const std = @import("std"); const Allocator = std.mem.Allocator; const ArrayList = std.ArrayList; const assert = std.debug.assert; const testing = std.testing; const leb = std.leb; const mem = std.mem; const wasm = std.wasm; const Module = @import("../../Module.zig"); const Decl = Module.Decl; const Type = @import("../../type.zig").Type; const Value = @import("../../value.zig").Value; const Compilation = @import("../../Compilation.zig"); const LazySrcLoc = Module.LazySrcLoc; const link = @import("../../link.zig"); const TypedValue = @import("../../TypedValue.zig"); const Air = @import("../../Air.zig"); const Liveness = @import("../../Liveness.zig"); const Mir = @import("Mir.zig"); const Emit = @import("Emit.zig"); /// Wasm Value, created when generating an instruction const WValue = union(enum) { /// May be referenced but is unused none: void, /// Index of the local variable local: u32, /// Holds a memoized typed value constant: TypedValue, /// Used for types that contains of multiple areas within /// a memory region in the stack. /// The local represents the position in the stack, /// whereas the offset represents the offset from that position. local_with_offset: struct { /// Index of the local variable local: u32, /// The offset from the local's stack position offset: u32, }, }; /// Wasm ops, but without input/output/signedness information /// Used for `buildOpcode` const Op = enum { @"unreachable", nop, block, loop, @"if", @"else", end, br, br_if, br_table, @"return", call, call_indirect, drop, select, local_get, local_set, local_tee, global_get, global_set, load, store, memory_size, memory_grow, @"const", eqz, eq, ne, lt, gt, le, ge, clz, ctz, popcnt, add, sub, mul, div, rem, @"and", @"or", xor, shl, shr, rotl, rotr, abs, neg, ceil, floor, trunc, nearest, sqrt, min, max, copysign, wrap, convert, demote, promote, reinterpret, extend, }; /// Contains the settings needed to create an `Opcode` using `buildOpcode`. /// /// The fields correspond to the opcode name. Here is an example /// i32_trunc_f32_s /// ^ ^ ^ ^ /// | | | | /// valtype1 | | | /// = .i32 | | | /// | | | /// op | | /// = .trunc | | /// | | /// valtype2 | /// = .f32 | /// | /// width | /// = null | /// | /// signed /// = true /// /// There can be missing fields, here are some more examples: /// i64_load8_u /// --> .{ .valtype1 = .i64, .op = .load, .width = 8, signed = false } /// i32_mul /// --> .{ .valtype1 = .i32, .op = .trunc } /// nop /// --> .{ .op = .nop } const OpcodeBuildArguments = struct { /// First valtype in the opcode (usually represents the type of the output) valtype1: ?wasm.Valtype = null, /// The operation (e.g. call, unreachable, div, min, sqrt, etc.) op: Op, /// Width of the operation (e.g. 8 for i32_load8_s, 16 for i64_extend16_i32_s) width: ?u8 = null, /// Second valtype in the opcode name (usually represents the type of the input) valtype2: ?wasm.Valtype = null, /// Signedness of the op signedness: ?std.builtin.Signedness = null, }; /// Helper function that builds an Opcode given the arguments needed fn buildOpcode(args: OpcodeBuildArguments) wasm.Opcode { switch (args.op) { .@"unreachable" => return .@"unreachable", .nop => return .nop, .block => return .block, .loop => return .loop, .@"if" => return .@"if", .@"else" => return .@"else", .end => return .end, .br => return .br, .br_if => return .br_if, .br_table => return .br_table, .@"return" => return .@"return", .call => return .call, .call_indirect => return .call_indirect, .drop => return .drop, .select => return .select, .local_get => return .local_get, .local_set => return .local_set, .local_tee => return .local_tee, .global_get => return .global_get, .global_set => return .global_set, .load => if (args.width) |width| switch (width) { 8 => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_load8_s else return .i32_load8_u, .i64 => if (args.signedness.? == .signed) return .i64_load8_s else return .i64_load8_u, .f32, .f64 => unreachable, }, 16 => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_load16_s else return .i32_load16_u, .i64 => if (args.signedness.? == .signed) return .i64_load16_s else return .i64_load16_u, .f32, .f64 => unreachable, }, 32 => switch (args.valtype1.?) { .i64 => if (args.signedness.? == .signed) return .i64_load32_s else return .i64_load32_u, .i32 => return .i32_load, .f32 => return .f32_load, .f64 => unreachable, }, 64 => switch (args.valtype1.?) { .i64 => return .i64_load, .f64 => return .f64_load, else => unreachable, }, else => unreachable, } else switch (args.valtype1.?) { .i32 => return .i32_load, .i64 => return .i64_load, .f32 => return .f32_load, .f64 => return .f64_load, }, .store => if (args.width) |width| { switch (width) { 8 => switch (args.valtype1.?) { .i32 => return .i32_store8, .i64 => return .i64_store8, .f32, .f64 => unreachable, }, 16 => switch (args.valtype1.?) { .i32 => return .i32_store16, .i64 => return .i64_store16, .f32, .f64 => unreachable, }, 32 => switch (args.valtype1.?) { .i64 => return .i64_store32, .i32 => return .i32_store, .f32 => return .f32_store, .f64 => unreachable, }, 64 => switch (args.valtype1.?) { .i64 => return .i64_store, .f64 => return .f64_store, else => unreachable, }, else => unreachable, } } else { switch (args.valtype1.?) { .i32 => return .i32_store, .i64 => return .i64_store, .f32 => return .f32_store, .f64 => return .f64_store, } }, .memory_size => return .memory_size, .memory_grow => return .memory_grow, .@"const" => switch (args.valtype1.?) { .i32 => return .i32_const, .i64 => return .i64_const, .f32 => return .f32_const, .f64 => return .f64_const, }, .eqz => switch (args.valtype1.?) { .i32 => return .i32_eqz, .i64 => return .i64_eqz, .f32, .f64 => unreachable, }, .eq => switch (args.valtype1.?) { .i32 => return .i32_eq, .i64 => return .i64_eq, .f32 => return .f32_eq, .f64 => return .f64_eq, }, .ne => switch (args.valtype1.?) { .i32 => return .i32_ne, .i64 => return .i64_ne, .f32 => return .f32_ne, .f64 => return .f64_ne, }, .lt => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_lt_s else return .i32_lt_u, .i64 => if (args.signedness.? == .signed) return .i64_lt_s else return .i64_lt_u, .f32 => return .f32_lt, .f64 => return .f64_lt, }, .gt => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_gt_s else return .i32_gt_u, .i64 => if (args.signedness.? == .signed) return .i64_gt_s else return .i64_gt_u, .f32 => return .f32_gt, .f64 => return .f64_gt, }, .le => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_le_s else return .i32_le_u, .i64 => if (args.signedness.? == .signed) return .i64_le_s else return .i64_le_u, .f32 => return .f32_le, .f64 => return .f64_le, }, .ge => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_ge_s else return .i32_ge_u, .i64 => if (args.signedness.? == .signed) return .i64_ge_s else return .i64_ge_u, .f32 => return .f32_ge, .f64 => return .f64_ge, }, .clz => switch (args.valtype1.?) { .i32 => return .i32_clz, .i64 => return .i64_clz, .f32, .f64 => unreachable, }, .ctz => switch (args.valtype1.?) { .i32 => return .i32_ctz, .i64 => return .i64_ctz, .f32, .f64 => unreachable, }, .popcnt => switch (args.valtype1.?) { .i32 => return .i32_popcnt, .i64 => return .i64_popcnt, .f32, .f64 => unreachable, }, .add => switch (args.valtype1.?) { .i32 => return .i32_add, .i64 => return .i64_add, .f32 => return .f32_add, .f64 => return .f64_add, }, .sub => switch (args.valtype1.?) { .i32 => return .i32_sub, .i64 => return .i64_sub, .f32 => return .f32_sub, .f64 => return .f64_sub, }, .mul => switch (args.valtype1.?) { .i32 => return .i32_mul, .i64 => return .i64_mul, .f32 => return .f32_mul, .f64 => return .f64_mul, }, .div => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_div_s else return .i32_div_u, .i64 => if (args.signedness.? == .signed) return .i64_div_s else return .i64_div_u, .f32 => return .f32_div, .f64 => return .f64_div, }, .rem => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_rem_s else return .i32_rem_u, .i64 => if (args.signedness.? == .signed) return .i64_rem_s else return .i64_rem_u, .f32, .f64 => unreachable, }, .@"and" => switch (args.valtype1.?) { .i32 => return .i32_and, .i64 => return .i64_and, .f32, .f64 => unreachable, }, .@"or" => switch (args.valtype1.?) { .i32 => return .i32_or, .i64 => return .i64_or, .f32, .f64 => unreachable, }, .xor => switch (args.valtype1.?) { .i32 => return .i32_xor, .i64 => return .i64_xor, .f32, .f64 => unreachable, }, .shl => switch (args.valtype1.?) { .i32 => return .i32_shl, .i64 => return .i64_shl, .f32, .f64 => unreachable, }, .shr => switch (args.valtype1.?) { .i32 => if (args.signedness.? == .signed) return .i32_shr_s else return .i32_shr_u, .i64 => if (args.signedness.? == .signed) return .i64_shr_s else return .i64_shr_u, .f32, .f64 => unreachable, }, .rotl => switch (args.valtype1.?) { .i32 => return .i32_rotl, .i64 => return .i64_rotl, .f32, .f64 => unreachable, }, .rotr => switch (args.valtype1.?) { .i32 => return .i32_rotr, .i64 => return .i64_rotr, .f32, .f64 => unreachable, }, .abs => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_abs, .f64 => return .f64_abs, }, .neg => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_neg, .f64 => return .f64_neg, }, .ceil => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_ceil, .f64 => return .f64_ceil, }, .floor => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_floor, .f64 => return .f64_floor, }, .trunc => switch (args.valtype1.?) { .i32 => switch (args.valtype2.?) { .i32 => unreachable, .i64 => unreachable, .f32 => if (args.signedness.? == .signed) return .i32_trunc_f32_s else return .i32_trunc_f32_u, .f64 => if (args.signedness.? == .signed) return .i32_trunc_f64_s else return .i32_trunc_f64_u, }, .i64 => unreachable, .f32 => return .f32_trunc, .f64 => return .f64_trunc, }, .nearest => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_nearest, .f64 => return .f64_nearest, }, .sqrt => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_sqrt, .f64 => return .f64_sqrt, }, .min => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_min, .f64 => return .f64_min, }, .max => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_max, .f64 => return .f64_max, }, .copysign => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => return .f32_copysign, .f64 => return .f64_copysign, }, .wrap => switch (args.valtype1.?) { .i32 => switch (args.valtype2.?) { .i32 => unreachable, .i64 => return .i32_wrap_i64, .f32, .f64 => unreachable, }, .i64, .f32, .f64 => unreachable, }, .convert => switch (args.valtype1.?) { .i32, .i64 => unreachable, .f32 => switch (args.valtype2.?) { .i32 => if (args.signedness.? == .signed) return .f32_convert_i32_s else return .f32_convert_i32_u, .i64 => if (args.signedness.? == .signed) return .f32_convert_i64_s else return .f32_convert_i64_u, .f32, .f64 => unreachable, }, .f64 => switch (args.valtype2.?) { .i32 => if (args.signedness.? == .signed) return .f64_convert_i32_s else return .f64_convert_i32_u, .i64 => if (args.signedness.? == .signed) return .f64_convert_i64_s else return .f64_convert_i64_u, .f32, .f64 => unreachable, }, }, .demote => if (args.valtype1.? == .f32 and args.valtype2.? == .f64) return .f32_demote_f64 else unreachable, .promote => if (args.valtype1.? == .f64 and args.valtype2.? == .f32) return .f64_promote_f32 else unreachable, .reinterpret => switch (args.valtype1.?) { .i32 => if (args.valtype2.? == .f32) return .i32_reinterpret_f32 else unreachable, .i64 => if (args.valtype2.? == .f64) return .i64_reinterpret_f64 else unreachable, .f32 => if (args.valtype2.? == .i32) return .f32_reinterpret_i32 else unreachable, .f64 => if (args.valtype2.? == .i64) return .f64_reinterpret_i64 else unreachable, }, .extend => switch (args.valtype1.?) { .i32 => switch (args.width.?) { 8 => if (args.signedness.? == .signed) return .i32_extend8_s else unreachable, 16 => if (args.signedness.? == .signed) return .i32_extend16_s else unreachable, else => unreachable, }, .i64 => switch (args.width.?) { 8 => if (args.signedness.? == .signed) return .i64_extend8_s else unreachable, 16 => if (args.signedness.? == .signed) return .i64_extend16_s else unreachable, 32 => if (args.signedness.? == .signed) return .i64_extend32_s else unreachable, else => unreachable, }, .f32, .f64 => unreachable, }, } } test "Wasm - buildOpcode" { // Make sure buildOpcode is referenced, and test some examples const i32_const = buildOpcode(.{ .op = .@"const", .valtype1 = .i32 }); const end = buildOpcode(.{ .op = .end }); const local_get = buildOpcode(.{ .op = .local_get }); const i64_extend32_s = buildOpcode(.{ .op = .extend, .valtype1 = .i64, .width = 32, .signedness = .signed }); const f64_reinterpret_i64 = buildOpcode(.{ .op = .reinterpret, .valtype1 = .f64, .valtype2 = .i64 }); try testing.expectEqual(@as(wasm.Opcode, .i32_const), i32_const); try testing.expectEqual(@as(wasm.Opcode, .end), end); try testing.expectEqual(@as(wasm.Opcode, .local_get), local_get); try testing.expectEqual(@as(wasm.Opcode, .i64_extend32_s), i64_extend32_s); try testing.expectEqual(@as(wasm.Opcode, .f64_reinterpret_i64), f64_reinterpret_i64); } pub const Result = union(enum) { /// The codegen bytes have been appended to `Context.code` appended: void, /// The data is managed externally and are part of the `Result` externally_managed: []const u8, }; /// Hashmap to store generated `WValue` for each `Air.Inst.Ref` pub const ValueTable = std.AutoHashMapUnmanaged(Air.Inst.Index, WValue); const Self = @This(); /// Reference to the function declaration the code /// section belongs to decl: *Decl, air: Air, liveness: Liveness, gpa: *mem.Allocator, /// Table to save `WValue`'s generated by an `Air.Inst` values: ValueTable, /// Mapping from Air.Inst.Index to block ids blocks: std.AutoArrayHashMapUnmanaged(Air.Inst.Index, struct { label: u32, value: WValue, }) = .{}, /// `bytes` contains the wasm bytecode belonging to the 'code' section. code: ArrayList(u8), /// The index the next local generated will have /// NOTE: arguments share the index with locals therefore the first variable /// will have the index that comes after the last argument's index local_index: u32 = 0, /// The index of the current argument. /// Used to track which argument is being referenced in `airArg`. arg_index: u32 = 0, /// If codegen fails, an error messages will be allocated and saved in `err_msg` err_msg: *Module.ErrorMsg, /// Current block depth. Used to calculate the relative difference between a break /// and block block_depth: u32 = 0, /// List of all locals' types generated throughout this declaration /// used to emit locals count at start of 'code' section. locals: std.ArrayListUnmanaged(u8), /// The Target we're emitting (used to call intInfo) target: std.Target, /// Represents the wasm binary file that is being linked. bin_file: *link.File.Wasm, /// Table with the global error set. Consists of every error found in /// the compiled code. Each error name maps to a `Module.ErrorInt` which is emitted /// during codegen to determine the error value. global_error_set: std.StringHashMapUnmanaged(Module.ErrorInt), /// List of MIR Instructions mir_instructions: std.MultiArrayList(Mir.Inst) = .{}, /// Contains extra data for MIR mir_extra: std.ArrayListUnmanaged(u32) = .{}, /// When a function is executing, we store the the current stack pointer's value within this local. /// This value is then used to restore the stack pointer to the original value at the return of the function. initial_stack_value: WValue = .none, /// Arguments of this function declaration /// This will be set after `resolveCallingConventionValues` args: []WValue = undefined, /// This will only be `.none` if the function returns void, or returns an immediate. /// When it returns a pointer to the stack, the `.local` tag will be active and must be populated /// before this function returns its execution to the caller. return_value: WValue = .none, const InnerError = error{ OutOfMemory, /// An error occured when trying to lower AIR to MIR. CodegenFail, /// Can occur when dereferencing a pointer that points to a `Decl` of which the analysis has failed AnalysisFail, /// Failed to emit MIR instructions to binary/textual representation. EmitFail, /// Compiler implementation could not handle a large integer. Overflow, }; pub fn deinit(self: *Self) void { self.values.deinit(self.gpa); self.blocks.deinit(self.gpa); self.locals.deinit(self.gpa); self.mir_instructions.deinit(self.gpa); self.mir_extra.deinit(self.gpa); self.code.deinit(); self.* = undefined; } /// Sets `err_msg` on `Context` and returns `error.CodegemFail` which is caught in link/Wasm.zig fn fail(self: *Self, comptime fmt: []const u8, args: anytype) InnerError { const src: LazySrcLoc = .{ .node_offset = 0 }; const src_loc = src.toSrcLoc(self.decl); self.err_msg = try Module.ErrorMsg.create(self.gpa, src_loc, fmt, args); return error.CodegenFail; } /// Resolves the `WValue` for the given instruction `inst` /// When the given instruction has a `Value`, it returns a constant instead fn resolveInst(self: Self, ref: Air.Inst.Ref) WValue { const inst_index = Air.refToIndex(ref) orelse { const tv = Air.Inst.Ref.typed_value_map[@enumToInt(ref)]; if (!tv.ty.hasCodeGenBits()) { return WValue.none; } return WValue{ .constant = tv }; }; const inst_type = self.air.typeOfIndex(inst_index); if (!inst_type.hasCodeGenBits()) return .none; if (self.air.instructions.items(.tag)[inst_index] == .constant) { const ty_pl = self.air.instructions.items(.data)[inst_index].ty_pl; return WValue{ .constant = .{ .ty = inst_type, .val = self.air.values[ty_pl.payload] } }; } return self.values.get(inst_index).?; // Instruction does not dominate all uses! } /// Appends a MIR instruction and returns its index within the list of instructions fn addInst(self: *Self, inst: Mir.Inst) error{OutOfMemory}!void { try self.mir_instructions.append(self.gpa, inst); } /// Inserts a Mir instruction at the given `offset`. /// Asserts offset is within bound. fn addInstAt(self: *Self, offset: usize, inst: Mir.Inst) error{OutOfMemory}!void { try self.mir_instructions.ensureUnusedCapacity(self.gpa, 1); self.mir_instructions.insertAssumeCapacity(offset, inst); } fn addTag(self: *Self, tag: Mir.Inst.Tag) error{OutOfMemory}!void { try self.addInst(.{ .tag = tag, .data = .{ .tag = {} } }); } fn addLabel(self: *Self, tag: Mir.Inst.Tag, label: u32) error{OutOfMemory}!void { try self.addInst(.{ .tag = tag, .data = .{ .label = label } }); } fn addImm32(self: *Self, imm: i32) error{OutOfMemory}!void { try self.addInst(.{ .tag = .i32_const, .data = .{ .imm32 = imm } }); } /// Accepts an unsigned 64bit integer rather than a signed integer to /// prevent us from having to bitcast multiple times as most values /// within codegen are represented as unsigned rather than signed. fn addImm64(self: *Self, imm: u64) error{OutOfMemory}!void { const extra_index = try self.addExtra(Mir.Imm64.fromU64(imm)); try self.addInst(.{ .tag = .i64_const, .data = .{ .payload = extra_index } }); } fn addFloat64(self: *Self, float: f64) error{OutOfMemory}!void { const extra_index = try self.addExtra(Mir.Float64.fromFloat64(float)); try self.addInst(.{ .tag = .f64_const, .data = .{ .payload = extra_index } }); } /// Appends entries to `mir_extra` based on the type of `extra`. /// Returns the index into `mir_extra` fn addExtra(self: *Self, extra: anytype) error{OutOfMemory}!u32 { const fields = std.meta.fields(@TypeOf(extra)); try self.mir_extra.ensureUnusedCapacity(self.gpa, fields.len); return self.addExtraAssumeCapacity(extra); } /// Appends entries to `mir_extra` based on the type of `extra`. /// Returns the index into `mir_extra` fn addExtraAssumeCapacity(self: *Self, extra: anytype) error{OutOfMemory}!u32 { const fields = std.meta.fields(@TypeOf(extra)); const result = @intCast(u32, self.mir_extra.items.len); inline for (fields) |field| { self.mir_extra.appendAssumeCapacity(switch (field.field_type) { u32 => @field(extra, field.name), else => |field_type| @compileError("Unsupported field type " ++ @typeName(field_type)), }); } return result; } /// Using a given `Type`, returns the corresponding wasm Valtype fn typeToValtype(self: *Self, ty: Type) InnerError!wasm.Valtype { return switch (ty.zigTypeTag()) { .Float => blk: { const bits = ty.floatBits(self.target); if (bits == 16 or bits == 32) break :blk wasm.Valtype.f32; if (bits == 64) break :blk wasm.Valtype.f64; return self.fail("Float bit size not supported by wasm: '{d}'", .{bits}); }, .Int => blk: { const info = ty.intInfo(self.target); if (info.bits <= 32) break :blk wasm.Valtype.i32; if (info.bits > 32 and info.bits <= 64) break :blk wasm.Valtype.i64; return self.fail("Integer bit size not supported by wasm: '{d}'", .{info.bits}); }, .Enum => switch (ty.tag()) { .enum_simple => wasm.Valtype.i32, else => self.typeToValtype(ty.cast(Type.Payload.EnumFull).?.data.tag_ty), }, .Bool, .Pointer, .ErrorSet, .Struct, .ErrorUnion, .Optional, => wasm.Valtype.i32, else => self.fail("TODO - Wasm valtype for type '{}'", .{ty}), }; } /// Using a given `Type`, returns the byte representation of its wasm value type fn genValtype(self: *Self, ty: Type) InnerError!u8 { return wasm.valtype(try self.typeToValtype(ty)); } /// Using a given `Type`, returns the corresponding wasm value type /// Differently from `genValtype` this also allows `void` to create a block /// with no return type fn genBlockType(self: *Self, ty: Type) InnerError!u8 { return switch (ty.tag()) { .void, .noreturn => wasm.block_empty, else => self.genValtype(ty), }; } /// Writes the bytecode depending on the given `WValue` in `val` fn emitWValue(self: *Self, val: WValue) InnerError!void { switch (val) { .none => {}, // no-op .local_with_offset => |with_off| try self.addLabel(.local_get, with_off.local), .local => |idx| try self.addLabel(.local_get, idx), .constant => |tv| try self.emitConstant(tv.val, tv.ty), // Creates a new constant on the stack } } /// Creates one locals for a given `Type`. /// Returns a corresponding `Wvalue` with `local` as active tag fn allocLocal(self: *Self, ty: Type) InnerError!WValue { const initial_index = self.local_index; const valtype = try self.genValtype(ty); try self.locals.append(self.gpa, valtype); self.local_index += 1; return WValue{ .local = initial_index }; } /// Generates a `wasm.Type` from a given function type. /// Memory is owned by the caller. fn genFunctype(self: *Self, fn_ty: Type) !wasm.Type { var params = std.ArrayList(wasm.Valtype).init(self.gpa); defer params.deinit(); var returns = std.ArrayList(wasm.Valtype).init(self.gpa); defer returns.deinit(); // param types if (fn_ty.fnParamLen() != 0) { const fn_params = try self.gpa.alloc(Type, fn_ty.fnParamLen()); defer self.gpa.free(fn_params); fn_ty.fnParamTypes(fn_params); for (fn_params) |param_type| { if (!param_type.hasCodeGenBits()) continue; try params.append(try self.typeToValtype(param_type)); } } // return type const return_type = fn_ty.fnReturnType(); switch (return_type.zigTypeTag()) { .Void, .NoReturn => {}, .Struct => return self.fail("TODO: Implement struct as return type for wasm", .{}), .Optional => return self.fail("TODO: Implement optionals as return type for wasm", .{}), else => try returns.append(try self.typeToValtype(return_type)), } return wasm.Type{ .params = params.toOwnedSlice(), .returns = returns.toOwnedSlice(), }; } pub fn genFunc(self: *Self) InnerError!Result { var func_type = try self.genFunctype(self.decl.ty); defer func_type.deinit(self.gpa); self.decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type); var cc_result = try self.resolveCallingConventionValues(self.decl.ty); defer cc_result.deinit(self.gpa); self.args = cc_result.args; self.return_value = cc_result.return_value; // Generate MIR for function body try self.genBody(self.air.getMainBody()); // End of function body try self.addTag(.end); var mir: Mir = .{ .instructions = self.mir_instructions.toOwnedSlice(), .extra = self.mir_extra.toOwnedSlice(self.gpa), }; defer mir.deinit(self.gpa); var emit: Emit = .{ .mir = mir, .bin_file = &self.bin_file.base, .code = &self.code, .locals = self.locals.items, .decl = self.decl, }; emit.emitMir() catch |err| switch (err) { error.EmitFail => { self.err_msg = emit.error_msg.?; return error.EmitFail; }, else => |e| return e, }; // codegen data has been appended to `code` return Result.appended; } /// Generates the wasm bytecode for the declaration belonging to `Context` pub fn gen(self: *Self, ty: Type, val: Value) InnerError!Result { switch (ty.zigTypeTag()) { .Fn => { if (val.tag() == .extern_fn) { var func_type = try self.genFunctype(self.decl.ty); defer func_type.deinit(self.gpa); self.decl.fn_link.wasm.type_index = try self.bin_file.putOrGetFuncType(func_type); return Result.appended; // don't need code body for extern functions } return self.fail("TODO implement wasm codegen for function pointers", .{}); }, .Array => { if (val.castTag(.bytes)) |payload| { if (ty.sentinel()) |sentinel| { try self.code.appendSlice(payload.data); switch (try self.gen(ty.childType(), sentinel)) { .appended => return Result.appended, .externally_managed => |data| { try self.code.appendSlice(data); return Result.appended; }, } } return Result{ .externally_managed = payload.data }; } else return self.fail("TODO implement gen for more kinds of arrays", .{}); }, .Int => { const info = ty.intInfo(self.target); if (info.bits == 8 and info.signedness == .unsigned) { const int_byte = val.toUnsignedInt(); try self.code.append(@intCast(u8, int_byte)); return Result.appended; } return self.fail("TODO: Implement codegen for int type: '{}'", .{ty}); }, .Enum => { try self.emitConstant(val, ty); return Result.appended; }, .Bool => { const int_byte: u8 = @boolToInt(val.toBool()); try self.code.append(int_byte); return Result.appended; }, .Struct => { // TODO write the fields for real const abi_size = try std.math.cast(usize, ty.abiSize(self.target)); try self.code.writer().writeByteNTimes(0xaa, abi_size); return Result{ .appended = {} }; }, else => |tag| return self.fail("TODO: Implement zig type codegen for type: '{s}'", .{tag}), } } const CallWValues = struct { args: []WValue, return_value: WValue, fn deinit(self: *CallWValues, gpa: *Allocator) void { gpa.free(self.args); self.* = undefined; } }; fn resolveCallingConventionValues(self: *Self, fn_ty: Type) InnerError!CallWValues { const cc = fn_ty.fnCallingConvention(); const param_types = try self.gpa.alloc(Type, fn_ty.fnParamLen()); defer self.gpa.free(param_types); fn_ty.fnParamTypes(param_types); var result: CallWValues = .{ .args = try self.gpa.alloc(WValue, param_types.len), .return_value = .none, }; errdefer self.gpa.free(result.args); switch (cc) { .Naked => return result, .Unspecified, .C => { for (param_types) |ty, ty_index| { if (!ty.hasCodeGenBits()) { result.args[ty_index] = .{ .none = {} }; continue; } result.args[ty_index] = .{ .local = self.local_index }; self.local_index += 1; } const ret_ty = fn_ty.fnReturnType(); switch (ret_ty.zigTypeTag()) { .ErrorUnion, .Optional => result.return_value = try self.allocLocal(Type.initTag(.i32)), .Int, .Float, .Bool, .Void, .NoReturn => {}, else => return self.fail("TODO: Implement function return type {}", .{ret_ty}), } // Check if we store the result as a pointer to the stack rather than // by value if (result.return_value != .none) { if (self.initial_stack_value == .none) try self.initializeStack(); const offset = std.math.cast(u32, ret_ty.abiSize(self.target)) catch { return self.fail("Return type '{}' too big for stack frame", .{ret_ty}); }; try self.moveStack(offset, result.return_value.local); } }, else => return self.fail("TODO implement function parameters for cc '{}' on wasm", .{cc}), } return result; } /// Retrieves the stack pointer's value from the global variable and stores /// it in a local /// Asserts `initial_stack_value` is `.none` fn initializeStack(self: *Self) !void { assert(self.initial_stack_value == .none); // reserve space for immediate value // get stack pointer global // TODO: For now, we hardcode the stack pointer to index '0', // once the linker is further implemented, we can replace this by inserting // a relocation and have the linker resolve the correct index to the stack pointer global. // NOTE: relocations of the type GLOBAL_INDEX_LEB are 5-bytes big try self.addLabel(.global_get, 0); // Reserve a local to store the current stack pointer // We can later use this local to set the stack pointer back to the value // we have stored here. self.initial_stack_value = try self.allocLocal(Type.initTag(.i32)); // save the value to the local try self.addLabel(.local_set, self.initial_stack_value.local); } /// Reads the stack pointer from `Context.initial_stack_value` and writes it /// to the global stack pointer variable fn restoreStackPointer(self: *Self) !void { // only restore the pointer if it was initialized if (self.initial_stack_value == .none) return; // Get the original stack pointer's value try self.emitWValue(self.initial_stack_value); // save its value in the global stack pointer try self.addLabel(.global_set, 0); } /// Moves the stack pointer by given `offset` /// It does this by retrieving the stack pointer, subtracting `offset` and storing /// the result back into the stack pointer. fn moveStack(self: *Self, offset: u32, local: u32) !void { if (offset == 0) return; // TODO: Rather than hardcode the stack pointer to position 0, // have the linker resolve its relocation try self.addLabel(.global_get, 0); try self.addImm32(@bitCast(i32, offset)); try self.addTag(.i32_sub); try self.addLabel(.local_tee, local); try self.addLabel(.global_set, 0); } fn genInst(self: *Self, inst: Air.Inst.Index) !WValue { const air_tags = self.air.instructions.items(.tag); return switch (air_tags[inst]) { .add => self.airBinOp(inst, .add), .addwrap => self.airWrapBinOp(inst, .add), .sub => self.airBinOp(inst, .sub), .subwrap => self.airWrapBinOp(inst, .sub), .mul => self.airBinOp(inst, .mul), .mulwrap => self.airWrapBinOp(inst, .mul), .div_trunc => self.airBinOp(inst, .div), .bit_and => self.airBinOp(inst, .@"and"), .bit_or => self.airBinOp(inst, .@"or"), .bool_and => self.airBinOp(inst, .@"and"), .bool_or => self.airBinOp(inst, .@"or"), .xor => self.airBinOp(inst, .xor), .cmp_eq => self.airCmp(inst, .eq), .cmp_gte => self.airCmp(inst, .gte), .cmp_gt => self.airCmp(inst, .gt), .cmp_lte => self.airCmp(inst, .lte), .cmp_lt => self.airCmp(inst, .lt), .cmp_neq => self.airCmp(inst, .neq), .alloc => self.airAlloc(inst), .arg => self.airArg(inst), .bitcast => self.airBitcast(inst), .block => self.airBlock(inst), .breakpoint => self.airBreakpoint(inst), .br => self.airBr(inst), .call => self.airCall(inst), .cond_br => self.airCondBr(inst), .constant => unreachable, .dbg_stmt => WValue.none, .intcast => self.airIntcast(inst), .is_err => self.airIsErr(inst, .i32_ne), .is_non_err => self.airIsErr(inst, .i32_eq), .is_null => self.airIsNull(inst, .i32_ne), .is_non_null => self.airIsNull(inst, .i32_eq), .is_null_ptr => self.airIsNull(inst, .i32_ne), .is_non_null_ptr => self.airIsNull(inst, .i32_eq), .load => self.airLoad(inst), .loop => self.airLoop(inst), .not => self.airNot(inst), .ret => self.airRet(inst), .slice_len => self.airSliceLen(inst), .slice_elem_val => self.airSliceElemVal(inst), .store => self.airStore(inst), .struct_field_ptr => self.airStructFieldPtr(inst), .struct_field_ptr_index_0 => self.airStructFieldPtrIndex(inst, 0), .struct_field_ptr_index_1 => self.airStructFieldPtrIndex(inst, 1), .struct_field_ptr_index_2 => self.airStructFieldPtrIndex(inst, 2), .struct_field_ptr_index_3 => self.airStructFieldPtrIndex(inst, 3), .struct_field_val => self.airStructFieldVal(inst), .switch_br => self.airSwitchBr(inst), .unreach => self.airUnreachable(inst), .wrap_optional => self.airWrapOptional(inst), .unwrap_errunion_payload => self.airUnwrapErrUnionPayload(inst), .wrap_errunion_payload => self.airWrapErrUnionPayload(inst), .optional_payload => self.airOptionalPayload(inst), .optional_payload_ptr => self.airOptionalPayload(inst), .optional_payload_ptr_set => self.airOptionalPayloadPtrSet(inst), else => |tag| self.fail("TODO: Implement wasm inst: {s}", .{@tagName(tag)}), }; } fn genBody(self: *Self, body: []const Air.Inst.Index) InnerError!void { for (body) |inst| { const result = try self.genInst(inst); try self.values.putNoClobber(self.gpa, inst, result); } } fn airRet(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = self.resolveInst(un_op); // result must be stored in the stack and we return a pointer // to the stack instead if (self.return_value != .none) { try self.store(self.return_value, operand, self.decl.ty.fnReturnType(), 0); try self.emitWValue(self.return_value); } else { try self.emitWValue(operand); } try self.restoreStackPointer(); try self.addTag(.@"return"); return .none; } fn airCall(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const extra = self.air.extraData(Air.Call, pl_op.payload); const args = self.air.extra[extra.end..][0..extra.data.args_len]; const ty = self.air.typeOf(pl_op.operand); const fn_ty = switch (ty.zigTypeTag()) { .Fn => ty, .Pointer => ty.childType(), else => unreachable, }; const target: ?*Decl = blk: { const func_val = self.air.value(pl_op.operand) orelse break :blk null; if (func_val.castTag(.function)) |func| { break :blk func.data.owner_decl; } else if (func_val.castTag(.extern_fn)) |ext_fn| { break :blk ext_fn.data; } return self.fail("Expected a function, but instead found type '{s}'", .{func_val.tag()}); }; for (args) |arg| { const arg_val = self.resolveInst(@intToEnum(Air.Inst.Ref, arg)); try self.emitWValue(arg_val); } if (target) |direct| { try self.addLabel(.call, direct.link.wasm.sym_index); } else { // in this case we call a function pointer // so load its value onto the stack std.debug.assert(ty.zigTypeTag() == .Pointer); const operand = self.resolveInst(pl_op.operand); const result = try self.load(operand, fn_ty, operand.local_with_offset.offset); try self.addLabel(.local_get, result.local); var fn_type = try self.genFunctype(fn_ty); defer fn_type.deinit(self.gpa); const fn_type_index = try self.bin_file.putOrGetFuncType(fn_type); try self.addLabel(.call_indirect, fn_type_index); } const ret_ty = fn_ty.fnReturnType(); switch (ret_ty.zigTypeTag()) { .Void, .NoReturn => return WValue.none, else => { const result_local = try self.allocLocal(ret_ty); try self.addLabel(.local_set, result_local.local); return result_local; }, } } fn airAlloc(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const child_type = self.air.typeOfIndex(inst).childType(); // Initialize the stack if (self.initial_stack_value == .none) { try self.initializeStack(); } const abi_size = child_type.abiSize(self.target); if (abi_size == 0) return WValue{ .none = {} }; // local, containing the offset to the stack position const local = try self.allocLocal(Type.initTag(.i32)); // always pointer therefore i32 try self.moveStack(@intCast(u32, abi_size), local.local); return local; } fn airStore(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = self.resolveInst(bin_op.lhs); const rhs = self.resolveInst(bin_op.rhs); const ty = self.air.typeOf(bin_op.lhs).childType(); const offset: u32 = switch (lhs) { .local_with_offset => |with_off| with_off.offset, else => 0, }; try self.store(lhs, rhs, ty, offset); return .none; } fn store(self: *Self, lhs: WValue, rhs: WValue, ty: Type, offset: u32) InnerError!void { switch (ty.zigTypeTag()) { .ErrorUnion, .Optional => { var buf: Type.Payload.ElemType = undefined; const payload_ty = if (ty.zigTypeTag() == .ErrorUnion) ty.errorUnionPayload() else ty.optionalChild(&buf); const tag_ty = if (ty.zigTypeTag() == .ErrorUnion) ty.errorUnionSet() else Type.initTag(.u8); const payload_offset = if (ty.zigTypeTag() == .ErrorUnion) @intCast(u32, tag_ty.abiSize(self.target)) else @intCast(u32, ty.abiSize(self.target) - payload_ty.abiSize(self.target)); switch (rhs) { .constant => { // constant will contain both tag and payload, // so save those in 2 temporary locals before storing them // in memory try self.emitWValue(rhs); const tag_local = try self.allocLocal(tag_ty); if (payload_ty.hasCodeGenBits()) { const payload_local = try self.allocLocal(payload_ty); try self.addLabel(.local_set, payload_local.local); try self.store(lhs, payload_local, payload_ty, payload_offset); } try self.addLabel(.local_set, tag_local.local); try self.store(lhs, tag_local, tag_ty, 0); return; }, .local => { // Load values from `rhs` stack position and store in `lhs` instead const tag_local = try self.load(rhs, tag_ty, 0); const payload_local = try self.load(rhs, payload_ty, payload_offset); try self.store(lhs, tag_local, tag_ty, 0); return try self.store(lhs, payload_local, payload_ty, payload_offset); }, .local_with_offset => |with_offset| { const tag_local = try self.allocLocal(tag_ty); try self.addImm32(0); try self.store(lhs, tag_local, tag_ty, 0); return try self.store( lhs, .{ .local = with_offset.local }, payload_ty, with_offset.offset, ); }, else => unreachable, } }, .Struct => { // we are copying a struct with its fields. // Replace this with a wasm memcpy instruction once we support that feature. const fields_len = ty.structFieldCount(); var index: usize = 0; while (index < fields_len) : (index += 1) { const field_ty = ty.structFieldType(index); if (!field_ty.hasCodeGenBits()) continue; const field_offset = std.math.cast(u32, ty.structFieldOffset(index, self.target)) catch { return self.fail("Field type '{}' too big to fit into stack frame", .{field_ty}); }; const field_local = try self.load(rhs, field_ty, field_offset); try self.store(lhs, field_local, field_ty, field_offset); } return; }, else => {}, } try self.emitWValue(lhs); try self.emitWValue(rhs); const valtype = try self.typeToValtype(ty); // check if we should pass by pointer or value based on ABI size // TODO: Implement a way to get ABI values from a given type, // that is portable across the backend, rather than copying logic. const abi_size = if ((ty.isInt() or ty.isAnyFloat()) and ty.abiSize(self.target) <= 8) @intCast(u8, ty.abiSize(self.target)) else @as(u8, 4); const opcode = buildOpcode(.{ .valtype1 = valtype, .width = abi_size * 8, // use bitsize instead of byte size .op = .store, }); // store rhs value at stack pointer's location in memory const mem_arg_index = try self.addExtra(Mir.MemArg{ .offset = offset, .alignment = ty.abiAlignment(self.target), }); try self.addInst(.{ .tag = Mir.Inst.Tag.fromOpcode(opcode), .data = .{ .payload = mem_arg_index }, }); } fn airLoad(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); const ty = self.air.getRefType(ty_op.ty); return switch (ty.zigTypeTag()) { .Struct, .ErrorUnion, .Optional, .Pointer => operand, // pass as pointer else => switch (operand) { .local_with_offset => |with_offset| try self.load(operand, ty, with_offset.offset), else => try self.load(operand, ty, 0), }, }; } fn load(self: *Self, operand: WValue, ty: Type, offset: u32) InnerError!WValue { // load local's value from memory by its stack position try self.emitWValue(operand); // Build the opcode with the right bitsize const signedness: std.builtin.Signedness = if (ty.isUnsignedInt()) .unsigned else .signed; // check if we should pass by pointer or value based on ABI size // TODO: Implement a way to get ABI values from a given type, // that is portable across the backend, rather than copying logic. const abi_size = if ((ty.isInt() or ty.isAnyFloat()) and ty.abiSize(self.target) <= 8) @intCast(u8, ty.abiSize(self.target)) else @as(u8, 4); const opcode = buildOpcode(.{ .valtype1 = try self.typeToValtype(ty), .width = abi_size * 8, // use bitsize instead of byte size .op = .load, .signedness = signedness, }); const mem_arg_index = try self.addExtra(Mir.MemArg{ .offset = offset, .alignment = ty.abiAlignment(self.target), }); try self.addInst(.{ .tag = Mir.Inst.Tag.fromOpcode(opcode), .data = .{ .payload = mem_arg_index }, }); // store the result in a local const result = try self.allocLocal(ty); try self.addLabel(.local_set, result.local); return result; } fn airArg(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = inst; defer self.arg_index += 1; return self.args[self.arg_index]; } fn airBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = self.resolveInst(bin_op.lhs); const rhs = self.resolveInst(bin_op.rhs); try self.emitWValue(lhs); try self.emitWValue(rhs); const bin_ty = self.air.typeOf(bin_op.lhs); const opcode: wasm.Opcode = buildOpcode(.{ .op = op, .valtype1 = try self.typeToValtype(bin_ty), .signedness = if (bin_ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); // save the result in a temporary const bin_local = try self.allocLocal(bin_ty); try self.addLabel(.local_set, bin_local.local); return bin_local; } fn airWrapBinOp(self: *Self, inst: Air.Inst.Index, op: Op) InnerError!WValue { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs = self.resolveInst(bin_op.lhs); const rhs = self.resolveInst(bin_op.rhs); try self.emitWValue(lhs); try self.emitWValue(rhs); const bin_ty = self.air.typeOf(bin_op.lhs); const opcode: wasm.Opcode = buildOpcode(.{ .op = op, .valtype1 = try self.typeToValtype(bin_ty), .signedness = if (bin_ty.isSignedInt()) .signed else .unsigned, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const int_info = bin_ty.intInfo(self.target); const bitsize = int_info.bits; const is_signed = int_info.signedness == .signed; // if target type bitsize is x < 32 and 32 > x < 64, we perform // result & ((1< 64) { return self.fail("TODO wasm: Integer wrapping for bitsizes larger than 64", .{}); } // save the result in a temporary const bin_local = try self.allocLocal(bin_ty); try self.addLabel(.local_set, bin_local.local); return bin_local; } fn emitConstant(self: *Self, val: Value, ty: Type) InnerError!void { switch (ty.zigTypeTag()) { .Int => { const int_info = ty.intInfo(self.target); // write constant switch (int_info.signedness) { .signed => switch (int_info.bits) { 0...32 => try self.addImm32(@intCast(i32, val.toSignedInt())), 33...64 => try self.addImm64(@bitCast(u64, val.toSignedInt())), else => |bits| return self.fail("Wasm todo: emitConstant for integer with {d} bits", .{bits}), }, .unsigned => switch (int_info.bits) { 0...32 => try self.addImm32(@bitCast(i32, @intCast(u32, val.toUnsignedInt()))), 33...64 => try self.addImm64(val.toUnsignedInt()), else => |bits| return self.fail("Wasm TODO: emitConstant for integer with {d} bits", .{bits}), }, } }, .Bool => try self.addImm32(@intCast(i32, val.toSignedInt())), .Float => { // write constant switch (ty.floatBits(self.target)) { 0...32 => try self.addInst(.{ .tag = .f32_const, .data = .{ .float32 = val.toFloat(f32) } }), 64 => try self.addFloat64(val.toFloat(f64)), else => |bits| return self.fail("Wasm TODO: emitConstant for float with {d} bits", .{bits}), } }, .Pointer => { if (val.castTag(.decl_ref)) |payload| { const decl = payload.data; decl.alive = true; try self.addLabel(.memory_address, decl.link.wasm.sym_index); } else return self.fail("Wasm TODO: emitConstant for other const pointer tag {s}", .{val.tag()}); }, .Void => {}, .Enum => { if (val.castTag(.enum_field_index)) |field_index| { switch (ty.tag()) { .enum_simple => try self.addImm32(@bitCast(i32, field_index.data)), .enum_full, .enum_nonexhaustive => { const enum_full = ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { const tag_val = enum_full.values.keys()[field_index.data]; try self.emitConstant(tag_val, enum_full.tag_ty); } else { try self.addImm32(@bitCast(i32, field_index.data)); } }, else => unreachable, } } else { var int_tag_buffer: Type.Payload.Bits = undefined; const int_tag_ty = ty.intTagType(&int_tag_buffer); try self.emitConstant(val, int_tag_ty); } }, .ErrorSet => { const error_index = self.global_error_set.get(val.getError().?).?; try self.addImm32(@bitCast(i32, error_index)); }, .ErrorUnion => { const error_type = ty.errorUnionSet(); const payload_type = ty.errorUnionPayload(); if (val.castTag(.eu_payload)) |pl| { const payload_val = pl.data; // no error, so write a '0' const try self.addImm32(0); if (payload_type.hasCodeGenBits()) { // after the error code, we emit the payload try self.emitConstant(payload_val, payload_type); } } else { // write the error val try self.emitConstant(val, error_type); if (payload_type.hasCodeGenBits()) { // no payload, so write a '0' const try self.addImm32(0); } } }, .Optional => { var buf: Type.Payload.ElemType = undefined; const payload_type = ty.optionalChild(&buf); if (ty.isPtrLikeOptional()) { return self.fail("Wasm TODO: emitConstant for optional pointer", .{}); } // When constant has value 'null', set is_null local to '1' // and payload to '0' if (val.castTag(.opt_payload)) |pl| { const payload_val = pl.data; try self.addImm32(0); try self.emitConstant(payload_val, payload_type); } else { // set null-tag try self.addImm32(1); // null-tag is set, so write a '0' const try self.addImm32(0); } }, else => |zig_type| return self.fail("Wasm TODO: emitConstant for zigTypeTag {s}", .{zig_type}), } } /// Returns a `Value` as a signed 32 bit value. /// It's illegal to provide a value with a type that cannot be represented /// as an integer value. fn valueAsI32(self: Self, val: Value, ty: Type) i32 { switch (ty.zigTypeTag()) { .Enum => { if (val.castTag(.enum_field_index)) |field_index| { switch (ty.tag()) { .enum_simple => return @bitCast(i32, field_index.data), .enum_full, .enum_nonexhaustive => { const enum_full = ty.cast(Type.Payload.EnumFull).?.data; if (enum_full.values.count() != 0) { const tag_val = enum_full.values.keys()[field_index.data]; return self.valueAsI32(tag_val, enum_full.tag_ty); } else return @bitCast(i32, field_index.data); }, else => unreachable, } } else { var int_tag_buffer: Type.Payload.Bits = undefined; const int_tag_ty = ty.intTagType(&int_tag_buffer); return self.valueAsI32(val, int_tag_ty); } }, .Int => switch (ty.intInfo(self.target).signedness) { .signed => return @truncate(i32, val.toSignedInt()), .unsigned => return @bitCast(i32, @truncate(u32, val.toUnsignedInt())), }, .ErrorSet => { const error_index = self.global_error_set.get(val.getError().?).?; return @bitCast(i32, error_index); }, else => unreachable, // Programmer called this function for an illegal type } } fn airBlock(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const block_ty = try self.genBlockType(self.air.getRefType(ty_pl.ty)); const extra = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[extra.end..][0..extra.data.body_len]; // if block_ty is non-empty, we create a register to store the temporary value const block_result: WValue = if (block_ty != wasm.block_empty) try self.allocLocal(self.air.getRefType(ty_pl.ty)) else WValue.none; try self.startBlock(.block, wasm.block_empty); // Here we set the current block idx, so breaks know the depth to jump // to when breaking out. try self.blocks.putNoClobber(self.gpa, inst, .{ .label = self.block_depth, .value = block_result, }); try self.genBody(body); try self.endBlock(); return block_result; } /// appends a new wasm block to the code section and increases the `block_depth` by 1 fn startBlock(self: *Self, block_tag: wasm.Opcode, valtype: u8) !void { self.block_depth += 1; try self.addInst(.{ .tag = Mir.Inst.Tag.fromOpcode(block_tag), .data = .{ .block_type = valtype }, }); } /// Ends the current wasm block and decreases the `block_depth` by 1 fn endBlock(self: *Self) !void { try self.addTag(.end); self.block_depth -= 1; } fn airLoop(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const loop = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[loop.end..][0..loop.data.body_len]; // result type of loop is always 'noreturn', meaning we can always // emit the wasm type 'block_empty'. try self.startBlock(.loop, wasm.block_empty); try self.genBody(body); // breaking to the index of a loop block will continue the loop instead try self.addLabel(.br, 0); try self.endBlock(); return .none; } fn airCondBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const condition = self.resolveInst(pl_op.operand); const extra = self.air.extraData(Air.CondBr, pl_op.payload); const then_body = self.air.extra[extra.end..][0..extra.data.then_body_len]; const else_body = self.air.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; // TODO: Handle death instructions for then and else body // result type is always noreturn, so use `block_empty` as type. try self.startBlock(.block, wasm.block_empty); // emit the conditional value try self.emitWValue(condition); // we inserted the block in front of the condition // so now check if condition matches. If not, break outside this block // and continue with the then codepath try self.addLabel(.br_if, 0); try self.genBody(else_body); try self.endBlock(); // Outer block that matches the condition try self.genBody(then_body); return .none; } fn airCmp(self: *Self, inst: Air.Inst.Index, op: std.math.CompareOperator) InnerError!WValue { const data: Air.Inst.Data = self.air.instructions.items(.data)[inst]; const lhs = self.resolveInst(data.bin_op.lhs); const rhs = self.resolveInst(data.bin_op.rhs); const lhs_ty = self.air.typeOf(data.bin_op.lhs); try self.emitWValue(lhs); try self.emitWValue(rhs); const signedness: std.builtin.Signedness = blk: { // by default we tell the operand type is unsigned (i.e. bools and enum values) if (lhs_ty.zigTypeTag() != .Int) break :blk .unsigned; // incase of an actual integer, we emit the correct signedness break :blk lhs_ty.intInfo(self.target).signedness; }; const opcode: wasm.Opcode = buildOpcode(.{ .valtype1 = try self.typeToValtype(lhs_ty), .op = switch (op) { .lt => .lt, .lte => .le, .eq => .eq, .neq => .ne, .gte => .ge, .gt => .gt, }, .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const cmp_tmp = try self.allocLocal(lhs_ty); try self.addLabel(.local_set, cmp_tmp.local); return cmp_tmp; } fn airBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const br = self.air.instructions.items(.data)[inst].br; const block = self.blocks.get(br.block_inst).?; // if operand has codegen bits we should break with a value if (self.air.typeOf(br.operand).hasCodeGenBits()) { try self.emitWValue(self.resolveInst(br.operand)); if (block.value != .none) { try self.addLabel(.local_set, block.value.local); } } // We map every block to its block index. // We then determine how far we have to jump to it by subtracting it from current block depth const idx: u32 = self.block_depth - block.label; try self.addLabel(.br, idx); return .none; } fn airNot(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); try self.emitWValue(operand); // wasm does not have booleans nor the `not` instruction, therefore compare with 0 // to create the same logic try self.addImm32(0); try self.addTag(.i32_eq); // save the result in the local const not_tmp = try self.allocLocal(self.air.getRefType(ty_op.ty)); try self.addLabel(.local_set, not_tmp.local); return not_tmp; } fn airBreakpoint(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = self; _ = inst; // unsupported by wasm itself. Can be implemented once we support DWARF // for wasm return .none; } fn airUnreachable(self: *Self, inst: Air.Inst.Index) InnerError!WValue { _ = inst; try self.addTag(.@"unreachable"); return .none; } fn airBitcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; return self.resolveInst(ty_op.operand); } fn airStructFieldPtr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.StructField, ty_pl.payload); const struct_ptr = self.resolveInst(extra.data.struct_operand); const struct_ty = self.air.typeOf(extra.data.struct_operand).childType(); const offset = std.math.cast(u32, struct_ty.structFieldOffset(extra.data.field_index, self.target)) catch { return self.fail("Field type '{}' too big to fit into stack frame", .{ struct_ty.structFieldType(extra.data.field_index), }); }; return structFieldPtr(struct_ptr, offset); } fn airStructFieldPtrIndex(self: *Self, inst: Air.Inst.Index, index: u32) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const struct_ptr = self.resolveInst(ty_op.operand); const struct_ty = self.air.typeOf(ty_op.operand).childType(); const offset = std.math.cast(u32, struct_ty.structFieldOffset(index, self.target)) catch { return self.fail("Field type '{}' too big to fit into stack frame", .{ struct_ty.structFieldType(index), }); }; return structFieldPtr(struct_ptr, offset); } fn structFieldPtr(struct_ptr: WValue, offset: u32) InnerError!WValue { return WValue{ .local_with_offset = .{ .local = struct_ptr.local, .offset = offset } }; } fn airStructFieldVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue.none; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data; const struct_ty = self.air.typeOf(struct_field.struct_operand); const operand = self.resolveInst(struct_field.struct_operand); const field_index = struct_field.field_index; const field_ty = struct_ty.structFieldType(field_index); if (!field_ty.hasCodeGenBits()) return WValue.none; const offset = std.math.cast(u32, struct_ty.structFieldOffset(field_index, self.target)) catch { return self.fail("Field type '{}' too big to fit into stack frame", .{field_ty}); }; return try self.load(operand, field_ty, offset); } fn airSwitchBr(self: *Self, inst: Air.Inst.Index) InnerError!WValue { // result type is always 'noreturn' const blocktype = wasm.block_empty; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const target = self.resolveInst(pl_op.operand); const target_ty = self.air.typeOf(pl_op.operand); const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload); var extra_index: usize = switch_br.end; var case_i: u32 = 0; // a list that maps each value with its value and body based on the order inside the list. const CaseValue = struct { integer: i32, value: Value }; var case_list = try std.ArrayList(struct { values: []const CaseValue, body: []const Air.Inst.Index, }).initCapacity(self.gpa, switch_br.data.cases_len); defer for (case_list.items) |case| { self.gpa.free(case.values); } else case_list.deinit(); var lowest: i32 = 0; var highest: i32 = 0; while (case_i < switch_br.data.cases_len) : (case_i += 1) { const case = self.air.extraData(Air.SwitchBr.Case, extra_index); const items = @bitCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]); const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len]; extra_index = case.end + items.len + case_body.len; const values = try self.gpa.alloc(CaseValue, items.len); errdefer self.gpa.free(values); for (items) |ref, i| { const item_val = self.air.value(ref).?; const int_val = self.valueAsI32(item_val, target_ty); if (int_val < lowest) { lowest = int_val; } if (int_val > highest) { highest = int_val; } values[i] = .{ .integer = int_val, .value = item_val }; } case_list.appendAssumeCapacity(.{ .values = values, .body = case_body }); try self.startBlock(.block, blocktype); } // When the highest and lowest values are seperated by '50', // we define it as sparse and use an if/else-chain, rather than a jump table. // When the target is an integer size larger than u32, we have no way to use the value // as an index, therefore we also use an if/else-chain for those cases. // TODO: Benchmark this to find a proper value, LLVM seems to draw the line at '40~45'. const is_sparse = highest - lowest > 50 or target_ty.bitSize(self.target) > 32; const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len]; const has_else_body = else_body.len != 0; if (has_else_body) { try self.startBlock(.block, blocktype); } if (!is_sparse) { // Generate the jump table 'br_table' when the prongs are not sparse. // The value 'target' represents the index into the table. // Each index in the table represents a label to the branch // to jump to. try self.startBlock(.block, blocktype); try self.emitWValue(target); if (lowest < 0) { // since br_table works using indexes, starting from '0', we must ensure all values // we put inside, are atleast 0. try self.addImm32(lowest * -1); try self.addTag(.i32_add); } // Account for default branch so always add '1' const depth = @intCast(u32, highest - lowest + @boolToInt(has_else_body)) + 1; const jump_table: Mir.JumpTable = .{ .length = depth }; const table_extra_index = try self.addExtra(jump_table); try self.addInst(.{ .tag = .br_table, .data = .{ .payload = table_extra_index } }); try self.mir_extra.ensureUnusedCapacity(self.gpa, depth); while (lowest <= highest) : (lowest += 1) { // idx represents the branch we jump to const idx = blk: { for (case_list.items) |case, idx| { for (case.values) |case_value| { if (case_value.integer == lowest) break :blk @intCast(u32, idx); } } break :blk if (has_else_body) case_i else unreachable; }; self.mir_extra.appendAssumeCapacity(idx); } else if (has_else_body) { self.mir_extra.appendAssumeCapacity(case_i); // default branch } try self.endBlock(); } const signedness: std.builtin.Signedness = blk: { // by default we tell the operand type is unsigned (i.e. bools and enum values) if (target_ty.zigTypeTag() != .Int) break :blk .unsigned; // incase of an actual integer, we emit the correct signedness break :blk target_ty.intInfo(self.target).signedness; }; for (case_list.items) |case| { // when sparse, we use if/else-chain, so emit conditional checks if (is_sparse) { // for single value prong we can emit a simple if if (case.values.len == 1) { try self.emitWValue(target); try self.emitConstant(case.values[0].value, target_ty); const opcode = buildOpcode(.{ .valtype1 = try self.typeToValtype(target_ty), .op = .ne, // not equal, because we want to jump out of this block if it does not match the condition. .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); try self.addLabel(.br_if, 0); } else { // in multi-value prongs we must check if any prongs match the target value. try self.startBlock(.block, blocktype); for (case.values) |value| { try self.emitWValue(target); try self.emitConstant(value.value, target_ty); const opcode = buildOpcode(.{ .valtype1 = try self.typeToValtype(target_ty), .op = .eq, .signedness = signedness, }); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); try self.addLabel(.br_if, 0); } // value did not match any of the prong values try self.addLabel(.br, 1); try self.endBlock(); } } try self.genBody(case.body); try self.endBlock(); } if (has_else_body) { try self.genBody(else_body); try self.endBlock(); } return .none; } fn airIsErr(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = self.resolveInst(un_op); const err_ty = self.air.typeOf(un_op).errorUnionSet(); // load the error tag value try self.emitWValue(operand); const mem_arg_index = try self.addExtra(Mir.MemArg{ .offset = 0, .alignment = err_ty.abiAlignment(self.target), }); try self.addInst(.{ .tag = .i32_load16_u, .data = .{ .payload = mem_arg_index }, }); // Compare the error value with '0' try self.addImm32(0); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const is_err_tmp = try self.allocLocal(err_ty); try self.addLabel(.local_set, is_err_tmp.local); return is_err_tmp; } fn airUnwrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); const err_ty = self.air.typeOf(ty_op.operand); const payload_ty = err_ty.errorUnionPayload(); if (!payload_ty.hasCodeGenBits()) return WValue.none; const offset = @intCast(u32, err_ty.errorUnionSet().abiSize(self.target)); return try self.load(operand, payload_ty, offset); } fn airWrapErrUnionPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; _ = ty_op; return self.fail("TODO: wasm airWrapErrUnionPayload", .{}); } fn airIntcast(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const ty = self.air.getRefType(ty_op.ty); const operand = self.resolveInst(ty_op.operand); const ref_ty = self.air.typeOf(ty_op.operand); const ref_info = ref_ty.intInfo(self.target); const op_bits = ref_info.bits; const wanted_bits = ty.intInfo(self.target).bits; try self.emitWValue(operand); if (op_bits > 32 and wanted_bits <= 32) { try self.addTag(.i32_wrap_i64); } else if (op_bits <= 32 and wanted_bits > 32) { try self.addTag(switch (ref_info.signedness) { .signed => .i64_extend_i32_s, .unsigned => .i64_extend_i32_u, }); } // other cases are no-op return .none; } fn airIsNull(self: *Self, inst: Air.Inst.Index, opcode: wasm.Opcode) InnerError!WValue { const un_op = self.air.instructions.items(.data)[inst].un_op; const operand = self.resolveInst(un_op); // load the null tag value try self.emitWValue(operand); const mem_arg_index = try self.addExtra(Mir.MemArg{ .offset = 0, .alignment = 1 }); try self.addInst(.{ .tag = .i32_load8_u, .data = .{ .payload = mem_arg_index }, }); // Compare the error value with '0' try self.addImm32(0); try self.addTag(Mir.Inst.Tag.fromOpcode(opcode)); const is_null_tmp = try self.allocLocal(Type.initTag(.u8)); try self.addLabel(.local_set, is_null_tmp.local); return is_null_tmp; } fn airOptionalPayload(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); const opt_ty = self.air.typeOf(ty_op.operand); // For pointers we simply return its stack address, rather than // loading its value if (opt_ty.zigTypeTag() == .Pointer) { return WValue{ .local_with_offset = .{ .local = operand.local, .offset = 1 } }; } if (opt_ty.isPtrLikeOptional()) return operand; var buf: Type.Payload.ElemType = undefined; const child_ty = opt_ty.optionalChild(&buf); const offset = opt_ty.abiSize(self.target) - child_ty.abiSize(self.target); return self.load(operand, child_ty, @intCast(u32, offset)); } fn airOptionalPayloadPtrSet(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); _ = operand; return self.fail("TODO - wasm codegen for optional_payload_ptr_set", .{}); } fn airWrapOptional(self: *Self, inst: Air.Inst.Index) InnerError!WValue { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); const op_ty = self.air.typeOf(ty_op.operand); const optional_ty = self.air.getRefType(ty_op.ty); const offset = optional_ty.abiSize(self.target) - op_ty.abiSize(self.target); return WValue{ .local_with_offset = .{ .local = operand.local, .offset = @intCast(u32, offset), } }; } fn airSliceLen(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue.none; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand = self.resolveInst(ty_op.operand); const pointer_width = self.target.cpu.arch.ptrBitWidth() / 8; // Get pointer to slice try self.emitWValue(operand); // length of slice is stored after the pointer of the slice const extra_index = try self.addExtra(Mir.MemArg{ .offset = pointer_width, .alignment = pointer_width, }); try self.addInst(.{ .tag = .i32_load, .data = .{ .payload = extra_index } }); const result = try self.allocLocal(Type.initTag(.i32)); // pointer is always i32 // store slice length in local try self.addLabel(.local_set, result.local); return result; } fn airSliceElemVal(self: *Self, inst: Air.Inst.Index) InnerError!WValue { if (self.liveness.isUnused(inst)) return WValue.none; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const slice_ty = self.air.typeOf(bin_op.lhs); const slice = self.resolveInst(bin_op.lhs); const index = self.resolveInst(bin_op.rhs); const elem_ty = slice_ty.childType(); const elem_size = elem_ty.abiSize(self.target); // load pointer onto stack try self.emitWValue(slice); // calculate index into slice try self.emitWValue(index); try self.addImm32(@bitCast(i32, @intCast(u32, elem_size))); try self.addTag(.i32_mul); try self.addTag(.i32_add); const abi_size = if (elem_size < 8) @intCast(u8, elem_size) else @as(u8, 4); // elements larger than 8 bytes will be passed by pointer const extra_index = try self.addExtra(Mir.MemArg{ .offset = 0, .alignment = elem_ty.abiAlignment(self.target), }); const signedness: std.builtin.Signedness = if (elem_ty.isUnsignedInt()) .unsigned else .signed; const opcode = buildOpcode(.{ .valtype1 = try self.typeToValtype(elem_ty), .width = abi_size * 8, .op = .load, .signedness = signedness, }); try self.addInst(.{ .tag = Mir.Inst.Tag.fromOpcode(opcode), .data = .{ .payload = extra_index } }); const result = try self.allocLocal(elem_ty); try self.addLabel(.local_set, result.local); return result; }