verbose_link or self.verbose_link) try zig_args.append("--verbose-link"); if (b.verbose_cc or self.verbose_cc) try zig_args.append("--verbose-cc"); if (b.verbose_llvm_cpu_features) try zig_args.append("--verbose-llvm-cpu-features"); if (self.generated_asm != null) try zig_args.append("-femit-asm"); if (self.generated_bin == null) try zig_args.append("-fno-emit-bin"); if (self.generated_docs != null) try zig_args.append("-femit-docs"); if (self.generated_implib != null) try zig_args.append("-femit-implib"); if (self.generated_llvm_bc != null) try zig_args.append("-femit-llvm-bc"); if (self.generated_llvm_ir != null) try zig_args.append("-femit-llvm-ir"); if (self.generated_h != null) try zig_args.append("-femit-h"); try addFlag(&zig_args, "strip", self.strip); try addFlag(&zig_args, "unwind-tables", self.unwind_tables); if (self.dwarf_format) |dwarf_format| { try zig_args.append(switch (dwarf_format) { .@"32" => "-gdwarf32", .@"64" => "-gdwarf64", }); } switch (self.compress_debug_sections) { .none => {}, .zlib => try zig_args.append("--compress-debug-sections=zlib"), .zstd => try zig_args.append("--compress-debug-sections=zstd"), } if (self.link_eh_frame_hdr) { try zig_args.append("--eh-frame-hdr"); } if (self.link_emit_relocs) { try zig_args.append("--emit-relocs"); } if (self.link_function_sections) { try zig_args.append("-ffunction-sections"); } if (self.link_data_sections) { try zig_args.append("-fdata-sections"); } if (self.link_gc_sections) |x| { try zig_args.append(if (x) "--gc-sections" else "--no-gc-sections"); } if (!self.linker_dynamicbase) { try zig_args.append("--no-dynamicbase"); } if (self.linker_allow_shlib_undefined) |x| { try zig_args.append(if (x) "-fallow-shlib-undefined" else "-fno-allow-shlib-undefined"); } if (self.link_z_notext) { try zig_args.append("-z"); try zig_args.append("notext"); } if (!self.link_z_relro) { try zig_args.append("-z"); try zig_args.append("norelro"); } if (self.link_z_lazy) { try zig_args.append("-z"); try zig_args.append("lazy"); } if (self.link_z_common_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("common-page-size={d}", .{size})); } if (self.link_z_max_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("max-page-size={d}", .{size})); } if (self.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file.getPath(b)); } else if (b.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file); } switch (self.optimize) { .Debug => {}, // Skip since it's the default. else => try zig_args.append(b.fmt("-O{s}", .{@tagName(self.optimize)})), } try zig_args.append("--cache-dir"); try zig_args.append(b.cache_root.path orelse "."); try zig_args.append("--global-cache-dir"); try zig_args.append(b.global_cache_root.path orelse "."); try zig_args.append("--name"); try zig_args.append(self.name); if (self.linkage) |some| switch (some) { .dynamic => try zig_args.append("-dynamic"), .static => try zig_args.append("-static"), }; if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic) { if (self.version) |version| { try zig_args.append("--version"); try zig_args.append(b.fmt("{}", .{version})); } if (self.target.isDarwin()) { const install_name = self.install_name orelse b.fmt("@rpath/{s}{s}{s}", .{ self.target.libPrefix(), self.name, self.target.dynamicLibSuffix(), }); try zig_args.append("-install_name"); try zig_args.append(install_name); } } if (self.entitlements) |entitlements| { try zig_args.appendSlice(&[_][]const u8{ "--entitlements", entitlements }); } if (self.pagezero_size) |pagezero_size| { const size = try std.fmt.allocPrint(b.allocator, "{x}", .{pagezero_size}); try zig_args.appendSlice(&[_][]const u8{ "-pagezero_size", size }); } if (self.headerpad_size) |headerpad_size| { const size = try std.fmt.allocPrint(b.allocator, "{x}", .{headerpad_size}); try zig_args.appendSlice(&[_][]const u8{ "-headerpad", size }); } if (self.headerpad_max_install_names) { try zig_args.append("-headerpad_max_install_names"); } if (self.dead_strip_dylibs) { try zig_args.append("-dead_strip_dylibs"); } try addFlag(&zig_args, "compiler-rt", self.bundle_compiler_rt); try addFlag(&zig_args, "single-threaded", self.single_threaded); if (self.disable_stack_probing) { try zig_args.append("-fno-stack-check"); } try addFlag(&zig_args, "stack-protector", self.stack_protector); if (self.red_zone) |red_zone| { if (red_zone) { try zig_args.append("-mred-zone"); } else { try zig_args.append("-mno-red-zone"); } } try addFlag(&zig_args, "omit-frame-pointer", self.omit_frame_pointer); try addFlag(&zig_args, "dll-export-fns", self.dll_export_fns); if (self.disable_sanitize_c) { try zig_args.append("-fno-sanitize-c"); } if (self.sanitize_thread) { try zig_args.append("-fsanitize-thread"); } if (self.rdynamic) { try zig_args.append("-rdynamic"); } if (self.import_memory) { try zig_args.append("--import-memory"); } if (self.export_memory) { try zig_args.append("--export-memory"); } if (self.import_symbols) { try zig_args.append("--import-symbols"); } if (self.import_table) { try zig_args.append("--import-table"); } if (self.export_table) { try zig_args.append("--export-table"); } if (self.initial_memory) |initial_memory| { try zig_args.append(b.fmt("--initial-memory={d}", .{initial_memory})); } if (self.max_memory) |max_memory| { try zig_args.append(b.fmt("--max-memory={d}", .{max_memory})); } if (self.shared_memory) { try zig_args.append("--shared-memory"); } if (self.global_base) |global_base| { try zig_args.append(b.fmt("--global-base={d}", .{global_base})); } if (self.code_model != .default) { try zig_args.append("-mcmodel"); try zig_args.append(@tagName(self.code_model)); } if (self.wasi_exec_model) |model| { try zig_args.append(b.fmt("-mexec-model={s}", .{@tagName(model)})); } for (self.export_symbol_names) |symbol_name| { try zig_args.append(b.fmt("--export={s}", .{symbol_name})); } if (!self.target.isNative()) { try zig_args.appendSlice(&.{ "-target", try self.target.zigTriple(b.allocator), "-mcpu", try std.Build.serializeCpu(b.allocator, self.target.getCpu()), }); if (self.target.dynamic_linker.get()) |dynamic_linker| { try zig_args.append("--dynamic-linker"); try zig_args.append(dynamic_linker); } } if (self.linker_script) |linker_script| { try zig_args.append("--script"); try zig_args.append(linker_script.getPath(b)); } if (self.version_script) |version_script| { try zig_args.append("--version-script"); try zig_args.append(b.pathFromRoot(version_script)); } if (self.kind == .@"test") { if (self.exec_cmd_args) |exec_cmd_args| { for (exec_cmd_args) |cmd_arg| { if (cmd_arg) |arg| { try zig_args.append("--test-cmd"); try zig_args.append(arg); } else { try zig_args.append("--test-cmd-bin"); } } } } try self.appendModuleArgs(&zig_args); for (self.include_dirs.items) |include_dir| { switch (include_dir) { .path => |include_path| { try zig_args.append("-I"); try zig_args.append(include_path.getPath(b)); }, .path_system => |include_path| { try zig_args.append("-isystem"); try zig_args.append(include_path.getPath(b)); }, .path_after => |include_path| { try zig_args.append("-idirafter"); try zig_args.append(include_path.getPath(b)); }, .framework_path => |include_path| { try zig_args.append("-F"); try zig_args.append(include_path.getPath2(b, step)); }, .framework_path_system => |include_path| { try zig_args.append("-iframework"); try zig_args.append(include_path.getPath2(b, step)); }, .other_step => |other| { if (other.generated_h) |header| { try zig_args.append("-isystem"); try zig_args.append(fs.path.dirname(header.path.?).?); } if (other.installed_headers.items.len > 0) { try zig_args.append("-I"); try zig_args.append(b.pathJoin(&.{ other.step.owner.install_prefix, "include", })); } }, .config_header_step => |config_header| { const full_file_path = config_header.output_file.path.?; const header_dir_path = full_file_path[0 .. full_file_path.len - config_header.include_path.len]; try zig_args.appendSlice(&.{ "-I", header_dir_path }); }, } } for (self.c_macros.items) |c_macro| { try zig_args.append("-D"); try zig_args.append(c_macro); } try zig_args.ensureUnusedCapacity(2 * self.lib_paths.items.len); for (self.lib_paths.items) |lib_path| { zig_args.appendAssumeCapacity("-L"); zig_args.appendAssumeCapacity(lib_path.getPath2(b, step)); } try zig_args.ensureUnusedCapacity(2 * self.rpaths.items.len); for (self.rpaths.items) |rpath| { zig_args.appendAssumeCapacity("-rpath"); if (self.target_info.target.isDarwin()) switch (rpath) { .path, .cwd_relative => |path| { // On Darwin, we should not try to expand special runtime paths such as // * @executable_path // * @loader_path if (mem.startsWith(u8, path, "@executable_path") or mem.startsWith(u8, path, "@loader_path")) { zig_args.appendAssumeCapacity(path); continue; } }, .generated, .dependency => {}, }; zig_args.appendAssumeCapacity(rpath.getPath2(b, step)); } { var it = self.frameworks.iterator(); while (it.next()) |entry| { const name = entry.key_ptr.*; const info = entry.value_ptr.*; if (info.needed) { try zig_args.append("-needed_framework"); } else if (info.weak) { try zig_args.append("-weak_framework"); } else { try zig_args.append("-framework"); } try zig_args.append(name); } } if (b.sysroot) |sysroot| { try zig_args.appendSlice(&[_][]const u8{ "--sysroot", sysroot }); } for (b.search_prefixes.items) |search_prefix| { var prefix_dir = fs.cwd().openDir(search_prefix, .{}) catch |err| { return step.fail("unable to open prefix directory '{s}': {s}", .{ search_prefix, @errorName(err), }); }; defer prefix_dir.close(); // Avoid passing -L and -I flags for nonexistent directories. // This prevents a warning, that should probably be upgraded to an error in Zig's // CLI parsing code, when the linker sees an -L directory that does not exist. if (prefix_dir.accessZ("lib", .{})) |_| { try zig_args.appendSlice(&.{ "-L", try fs.path.join(b.allocator, &.{ search_prefix, "lib" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/lib' directory: {s}", .{ search_prefix, @errorName(e), }), } if (prefix_dir.accessZ("include", .{})) |_| { try zig_args.appendSlice(&.{ "-I", try fs.path.join(b.allocator, &.{ search_prefix, "include" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/include' directory: {s}", .{ search_prefix, @errorName(e), }), } } if (self.rc_includes != .any) { try zig_args.append("-rcincludes"); try zig_args.append(@tagName(self.rc_includes)); } try addFlag(&zig_args, "valgrind", self.valgrind_support); try addFlag(&zig_args, "each-lib-rpath", self.each_lib_rpath); if (self.build_id) |build_id| { try zig_args.append(switch (build_id) { .hexstring => |hs| b.fmt("--build-id=0x{s}", .{ std.fmt.fmtSliceHexLower(hs.toSlice()), }), .none, .fast, .uuid, .sha1, .md5 => b.fmt("--build-id={s}", .{@tagName(build_id)}), }); } if (self.zig_lib_dir) |dir| { try zig_args.append("--zig-lib-dir"); try zig_args.append(dir.getPath(b)); } if (self.main_mod_path) |dir| { try zig_args.append("--main-mod-path"); try zig_args.append(dir.getPath(b)); } try addFlag(&zig_args, "PIC", self.force_pic); try addFlag(&zig_args, "PIE", self.pie); try addFlag(&zig_args, "lto", self.want_lto); if (self.subsystem) |subsystem| { try zig_args.append("--subsystem"); try zig_args.append(switch (subsystem) { .Console => "console", .Windows => "windows", .Posix => "posix", .Native => "native", .EfiApplication => "efi_application", .EfiBootServiceDriver => "efi_boot_service_driver", .EfiRom => "efi_rom", .EfiRuntimeDriver => "efi_runtime_driver", }); } try zig_args.append("--listen=-"); // Windows has an argument length limit of 32,766 characters, macOS 262,144 and Linux // 2,097,152. If our args exceed 30 KiB, we instead write them to a "response file" and // pass that to zig, e.g. via 'zig build-lib @args.rsp' // See @file syntax here: https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html var args_length: usize = 0; for (zig_args.items) |arg| { args_length += arg.len + 1; // +1 to account for null terminator } if (args_length >= 30 * 1024) { try b.cache_root.handle.makePath("args"); const args_to_escape = zig_args.items[2..]; var escaped_args = try ArrayList([]const u8).initCapacity(b.allocator, args_to_escape.len); arg_blk: for (args_to_escape) |arg| { for (arg, 0..) |c, arg_idx| { if (c == '\\' or c == '"') { // Slow path for arguments that need to be escaped. We'll need to allocate and copy var escaped = try ArrayList(u8).initCapacity(b.allocator, arg.len + 1); const writer = escaped.writer(); try writer.writeAll(arg[0..arg_idx]); for (arg[arg_idx..]) |to_escape| { if (to_escape == '\\' or to_escape == '"') try writer.writeByte('\\'); try writer.writeByte(to_escape); } escaped_args.appendAssumeCapacity(escaped.items); continue :arg_blk; } } escaped_args.appendAssumeCapacity(arg); // no escaping needed so just use original argument } // Write the args to zig-cache/args/ to avoid conflicts with // other zig build commands running in parallel. const partially_quoted = try std.mem.join(b.allocator, "\" \"", escaped_args.items); const args = try std.mem.concat(b.allocator, u8, &[_][]const u8{ "\"", partially_quoted, "\"" }); var args_hash: [Sha256.digest_length]u8 = undefined; Sha256.hash(args, &args_hash, .{}); var args_hex_hash: [Sha256.digest_length * 2]u8 = undefined; _ = try std.fmt.bufPrint( &args_hex_hash, "{s}", .{std.fmt.fmtSliceHexLower(&args_hash)}, ); const args_file = "args" ++ fs.path.sep_str ++ args_hex_hash; try b.cache_root.handle.writeFile(args_file, args); const resolved_args_file = try mem.concat(b.allocator, u8, &.{ "@", try b.cache_root.join(b.allocator, &.{args_file}), }); zig_args.shrinkRetainingCapacity(2); try zig_args.append(resolved_args_file); } const maybe_output_bin_path = step.evalZigProcess(zig_args.items, prog_node) catch |err| switch (err) { error.NeedCompileErrorCheck => { assert(self.expect_errors.len != 0); try checkCompileErrors(self); return; }, else => |e| return e, }; // Update generated files if (maybe_output_bin_path) |output_bin_path| { const output_dir = fs.path.dirname(output_bin_path).?; if (self.emit_directory) |lp| { lp.path = output_dir; } // -femit-bin[=path] (default) Output machine code if (self.generated_bin) |bin| { bin.path = b.pathJoin(&.{ output_dir, self.out_filename }); } const sep = std.fs.path.sep; // output PDB if someone requested it if (self.generated_pdb) |pdb| { pdb.path = b.fmt("{s}{c}{s}.pdb", .{ output_dir, sep, self.name }); } // -femit-implib[=path] (default) Produce an import .lib when building a Windows DLL if (self.generated_implib) |implib| { implib.path = b.fmt("{s}{c}{s}.lib", .{ output_dir, sep, self.name }); } // -femit-h[=path] Generate a C header file (.h) if (self.generated_h) |lp| { lp.path = b.fmt("{s}{c}{s}.h", .{ output_dir, sep, self.name }); } // -femit-docs[=path] Create a docs/ dir with html documentation if (self.generated_docs) |generated_docs| { generated_docs.path = b.pathJoin(&.{ output_dir, "docs" }); } // -femit-asm[=path] Output .s (assembly code) if (self.generated_asm) |lp| { lp.path = b.fmt("{s}{c}{s}.s", .{ output_dir, sep, self.name }); } // -femit-llvm-ir[=path] Produce a .ll file with optimized LLVM IR (requires LLVM extensions) if (self.generated_llvm_ir) |lp| { lp.path = b.fmt("{s}{c}{s}.ll", .{ output_dir, sep, self.name }); } // -femit-llvm-bc[=path] Produce an optimized LLVM module as a .bc file (requires LLVM extensions) if (self.generated_llvm_bc) |lp| { lp.path = b.fmt("{s}{c}{s}.bc", .{ output_dir, sep, self.name }); } } if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic and self.version != null and self.target.wantSharedLibSymLinks()) { try doAtomicSymLinks( step, self.getEmittedBin().getPath(b), self.major_only_filename.?, self.name_only_filename.?, ); } } fn isLibCLibrary(name: []const u8) bool { const libc_libraries = [_][]const u8{ "c", "m", "dl", "rt", "pthread" }; for (libc_libraries) |libc_lib_name| { if (mem.eql(u8, name, libc_lib_name)) return true; } return false; } fn isLibCppLibrary(name: []const u8) bool { const libcpp_libraries = [_][]const u8{ "c++", "stdc++" }; for (libcpp_libraries) |libcpp_lib_name| { if (mem.eql(u8, name, libcpp_lib_name)) return true; } return false; } /// Returned slice must be freed by the caller. fn findVcpkgRoot(allocator: Allocator) !?[]const u8 { const appdata_path = try fs.getAppDataDir(allocator, "vcpkg"); defer allocator.free(appdata_path); const path_file = try fs.path.join(allocator, &[_][]const u8{ appdata_path, "vcpkg.path.txt" }); defer allocator.free(path_file); const file = fs.cwd().openFile(path_file, .{}) catch return null; defer file.close(); const size = @as(usize, @intCast(try file.getEndPos())); const vcpkg_path = try allocator.alloc(u8, size); const size_read = try file.read(vcpkg_path); std.debug.assert(size == size_read); return vcpkg_path; } pub fn doAtomicSymLinks( step: *Step, output_path: []const u8, filename_major_only: []const u8, filename_name_only: []const u8, ) !void { const arena = step.owner.allocator; const out_dir = fs.path.dirname(output_path) orelse "."; const out_basename = fs.path.basename(output_path); // sym link for libfoo.so.1 to libfoo.so.1.2.3 const major_only_path = try fs.path.join(arena, &.{ out_dir, filename_major_only }); fs.atomicSymLink(arena, out_basename, major_only_path) catch |err| { return step.fail("unable to symlink {s} -> {s}: {s}", .{ major_only_path, out_basename, @errorName(err), }); }; // sym link for libfoo.so to libfoo.so.1 const name_only_path = try fs.path.join(arena, &.{ out_dir, filename_name_only }); fs.atomicSymLink(arena, filename_major_only, name_only_path) catch |err| { return step.fail("Unable to symlink {s} -> {s}: {s}", .{ name_only_path, filename_major_only, @errorName(err), }); }; } fn execPkgConfigList(self: *std.Build, out_code: *u8) (PkgConfigError || RunError)![]const PkgConfigPkg { const stdout = try self.runAllowFail(&[_][]const u8{ "pkg-config", "--list-all" }, out_code, .Ignore); var list = ArrayList(PkgConfigPkg).init(self.allocator); errdefer list.deinit(); var line_it = mem.tokenizeAny(u8, stdout, "\r\n"); while (line_it.next()) |line| { if (mem.trim(u8, line, " \t").len == 0) continue; var tok_it = mem.tokenizeAny(u8, line, " \t"); try list.append(PkgConfigPkg{ .name = tok_it.next() orelse return error.PkgConfigInvalidOutput, .desc = tok_it.rest(), }); } return list.toOwnedSlice(); } fn getPkgConfigList(self: *std.Build) ![]const PkgConfigPkg { if (self.pkg_config_pkg_list) |res| { return res; } var code: u8 = undefined; if (execPkgConfigList(self, &code)) |list| { self.pkg_config_pkg_list = list; return list; } else |err| { const result = switch (err) { error.ProcessTerminated => error.PkgConfigCrashed, error.ExecNotSupported => error.PkgConfigFailed, error.ExitCodeFailure => error.PkgConfigFailed, error.FileNotFound => error.PkgConfigNotInstalled, error.InvalidName => error.PkgConfigNotInstalled, error.PkgConfigInvalidOutput => error.PkgConfigInvalidOutput, else => return err, }; self.pkg_config_pkg_list = result; return result; } } fn addFlag(args: *ArrayList([]const u8), comptime name: []const u8, opt: ?bool) !void { const cond = opt orelse return; try args.ensureUnusedCapacity(1); if (cond) { args.appendAssumeCapacity("-f" ++ name); } else { args.appendAssumeCapacity("-fno-" ++ name); } } const TransitiveDeps = struct { link_objects: ArrayList(LinkObject), seen_system_libs: StringHashMap(void), seen_steps: std.AutoHashMap(*const Step, void), is_linking_libcpp: bool, is_linking_libc: bool, frameworks: *StringHashMap(FrameworkLinkInfo), fn add(td: *TransitiveDeps, link_objects: []const LinkObject) !void { try td.link_objects.ensureUnusedCapacity(link_objects.len); for (link_objects) |link_object| { try td.link_objects.append(link_object); switch (link_object) { .other_step => |other| try addInner(td, other, other.isDynamicLibrary()), else => {}, } } } fn addInner(td: *TransitiveDeps, other: *Compile, dyn: bool) !void { // Inherit dependency on libc and libc++ td.is_linking_libcpp = td.is_linking_libcpp or other.is_linking_libcpp; td.is_linking_libc = td.is_linking_libc or other.is_linking_libc; // Inherit dependencies on darwin frameworks if (!dyn) { var it = other.frameworks.iterator(); while (it.next()) |framework| { try td.frameworks.put(framework.key_ptr.*, framework.value_ptr.*); } } // Inherit dependencies on system libraries and static libraries. for (other.link_objects.items) |other_link_object| { switch (other_link_object) { .system_lib => |system_lib| { if ((try td.seen_system_libs.fetchPut(system_lib.name, {})) != null) continue; if (dyn) continue; try td.link_objects.append(other_link_object); }, .other_step => |inner_other| { if ((try td.seen_steps.fetchPut(&inner_other.step, {})) != null) continue; const included_in_lib = (other.kind == .lib and inner_other.kind == .obj); if (!dyn and !included_in_lib) try td.link_objects.append(other_link_object); try addInner(td, inner_other, dyn or inner_other.isDynamicLibrary()); }, else => continue, } } } }; fn checkCompileErrors(self: *Compile) !void { // Clear this field so that it does not get printed by the build runner. const actual_eb = self.step.result_error_bundle; self.step.result_error_bundle = std.zig.ErrorBundle.empty; const arena = self.step.owner.allocator; var actual_stderr_list = std.ArrayList(u8).init(arena); try actual_eb.renderToWriter(.{ .ttyconf = .no_color, .include_reference_trace = false, .include_source_line = false, }, actual_stderr_list.writer()); const actual_stderr = try actual_stderr_list.toOwnedSlice(); // Render the expected lines into a string that we can compare verbatim. var expected_generated = std.ArrayList(u8).init(arena); var actual_line_it = mem.splitScalar(u8, actual_stderr, '\n'); for (self.expect_errors) |expect_line| { const actual_line = actual_line_it.next() orelse { try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); continue; }; if (mem.endsWith(u8, actual_line, expect_line)) { try expected_generated.appendSlice(actual_line); try expected_generated.append('\n'); continue; } if (mem.startsWith(u8, expect_line, ":?:?: ")) { if (mem.endsWith(u8, actual_line, expect_line[":?:?: ".len..])) { try expected_generated.appendSlice(actual_line); try expected_generated.append('\n'); continue; } } // We scan for /?/ in expected line and if there is a match, we match everything // up to and after /?/. const expect_line_trim = mem.trim(u8, expect_line, " "); if (mem.indexOf(u8, expect_line_trim, "/?/")) |exp_index| { const actual_line_trim = mem.trim(u8, actual_line, " "); const exp_lhs = expect_line_trim[0..exp_index]; const exp_rhs = expect_line_trim[exp_index + "/?/".len ..]; if (mem.startsWith(u8, actual_line_trim, exp_lhs) and mem.endsWith(u8, actual_line_trim, exp_rhs)) { try expected_generated.appendSlice(actual_line); try expected_generated.append('\n'); continue; } } try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); } if (mem.eql(u8, expected_generated.items, actual_stderr)) return; // TODO merge this with the testing.expectEqualStrings logic, and also CheckFile return self.step.fail( \\ \\========= expected: ===================== \\{s} \\========= but found: ==================== \\{s} \\========================================= , .{ expected_generated.items, actual_stderr }); }