// JSON parser conforming to RFC8259. // // https://tools.ietf.org/html/rfc8259 const builtin = @import("builtin"); const std = @import("std.zig"); const debug = std.debug; const assert = debug.assert; const testing = std.testing; const mem = std.mem; const maxInt = std.math.maxInt; pub const WriteStream = @import("json/write_stream.zig").WriteStream; pub const writeStream = @import("json/write_stream.zig").writeStream; const StringEscapes = union(enum) { None, Some: struct { size_diff: isize, }, }; /// Checks to see if a string matches what it would be as a json-encoded string /// Assumes that `encoded` is a well-formed json string fn encodesTo(decoded: []const u8, encoded: []const u8) bool { var i: usize = 0; var j: usize = 0; while (i < decoded.len) { if (j >= encoded.len) return false; if (encoded[j] != '\\') { if (decoded[i] != encoded[j]) return false; j += 1; i += 1; } else { const escape_type = encoded[j + 1]; if (escape_type != 'u') { const t: u8 = switch (escape_type) { '\\' => '\\', '/' => '/', 'n' => '\n', 'r' => '\r', 't' => '\t', 'f' => 12, 'b' => 8, '"' => '"', else => unreachable, }; if (decoded[i] != t) return false; j += 2; i += 1; } else { var codepoint = std.fmt.parseInt(u21, encoded[j + 2 .. j + 6], 16) catch unreachable; j += 6; if (codepoint >= 0xD800 and codepoint < 0xDC00) { // surrogate pair assert(encoded[j] == '\\'); assert(encoded[j + 1] == 'u'); const low_surrogate = std.fmt.parseInt(u21, encoded[j + 2 .. j + 6], 16) catch unreachable; codepoint = 0x10000 + (((codepoint & 0x03ff) << 10) | (low_surrogate & 0x03ff)); j += 6; } var buf: [4]u8 = undefined; const len = std.unicode.utf8Encode(codepoint, &buf) catch unreachable; if (i + len > decoded.len) return false; if (!mem.eql(u8, decoded[i .. i + len], buf[0..len])) return false; i += len; } } } assert(i == decoded.len); assert(j == encoded.len); return true; } /// A single token slice into the parent string. /// /// Use `token.slice()` on the input at the current position to get the current slice. pub const Token = union(enum) { ObjectBegin, ObjectEnd, ArrayBegin, ArrayEnd, String: struct { /// How many bytes the token is. count: usize, /// Whether string contains an escape sequence and cannot be zero-copied escapes: StringEscapes, pub fn decodedLength(self: @This()) usize { return self.count +% switch (self.escapes) { .None => 0, .Some => |s| @bitCast(usize, s.size_diff), }; } /// Slice into the underlying input string. pub fn slice(self: @This(), input: []const u8, i: usize) []const u8 { return input[i - self.count .. i]; } }, Number: struct { /// How many bytes the token is. count: usize, /// Whether number is simple and can be represented by an integer (i.e. no `.` or `e`) is_integer: bool, /// Slice into the underlying input string. pub fn slice(self: @This(), input: []const u8, i: usize) []const u8 { return input[i - self.count .. i]; } }, True, False, Null, }; const AggregateContainerType = enum(u1) { object, array }; // A LIFO bit-stack. Tracks which container-types have been entered during parse. fn AggregateContainerStack(comptime n: usize) type { return struct { const Self = @This(); const element_bitcount = 8 * @sizeOf(usize); const element_count = n / element_bitcount; const ElementType = @Type(.{ .Int = .{ .signedness = .unsigned, .bits = element_bitcount } }); const ElementShiftAmountType = std.math.Log2Int(ElementType); comptime { std.debug.assert(n % element_bitcount == 0); } memory: [element_count]ElementType, len: usize, pub fn init(self: *Self) void { self.memory = [_]ElementType{0} ** element_count; self.len = 0; } pub fn push(self: *Self, ty: AggregateContainerType) ?void { if (self.len >= n) { return null; } const index = self.len / element_bitcount; const sub_index = @intCast(ElementShiftAmountType, self.len % element_bitcount); const clear_mask = ~(@as(ElementType, 1) << sub_index); const set_bits = @as(ElementType, @enumToInt(ty)) << sub_index; self.memory[index] &= clear_mask; self.memory[index] |= set_bits; self.len += 1; } pub fn peek(self: *Self) ?AggregateContainerType { if (self.len == 0) { return null; } const bit_to_extract = self.len - 1; const index = bit_to_extract / element_bitcount; const sub_index = @intCast(ElementShiftAmountType, bit_to_extract % element_bitcount); const bit = @intCast(u1, (self.memory[index] >> sub_index) & 1); return @intToEnum(AggregateContainerType, bit); } pub fn pop(self: *Self) ?AggregateContainerType { if (self.peek()) |ty| { self.len -= 1; return ty; } return null; } }; } /// A small streaming JSON parser. This accepts input one byte at a time and returns tokens as /// they are encountered. No copies or allocations are performed during parsing and the entire /// parsing state requires ~40-50 bytes of stack space. /// /// Conforms strictly to RFC8259. /// /// For a non-byte based wrapper, consider using TokenStream instead. pub const StreamingParser = struct { const default_max_nestings = 256; // Current state state: State, // How many bytes we have counted for the current token count: usize, // What state to follow after parsing a string (either property or value string) after_string_state: State, // What state to follow after parsing a value (either top-level or value end) after_value_state: State, // If we stopped now, would the complete parsed string to now be a valid json string complete: bool, // Current token flags to pass through to the next generated, see Token. string_escapes: StringEscapes, // When in .String states, was the previous character a high surrogate? string_last_was_high_surrogate: bool, // Used inside of StringEscapeHexUnicode* states string_unicode_codepoint: u21, // The first byte needs to be stored to validate 3- and 4-byte sequences. sequence_first_byte: u8 = undefined, // When in .Number states, is the number a (still) valid integer? number_is_integer: bool, // Bit-stack for nested object/map literals (max 256 nestings). stack: AggregateContainerStack(default_max_nestings), pub fn init() StreamingParser { var p: StreamingParser = undefined; p.reset(); return p; } pub fn reset(p: *StreamingParser) void { p.state = .TopLevelBegin; p.count = 0; // Set before ever read in main transition function p.after_string_state = undefined; p.after_value_state = .ValueEnd; // handle end of values normally p.stack.init(); p.complete = false; p.string_escapes = undefined; p.string_last_was_high_surrogate = undefined; p.string_unicode_codepoint = undefined; p.number_is_integer = undefined; } pub const State = enum(u8) { // These must be first with these explicit values as we rely on them for indexing the // bit-stack directly and avoiding a branch. ObjectSeparator = 0, ValueEnd = 1, TopLevelBegin, TopLevelEnd, ValueBegin, ValueBeginNoClosing, String, StringUtf8Byte2Of2, StringUtf8Byte2Of3, StringUtf8Byte3Of3, StringUtf8Byte2Of4, StringUtf8Byte3Of4, StringUtf8Byte4Of4, StringEscapeCharacter, StringEscapeHexUnicode4, StringEscapeHexUnicode3, StringEscapeHexUnicode2, StringEscapeHexUnicode1, Number, NumberMaybeDotOrExponent, NumberMaybeDigitOrDotOrExponent, NumberFractionalRequired, NumberFractional, NumberMaybeExponent, NumberExponent, NumberExponentDigitsRequired, NumberExponentDigits, TrueLiteral1, TrueLiteral2, TrueLiteral3, FalseLiteral1, FalseLiteral2, FalseLiteral3, FalseLiteral4, NullLiteral1, NullLiteral2, NullLiteral3, // Given an aggregate container type, return the state which should be entered after // processing a complete value type. pub fn fromAggregateContainerType(ty: AggregateContainerType) State { comptime { std.debug.assert(@enumToInt(AggregateContainerType.object) == @enumToInt(State.ObjectSeparator)); std.debug.assert(@enumToInt(AggregateContainerType.array) == @enumToInt(State.ValueEnd)); } return @intToEnum(State, @enumToInt(ty)); } }; pub const Error = error{ InvalidTopLevel, TooManyNestedItems, TooManyClosingItems, InvalidValueBegin, InvalidValueEnd, UnbalancedBrackets, UnbalancedBraces, UnexpectedClosingBracket, UnexpectedClosingBrace, InvalidNumber, InvalidSeparator, InvalidLiteral, InvalidEscapeCharacter, InvalidUnicodeHexSymbol, InvalidUtf8Byte, InvalidTopLevelTrailing, InvalidControlCharacter, }; /// Give another byte to the parser and obtain any new tokens. This may (rarely) return two /// tokens. token2 is always null if token1 is null. /// /// There is currently no error recovery on a bad stream. pub fn feed(p: *StreamingParser, c: u8, token1: *?Token, token2: *?Token) Error!void { token1.* = null; token2.* = null; p.count += 1; // unlikely if (try p.transition(c, token1)) { _ = try p.transition(c, token2); } } // Perform a single transition on the state machine and return any possible token. fn transition(p: *StreamingParser, c: u8, token: *?Token) Error!bool { switch (p.state) { .TopLevelBegin => switch (c) { '{' => { p.stack.push(.object) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ObjectSeparator; token.* = Token.ObjectBegin; }, '[' => { p.stack.push(.array) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ValueEnd; token.* = Token.ArrayBegin; }, '-' => { p.number_is_integer = true; p.state = .Number; p.after_value_state = .TopLevelEnd; p.count = 0; }, '0' => { p.number_is_integer = true; p.state = .NumberMaybeDotOrExponent; p.after_value_state = .TopLevelEnd; p.count = 0; }, '1'...'9' => { p.number_is_integer = true; p.state = .NumberMaybeDigitOrDotOrExponent; p.after_value_state = .TopLevelEnd; p.count = 0; }, '"' => { p.state = .String; p.after_value_state = .TopLevelEnd; // We don't actually need the following since after_value_state should override. p.after_string_state = .ValueEnd; p.string_escapes = .None; p.string_last_was_high_surrogate = false; p.count = 0; }, 't' => { p.state = .TrueLiteral1; p.after_value_state = .TopLevelEnd; p.count = 0; }, 'f' => { p.state = .FalseLiteral1; p.after_value_state = .TopLevelEnd; p.count = 0; }, 'n' => { p.state = .NullLiteral1; p.after_value_state = .TopLevelEnd; p.count = 0; }, 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidTopLevel; }, }, .TopLevelEnd => switch (c) { 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidTopLevelTrailing; }, }, .ValueBegin => switch (c) { // NOTE: These are shared in ValueEnd as well, think we can reorder states to // be a bit clearer and avoid this duplication. '}' => { const last_type = p.stack.peek() orelse return error.TooManyClosingItems; if (last_type != .object) { return error.UnexpectedClosingBrace; } _ = p.stack.pop(); p.state = .ValueBegin; p.after_string_state = State.fromAggregateContainerType(last_type); switch (p.stack.len) { 0 => { p.complete = true; p.state = .TopLevelEnd; }, else => { p.state = .ValueEnd; }, } token.* = Token.ObjectEnd; }, ']' => { const last_type = p.stack.peek() orelse return error.TooManyClosingItems; if (last_type != .array) { return error.UnexpectedClosingBracket; } _ = p.stack.pop(); p.state = .ValueBegin; p.after_string_state = State.fromAggregateContainerType(last_type); switch (p.stack.len) { 0 => { p.complete = true; p.state = .TopLevelEnd; }, else => { p.state = .ValueEnd; }, } token.* = Token.ArrayEnd; }, '{' => { p.stack.push(.object) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ObjectSeparator; token.* = Token.ObjectBegin; }, '[' => { p.stack.push(.array) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ValueEnd; token.* = Token.ArrayBegin; }, '-' => { p.number_is_integer = true; p.state = .Number; p.count = 0; }, '0' => { p.number_is_integer = true; p.state = .NumberMaybeDotOrExponent; p.count = 0; }, '1'...'9' => { p.number_is_integer = true; p.state = .NumberMaybeDigitOrDotOrExponent; p.count = 0; }, '"' => { p.state = .String; p.string_escapes = .None; p.string_last_was_high_surrogate = false; p.count = 0; }, 't' => { p.state = .TrueLiteral1; p.count = 0; }, 'f' => { p.state = .FalseLiteral1; p.count = 0; }, 'n' => { p.state = .NullLiteral1; p.count = 0; }, 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidValueBegin; }, }, // TODO: A bit of duplication here and in the following state, redo. .ValueBeginNoClosing => switch (c) { '{' => { p.stack.push(.object) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ObjectSeparator; token.* = Token.ObjectBegin; }, '[' => { p.stack.push(.array) orelse return error.TooManyNestedItems; p.state = .ValueBegin; p.after_string_state = .ValueEnd; token.* = Token.ArrayBegin; }, '-' => { p.number_is_integer = true; p.state = .Number; p.count = 0; }, '0' => { p.number_is_integer = true; p.state = .NumberMaybeDotOrExponent; p.count = 0; }, '1'...'9' => { p.number_is_integer = true; p.state = .NumberMaybeDigitOrDotOrExponent; p.count = 0; }, '"' => { p.state = .String; p.string_escapes = .None; p.string_last_was_high_surrogate = false; p.count = 0; }, 't' => { p.state = .TrueLiteral1; p.count = 0; }, 'f' => { p.state = .FalseLiteral1; p.count = 0; }, 'n' => { p.state = .NullLiteral1; p.count = 0; }, 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidValueBegin; }, }, .ValueEnd => switch (c) { ',' => { const last_type = p.stack.peek() orelse unreachable; p.after_string_state = State.fromAggregateContainerType(last_type); p.state = .ValueBeginNoClosing; }, ']' => { const last_type = p.stack.peek() orelse return error.TooManyClosingItems; if (last_type != .array) { return error.UnexpectedClosingBracket; } _ = p.stack.pop(); p.state = .ValueEnd; p.after_string_state = State.fromAggregateContainerType(last_type); if (p.stack.len == 0) { p.complete = true; p.state = .TopLevelEnd; } token.* = Token.ArrayEnd; }, '}' => { const last_type = p.stack.peek() orelse return error.TooManyClosingItems; if (last_type != .object) { return error.UnexpectedClosingBrace; } _ = p.stack.pop(); p.state = .ValueEnd; p.after_string_state = State.fromAggregateContainerType(last_type); if (p.stack.len == 0) { p.complete = true; p.state = .TopLevelEnd; } token.* = Token.ObjectEnd; }, 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidValueEnd; }, }, .ObjectSeparator => switch (c) { ':' => { p.state = .ValueBeginNoClosing; p.after_string_state = .ValueEnd; }, 0x09, 0x0A, 0x0D, 0x20 => { // whitespace }, else => { return error.InvalidSeparator; }, }, .String => switch (c) { 0x00...0x1F => { return error.InvalidControlCharacter; }, '"' => { p.state = p.after_string_state; if (p.after_value_state == .TopLevelEnd) { p.state = .TopLevelEnd; p.complete = true; } token.* = .{ .String = .{ .count = p.count - 1, .escapes = p.string_escapes, }, }; p.string_escapes = undefined; p.string_last_was_high_surrogate = undefined; }, '\\' => { p.state = .StringEscapeCharacter; switch (p.string_escapes) { .None => { p.string_escapes = .{ .Some = .{ .size_diff = 0 } }; }, .Some => {}, } }, 0x20, 0x21, 0x23...0x5B, 0x5D...0x7F => { // non-control ascii p.string_last_was_high_surrogate = false; }, 0xC2...0xDF => { p.state = .StringUtf8Byte2Of2; }, 0xE0...0xEF => { p.state = .StringUtf8Byte2Of3; p.sequence_first_byte = c; }, 0xF0...0xF4 => { p.state = .StringUtf8Byte2Of4; p.sequence_first_byte = c; }, else => { return error.InvalidUtf8Byte; }, }, .StringUtf8Byte2Of2 => switch (c >> 6) { 0b10 => p.state = .String, else => return error.InvalidUtf8Byte, }, .StringUtf8Byte2Of3 => { switch (p.sequence_first_byte) { 0xE0 => switch (c) { 0xA0...0xBF => {}, else => return error.InvalidUtf8Byte, }, 0xE1...0xEF => switch (c) { 0x80...0xBF => {}, else => return error.InvalidUtf8Byte, }, else => return error.InvalidUtf8Byte, } p.state = .StringUtf8Byte3Of3; }, .StringUtf8Byte3Of3 => switch (c) { 0x80...0xBF => p.state = .String, else => return error.InvalidUtf8Byte, }, .StringUtf8Byte2Of4 => { switch (p.sequence_first_byte) { 0xF0 => switch (c) { 0x90...0xBF => {}, else => return error.InvalidUtf8Byte, }, 0xF1...0xF3 => switch (c) { 0x80...0xBF => {}, else => return error.InvalidUtf8Byte, }, 0xF4 => switch (c) { 0x80...0x8F => {}, else => return error.InvalidUtf8Byte, }, else => return error.InvalidUtf8Byte, } p.state = .StringUtf8Byte3Of4; }, .StringUtf8Byte3Of4 => switch (c) { 0x80...0xBF => p.state = .StringUtf8Byte4Of4, else => return error.InvalidUtf8Byte, }, .StringUtf8Byte4Of4 => switch (c) { 0x80...0xBF => p.state = .String, else => return error.InvalidUtf8Byte, }, .StringEscapeCharacter => switch (c) { // NOTE: '/' is allowed as an escaped character but it also is allowed // as unescaped according to the RFC. There is a reported errata which suggests // removing the non-escaped variant but it makes more sense to simply disallow // it as an escape code here. // // The current JSONTestSuite tests rely on both of this behaviour being present // however, so we default to the status quo where both are accepted until this // is further clarified. '"', '\\', '/', 'b', 'f', 'n', 'r', 't' => { p.string_escapes.Some.size_diff -= 1; p.state = .String; p.string_last_was_high_surrogate = false; }, 'u' => { p.state = .StringEscapeHexUnicode4; }, else => { return error.InvalidEscapeCharacter; }, }, .StringEscapeHexUnicode4 => { var codepoint: u21 = undefined; switch (c) { else => return error.InvalidUnicodeHexSymbol, '0'...'9' => { codepoint = c - '0'; }, 'A'...'F' => { codepoint = c - 'A' + 10; }, 'a'...'f' => { codepoint = c - 'a' + 10; }, } p.state = .StringEscapeHexUnicode3; p.string_unicode_codepoint = codepoint << 12; }, .StringEscapeHexUnicode3 => { var codepoint: u21 = undefined; switch (c) { else => return error.InvalidUnicodeHexSymbol, '0'...'9' => { codepoint = c - '0'; }, 'A'...'F' => { codepoint = c - 'A' + 10; }, 'a'...'f' => { codepoint = c - 'a' + 10; }, } p.state = .StringEscapeHexUnicode2; p.string_unicode_codepoint |= codepoint << 8; }, .StringEscapeHexUnicode2 => { var codepoint: u21 = undefined; switch (c) { else => return error.InvalidUnicodeHexSymbol, '0'...'9' => { codepoint = c - '0'; }, 'A'...'F' => { codepoint = c - 'A' + 10; }, 'a'...'f' => { codepoint = c - 'a' + 10; }, } p.state = .StringEscapeHexUnicode1; p.string_unicode_codepoint |= codepoint << 4; }, .StringEscapeHexUnicode1 => { var codepoint: u21 = undefined; switch (c) { else => return error.InvalidUnicodeHexSymbol, '0'...'9' => { codepoint = c - '0'; }, 'A'...'F' => { codepoint = c - 'A' + 10; }, 'a'...'f' => { codepoint = c - 'a' + 10; }, } p.state = .String; p.string_unicode_codepoint |= codepoint; if (p.string_unicode_codepoint < 0xD800 or p.string_unicode_codepoint >= 0xE000) { // not part of surrogate pair p.string_escapes.Some.size_diff -= @as(isize, 6 - (std.unicode.utf8CodepointSequenceLength(p.string_unicode_codepoint) catch unreachable)); p.string_last_was_high_surrogate = false; } else if (p.string_unicode_codepoint < 0xDC00) { // 'high' surrogate // takes 3 bytes to encode a half surrogate pair into wtf8 p.string_escapes.Some.size_diff -= 6 - 3; p.string_last_was_high_surrogate = true; } else { // 'low' surrogate p.string_escapes.Some.size_diff -= 6; if (p.string_last_was_high_surrogate) { // takes 4 bytes to encode a full surrogate pair into utf8 // 3 bytes are already reserved by high surrogate p.string_escapes.Some.size_diff -= -1; } else { // takes 3 bytes to encode a half surrogate pair into wtf8 p.string_escapes.Some.size_diff -= -3; } p.string_last_was_high_surrogate = false; } p.string_unicode_codepoint = undefined; }, .Number => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '0' => { p.state = .NumberMaybeDotOrExponent; }, '1'...'9' => { p.state = .NumberMaybeDigitOrDotOrExponent; }, else => { return error.InvalidNumber; }, } }, .NumberMaybeDotOrExponent => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '.' => { p.number_is_integer = false; p.state = .NumberFractionalRequired; }, 'e', 'E' => { p.number_is_integer = false; p.state = .NumberExponent; }, else => { p.state = p.after_value_state; token.* = .{ .Number = .{ .count = p.count, .is_integer = p.number_is_integer, }, }; p.number_is_integer = undefined; return true; }, } }, .NumberMaybeDigitOrDotOrExponent => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '.' => { p.number_is_integer = false; p.state = .NumberFractionalRequired; }, 'e', 'E' => { p.number_is_integer = false; p.state = .NumberExponent; }, '0'...'9' => { // another digit }, else => { p.state = p.after_value_state; token.* = .{ .Number = .{ .count = p.count, .is_integer = p.number_is_integer, }, }; return true; }, } }, .NumberFractionalRequired => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '0'...'9' => { p.state = .NumberFractional; }, else => { return error.InvalidNumber; }, } }, .NumberFractional => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '0'...'9' => { // another digit }, 'e', 'E' => { p.number_is_integer = false; p.state = .NumberExponent; }, else => { p.state = p.after_value_state; token.* = .{ .Number = .{ .count = p.count, .is_integer = p.number_is_integer, }, }; return true; }, } }, .NumberMaybeExponent => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { 'e', 'E' => { p.number_is_integer = false; p.state = .NumberExponent; }, else => { p.state = p.after_value_state; token.* = .{ .Number = .{ .count = p.count, .is_integer = p.number_is_integer, }, }; return true; }, } }, .NumberExponent => switch (c) { '-', '+' => { p.complete = false; p.state = .NumberExponentDigitsRequired; }, '0'...'9' => { p.complete = p.after_value_state == .TopLevelEnd; p.state = .NumberExponentDigits; }, else => { return error.InvalidNumber; }, }, .NumberExponentDigitsRequired => switch (c) { '0'...'9' => { p.complete = p.after_value_state == .TopLevelEnd; p.state = .NumberExponentDigits; }, else => { return error.InvalidNumber; }, }, .NumberExponentDigits => { p.complete = p.after_value_state == .TopLevelEnd; switch (c) { '0'...'9' => { // another digit }, else => { p.state = p.after_value_state; token.* = .{ .Number = .{ .count = p.count, .is_integer = p.number_is_integer, }, }; return true; }, } }, .TrueLiteral1 => switch (c) { 'r' => p.state = .TrueLiteral2, else => return error.InvalidLiteral, }, .TrueLiteral2 => switch (c) { 'u' => p.state = .TrueLiteral3, else => return error.InvalidLiteral, }, .TrueLiteral3 => switch (c) { 'e' => { p.state = p.after_value_state; p.complete = p.state == .TopLevelEnd; token.* = Token.True; }, else => { return error.InvalidLiteral; }, }, .FalseLiteral1 => switch (c) { 'a' => p.state = .FalseLiteral2, else => return error.InvalidLiteral, }, .FalseLiteral2 => switch (c) { 'l' => p.state = .FalseLiteral3, else => return error.InvalidLiteral, }, .FalseLiteral3 => switch (c) { 's' => p.state = .FalseLiteral4, else => return error.InvalidLiteral, }, .FalseLiteral4 => switch (c) { 'e' => { p.state = p.after_value_state; p.complete = p.state == .TopLevelEnd; token.* = Token.False; }, else => { return error.InvalidLiteral; }, }, .NullLiteral1 => switch (c) { 'u' => p.state = .NullLiteral2, else => return error.InvalidLiteral, }, .NullLiteral2 => switch (c) { 'l' => p.state = .NullLiteral3, else => return error.InvalidLiteral, }, .NullLiteral3 => switch (c) { 'l' => { p.state = p.after_value_state; p.complete = p.state == .TopLevelEnd; token.* = Token.Null; }, else => { return error.InvalidLiteral; }, }, } return false; } }; /// A small wrapper over a StreamingParser for full slices. Returns a stream of json Tokens. pub const TokenStream = struct { i: usize, slice: []const u8, parser: StreamingParser, token: ?Token, pub const Error = StreamingParser.Error || error{UnexpectedEndOfJson}; pub fn init(slice: []const u8) TokenStream { return TokenStream{ .i = 0, .slice = slice, .parser = StreamingParser.init(), .token = null, }; } fn stackUsed(self: *TokenStream) usize { return self.parser.stack.len + if (self.token != null) @as(usize, 1) else 0; } pub fn next(self: *TokenStream) Error!?Token { if (self.token) |token| { self.token = null; return token; } var t1: ?Token = undefined; var t2: ?Token = undefined; while (self.i < self.slice.len) { try self.parser.feed(self.slice[self.i], &t1, &t2); self.i += 1; if (t1) |token| { self.token = t2; return token; } } // Without this a bare number fails, the streaming parser doesn't know the input ended try self.parser.feed(' ', &t1, &t2); self.i += 1; if (t1) |token| { return token; } else if (self.parser.complete) { return null; } else { return error.UnexpectedEndOfJson; } } }; /// Validate a JSON string. This does not limit number precision so a decoder may not necessarily /// be able to decode the string even if this returns true. pub fn validate(s: []const u8) bool { var p = StreamingParser.init(); for (s) |c| { var token1: ?Token = undefined; var token2: ?Token = undefined; p.feed(c, &token1, &token2) catch { return false; }; } return p.complete; } const Allocator = std.mem.Allocator; const ArenaAllocator = std.heap.ArenaAllocator; const ArrayList = std.ArrayList; const StringArrayHashMap = std.StringArrayHashMap; pub const ValueTree = struct { arena: ArenaAllocator, root: Value, pub fn deinit(self: *ValueTree) void { self.arena.deinit(); } }; pub const ObjectMap = StringArrayHashMap(Value); pub const Array = ArrayList(Value); /// Represents a JSON value /// Currently only supports numbers that fit into i64 or f64. pub const Value = union(enum) { Null, Bool: bool, Integer: i64, Float: f64, NumberString: []const u8, String: []const u8, Array: Array, Object: ObjectMap, pub fn jsonStringify( value: @This(), options: StringifyOptions, out_stream: anytype, ) @TypeOf(out_stream).Error!void { switch (value) { .Null => try stringify(null, options, out_stream), .Bool => |inner| try stringify(inner, options, out_stream), .Integer => |inner| try stringify(inner, options, out_stream), .Float => |inner| try stringify(inner, options, out_stream), .NumberString => |inner| try out_stream.writeAll(inner), .String => |inner| try stringify(inner, options, out_stream), .Array => |inner| try stringify(inner.items, options, out_stream), .Object => |inner| { try out_stream.writeByte('{'); var field_output = false; var child_options = options; if (child_options.whitespace) |*child_whitespace| { child_whitespace.indent_level += 1; } var it = inner.iterator(); while (it.next()) |entry| { if (!field_output) { field_output = true; } else { try out_stream.writeByte(','); } if (child_options.whitespace) |child_whitespace| { try child_whitespace.outputIndent(out_stream); } try stringify(entry.key_ptr.*, options, out_stream); try out_stream.writeByte(':'); if (child_options.whitespace) |child_whitespace| { if (child_whitespace.separator) { try out_stream.writeByte(' '); } } try stringify(entry.value_ptr.*, child_options, out_stream); } if (field_output) { if (options.whitespace) |whitespace| { try whitespace.outputIndent(out_stream); } } try out_stream.writeByte('}'); }, } } pub fn dump(self: Value) void { std.debug.getStderrMutex().lock(); defer std.debug.getStderrMutex().unlock(); const stderr = std.io.getStdErr().writer(); std.json.stringify(self, std.json.StringifyOptions{ .whitespace = null }, stderr) catch return; } }; /// parse tokens from a stream, returning `false` if they do not decode to `value` fn parsesTo(comptime T: type, value: T, tokens: *TokenStream, options: ParseOptions) !bool { // TODO: should be able to write this function to not require an allocator const tmp = try parse(T, tokens, options); defer parseFree(T, tmp, options); return parsedEqual(tmp, value); } /// Returns if a value returned by `parse` is deep-equal to another value fn parsedEqual(a: anytype, b: @TypeOf(a)) bool { switch (@typeInfo(@TypeOf(a))) { .Optional => { if (a == null and b == null) return true; if (a == null or b == null) return false; return parsedEqual(a.?, b.?); }, .Union => |info| { if (info.tag_type) |UnionTag| { const tag_a = std.meta.activeTag(a); const tag_b = std.meta.activeTag(b); if (tag_a != tag_b) return false; inline for (info.fields) |field_info| { if (@field(UnionTag, field_info.name) == tag_a) { return parsedEqual(@field(a, field_info.name), @field(b, field_info.name)); } } return false; } else { unreachable; } }, .Array => { for (a) |e, i| if (!parsedEqual(e, b[i])) return false; return true; }, .Struct => |info| { inline for (info.fields) |field_info| { if (!parsedEqual(@field(a, field_info.name), @field(b, field_info.name))) return false; } return true; }, .Pointer => |ptrInfo| switch (ptrInfo.size) { .One => return parsedEqual(a.*, b.*), .Slice => { if (a.len != b.len) return false; for (a) |e, i| if (!parsedEqual(e, b[i])) return false; return true; }, .Many, .C => unreachable, }, else => return a == b, } unreachable; } pub const ParseOptions = struct { allocator: ?Allocator = null, /// Behaviour when a duplicate field is encountered. duplicate_field_behavior: enum { UseFirst, Error, UseLast, } = .Error, /// If false, finding an unknown field returns an error. ignore_unknown_fields: bool = false, allow_trailing_data: bool = false, }; const SkipValueError = error{UnexpectedJsonDepth} || TokenStream.Error; fn skipValue(tokens: *TokenStream) SkipValueError!void { const original_depth = tokens.stackUsed(); // Return an error if no value is found _ = try tokens.next(); if (tokens.stackUsed() < original_depth) return error.UnexpectedJsonDepth; if (tokens.stackUsed() == original_depth) return; while (try tokens.next()) |_| { if (tokens.stackUsed() == original_depth) return; } } fn ParseInternalError(comptime T: type) type { // `inferred_types` is used to avoid infinite recursion for recursive type definitions. const inferred_types = [_]type{}; return ParseInternalErrorImpl(T, &inferred_types); } fn ParseInternalErrorImpl(comptime T: type, comptime inferred_types: []const type) type { for (inferred_types) |ty| { if (T == ty) return error{}; } switch (@typeInfo(T)) { .Bool => return error{UnexpectedToken}, .Float, .ComptimeFloat => return error{UnexpectedToken} || std.fmt.ParseFloatError, .Int, .ComptimeInt => { return error{ UnexpectedToken, InvalidNumber, Overflow } || std.fmt.ParseIntError || std.fmt.ParseFloatError; }, .Optional => |optionalInfo| { return ParseInternalErrorImpl(optionalInfo.child, inferred_types ++ [_]type{T}); }, .Enum => return error{ UnexpectedToken, InvalidEnumTag } || std.fmt.ParseIntError || std.meta.IntToEnumError || std.meta.IntToEnumError, .Union => |unionInfo| { if (unionInfo.tag_type) |_| { var errors = error{NoUnionMembersMatched}; for (unionInfo.fields) |u_field| { errors = errors || ParseInternalErrorImpl(u_field.field_type, inferred_types ++ [_]type{T}); } return errors; } else { @compileError("Unable to parse into untagged union '" ++ @typeName(T) ++ "'"); } }, .Struct => |structInfo| { var errors = error{ DuplicateJSONField, UnexpectedEndOfJson, UnexpectedToken, UnexpectedValue, UnknownField, MissingField, } || SkipValueError || TokenStream.Error; for (structInfo.fields) |field| { errors = errors || ParseInternalErrorImpl(field.field_type, inferred_types ++ [_]type{T}); } return errors; }, .Array => |arrayInfo| { return error{ UnexpectedEndOfJson, UnexpectedToken } || TokenStream.Error || UnescapeValidStringError || ParseInternalErrorImpl(arrayInfo.child, inferred_types ++ [_]type{T}); }, .Pointer => |ptrInfo| { var errors = error{AllocatorRequired} || std.mem.Allocator.Error; switch (ptrInfo.size) { .One => { return errors || ParseInternalErrorImpl(ptrInfo.child, inferred_types ++ [_]type{T}); }, .Slice => { return errors || error{ UnexpectedEndOfJson, UnexpectedToken } || ParseInternalErrorImpl(ptrInfo.child, inferred_types ++ [_]type{T}) || UnescapeValidStringError || TokenStream.Error; }, else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"), } }, else => return error{}, } unreachable; } fn parseInternal( comptime T: type, token: Token, tokens: *TokenStream, options: ParseOptions, ) ParseInternalError(T)!T { switch (@typeInfo(T)) { .Bool => { return switch (token) { .True => true, .False => false, else => error.UnexpectedToken, }; }, .Float, .ComptimeFloat => { const numberToken = switch (token) { .Number => |n| n, else => return error.UnexpectedToken, }; return try std.fmt.parseFloat(T, numberToken.slice(tokens.slice, tokens.i - 1)); }, .Int, .ComptimeInt => { const numberToken = switch (token) { .Number => |n| n, else => return error.UnexpectedToken, }; if (numberToken.is_integer) return try std.fmt.parseInt(T, numberToken.slice(tokens.slice, tokens.i - 1), 10); const float = try std.fmt.parseFloat(f128, numberToken.slice(tokens.slice, tokens.i - 1)); if (@round(float) != float) return error.InvalidNumber; if (float > std.math.maxInt(T) or float < std.math.minInt(T)) return error.Overflow; return @floatToInt(T, float); }, .Optional => |optionalInfo| { if (token == .Null) { return null; } else { return try parseInternal(optionalInfo.child, token, tokens, options); } }, .Enum => |enumInfo| { switch (token) { .Number => |numberToken| { if (!numberToken.is_integer) return error.UnexpectedToken; const n = try std.fmt.parseInt(enumInfo.tag_type, numberToken.slice(tokens.slice, tokens.i - 1), 10); return try std.meta.intToEnum(T, n); }, .String => |stringToken| { const source_slice = stringToken.slice(tokens.slice, tokens.i - 1); switch (stringToken.escapes) { .None => return std.meta.stringToEnum(T, source_slice) orelse return error.InvalidEnumTag, .Some => { inline for (enumInfo.fields) |field| { if (field.name.len == stringToken.decodedLength() and encodesTo(field.name, source_slice)) { return @field(T, field.name); } } return error.InvalidEnumTag; }, } }, else => return error.UnexpectedToken, } }, .Union => |unionInfo| { if (unionInfo.tag_type) |_| { // try each of the union fields until we find one that matches inline for (unionInfo.fields) |u_field| { // take a copy of tokens so we can withhold mutations until success var tokens_copy = tokens.*; if (parseInternal(u_field.field_type, token, &tokens_copy, options)) |value| { tokens.* = tokens_copy; return @unionInit(T, u_field.name, value); } else |err| { // Bubble up error.OutOfMemory // Parsing some types won't have OutOfMemory in their // error-sets, for the condition to be valid, merge it in. if (@as(@TypeOf(err) || error{OutOfMemory}, err) == error.OutOfMemory) return err; // Bubble up AllocatorRequired, as it indicates missing option if (@as(@TypeOf(err) || error{AllocatorRequired}, err) == error.AllocatorRequired) return err; // otherwise continue through the `inline for` } } return error.NoUnionMembersMatched; } else { @compileError("Unable to parse into untagged union '" ++ @typeName(T) ++ "'"); } }, .Struct => |structInfo| { switch (token) { .ObjectBegin => {}, else => return error.UnexpectedToken, } var r: T = undefined; var fields_seen = [_]bool{false} ** structInfo.fields.len; errdefer { inline for (structInfo.fields) |field, i| { if (fields_seen[i] and !field.is_comptime) { parseFree(field.field_type, @field(r, field.name), options); } } } while (true) { switch ((try tokens.next()) orelse return error.UnexpectedEndOfJson) { .ObjectEnd => break, .String => |stringToken| { const key_source_slice = stringToken.slice(tokens.slice, tokens.i - 1); var child_options = options; child_options.allow_trailing_data = true; var found = false; inline for (structInfo.fields) |field, i| { // TODO: using switches here segfault the compiler (#2727?) if ((stringToken.escapes == .None and mem.eql(u8, field.name, key_source_slice)) or (stringToken.escapes == .Some and (field.name.len == stringToken.decodedLength() and encodesTo(field.name, key_source_slice)))) { // if (switch (stringToken.escapes) { // .None => mem.eql(u8, field.name, key_source_slice), // .Some => (field.name.len == stringToken.decodedLength() and encodesTo(field.name, key_source_slice)), // }) { if (fields_seen[i]) { // switch (options.duplicate_field_behavior) { // .UseFirst => {}, // .Error => {}, // .UseLast => {}, // } if (options.duplicate_field_behavior == .UseFirst) { // unconditonally ignore value. for comptime fields, this skips check against default_value parseFree(field.field_type, try parse(field.field_type, tokens, child_options), child_options); found = true; break; } else if (options.duplicate_field_behavior == .Error) { return error.DuplicateJSONField; } else if (options.duplicate_field_behavior == .UseLast) { if (!field.is_comptime) { parseFree(field.field_type, @field(r, field.name), child_options); } fields_seen[i] = false; } } if (field.is_comptime) { if (!try parsesTo(field.field_type, @ptrCast(*const field.field_type, field.default_value.?).*, tokens, child_options)) { return error.UnexpectedValue; } } else { @field(r, field.name) = try parse(field.field_type, tokens, child_options); } fields_seen[i] = true; found = true; break; } } if (!found) { if (options.ignore_unknown_fields) { try skipValue(tokens); continue; } else { return error.UnknownField; } } }, else => return error.UnexpectedToken, } } inline for (structInfo.fields) |field, i| { if (!fields_seen[i]) { if (field.default_value) |default_ptr| { if (!field.is_comptime) { const default = @ptrCast(*const field.field_type, default_ptr).*; @field(r, field.name) = default; } } else { return error.MissingField; } } } return r; }, .Array => |arrayInfo| { switch (token) { .ArrayBegin => { var r: T = undefined; var i: usize = 0; var child_options = options; child_options.allow_trailing_data = true; errdefer { // Without the r.len check `r[i]` is not allowed if (r.len > 0) while (true) : (i -= 1) { parseFree(arrayInfo.child, r[i], options); if (i == 0) break; }; } while (i < r.len) : (i += 1) { r[i] = try parse(arrayInfo.child, tokens, child_options); } const tok = (try tokens.next()) orelse return error.UnexpectedEndOfJson; switch (tok) { .ArrayEnd => {}, else => return error.UnexpectedToken, } return r; }, .String => |stringToken| { if (arrayInfo.child != u8) return error.UnexpectedToken; var r: T = undefined; const source_slice = stringToken.slice(tokens.slice, tokens.i - 1); switch (stringToken.escapes) { .None => mem.copy(u8, &r, source_slice), .Some => try unescapeValidString(&r, source_slice), } return r; }, else => return error.UnexpectedToken, } }, .Pointer => |ptrInfo| { const allocator = options.allocator orelse return error.AllocatorRequired; switch (ptrInfo.size) { .One => { const r: T = try allocator.create(ptrInfo.child); errdefer allocator.destroy(r); r.* = try parseInternal(ptrInfo.child, token, tokens, options); return r; }, .Slice => { switch (token) { .ArrayBegin => { var arraylist = std.ArrayList(ptrInfo.child).init(allocator); errdefer { while (arraylist.popOrNull()) |v| { parseFree(ptrInfo.child, v, options); } arraylist.deinit(); } while (true) { const tok = (try tokens.next()) orelse return error.UnexpectedEndOfJson; switch (tok) { .ArrayEnd => break, else => {}, } try arraylist.ensureUnusedCapacity(1); const v = try parseInternal(ptrInfo.child, tok, tokens, options); arraylist.appendAssumeCapacity(v); } if (ptrInfo.sentinel) |some| { const sentinel_value = @ptrCast(*const ptrInfo.child, some).*; try arraylist.append(sentinel_value); const output = arraylist.toOwnedSlice(); return output[0 .. output.len - 1 :sentinel_value]; } return arraylist.toOwnedSlice(); }, .String => |stringToken| { if (ptrInfo.child != u8) return error.UnexpectedToken; const source_slice = stringToken.slice(tokens.slice, tokens.i - 1); const len = stringToken.decodedLength(); const output = try allocator.alloc(u8, len + @boolToInt(ptrInfo.sentinel != null)); errdefer allocator.free(output); switch (stringToken.escapes) { .None => mem.copy(u8, output, source_slice), .Some => try unescapeValidString(output, source_slice), } if (ptrInfo.sentinel) |some| { const char = @ptrCast(*const u8, some).*; output[len] = char; return output[0..len :char]; } return output; }, else => return error.UnexpectedToken, } }, else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"), } }, else => @compileError("Unable to parse into type '" ++ @typeName(T) ++ "'"), } unreachable; } pub fn ParseError(comptime T: type) type { return ParseInternalError(T) || error{UnexpectedEndOfJson} || TokenStream.Error; } pub fn parse(comptime T: type, tokens: *TokenStream, options: ParseOptions) ParseError(T)!T { const token = (try tokens.next()) orelse return error.UnexpectedEndOfJson; const r = try parseInternal(T, token, tokens, options); errdefer parseFree(T, r, options); if (!options.allow_trailing_data) { if ((try tokens.next()) != null) unreachable; assert(tokens.i >= tokens.slice.len); } return r; } /// Releases resources created by `parse`. /// Should be called with the same type and `ParseOptions` that were passed to `parse` pub fn parseFree(comptime T: type, value: T, options: ParseOptions) void { switch (@typeInfo(T)) { .Bool, .Float, .ComptimeFloat, .Int, .ComptimeInt, .Enum => {}, .Optional => { if (value) |v| { return parseFree(@TypeOf(v), v, options); } }, .Union => |unionInfo| { if (unionInfo.tag_type) |UnionTagType| { inline for (unionInfo.fields) |u_field| { if (value == @field(UnionTagType, u_field.name)) { parseFree(u_field.field_type, @field(value, u_field.name), options); break; } } } else { unreachable; } }, .Struct => |structInfo| { inline for (structInfo.fields) |field| { if (!field.is_comptime) { parseFree(field.field_type, @field(value, field.name), options); } } }, .Array => |arrayInfo| { for (value) |v| { parseFree(arrayInfo.child, v, options); } }, .Pointer => |ptrInfo| { const allocator = options.allocator orelse unreachable; switch (ptrInfo.size) { .One => { parseFree(ptrInfo.child, value.*, options); allocator.destroy(value); }, .Slice => { for (value) |v| { parseFree(ptrInfo.child, v, options); } allocator.free(value); }, else => unreachable, } }, else => unreachable, } } /// A non-stream JSON parser which constructs a tree of Value's. pub const Parser = struct { allocator: Allocator, state: State, copy_strings: bool, // Stores parent nodes and un-combined Values. stack: Array, const State = enum { ObjectKey, ObjectValue, ArrayValue, Simple, }; pub fn init(allocator: Allocator, copy_strings: bool) Parser { return Parser{ .allocator = allocator, .state = .Simple, .copy_strings = copy_strings, .stack = Array.init(allocator), }; } pub fn deinit(p: *Parser) void { p.stack.deinit(); } pub fn reset(p: *Parser) void { p.state = .Simple; p.stack.shrinkRetainingCapacity(0); } pub fn parse(p: *Parser, input: []const u8) !ValueTree { var s = TokenStream.init(input); var arena = ArenaAllocator.init(p.allocator); errdefer arena.deinit(); const allocator = arena.allocator(); while (try s.next()) |token| { try p.transition(allocator, input, s.i - 1, token); } debug.assert(p.stack.items.len == 1); return ValueTree{ .arena = arena, .root = p.stack.items[0], }; } // Even though p.allocator exists, we take an explicit allocator so that allocation state // can be cleaned up on error correctly during a `parse` on call. fn transition(p: *Parser, allocator: Allocator, input: []const u8, i: usize, token: Token) !void { switch (p.state) { .ObjectKey => switch (token) { .ObjectEnd => { if (p.stack.items.len == 1) { return; } var value = p.stack.pop(); try p.pushToParent(&value); }, .String => |s| { try p.stack.append(try p.parseString(allocator, s, input, i)); p.state = .ObjectValue; }, else => { // The streaming parser would return an error eventually. // To prevent invalid state we return an error now. // TODO make the streaming parser return an error as soon as it encounters an invalid object key return error.InvalidLiteral; }, }, .ObjectValue => { var object = &p.stack.items[p.stack.items.len - 2].Object; var key = p.stack.items[p.stack.items.len - 1].String; switch (token) { .ObjectBegin => { try p.stack.append(Value{ .Object = ObjectMap.init(allocator) }); p.state = .ObjectKey; }, .ArrayBegin => { try p.stack.append(Value{ .Array = Array.init(allocator) }); p.state = .ArrayValue; }, .String => |s| { try object.put(key, try p.parseString(allocator, s, input, i)); _ = p.stack.pop(); p.state = .ObjectKey; }, .Number => |n| { try object.put(key, try p.parseNumber(n, input, i)); _ = p.stack.pop(); p.state = .ObjectKey; }, .True => { try object.put(key, Value{ .Bool = true }); _ = p.stack.pop(); p.state = .ObjectKey; }, .False => { try object.put(key, Value{ .Bool = false }); _ = p.stack.pop(); p.state = .ObjectKey; }, .Null => { try object.put(key, Value.Null); _ = p.stack.pop(); p.state = .ObjectKey; }, .ObjectEnd, .ArrayEnd => { unreachable; }, } }, .ArrayValue => { var array = &p.stack.items[p.stack.items.len - 1].Array; switch (token) { .ArrayEnd => { if (p.stack.items.len == 1) { return; } var value = p.stack.pop(); try p.pushToParent(&value); }, .ObjectBegin => { try p.stack.append(Value{ .Object = ObjectMap.init(allocator) }); p.state = .ObjectKey; }, .ArrayBegin => { try p.stack.append(Value{ .Array = Array.init(allocator) }); p.state = .ArrayValue; }, .String => |s| { try array.append(try p.parseString(allocator, s, input, i)); }, .Number => |n| { try array.append(try p.parseNumber(n, input, i)); }, .True => { try array.append(Value{ .Bool = true }); }, .False => { try array.append(Value{ .Bool = false }); }, .Null => { try array.append(Value.Null); }, .ObjectEnd => { unreachable; }, } }, .Simple => switch (token) { .ObjectBegin => { try p.stack.append(Value{ .Object = ObjectMap.init(allocator) }); p.state = .ObjectKey; }, .ArrayBegin => { try p.stack.append(Value{ .Array = Array.init(allocator) }); p.state = .ArrayValue; }, .String => |s| { try p.stack.append(try p.parseString(allocator, s, input, i)); }, .Number => |n| { try p.stack.append(try p.parseNumber(n, input, i)); }, .True => { try p.stack.append(Value{ .Bool = true }); }, .False => { try p.stack.append(Value{ .Bool = false }); }, .Null => { try p.stack.append(Value.Null); }, .ObjectEnd, .ArrayEnd => { unreachable; }, }, } } fn pushToParent(p: *Parser, value: *const Value) !void { switch (p.stack.items[p.stack.items.len - 1]) { // Object Parent -> [ ..., object, , value ] Value.String => |key| { _ = p.stack.pop(); var object = &p.stack.items[p.stack.items.len - 1].Object; try object.put(key, value.*); p.state = .ObjectKey; }, // Array Parent -> [ ..., , value ] Value.Array => |*array| { try array.append(value.*); p.state = .ArrayValue; }, else => { unreachable; }, } } fn parseString(p: *Parser, allocator: Allocator, s: std.meta.TagPayload(Token, Token.String), input: []const u8, i: usize) !Value { const slice = s.slice(input, i); switch (s.escapes) { .None => return Value{ .String = if (p.copy_strings) try allocator.dupe(u8, slice) else slice }, .Some => { const output = try allocator.alloc(u8, s.decodedLength()); errdefer allocator.free(output); try unescapeValidString(output, slice); return Value{ .String = output }; }, } } fn parseNumber(p: *Parser, n: std.meta.TagPayload(Token, Token.Number), input: []const u8, i: usize) !Value { _ = p; return if (n.is_integer) Value{ .Integer = std.fmt.parseInt(i64, n.slice(input, i), 10) catch |e| switch (e) { error.Overflow => return Value{ .NumberString = n.slice(input, i) }, error.InvalidCharacter => |err| return err, }, } else Value{ .Float = try std.fmt.parseFloat(f64, n.slice(input, i)) }; } }; pub const UnescapeValidStringError = error{InvalidUnicodeHexSymbol}; /// Unescape a JSON string /// Only to be used on strings already validated by the parser /// (note the unreachable statements and lack of bounds checking) pub fn unescapeValidString(output: []u8, input: []const u8) UnescapeValidStringError!void { var inIndex: usize = 0; var outIndex: usize = 0; while (inIndex < input.len) { if (input[inIndex] != '\\') { // not an escape sequence output[outIndex] = input[inIndex]; inIndex += 1; outIndex += 1; } else if (input[inIndex + 1] != 'u') { // a simple escape sequence output[outIndex] = @as(u8, switch (input[inIndex + 1]) { '\\' => '\\', '/' => '/', 'n' => '\n', 'r' => '\r', 't' => '\t', 'f' => 12, 'b' => 8, '"' => '"', else => unreachable, }); inIndex += 2; outIndex += 1; } else { // a unicode escape sequence const firstCodeUnit = std.fmt.parseInt(u16, input[inIndex + 2 .. inIndex + 6], 16) catch unreachable; // guess optimistically that it's not a surrogate pair if (std.unicode.utf8Encode(firstCodeUnit, output[outIndex..])) |byteCount| { outIndex += byteCount; inIndex += 6; } else |err| { // it might be a surrogate pair if (err != error.Utf8CannotEncodeSurrogateHalf) { return error.InvalidUnicodeHexSymbol; } // check if a second code unit is present if (inIndex + 7 >= input.len or input[inIndex + 6] != '\\' or input[inIndex + 7] != 'u') { return error.InvalidUnicodeHexSymbol; } const secondCodeUnit = std.fmt.parseInt(u16, input[inIndex + 8 .. inIndex + 12], 16) catch unreachable; const utf16le_seq = [2]u16{ mem.nativeToLittle(u16, firstCodeUnit), mem.nativeToLittle(u16, secondCodeUnit), }; if (std.unicode.utf16leToUtf8(output[outIndex..], &utf16le_seq)) |byteCount| { outIndex += byteCount; inIndex += 12; } else |_| { return error.InvalidUnicodeHexSymbol; } } } } assert(outIndex == output.len); } pub const StringifyOptions = struct { pub const Whitespace = struct { /// How many indentation levels deep are we? indent_level: usize = 0, /// What character(s) should be used for indentation? indent: union(enum) { Space: u8, Tab: void, None: void, } = .{ .Space = 4 }, /// After a colon, should whitespace be inserted? separator: bool = true, pub fn outputIndent( whitespace: @This(), out_stream: anytype, ) @TypeOf(out_stream).Error!void { var char: u8 = undefined; var n_chars: usize = undefined; switch (whitespace.indent) { .Space => |n_spaces| { char = ' '; n_chars = n_spaces; }, .Tab => { char = '\t'; n_chars = 1; }, .None => return, } try out_stream.writeByte('\n'); n_chars *= whitespace.indent_level; try out_stream.writeByteNTimes(char, n_chars); } }; /// Controls the whitespace emitted whitespace: ?Whitespace = null, /// Should optional fields with null value be written? emit_null_optional_fields: bool = true, string: StringOptions = StringOptions{ .String = .{} }, /// Should []u8 be serialised as a string? or an array? pub const StringOptions = union(enum) { Array, String: StringOutputOptions, /// String output options const StringOutputOptions = struct { /// Should '/' be escaped in strings? escape_solidus: bool = false, /// Should unicode characters be escaped in strings? escape_unicode: bool = false, }; }; }; fn outputUnicodeEscape( codepoint: u21, out_stream: anytype, ) !void { if (codepoint <= 0xFFFF) { // If the character is in the Basic Multilingual Plane (U+0000 through U+FFFF), // then it may be represented as a six-character sequence: a reverse solidus, followed // by the lowercase letter u, followed by four hexadecimal digits that encode the character's code point. try out_stream.writeAll("\\u"); try std.fmt.formatIntValue(codepoint, "x", std.fmt.FormatOptions{ .width = 4, .fill = '0' }, out_stream); } else { assert(codepoint <= 0x10FFFF); // To escape an extended character that is not in the Basic Multilingual Plane, // the character is represented as a 12-character sequence, encoding the UTF-16 surrogate pair. const high = @intCast(u16, (codepoint - 0x10000) >> 10) + 0xD800; const low = @intCast(u16, codepoint & 0x3FF) + 0xDC00; try out_stream.writeAll("\\u"); try std.fmt.formatIntValue(high, "x", std.fmt.FormatOptions{ .width = 4, .fill = '0' }, out_stream); try out_stream.writeAll("\\u"); try std.fmt.formatIntValue(low, "x", std.fmt.FormatOptions{ .width = 4, .fill = '0' }, out_stream); } } fn outputJsonString(value: []const u8, options: StringifyOptions, out_stream: anytype) !void { try out_stream.writeByte('\"'); var i: usize = 0; while (i < value.len) : (i += 1) { switch (value[i]) { // normal ascii character 0x20...0x21, 0x23...0x2E, 0x30...0x5B, 0x5D...0x7F => |c| try out_stream.writeByte(c), // only 2 characters that *must* be escaped '\\' => try out_stream.writeAll("\\\\"), '\"' => try out_stream.writeAll("\\\""), // solidus is optional to escape '/' => { if (options.string.String.escape_solidus) { try out_stream.writeAll("\\/"); } else { try out_stream.writeByte('/'); } }, // control characters with short escapes // TODO: option to switch between unicode and 'short' forms? 0x8 => try out_stream.writeAll("\\b"), 0xC => try out_stream.writeAll("\\f"), '\n' => try out_stream.writeAll("\\n"), '\r' => try out_stream.writeAll("\\r"), '\t' => try out_stream.writeAll("\\t"), else => { const ulen = std.unicode.utf8ByteSequenceLength(value[i]) catch unreachable; // control characters (only things left with 1 byte length) should always be printed as unicode escapes if (ulen == 1 or options.string.String.escape_unicode) { const codepoint = std.unicode.utf8Decode(value[i .. i + ulen]) catch unreachable; try outputUnicodeEscape(codepoint, out_stream); } else { try out_stream.writeAll(value[i .. i + ulen]); } i += ulen - 1; }, } } try out_stream.writeByte('\"'); } pub fn stringify( value: anytype, options: StringifyOptions, out_stream: anytype, ) @TypeOf(out_stream).Error!void { const T = @TypeOf(value); switch (@typeInfo(T)) { .Float, .ComptimeFloat => { return std.fmt.formatFloatScientific(value, std.fmt.FormatOptions{}, out_stream); }, .Int, .ComptimeInt => { return std.fmt.formatIntValue(value, "", std.fmt.FormatOptions{}, out_stream); }, .Bool => { return out_stream.writeAll(if (value) "true" else "false"); }, .Null => { return out_stream.writeAll("null"); }, .Optional => { if (value) |payload| { return try stringify(payload, options, out_stream); } else { return try stringify(null, options, out_stream); } }, .Enum => { if (comptime std.meta.trait.hasFn("jsonStringify")(T)) { return value.jsonStringify(options, out_stream); } @compileError("Unable to stringify enum '" ++ @typeName(T) ++ "'"); }, .Union => { if (comptime std.meta.trait.hasFn("jsonStringify")(T)) { return value.jsonStringify(options, out_stream); } const info = @typeInfo(T).Union; if (info.tag_type) |UnionTagType| { inline for (info.fields) |u_field| { if (value == @field(UnionTagType, u_field.name)) { return try stringify(@field(value, u_field.name), options, out_stream); } } } else { @compileError("Unable to stringify untagged union '" ++ @typeName(T) ++ "'"); } }, .Struct => |S| { if (comptime std.meta.trait.hasFn("jsonStringify")(T)) { return value.jsonStringify(options, out_stream); } try out_stream.writeByte('{'); var field_output = false; var child_options = options; if (child_options.whitespace) |*child_whitespace| { child_whitespace.indent_level += 1; } inline for (S.fields) |Field| { // don't include void fields if (Field.field_type == void) continue; var emit_field = true; // don't include optional fields that are null when emit_null_optional_fields is set to false if (@typeInfo(Field.field_type) == .Optional) { if (options.emit_null_optional_fields == false) { if (@field(value, Field.name) == null) { emit_field = false; } } } if (emit_field) { if (!field_output) { field_output = true; } else { try out_stream.writeByte(','); } if (child_options.whitespace) |child_whitespace| { try child_whitespace.outputIndent(out_stream); } try outputJsonString(Field.name, options, out_stream); try out_stream.writeByte(':'); if (child_options.whitespace) |child_whitespace| { if (child_whitespace.separator) { try out_stream.writeByte(' '); } } try stringify(@field(value, Field.name), child_options, out_stream); } } if (field_output) { if (options.whitespace) |whitespace| { try whitespace.outputIndent(out_stream); } } try out_stream.writeByte('}'); return; }, .ErrorSet => return stringify(@as([]const u8, @errorName(value)), options, out_stream), .Pointer => |ptr_info| switch (ptr_info.size) { .One => switch (@typeInfo(ptr_info.child)) { .Array => { const Slice = []const std.meta.Elem(ptr_info.child); return stringify(@as(Slice, value), options, out_stream); }, else => { // TODO: avoid loops? return stringify(value.*, options, out_stream); }, }, // TODO: .Many when there is a sentinel (waiting for https://github.com/ziglang/zig/pull/3972) .Slice => { if (ptr_info.child == u8 and options.string == .String and std.unicode.utf8ValidateSlice(value)) { try outputJsonString(value, options, out_stream); return; } try out_stream.writeByte('['); var child_options = options; if (child_options.whitespace) |*whitespace| { whitespace.indent_level += 1; } for (value) |x, i| { if (i != 0) { try out_stream.writeByte(','); } if (child_options.whitespace) |child_whitespace| { try child_whitespace.outputIndent(out_stream); } try stringify(x, child_options, out_stream); } if (value.len != 0) { if (options.whitespace) |whitespace| { try whitespace.outputIndent(out_stream); } } try out_stream.writeByte(']'); return; }, else => @compileError("Unable to stringify type '" ++ @typeName(T) ++ "'"), }, .Array => return stringify(&value, options, out_stream), .Vector => |info| { const array: [info.len]info.child = value; return stringify(&array, options, out_stream); }, else => @compileError("Unable to stringify type '" ++ @typeName(T) ++ "'"), } unreachable; } // Same as `stringify` but accepts an Allocator and stores result in dynamically allocated memory instead of using a Writer. // Caller owns returned memory. pub fn stringifyAlloc(allocator: std.mem.Allocator, value: anytype, options: StringifyOptions) ![]const u8 { var list = std.ArrayList(u8).init(allocator); errdefer list.deinit(); try stringify(value, options, list.writer()); return list.toOwnedSlice(); } test { if (builtin.zig_backend != .stage1) { // https://github.com/ziglang/zig/issues/8442 _ = @import("json/test.zig"); } _ = @import("json/write_stream.zig"); } test "stringify null optional fields" { const MyStruct = struct { optional: ?[]const u8 = null, required: []const u8 = "something", another_optional: ?[]const u8 = null, another_required: []const u8 = "something else", }; try teststringify( \\{"optional":null,"required":"something","another_optional":null,"another_required":"something else"} , MyStruct{}, StringifyOptions{}, ); try teststringify( \\{"required":"something","another_required":"something else"} , MyStruct{}, StringifyOptions{ .emit_null_optional_fields = false }, ); var ts = TokenStream.init( \\{"required":"something","another_required":"something else"} ); try std.testing.expect(try parsesTo(MyStruct, MyStruct{}, &ts, .{ .allocator = std.testing.allocator, })); } test "skipValue" { var ts = TokenStream.init("false"); try skipValue(&ts); ts = TokenStream.init("true"); try skipValue(&ts); ts = TokenStream.init("null"); try skipValue(&ts); ts = TokenStream.init("42"); try skipValue(&ts); ts = TokenStream.init("42.0"); try skipValue(&ts); ts = TokenStream.init("\"foo\""); try skipValue(&ts); ts = TokenStream.init("[101, 111, 121]"); try skipValue(&ts); ts = TokenStream.init("{}"); try skipValue(&ts); ts = TokenStream.init("{\"foo\": \"bar\"}"); try skipValue(&ts); { // An absurd number of nestings const nestings = StreamingParser.default_max_nestings + 1; ts = TokenStream.init("[" ** nestings ++ "]" ** nestings); try testing.expectError(error.TooManyNestedItems, skipValue(&ts)); } { // Would a number token cause problems in a deeply-nested array? const nestings = StreamingParser.default_max_nestings; const deeply_nested_array = "[" ** nestings ++ "0.118, 999, 881.99, 911.9, 725, 3" ++ "]" ** nestings; ts = TokenStream.init(deeply_nested_array); try skipValue(&ts); ts = TokenStream.init("[" ++ deeply_nested_array ++ "]"); try testing.expectError(error.TooManyNestedItems, skipValue(&ts)); } // Mismatched brace/square bracket ts = TokenStream.init("[102, 111, 111}"); try testing.expectError(error.UnexpectedClosingBrace, skipValue(&ts)); { // should fail if no value found (e.g. immediate close of object) var empty_object = TokenStream.init("{}"); assert(.ObjectBegin == (try empty_object.next()).?); try testing.expectError(error.UnexpectedJsonDepth, skipValue(&empty_object)); var empty_array = TokenStream.init("[]"); assert(.ArrayBegin == (try empty_array.next()).?); try testing.expectError(error.UnexpectedJsonDepth, skipValue(&empty_array)); } } test "stringify basic types" { try teststringify("false", false, StringifyOptions{}); try teststringify("true", true, StringifyOptions{}); try teststringify("null", @as(?u8, null), StringifyOptions{}); try teststringify("null", @as(?*u32, null), StringifyOptions{}); try teststringify("42", 42, StringifyOptions{}); try teststringify("4.2e+01", 42.0, StringifyOptions{}); try teststringify("42", @as(u8, 42), StringifyOptions{}); try teststringify("42", @as(u128, 42), StringifyOptions{}); try teststringify("4.2e+01", @as(f32, 42), StringifyOptions{}); try teststringify("4.2e+01", @as(f64, 42), StringifyOptions{}); try teststringify("\"ItBroke\"", @as(anyerror, error.ItBroke), StringifyOptions{}); } test "stringify string" { try teststringify("\"hello\"", "hello", StringifyOptions{}); try teststringify("\"with\\nescapes\\r\"", "with\nescapes\r", StringifyOptions{}); try teststringify("\"with\\nescapes\\r\"", "with\nescapes\r", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\\u0001\"", "with unicode\u{1}", StringifyOptions{}); try teststringify("\"with unicode\\u0001\"", "with unicode\u{1}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{80}\"", "with unicode\u{80}", StringifyOptions{}); try teststringify("\"with unicode\\u0080\"", "with unicode\u{80}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{FF}\"", "with unicode\u{FF}", StringifyOptions{}); try teststringify("\"with unicode\\u00ff\"", "with unicode\u{FF}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{100}\"", "with unicode\u{100}", StringifyOptions{}); try teststringify("\"with unicode\\u0100\"", "with unicode\u{100}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{800}\"", "with unicode\u{800}", StringifyOptions{}); try teststringify("\"with unicode\\u0800\"", "with unicode\u{800}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{8000}\"", "with unicode\u{8000}", StringifyOptions{}); try teststringify("\"with unicode\\u8000\"", "with unicode\u{8000}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{D799}\"", "with unicode\u{D799}", StringifyOptions{}); try teststringify("\"with unicode\\ud799\"", "with unicode\u{D799}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{10000}\"", "with unicode\u{10000}", StringifyOptions{}); try teststringify("\"with unicode\\ud800\\udc00\"", "with unicode\u{10000}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"with unicode\u{10FFFF}\"", "with unicode\u{10FFFF}", StringifyOptions{}); try teststringify("\"with unicode\\udbff\\udfff\"", "with unicode\u{10FFFF}", StringifyOptions{ .string = .{ .String = .{ .escape_unicode = true } } }); try teststringify("\"/\"", "/", StringifyOptions{}); try teststringify("\"\\/\"", "/", StringifyOptions{ .string = .{ .String = .{ .escape_solidus = true } } }); } test "stringify tagged unions" { try teststringify("42", union(enum) { Foo: u32, Bar: bool, }{ .Foo = 42 }, StringifyOptions{}); } test "stringify struct" { try teststringify("{\"foo\":42}", struct { foo: u32, }{ .foo = 42 }, StringifyOptions{}); } test "stringify struct with string as array" { try teststringify("{\"foo\":\"bar\"}", .{ .foo = "bar" }, StringifyOptions{}); try teststringify("{\"foo\":[98,97,114]}", .{ .foo = "bar" }, StringifyOptions{ .string = .Array }); } test "stringify struct with indentation" { try teststringify( \\{ \\ "foo": 42, \\ "bar": [ \\ 1, \\ 2, \\ 3 \\ ] \\} , struct { foo: u32, bar: [3]u32, }{ .foo = 42, .bar = .{ 1, 2, 3 }, }, StringifyOptions{ .whitespace = .{}, }, ); try teststringify( "{\n\t\"foo\":42,\n\t\"bar\":[\n\t\t1,\n\t\t2,\n\t\t3\n\t]\n}", struct { foo: u32, bar: [3]u32, }{ .foo = 42, .bar = .{ 1, 2, 3 }, }, StringifyOptions{ .whitespace = .{ .indent = .Tab, .separator = false, }, }, ); try teststringify( \\{"foo":42,"bar":[1,2,3]} , struct { foo: u32, bar: [3]u32, }{ .foo = 42, .bar = .{ 1, 2, 3 }, }, StringifyOptions{ .whitespace = .{ .indent = .None, .separator = false, }, }, ); } test "stringify struct with void field" { try teststringify("{\"foo\":42}", struct { foo: u32, bar: void = {}, }{ .foo = 42 }, StringifyOptions{}); } test "stringify array of structs" { const MyStruct = struct { foo: u32, }; try teststringify("[{\"foo\":42},{\"foo\":100},{\"foo\":1000}]", [_]MyStruct{ MyStruct{ .foo = 42 }, MyStruct{ .foo = 100 }, MyStruct{ .foo = 1000 }, }, StringifyOptions{}); } test "stringify struct with custom stringifier" { try teststringify("[\"something special\",42]", struct { foo: u32, const Self = @This(); pub fn jsonStringify( value: Self, options: StringifyOptions, out_stream: anytype, ) !void { _ = value; try out_stream.writeAll("[\"something special\","); try stringify(42, options, out_stream); try out_stream.writeByte(']'); } }{ .foo = 42 }, StringifyOptions{}); } test "stringify vector" { try teststringify("[1,1]", @splat(2, @as(u32, 1)), StringifyOptions{}); } fn teststringify(expected: []const u8, value: anytype, options: StringifyOptions) !void { const ValidationWriter = struct { const Self = @This(); pub const Writer = std.io.Writer(*Self, Error, write); pub const Error = error{ TooMuchData, DifferentData, }; expected_remaining: []const u8, fn init(exp: []const u8) Self { return .{ .expected_remaining = exp }; } pub fn writer(self: *Self) Writer { return .{ .context = self }; } fn write(self: *Self, bytes: []const u8) Error!usize { if (self.expected_remaining.len < bytes.len) { std.debug.print( \\====== expected this output: ========= \\{s} \\======== instead found this: ========= \\{s} \\====================================== , .{ self.expected_remaining, bytes, }); return error.TooMuchData; } if (!mem.eql(u8, self.expected_remaining[0..bytes.len], bytes)) { std.debug.print( \\====== expected this output: ========= \\{s} \\======== instead found this: ========= \\{s} \\====================================== , .{ self.expected_remaining[0..bytes.len], bytes, }); return error.DifferentData; } self.expected_remaining = self.expected_remaining[bytes.len..]; return bytes.len; } }; var vos = ValidationWriter.init(expected); try stringify(value, options, vos.writer()); if (vos.expected_remaining.len > 0) return error.NotEnoughData; } test "encodesTo" { // same try testing.expectEqual(true, encodesTo("false", "false")); // totally different try testing.expectEqual(false, encodesTo("false", "true")); // different lengths try testing.expectEqual(false, encodesTo("false", "other")); // with escape try testing.expectEqual(true, encodesTo("\\", "\\\\")); try testing.expectEqual(true, encodesTo("with\nescape", "with\\nescape")); // with unicode try testing.expectEqual(true, encodesTo("ą", "\\u0105")); try testing.expectEqual(true, encodesTo("😂", "\\ud83d\\ude02")); try testing.expectEqual(true, encodesTo("withąunicode😂", "with\\u0105unicode\\ud83d\\ude02")); }