const std = @import("../std.zig"); const build = @import("../build.zig"); const Step = build.Step; const Builder = build.Builder; const fs = std.fs; const ArrayList = std.ArrayList; const WriteFileStep = @This(); pub const base_id = .write_file; step: Step, builder: *Builder, output_dir: []const u8, files: std.TailQueue(File), pub const File = struct { source: build.GeneratedFile, basename: []const u8, bytes: []const u8, }; pub fn init(builder: *Builder) WriteFileStep { return WriteFileStep{ .builder = builder, .step = Step.init(.write_file, "writefile", builder.allocator, make), .files = .{}, .output_dir = undefined, }; } pub fn add(self: *WriteFileStep, basename: []const u8, bytes: []const u8) void { const node = self.builder.allocator.create(std.TailQueue(File).Node) catch unreachable; node.* = .{ .data = .{ .source = build.GeneratedFile{ .step = &self.step }, .basename = self.builder.dupePath(basename), .bytes = self.builder.dupe(bytes), }, }; self.files.append(node); } /// Gets a file source for the given basename. If the file does not exist, returns `null`. pub fn getFileSource(step: *WriteFileStep, basename: []const u8) ?build.FileSource { var it = step.files.first; while (it) |node| : (it = node.next) { if (std.mem.eql(u8, node.data.basename, basename)) return build.FileSource{ .generated = &node.data.source }; } return null; } fn make(step: *Step) !void { const self = @fieldParentPtr(WriteFileStep, "step", step); // The cache is used here not really as a way to speed things up - because writing // the data to a file would probably be very fast - but as a way to find a canonical // location to put build artifacts. // If, for example, a hard-coded path was used as the location to put WriteFileStep // files, then two WriteFileSteps executing in parallel might clobber each other. // TODO port the cache system from the compiler to zig std lib. Until then // we directly construct the path, and no "cache hit" detection happens; // the files are always written. // Note there is similar code over in ConfigHeaderStep. const Hasher = std.crypto.auth.siphash.SipHash128(1, 3); // Random bytes to make WriteFileStep unique. Refresh this with // new random bytes when WriteFileStep implementation is modified // in a non-backwards-compatible way. var hash = Hasher.init("eagVR1dYXoE7ARDP"); { var it = self.files.first; while (it) |node| : (it = node.next) { hash.update(node.data.basename); hash.update(node.data.bytes); hash.update("|"); } } var digest: [16]u8 = undefined; hash.final(&digest); var hash_basename: [digest.len * 2]u8 = undefined; _ = std.fmt.bufPrint( &hash_basename, "{s}", .{std.fmt.fmtSliceHexLower(&digest)}, ) catch unreachable; self.output_dir = try fs.path.join(self.builder.allocator, &[_][]const u8{ self.builder.cache_root, "o", &hash_basename, }); var dir = fs.cwd().makeOpenPath(self.output_dir, .{}) catch |err| { std.debug.print("unable to make path {s}: {s}\n", .{ self.output_dir, @errorName(err) }); return err; }; defer dir.close(); { var it = self.files.first; while (it) |node| : (it = node.next) { dir.writeFile(node.data.basename, node.data.bytes) catch |err| { std.debug.print("unable to write {s} into {s}: {s}\n", .{ node.data.basename, self.output_dir, @errorName(err), }); return err; }; node.data.source.path = fs.path.join( self.builder.allocator, &[_][]const u8{ self.output_dir, node.data.basename }, ) catch unreachable; } } }