const std = @import("std"); const Allocator = std.mem.Allocator; const Target = std.Target; const log = std.log.scoped(.codegen); const assert = std.debug.assert; const Module = @import("../Module.zig"); const Decl = Module.Decl; const Type = @import("../type.zig").Type; const Value = @import("../value.zig").Value; const LazySrcLoc = Module.LazySrcLoc; const Air = @import("../Air.zig"); const Zir = @import("../Zir.zig"); const Liveness = @import("../Liveness.zig"); const spec = @import("spirv/spec.zig"); const Opcode = spec.Opcode; const Word = spec.Word; const IdRef = spec.IdRef; const IdResult = spec.IdResult; const IdResultType = spec.IdResultType; const StorageClass = spec.StorageClass; const SpvModule = @import("spirv/Module.zig"); const SpvSection = @import("spirv/Section.zig"); const SpvType = @import("spirv/type.zig").Type; const SpvAssembler = @import("spirv/Assembler.zig"); const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef); const IncomingBlock = struct { src_label_id: IdRef, break_value_id: IdRef, }; const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, struct { label_id: IdRef, incoming_blocks: *std.ArrayListUnmanaged(IncomingBlock), }); /// Maps Zig decl indices to linking SPIR-V linking information. pub const DeclLinkMap = std.AutoHashMap(Module.Decl.Index, SpvModule.Decl.Index); /// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that. pub const DeclGen = struct { /// A general-purpose allocator that can be used for any allocations for this DeclGen. gpa: Allocator, /// The Zig module that we are generating decls for. module: *Module, /// The SPIR-V module that instructions should be emitted into. spv: *SpvModule, /// The decl we are currently generating code for. decl_index: Decl.Index, /// The intermediate code of the declaration we are currently generating. Note: If /// the declaration is not a function, this value will be undefined! air: Air, /// The liveness analysis of the intermediate code for the declaration we are currently generating. /// Note: If the declaration is not a function, this value will be undefined! liveness: Liveness, /// Maps Zig Decl indices to SPIR-V globals. decl_link: *DeclLinkMap, /// An array of function argument result-ids. Each index corresponds with the /// function argument of the same index. args: std.ArrayListUnmanaged(IdRef) = .{}, /// A counter to keep track of how many `arg` instructions we've seen yet. next_arg_index: u32, /// A map keeping track of which instruction generated which result-id. inst_results: InstMap = .{}, /// We need to keep track of result ids for block labels, as well as the 'incoming' /// blocks for a block. blocks: BlockMap = .{}, /// The label of the SPIR-V block we are currently generating. current_block_label_id: IdRef, /// The code (prologue and body) for the function we are currently generating code for. func: SpvModule.Fn = .{}, /// If `gen` returned `Error.CodegenFail`, this contains an explanatory message. /// Memory is owned by `module.gpa`. error_msg: ?*Module.ErrorMsg, /// Possible errors the `genDecl` function may return. const Error = error{ CodegenFail, OutOfMemory }; /// This structure is used to return information about a type typically used for /// arithmetic operations. These types may either be integers, floats, or a vector /// of these. Most scalar operations also work on vectors, so we can easily represent /// those as arithmetic types. If the type is a scalar, 'inner type' refers to the /// scalar type. Otherwise, if its a vector, it refers to the vector's element type. const ArithmeticTypeInfo = struct { /// A classification of the inner type. const Class = enum { /// A boolean. bool, /// A regular, **native**, integer. /// This is only returned when the backend supports this int as a native type (when /// the relevant capability is enabled). integer, /// A regular float. These are all required to be natively supported. Floating points /// for which the relevant capability is not enabled are not emulated. float, /// An integer of a 'strange' size (which' bit size is not the same as its backing /// type. **Note**: this may **also** include power-of-2 integers for which the /// relevant capability is not enabled), but still within the limits of the largest /// natively supported integer type. strange_integer, /// An integer with more bits than the largest natively supported integer type. composite_integer, }; /// The number of bits in the inner type. /// This is the actual number of bits of the type, not the size of the backing integer. bits: u16, /// Whether the type is a vector. is_vector: bool, /// Whether the inner type is signed. Only relevant for integers. signedness: std.builtin.Signedness, /// A classification of the inner type. These scenarios /// will all have to be handled slightly different. class: Class, }; /// Data can be lowered into in two basic representations: indirect, which is when /// a type is stored in memory, and direct, which is how a type is stored when its /// a direct SPIR-V value. const Repr = enum { /// A SPIR-V value as it would be used in operations. direct, /// A SPIR-V value as it is stored in memory. indirect, }; /// Initialize the common resources of a DeclGen. Some fields are left uninitialized, /// only set when `gen` is called. pub fn init( allocator: Allocator, module: *Module, spv: *SpvModule, decl_link: *DeclLinkMap, ) DeclGen { return .{ .gpa = allocator, .module = module, .spv = spv, .decl_index = undefined, .air = undefined, .liveness = undefined, .decl_link = decl_link, .next_arg_index = undefined, .current_block_label_id = undefined, .error_msg = undefined, }; } /// Generate the code for `decl`. If a reportable error occurred during code generation, /// a message is returned by this function. Callee owns the memory. If this function /// returns such a reportable error, it is valid to be called again for a different decl. pub fn gen(self: *DeclGen, decl_index: Decl.Index, air: Air, liveness: Liveness) !?*Module.ErrorMsg { // Reset internal resources, we don't want to re-allocate these. self.decl_index = decl_index; self.air = air; self.liveness = liveness; self.args.items.len = 0; self.next_arg_index = 0; self.inst_results.clearRetainingCapacity(); self.blocks.clearRetainingCapacity(); self.current_block_label_id = undefined; self.func.reset(); self.error_msg = null; self.genDecl() catch |err| switch (err) { error.CodegenFail => return self.error_msg, else => |others| { // There might be an error that happened *after* self.error_msg // was already allocated, so be sure to free it. if (self.error_msg) |error_msg| { error_msg.deinit(self.module.gpa); } return others; }, }; return null; } /// Free resources owned by the DeclGen. pub fn deinit(self: *DeclGen) void { self.args.deinit(self.gpa); self.inst_results.deinit(self.gpa); self.blocks.deinit(self.gpa); self.func.deinit(self.gpa); } /// Return the target which we are currently compiling for. pub fn getTarget(self: *DeclGen) std.Target { return self.module.getTarget(); } pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error { @setCold(true); const src = LazySrcLoc.nodeOffset(0); const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index)); assert(self.error_msg == null); self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args); return error.CodegenFail; } pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error { return self.fail("TODO (SPIR-V): " ++ format, args); } /// Fetch the result-id for a previously generated instruction or constant. fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef { if (self.air.value(inst)) |val| { const ty = self.air.typeOf(inst); if (ty.zigTypeTag() == .Fn) { const fn_decl_index = switch (val.tag()) { .extern_fn => val.castTag(.extern_fn).?.data.owner_decl, .function => val.castTag(.function).?.data.owner_decl, else => unreachable, }; const spv_decl_index = try self.resolveDecl(fn_decl_index); return self.spv.declPtr(spv_decl_index).result_id; } return try self.constant(ty, val); } const index = Air.refToIndex(inst).?; return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage. } /// Fetch or allocate a result id for decl index. This function also marks the decl as alive. /// Note: Function does not actually generate the decl. fn resolveDecl(self: *DeclGen, decl_index: Module.Decl.Index) !SpvModule.Decl.Index { const decl = self.module.declPtr(decl_index); self.module.markDeclAlive(decl); const entry = try self.decl_link.getOrPut(decl_index); if (!entry.found_existing) { // TODO: Extern fn? const kind: SpvModule.DeclKind = if (decl.val.tag() == .function) .func else .global; entry.value_ptr.* = try self.spv.allocDecl(kind); } return entry.value_ptr.*; } /// Start a new SPIR-V block, Emits the label of the new block, and stores which /// block we are currently generating. /// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to /// keep track of the previous block. fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void { try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id }); self.current_block_label_id = label_id; } /// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need /// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign /// included), the width of the underlying type which represents it, given the enabled features for the current target. /// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using /// that size. In this case, multiple elements of the largest type should be used. /// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits. /// The result is valid to be used with OpTypeInt. /// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers). /// TODO: Should the result of this function be cached? fn backingIntBits(self: *DeclGen, bits: u16) ?u16 { const target = self.getTarget(); // The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function. assert(bits != 0); // 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively. // 32-bit integers are always supported (see spec, 2.16.1, Data rules). const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{ .{ .bits = 8, .feature = .Int8 }, .{ .bits = 16, .feature = .Int16 }, .{ .bits = 32, .feature = null }, .{ .bits = 64, .feature = .Int64 }, }; for (ints) |int| { const has_feature = if (int.feature) |feature| Target.spirv.featureSetHas(target.cpu.features, feature) else true; if (bits <= int.bits and has_feature) { return int.bits; } } return null; } /// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if /// the Int64 capability is enabled). /// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits). /// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there /// is no way of knowing whether those are actually supported. /// TODO: Maybe this should be cached? fn largestSupportedIntBits(self: *DeclGen) u16 { const target = self.getTarget(); return if (Target.spirv.featureSetHas(target.cpu.features, .Int64)) 64 else 32; } /// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by /// arrays of largestSupportedIntBits(). /// Asserts `ty` is an integer. fn isCompositeInt(self: *DeclGen, ty: Type) bool { return self.backingIntBits(ty) == null; } fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo { const target = self.getTarget(); return switch (ty.zigTypeTag()) { .Bool => ArithmeticTypeInfo{ .bits = 1, // Doesn't matter for this class. .is_vector = false, .signedness = .unsigned, // Technically, but doesn't matter for this class. .class = .bool, }, .Float => ArithmeticTypeInfo{ .bits = ty.floatBits(target), .is_vector = false, .signedness = .signed, // Technically, but doesn't matter for this class. .class = .float, }, .Int => blk: { const int_info = ty.intInfo(target); // TODO: Maybe it's useful to also return this value. const maybe_backing_bits = self.backingIntBits(int_info.bits); break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits| if (backing_bits == int_info.bits) ArithmeticTypeInfo.Class.integer else ArithmeticTypeInfo.Class.strange_integer else .composite_integer, }; }, // As of yet, there is no vector support in the self-hosted compiler. .Vector => self.todo("implement arithmeticTypeInfo for Vector", .{}), // TODO: For which types is this the case? else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmt(self.module)}), }; } fn genConstInt(self: *DeclGen, ty_ref: SpvType.Ref, result_id: IdRef, value: anytype) !void { const ty = self.spv.typeRefType(ty_ref); const ty_id = self.typeId(ty_ref); const Lit = spec.LiteralContextDependentNumber; const literal = switch (ty.intSignedness()) { .signed => switch (ty.intFloatBits()) { 1...32 => Lit{ .int32 = @intCast(i32, value) }, 33...64 => Lit{ .int64 = @intCast(i64, value) }, else => unreachable, // TODO: composite integer literals }, .unsigned => switch (ty.intFloatBits()) { 1...32 => Lit{ .uint32 = @intCast(u32, value) }, 33...64 => Lit{ .uint64 = @intCast(u64, value) }, else => unreachable, }, }; try self.spv.emitConstant(ty_id, result_id, literal); } fn constInt(self: *DeclGen, ty_ref: SpvType.Ref, value: anytype) !IdRef { const result_id = self.spv.allocId(); try self.genConstInt(ty_ref, result_id, value); return result_id; } fn genUndef(self: *DeclGen, ty_ref: SpvType.Ref) Error!IdRef { const result_id = self.spv.allocId(); try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = self.typeId(ty_ref), .id_result = result_id }); return result_id; } const IndirectConstantLowering = struct { const undef = 0xAA; dg: *DeclGen, /// Cached reference of the u32 type. u32_ty_ref: SpvType.Ref, /// Cached type id of the u32 type. u32_ty_id: IdRef, /// The members of the resulting structure type members: std.ArrayList(SpvType.Payload.Struct.Member), /// The initializers of each of the members. initializers: std.ArrayList(IdRef), /// The current size of the structure. Includes /// the bytes in partial_word. size: u32 = 0, /// The partially filled last constant. /// If full, its flushed. partial_word: std.BoundedArray(u8, @sizeOf(Word)) = .{}, /// The declaration dependencies of the constant we are lowering. decl_deps: std.ArrayList(SpvModule.Decl.Index), /// Utility function to get the section that instructions should be lowered to. fn section(self: *@This()) *SpvSection { return &self.dg.spv.globals.section; } /// Flush the partial_word to the members. If the partial_word is not /// filled, this adds padding bytes (which are undefined). fn flush(self: *@This()) !void { if (self.partial_word.len == 0) { // No need to add it there. return; } for (self.partial_word.unusedCapacitySlice()) |*unused| { // TODO: Perhaps we should generate OpUndef for these bytes? unused.* = undef; } const word = @bitCast(Word, self.partial_word.buffer); const result_id = self.dg.spv.allocId(); // TODO: Integrate with caching mechanism try self.dg.spv.emitConstant(self.u32_ty_id, result_id, .{ .uint32 = word }); try self.members.append(.{ .ty = self.u32_ty_ref }); try self.initializers.append(result_id); self.partial_word.len = 0; self.size = std.mem.alignForwardGeneric(u32, self.size, @sizeOf(Word)); } /// Fill the buffer with undefined values until the size is aligned to `align`. fn fillToAlign(self: *@This(), alignment: u32) !void { const target_size = std.mem.alignForwardGeneric(u32, self.size, alignment); try self.addUndef(target_size - self.size); } fn addUndef(self: *@This(), amt: u64) !void { for (0..@intCast(usize, amt)) |_| { try self.addByte(undef); } } /// Add a single byte of data to the constant. fn addByte(self: *@This(), data: u8) !void { self.partial_word.append(data) catch { try self.flush(); self.partial_word.append(data) catch unreachable; }; self.size += 1; } /// Add many bytes of data to the constnat. fn addBytes(self: *@This(), data: []const u8) !void { // TODO: Improve performance by adding in bulk, or something? for (data) |byte| { try self.addByte(byte); } } fn addPtr(self: *@This(), ptr_ty_ref: SpvType.Ref, ptr_id: IdRef) !void { // TODO: Double check pointer sizes here. // shared pointers might be u32... const target = self.dg.getTarget(); const width = @divExact(target.cpu.arch.ptrBitWidth(), 8); if (self.size % width != 0) { return self.dg.todo("misaligned pointer constants", .{}); } try self.members.append(.{ .ty = ptr_ty_ref }); try self.initializers.append(ptr_id); self.size += width; } fn addNullPtr(self: *@This(), ptr_ty_ref: SpvType.Ref) !void { const result_id = self.dg.spv.allocId(); try self.dg.spv.sections.types_globals_constants.emit(self.dg.spv.gpa, .OpConstantNull, .{ .id_result_type = self.dg.typeId(ptr_ty_ref), .id_result = result_id, }); try self.addPtr(ptr_ty_ref, result_id); } fn addConstInt(self: *@This(), comptime T: type, value: T) !void { if (@bitSizeOf(T) % 8 != 0) { @compileError("todo: non byte aligned int constants"); } // TODO: Swap endianness if the compiler is big endian. try self.addBytes(std.mem.asBytes(&value)); } fn addConstBool(self: *@This(), value: bool) !void { try self.addByte(@boolToInt(value)); // TODO: Keep in sync with something? } fn addInt(self: *@This(), ty: Type, val: Value) !void { const target = self.dg.getTarget(); const int_info = ty.intInfo(target); const int_bits = switch (int_info.signedness) { .signed => @bitCast(u64, val.toSignedInt(target)), .unsigned => val.toUnsignedInt(target), }; // TODO: Swap endianess if the compiler is big endian. const len = ty.abiSize(target); try self.addBytes(std.mem.asBytes(&int_bits)[0..@intCast(usize, len)]); } fn addDeclRef(self: *@This(), ty: Type, decl_index: Decl.Index) !void { const dg = self.dg; const ty_ref = try self.dg.resolveType(ty, .indirect); const ty_id = dg.typeId(ty_ref); const decl = dg.module.declPtr(decl_index); const spv_decl_index = try dg.resolveDecl(decl_index); switch (decl.val.tag()) { .function => { // TODO: Properly lower function pointers. For now we are going to hack around it and // just generate an empty pointer. Function pointers are represented by usize for now, // though. try self.addInt(Type.usize, Value.initTag(.zero)); return; }, .extern_fn => unreachable, // TODO else => { const result_id = dg.spv.allocId(); log.debug("addDeclRef {s} = {}", .{ decl.name, result_id.id }); try self.decl_deps.append(spv_decl_index); const decl_id = dg.spv.declPtr(spv_decl_index).result_id; // TODO: Do we need a storage class cast here? // TODO: We can probably eliminate these casts try dg.spv.globals.section.emitSpecConstantOp(dg.spv.gpa, .OpBitcast, .{ .id_result_type = ty_id, .id_result = result_id, .operand = decl_id, }); try self.addPtr(ty_ref, result_id); }, } } fn lower(self: *@This(), ty: Type, val: Value) !void { const target = self.dg.getTarget(); const dg = self.dg; if (val.isUndef()) { const size = ty.abiSize(target); return try self.addUndef(size); } switch (ty.zigTypeTag()) { .Int => try self.addInt(ty, val), .Bool => try self.addConstBool(val.toBool()), .Array => switch (val.tag()) { .aggregate => { const elem_vals = val.castTag(.aggregate).?.data; const elem_ty = ty.elemType(); const len = @intCast(u32, ty.arrayLenIncludingSentinel()); // TODO: limit spir-v to 32 bit arrays in a more elegant way. for (elem_vals[0..len]) |elem_val| { try self.lower(elem_ty, elem_val); } }, .repeated => { const elem_val = val.castTag(.repeated).?.data; const elem_ty = ty.elemType(); const len = @intCast(u32, ty.arrayLen()); for (0..len) |_| { try self.lower(elem_ty, elem_val); } if (ty.sentinel()) |sentinel| { try self.lower(elem_ty, sentinel); } }, .str_lit => { const str_lit = val.castTag(.str_lit).?.data; const bytes = dg.module.string_literal_bytes.items[str_lit.index..][0..str_lit.len]; try self.addBytes(bytes); if (ty.sentinel()) |sentinel| { try self.addByte(@intCast(u8, sentinel.toUnsignedInt(target))); } }, .bytes => { const bytes = val.castTag(.bytes).?.data; try self.addBytes(bytes); }, else => |tag| return dg.todo("indirect array constant with tag {s}", .{@tagName(tag)}), }, .Pointer => switch (val.tag()) { .decl_ref_mut => { const decl_index = val.castTag(.decl_ref_mut).?.data.decl_index; try self.addDeclRef(ty, decl_index); }, .decl_ref => { const decl_index = val.castTag(.decl_ref).?.data; try self.addDeclRef(ty, decl_index); }, .slice => { const slice = val.castTag(.slice).?.data; var buf: Type.SlicePtrFieldTypeBuffer = undefined; const ptr_ty = ty.slicePtrFieldType(&buf); try self.lower(ptr_ty, slice.ptr); try self.addInt(Type.usize, slice.len); }, else => |tag| return dg.todo("pointer value of type {s}", .{@tagName(tag)}), }, .Struct => { if (ty.isSimpleTupleOrAnonStruct()) { unreachable; // TODO } else { const struct_ty = ty.castTag(.@"struct").?.data; if (struct_ty.layout == .Packed) { return dg.todo("packed struct constants", .{}); } const struct_begin = self.size; const field_vals = val.castTag(.aggregate).?.data; for (struct_ty.fields.values(), 0..) |field, i| { if (field.is_comptime or !field.ty.hasRuntimeBits()) continue; try self.lower(field.ty, field_vals[i]); // Add padding if required. // TODO: Add to type generation as well? const unpadded_field_end = self.size - struct_begin; const padded_field_end = ty.structFieldOffset(i + 1, target); const padding = padded_field_end - unpadded_field_end; try self.addUndef(padding); } } }, .Optional => { var opt_buf: Type.Payload.ElemType = undefined; const payload_ty = ty.optionalChild(&opt_buf); const has_payload = !val.isNull(); const abi_size = ty.abiSize(target); if (!payload_ty.hasRuntimeBits()) { try self.addConstBool(has_payload); return; } else if (ty.optionalReprIsPayload()) { // Optional representation is a nullable pointer. if (val.castTag(.opt_payload)) |payload| { try self.lower(payload_ty, payload.data); } else if (has_payload) { try self.lower(payload_ty, val); } else { const ptr_ty_ref = try dg.resolveType(ty, .indirect); try self.addNullPtr(ptr_ty_ref); } return; } // Optional representation is a structure. // { Payload, Bool } // Subtract 1 for @sizeOf(bool). // TODO: Make this not hardcoded. const payload_size = payload_ty.abiSize(target); const padding = abi_size - payload_size - 1; if (val.castTag(.opt_payload)) |payload| { try self.lower(payload_ty, payload.data); } else { try self.addUndef(payload_size); } try self.addConstBool(has_payload); try self.addUndef(padding); }, .Enum => { var int_val_buffer: Value.Payload.U64 = undefined; const int_val = val.enumToInt(ty, &int_val_buffer); var int_ty_buffer: Type.Payload.Bits = undefined; const int_ty = ty.intTagType(&int_ty_buffer); try self.lower(int_ty, int_val); }, .Union => { const tag_and_val = val.castTag(.@"union").?.data; const layout = ty.unionGetLayout(target); if (layout.payload_size == 0) { return try self.lower(ty.unionTagTypeSafety().?, tag_and_val.tag); } const union_ty = ty.cast(Type.Payload.Union).?.data; if (union_ty.layout == .Packed) { return dg.todo("packed union constants", .{}); } const active_field = ty.unionTagFieldIndex(tag_and_val.tag, dg.module).?; const active_field_ty = union_ty.fields.values()[active_field].ty; const has_tag = layout.tag_size != 0; const tag_first = layout.tag_align >= layout.payload_align; if (has_tag and tag_first) { try self.lower(ty.unionTagTypeSafety().?, tag_and_val.tag); } const active_field_size = if (active_field_ty.hasRuntimeBitsIgnoreComptime()) blk: { try self.lower(active_field_ty, tag_and_val.val); break :blk active_field_ty.abiSize(target); } else 0; const payload_padding_len = layout.payload_size - active_field_size; try self.addUndef(payload_padding_len); if (has_tag and !tag_first) { try self.lower(ty.unionTagTypeSafety().?, tag_and_val.tag); } try self.addUndef(layout.padding); }, .ErrorSet => switch (val.tag()) { .@"error" => { const err_name = val.castTag(.@"error").?.data.name; const kv = try dg.module.getErrorValue(err_name); try self.addConstInt(u16, @intCast(u16, kv.value)); }, .zero => { // Unactivated error set. try self.addConstInt(u16, 0); }, else => unreachable, }, .ErrorUnion => { const payload_ty = ty.errorUnionPayload(); const is_pl = val.errorUnionIsPayload(); const error_val = if (!is_pl) val else Value.initTag(.zero); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { return try self.lower(Type.anyerror, error_val); } const payload_align = payload_ty.abiAlignment(target); const error_align = Type.anyerror.abiAlignment(target); const payload_size = payload_ty.abiSize(target); const error_size = Type.anyerror.abiAlignment(target); const ty_size = ty.abiSize(target); const padding = ty_size - payload_size - error_size; const payload_val = if (val.castTag(.eu_payload)) |pl| pl.data else Value.initTag(.undef); if (error_align > payload_align) { try self.lower(Type.anyerror, error_val); try self.lower(payload_ty, payload_val); } else { try self.lower(payload_ty, payload_val); try self.lower(Type.anyerror, error_val); } try self.addUndef(padding); }, else => |tag| return dg.todo("indirect constant of type {s}", .{@tagName(tag)}), } } }; /// Returns a pointer to `val`. The value is placed directly /// into the storage class `storage_class`, and this is also where the resulting /// pointer points to. Note: result is not necessarily an OpVariable instruction! fn lowerIndirectConstant( self: *DeclGen, spv_decl_index: SpvModule.Decl.Index, ty: Type, val: Value, storage_class: StorageClass, cast_to_generic: bool, alignment: u32, ) Error!void { // To simplify constant generation, we're going to generate constants as a word-array, and // pointer cast the result to the right type. // This means that the final constant will be generated as follows: // %T = OpTypeStruct %members... // %P = OpTypePointer %T // %U = OpTypePointer %ty // %1 = OpConstantComposite %T %initializers... // %2 = OpVariable %P %1 // %result_id = OpSpecConstantOp OpBitcast %U %2 // // The members consist of two options: // - Literal values: ints, strings, etc. These are generated as u32 words. // - Relocations, such as pointers: These are generated by embedding the pointer into the // to-be-generated structure. There are two options here, depending on the alignment of the // pointer value itself (not the alignment of the pointee). // - Natively or over-aligned values. These can just be generated directly. // - Underaligned pointers. These need to be packed into the word array by using a mixture of // OpSpecConstantOp instructions such as OpConvertPtrToU, OpBitcast, OpShift, etc. // TODO: Implement alignment here. // This is hoing to require some hacks because there is no real way to // set an OpVariable's alignment. _ = alignment; assert(storage_class != .Generic and storage_class != .Function); log.debug("lowerIndirectConstant: ty = {}, val = {}", .{ ty.fmt(self.module), val.fmtDebug() }); const section = &self.spv.globals.section; const ty_ref = try self.resolveType(ty, .indirect); const ptr_ty_ref = try self.spv.ptrType(ty_ref, storage_class, 0); // const target = self.getTarget(); // TODO: Fix the resulting global linking for these paths. // if (val.isUndef()) { // // Special case: the entire value is undefined. In this case, we can just // // generate an OpVariable with no initializer. // return try section.emit(self.spv.gpa, .OpVariable, .{ // .id_result_type = self.typeId(ptr_ty_ref), // .id_result = result_id, // .storage_class = storage_class, // }); // } else if (ty.abiSize(target) == 0) { // // Special case: if the type has no size, then return an undefined pointer. // return try section.emit(self.spv.gpa, .OpUndef, .{ // .id_result_type = self.typeId(ptr_ty_ref), // .id_result = result_id, // }); // } // TODO: Capture the above stuff in here as well... const begin_inst = self.spv.beginGlobal(); const u32_ty_ref = try self.intType(.unsigned, 32); var icl = IndirectConstantLowering{ .dg = self, .u32_ty_ref = u32_ty_ref, .u32_ty_id = self.typeId(u32_ty_ref), .members = std.ArrayList(SpvType.Payload.Struct.Member).init(self.gpa), .initializers = std.ArrayList(IdRef).init(self.gpa), .decl_deps = std.ArrayList(SpvModule.Decl.Index).init(self.gpa), }; defer icl.members.deinit(); defer icl.initializers.deinit(); defer icl.decl_deps.deinit(); try icl.lower(ty, val); try icl.flush(); const constant_struct_ty_ref = try self.spv.simpleStructType(icl.members.items); const ptr_constant_struct_ty_ref = try self.spv.ptrType(constant_struct_ty_ref, storage_class, 0); const constant_struct_id = self.spv.allocId(); try section.emit(self.spv.gpa, .OpSpecConstantComposite, .{ .id_result_type = self.typeId(constant_struct_ty_ref), .id_result = constant_struct_id, .constituents = icl.initializers.items, }); const var_id = self.spv.allocId(); self.spv.globalPtr(spv_decl_index).?.result_id = var_id; try section.emit(self.spv.gpa, .OpVariable, .{ .id_result_type = self.typeId(ptr_constant_struct_ty_ref), .id_result = var_id, .storage_class = storage_class, .initializer = constant_struct_id, }); // TODO: Set alignment of OpVariable. // TODO: We may be able to eliminate these casts. const const_ptr_id = try self.makePointerConstant(section, ptr_constant_struct_ty_ref, var_id); const result_id = self.spv.declPtr(spv_decl_index).result_id; const bitcast_result_id = if (cast_to_generic) self.spv.allocId() else result_id; try section.emitSpecConstantOp(self.spv.gpa, .OpBitcast, .{ .id_result_type = self.typeId(ptr_ty_ref), .id_result = bitcast_result_id, .operand = const_ptr_id, }); if (cast_to_generic) { const generic_ptr_ty_ref = try self.spv.ptrType(ty_ref, .Generic, 0); try section.emitSpecConstantOp(self.spv.gpa, .OpPtrCastToGeneric, .{ .id_result_type = self.typeId(generic_ptr_ty_ref), .id_result = result_id, .pointer = bitcast_result_id, }); } try self.spv.declareDeclDeps(spv_decl_index, icl.decl_deps.items); self.spv.endGlobal(spv_decl_index, begin_inst); } /// This function generates a load for a constant in direct (ie, non-memory) representation. /// When the constant is simple, it can be generated directly using OpConstant instructions. When /// the constant is more complicated however, it needs to be lowered to an indirect constant, which /// is then loaded using OpLoad. Such values are loaded into the UniformConstant storage class by default. /// This function should only be called during function code generation. fn constant(self: *DeclGen, ty: Type, val: Value) !IdRef { const target = self.getTarget(); const section = &self.spv.sections.types_globals_constants; const result_ty_ref = try self.resolveType(ty, .direct); const result_ty_id = self.typeId(result_ty_ref); const result_id = self.spv.allocId(); if (val.isUndef()) { try section.emit(self.spv.gpa, .OpUndef, .{ .id_result_type = result_ty_id, .id_result = result_id, }); return result_id; } switch (ty.zigTypeTag()) { .Int => { const int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt(target)) else val.toUnsignedInt(target); try self.genConstInt(result_ty_ref, result_id, int_bits); }, .Bool => { const operands = .{ .id_result_type = result_ty_id, .id_result = result_id }; if (val.toBool()) { try section.emit(self.spv.gpa, .OpConstantTrue, operands); } else { try section.emit(self.spv.gpa, .OpConstantFalse, operands); } }, // TODO: We can handle most pointers here (decl refs etc), because now they emit an extra // OpVariable that is not really required. else => { // The value cannot be generated directly, so generate it as an indirect constant, // and then perform an OpLoad. const alignment = ty.abiAlignment(target); const spv_decl_index = try self.spv.allocDecl(.global); try self.lowerIndirectConstant( spv_decl_index, ty, val, .UniformConstant, false, alignment, ); try self.func.decl_deps.append(self.spv.gpa, spv_decl_index); try self.func.body.emit(self.spv.gpa, .OpLoad, .{ .id_result_type = result_ty_id, .id_result = result_id, .pointer = self.spv.declPtr(spv_decl_index).result_id, }); // TODO: Convert bools? This logic should hook into `load`. It should be a dead // path though considering .Bool is handled above. }, } return result_id; } /// Turn a Zig type into a SPIR-V Type, and return its type result-id. fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType { const type_ref = try self.resolveType(ty, .direct); return self.typeId(type_ref); } fn typeId(self: *DeclGen, ty_ref: SpvType.Ref) IdRef { return self.spv.typeId(ty_ref); } /// Create an integer type suitable for storing at least 'bits' bits. fn intType(self: *DeclGen, signedness: std.builtin.Signedness, bits: u16) !SpvType.Ref { const backing_bits = self.backingIntBits(bits) orelse { // TODO: Integers too big for any native type are represented as "composite integers": // An array of largestSupportedIntBits. return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits }); }; return try self.spv.resolveType(try SpvType.int(self.spv.arena, signedness, backing_bits)); } /// Create an integer type that represents 'usize'. fn sizeType(self: *DeclGen) !SpvType.Ref { return try self.intType(.unsigned, self.getTarget().cpu.arch.ptrBitWidth()); } /// Generate a union type, optionally with a known field. If the tag alignment is greater /// than that of the payload, a regular union (non-packed, with both tag and payload), will /// be generated as follows: /// If the active field is known: /// struct { /// tag: TagType, /// payload: ActivePayloadType, /// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8, /// padding: [padding_size]u8, /// } /// If the payload alignment is greater than that of the tag: /// struct { /// payload: ActivePayloadType, /// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8, /// tag: TagType, /// padding: [padding_size]u8, /// } /// If the active payload is unknown, it will default back to the most aligned field. This is /// to make sure that the overal struct has the correct alignment in spir-v. /// If any of the fields' size is 0, it will be omitted. /// NOTE: When the active field is set to something other than the most aligned field, the /// resulting struct will be *underaligned*. fn resolveUnionType(self: *DeclGen, ty: Type, maybe_active_field: ?usize) !SpvType.Ref { const target = self.getTarget(); const layout = ty.unionGetLayout(target); const union_ty = ty.cast(Type.Payload.Union).?.data; if (union_ty.layout == .Packed) { return self.todo("packed union types", .{}); } const tag_ty_ref = try self.resolveType(union_ty.tag_ty, .indirect); if (layout.payload_size == 0) { // No payload, so represent this as just the tag type. return tag_ty_ref; } var members = std.BoundedArray(SpvType.Payload.Struct.Member, 4){}; const has_tag = layout.tag_size != 0; const tag_first = layout.tag_align >= layout.payload_align; const tag_member = .{ .name = "tag", .ty = tag_ty_ref }; const u8_ty_ref = try self.intType(.unsigned, 8); // TODO: What if Int8Type is not enabled? if (has_tag and tag_first) { members.appendAssumeCapacity(tag_member); } const active_field = maybe_active_field orelse layout.most_aligned_field; const active_field_ty = union_ty.fields.values()[active_field].ty; const active_field_size = if (active_field_ty.hasRuntimeBitsIgnoreComptime()) blk: { const active_payload_ty_ref = try self.resolveType(active_field_ty, .indirect); members.appendAssumeCapacity(.{ .name = "payload", .ty = active_payload_ty_ref }); break :blk active_field_ty.abiSize(target); } else 0; const payload_padding_len = layout.payload_size - active_field_size; if (payload_padding_len != 0) { const payload_padding_ty_ref = try self.spv.arrayType(@intCast(u32, payload_padding_len), u8_ty_ref); members.appendAssumeCapacity(.{ .name = "padding_payload", .ty = payload_padding_ty_ref }); } if (has_tag and !tag_first) { members.appendAssumeCapacity(tag_member); } if (layout.padding != 0) { const padding_ty_ref = try self.spv.arrayType(layout.padding, u8_ty_ref); members.appendAssumeCapacity(.{ .name = "padding", .ty = padding_ty_ref }); } return try self.spv.simpleStructType(members.slice()); } /// Turn a Zig type into a SPIR-V Type, and return a reference to it. fn resolveType(self: *DeclGen, ty: Type, repr: Repr) Error!SpvType.Ref { log.debug("resolveType: ty = {}", .{ty.fmt(self.module)}); const target = self.getTarget(); switch (ty.zigTypeTag()) { .Void, .NoReturn => return try self.spv.resolveType(SpvType.initTag(.void)), .Bool => switch (repr) { .direct => return try self.spv.resolveType(SpvType.initTag(.bool)), // SPIR-V booleans are opaque, which is fine for operations, but they cant be stored. // This function returns the *stored* type, for values directly we convert this into a bool when // it is loaded, and convert it back to this type when stored. .indirect => return try self.intType(.unsigned, 1), }, .Int => { const int_info = ty.intInfo(target); return try self.intType(int_info.signedness, int_info.bits); }, .Enum => { var buffer: Type.Payload.Bits = undefined; const tag_ty = ty.intTagType(&buffer); return self.resolveType(tag_ty, repr); }, .Float => { // We can (and want) not really emulate floating points with other floating point types like with the integer types, // so if the float is not supported, just return an error. const bits = ty.floatBits(target); const supported = switch (bits) { 16 => Target.spirv.featureSetHas(target.cpu.features, .Float16), // 32-bit floats are always supported (see spec, 2.16.1, Data rules). 32 => true, 64 => Target.spirv.featureSetHas(target.cpu.features, .Float64), else => false, }; if (!supported) { return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits}); } return try self.spv.resolveType(SpvType.float(bits)); }, .Array => { const elem_ty = ty.childType(); const elem_ty_ref = try self.resolveType(elem_ty, .indirect); const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel()) orelse { return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel()}); }; return try self.spv.arrayType(total_len, elem_ty_ref); }, .Fn => switch (repr) { .direct => { // TODO: Put this somewhere in Sema.zig if (ty.fnIsVarArgs()) return self.fail("VarArgs functions are unsupported for SPIR-V", .{}); // TODO: Parameter passing convention etc. const param_types = try self.spv.arena.alloc(SpvType.Ref, ty.fnParamLen()); for (param_types, 0..) |*param, i| { param.* = try self.resolveType(ty.fnParamType(i), .direct); } const return_type = try self.resolveType(ty.fnReturnType(), .direct); const payload = try self.spv.arena.create(SpvType.Payload.Function); payload.* = .{ .return_type = return_type, .parameters = param_types }; return try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .indirect => { // TODO: Represent function pointers properly. // For now, just use an usize type. return try self.sizeType(); }, }, .Pointer => { const ptr_info = ty.ptrInfo().data; const storage_class = spvStorageClass(ptr_info.@"addrspace"); const child_ty_ref = try self.resolveType(ptr_info.pointee_type, .indirect); const ptr_ty_ref = try self.spv.ptrType(child_ty_ref, storage_class, 0); if (ptr_info.size != .Slice) { return ptr_ty_ref; } return try self.spv.simpleStructType(&.{ .{ .ty = ptr_ty_ref, .name = "ptr" }, .{ .ty = try self.sizeType(), .name = "len" }, }); }, .Vector => { // Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations // which work on them), so simply use those. // Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way. // "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors. // TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector // is adequate at all for this. // TODO: Properly verify sizes and child type. const payload = try self.spv.arena.create(SpvType.Payload.Vector); payload.* = .{ .component_type = try self.resolveType(ty.elemType(), repr), .component_count = @intCast(u32, ty.vectorLen()), }; return try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .Struct => { if (ty.isSimpleTupleOrAnonStruct()) { const tuple = ty.tupleFields(); const members = try self.spv.arena.alloc(SpvType.Payload.Struct.Member, tuple.types.len); var member_index: u32 = 0; for (tuple.types, 0..) |field_ty, i| { const field_val = tuple.values[i]; if (field_val.tag() != .unreachable_value or !field_ty.hasRuntimeBitsIgnoreComptime()) continue; members[member_index] = .{ .ty = try self.resolveType(field_ty, .indirect), }; member_index += 1; } const payload = try self.spv.arena.create(SpvType.Payload.Struct); payload.* = .{ .members = members[0..member_index], }; return try self.spv.resolveType(SpvType.initPayload(&payload.base)); } const struct_ty = ty.castTag(.@"struct").?.data; if (struct_ty.layout == .Packed) { return try self.resolveType(struct_ty.backing_int_ty, .indirect); } const members = try self.spv.arena.alloc(SpvType.Payload.Struct.Member, struct_ty.fields.count()); var member_index: usize = 0; for (struct_ty.fields.values(), 0..) |field, i| { if (field.is_comptime or !field.ty.hasRuntimeBits()) continue; members[member_index] = .{ .ty = try self.resolveType(field.ty, .indirect), .name = struct_ty.fields.keys()[i], }; member_index += 1; } const name = try struct_ty.getFullyQualifiedName(self.module); defer self.module.gpa.free(name); const payload = try self.spv.arena.create(SpvType.Payload.Struct); payload.* = .{ .members = members[0..member_index], .name = try self.spv.arena.dupe(u8, name), }; return try self.spv.resolveType(SpvType.initPayload(&payload.base)); }, .Optional => { var buf: Type.Payload.ElemType = undefined; const payload_ty = ty.optionalChild(&buf); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { // Just use a bool. // Note: Always generate the bool with indirect format, to save on some sanity // Perform the converison to a direct bool when the field is extracted. return try self.resolveType(Type.bool, .indirect); } const payload_ty_ref = try self.resolveType(payload_ty, .indirect); if (ty.optionalReprIsPayload()) { // Optional is actually a pointer. return payload_ty_ref; } const bool_ty_ref = try self.resolveType(Type.bool, .indirect); // its an actual optional return try self.spv.simpleStructType(&.{ .{ .ty = payload_ty_ref, .name = "payload" }, .{ .ty = bool_ty_ref, .name = "valid" }, }); }, .Union => return try self.resolveUnionType(ty, null), .ErrorSet => return try self.intType(.unsigned, 16), .ErrorUnion => { const payload_ty = ty.errorUnionPayload(); const error_ty_ref = try self.resolveType(Type.anyerror, .indirect); if (!payload_ty.hasRuntimeBitsIgnoreComptime()) { return error_ty_ref; } const payload_ty_ref = try self.resolveType(payload_ty, .indirect); const payload_align = payload_ty.abiAlignment(target); const error_align = Type.anyerror.abiAlignment(target); var members = std.BoundedArray(SpvType.Payload.Struct.Member, 2){}; // Similar to unions, we're going to put the most aligned member first. if (error_align > payload_align) { // Put the error first members.appendAssumeCapacity(.{ .ty = error_ty_ref, .name = "error" }); members.appendAssumeCapacity(.{ .ty = payload_ty_ref, .name = "payload" }); // TODO: ABI padding? } else { // Put the payload first. members.appendAssumeCapacity(.{ .ty = payload_ty_ref, .name = "payload" }); members.appendAssumeCapacity(.{ .ty = error_ty_ref, .name = "error" }); // TODO: ABI padding? } return try self.spv.simpleStructType(members.slice()); }, .Null, .Undefined, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Type, => unreachable, // Must be comptime. else => |tag| return self.todo("Implement zig type '{}'", .{tag}), } } fn spvStorageClass(as: std.builtin.AddressSpace) StorageClass { return switch (as) { .generic => .Generic, .shared => .Workgroup, .local => .Private, .global => .CrossWorkgroup, .constant => .UniformConstant, .gs, .fs, .ss, .param, .flash, .flash1, .flash2, .flash3, .flash4, .flash5, => unreachable, }; } /// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure. /// In order to be able to run tests, we "temporarily" lower test kernels into separate entry- /// points. The test executor will then be able to invoke these to run the tests. /// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`. /// (anyerror!void has the same layout as anyerror). /// Each test declaration generates a function like. /// %anyerror = OpTypeInt 0 16 /// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror /// %K = OpTypeFunction %void %p_anyerror /// /// %test = OpFunction %void %K /// %p_err = OpFunctionParameter %p_anyerror /// %lbl = OpLabel /// %result = OpFunctionCall %anyerror %func /// OpStore %p_err %result /// OpFunctionEnd /// TODO is to also write out the error as a function call parameter, and to somehow fetch /// the name of an error in the text executor. fn generateTestEntryPoint(self: *DeclGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void { const anyerror_ty_ref = try self.resolveType(Type.anyerror, .direct); const ptr_anyerror_ty_ref = try self.spv.ptrType(anyerror_ty_ref, .CrossWorkgroup, 0); const void_ty_ref = try self.resolveType(Type.void, .direct); const kernel_proto_ty_ref = blk: { const proto_payload = try self.spv.arena.create(SpvType.Payload.Function); proto_payload.* = .{ .return_type = void_ty_ref, .parameters = try self.spv.arena.dupe(SpvType.Ref, &.{ptr_anyerror_ty_ref}), }; break :blk try self.spv.resolveType(SpvType.initPayload(&proto_payload.base)); }; const test_id = self.spv.declPtr(spv_test_decl_index).result_id; const spv_decl_index = try self.spv.allocDecl(.func); const kernel_id = self.spv.declPtr(spv_decl_index).result_id; const error_id = self.spv.allocId(); const p_error_id = self.spv.allocId(); const section = &self.spv.sections.functions; try section.emit(self.spv.gpa, .OpFunction, .{ .id_result_type = self.typeId(void_ty_ref), .id_result = kernel_id, .function_control = .{}, .function_type = self.typeId(kernel_proto_ty_ref), }); try section.emit(self.spv.gpa, .OpFunctionParameter, .{ .id_result_type = self.typeId(ptr_anyerror_ty_ref), .id_result = p_error_id, }); try section.emit(self.spv.gpa, .OpLabel, .{ .id_result = self.spv.allocId(), }); try section.emit(self.spv.gpa, .OpFunctionCall, .{ .id_result_type = self.typeId(anyerror_ty_ref), .id_result = error_id, .function = test_id, }); try section.emit(self.spv.gpa, .OpStore, .{ .pointer = p_error_id, .object = error_id, }); try section.emit(self.spv.gpa, .OpReturn, {}); try section.emit(self.spv.gpa, .OpFunctionEnd, {}); try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index}); // Just generate a quick other name because the intel runtime crashes when the entry- // point name is the same as a different OpName. const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name}); defer self.gpa.free(test_name); try self.spv.declareEntryPoint(spv_decl_index, test_name); } fn genDecl(self: *DeclGen) !void { const decl = self.module.declPtr(self.decl_index); const spv_decl_index = try self.resolveDecl(self.decl_index); const decl_id = self.spv.declPtr(spv_decl_index).result_id; log.debug("genDecl {s} = {}", .{ decl.name, decl_id }); if (decl.val.castTag(.function)) |_| { assert(decl.ty.zigTypeTag() == .Fn); const prototype_id = try self.resolveTypeId(decl.ty); try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{ .id_result_type = try self.resolveTypeId(decl.ty.fnReturnType()), .id_result = decl_id, .function_control = .{}, // TODO: We can set inline here if the type requires it. .function_type = prototype_id, }); const params = decl.ty.fnParamLen(); var i: usize = 0; try self.args.ensureUnusedCapacity(self.gpa, params); while (i < params) : (i += 1) { const param_type_id = try self.resolveTypeId(decl.ty.fnParamType(i)); const arg_result_id = self.spv.allocId(); try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{ .id_result_type = param_type_id, .id_result = arg_result_id, }); self.args.appendAssumeCapacity(arg_result_id); } // TODO: This could probably be done in a better way... const root_block_id = self.spv.allocId(); // The root block of a function declaration should appear before OpVariable instructions, // so it is generated into the function's prologue. try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{ .id_result = root_block_id, }); self.current_block_label_id = root_block_id; const main_body = self.air.getMainBody(); try self.genBody(main_body); // Append the actual code into the functions section. try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {}); try self.spv.addFunction(spv_decl_index, self.func); const fqn = try decl.getFullyQualifiedName(self.module); defer self.module.gpa.free(fqn); try self.spv.sections.debug_names.emit(self.gpa, .OpName, .{ .target = decl_id, .name = fqn, }); // Temporarily generate a test kernel declaration if this is a test function. if (self.module.test_functions.contains(self.decl_index)) { try self.generateTestEntryPoint(fqn, spv_decl_index); } } else { const init_val = if (decl.val.castTag(.variable)) |payload| payload.data.init else decl.val; if (init_val.tag() == .unreachable_value) { return self.todo("importing extern variables", .{}); } // TODO: integrate with variable(). const final_storage_class = spvStorageClass(decl.@"addrspace"); const actual_storage_class = switch (final_storage_class) { .Generic => .CrossWorkgroup, else => final_storage_class, }; try self.lowerIndirectConstant( spv_decl_index, decl.ty, init_val, actual_storage_class, final_storage_class == .Generic, decl.@"align", ); } } fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void { for (body) |inst| { try self.genInst(inst); } } fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void { // TODO: remove now-redundant isUnused calls from AIR handler functions if (self.liveness.isUnused(inst) and !self.air.mustLower(inst)) { return; } const air_tags = self.air.instructions.items(.tag); const maybe_result_id: ?IdRef = switch (air_tags[inst]) { // zig fmt: off .add, .addwrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd, true), .sub, .subwrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub, true), .mul, .mulwrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul, true), .div_float, .div_float_optimized, // TODO: Check that this is the right operation. .div_trunc, .div_trunc_optimized, => try self.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv, false), // TODO: Check if this is the right operation // TODO: Make airArithOp for rem not emit a mask for the LHS. .rem, .rem_optimized, => try self.airArithOp(inst, .OpFRem, .OpSRem, .OpSRem, false), .add_with_overflow => try self.airOverflowArithOp(inst), .shuffle => try self.airShuffle(inst), .bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd), .bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr), .xor => try self.airBinOpSimple(inst, .OpBitwiseXor), .bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd), .bool_or => try self.airBinOpSimple(inst, .OpLogicalOr), .shl => try self.airShift(inst, .OpShiftLeftLogical), .bitcast => try self.airBitcast(inst), .intcast => try self.airIntcast(inst), .not => try self.airNot(inst), .slice_ptr => try self.airSliceField(inst, 0), .slice_len => try self.airSliceField(inst, 1), .slice_elem_ptr => try self.airSliceElemPtr(inst), .slice_elem_val => try self.airSliceElemVal(inst), .ptr_elem_ptr => try self.airPtrElemPtr(inst), .struct_field_val => try self.airStructFieldVal(inst), .struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0), .struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1), .struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2), .struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3), .cmp_eq => try self.airCmp(inst, .OpFOrdEqual, .OpLogicalEqual, .OpIEqual), .cmp_neq => try self.airCmp(inst, .OpFOrdNotEqual, .OpLogicalNotEqual, .OpINotEqual), .cmp_gt => try self.airCmp(inst, .OpFOrdGreaterThan, .OpSGreaterThan, .OpUGreaterThan), .cmp_gte => try self.airCmp(inst, .OpFOrdGreaterThanEqual, .OpSGreaterThanEqual, .OpUGreaterThanEqual), .cmp_lt => try self.airCmp(inst, .OpFOrdLessThan, .OpSLessThan, .OpULessThan), .cmp_lte => try self.airCmp(inst, .OpFOrdLessThanEqual, .OpSLessThanEqual, .OpULessThanEqual), .arg => self.airArg(), .alloc => try self.airAlloc(inst), // TODO: We probably need to have a special implementation of this for the C abi. .ret_ptr => try self.airAlloc(inst), .block => try self.airBlock(inst), .load => try self.airLoad(inst), .store => return self.airStore(inst), .br => return self.airBr(inst), .breakpoint => return, .cond_br => return self.airCondBr(inst), .constant => unreachable, .const_ty => unreachable, .dbg_stmt => return self.airDbgStmt(inst), .loop => return self.airLoop(inst), .ret => return self.airRet(inst), .ret_load => return self.airRetLoad(inst), .switch_br => return self.airSwitchBr(inst), .unreach => return self.airUnreach(), .assembly => try self.airAssembly(inst), .call => try self.airCall(inst, .auto), .call_always_tail => try self.airCall(inst, .always_tail), .call_never_tail => try self.airCall(inst, .never_tail), .call_never_inline => try self.airCall(inst, .never_inline), .dbg_var_ptr => return, .dbg_var_val => return, .dbg_block_begin => return, .dbg_block_end => return, // zig fmt: on else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}), }; const result_id = maybe_result_id orelse return; try self.inst_results.putNoClobber(self.gpa, inst, result_id); } fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef { if (self.liveness.isUnused(inst)) return null; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs_id = try self.resolve(bin_op.lhs); const rhs_id = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst)); try self.func.body.emit(self.spv.gpa, opcode, .{ .id_result_type = result_type_id, .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }); return result_id; } fn airShift(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef { if (self.liveness.isUnused(inst)) return null; const bin_op = self.air.instructions.items(.data)[inst].bin_op; const lhs_id = try self.resolve(bin_op.lhs); const rhs_id = try self.resolve(bin_op.rhs); const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst)); // the shift and the base must be the same type in SPIR-V, but in Zig the shift is a smaller int. const shift_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpUConvert, .{ .id_result_type = result_type_id, .id_result = shift_id, .unsigned_value = rhs_id, }); const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, opcode, .{ .id_result_type = result_type_id, .id_result = result_id, .base = lhs_id, .shift = shift_id, }); return result_id; } fn maskStrangeInt(self: *DeclGen, ty_ref: SpvType.Ref, value_id: IdRef, bits: u16) !IdRef { const mask_value = if (bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @intCast(u6, bits)) - 1; const result_id = self.spv.allocId(); const mask_id = try self.constInt(ty_ref, mask_value); try self.func.body.emit(self.spv.gpa, .OpBitwiseAnd, .{ .id_result_type = self.typeId(ty_ref), .id_result = result_id, .operand_1 = value_id, .operand_2 = mask_id, }); return result_id; } fn airArithOp( self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode, /// true if this operation holds under modular arithmetic. comptime modular: bool, ) !?IdRef { if (self.liveness.isUnused(inst)) return null; // LHS and RHS are guaranteed to have the same type, and AIR guarantees // the result to be the same as the LHS and RHS, which matches SPIR-V. const ty = self.air.typeOfIndex(inst); const bin_op = self.air.instructions.items(.data)[inst].bin_op; var lhs_id = try self.resolve(bin_op.lhs); var rhs_id = try self.resolve(bin_op.rhs); const result_ty_ref = try self.resolveType(ty, .direct); assert(self.air.typeOf(bin_op.lhs).eql(ty, self.module)); assert(self.air.typeOf(bin_op.rhs).eql(ty, self.module)); // Binary operations are generally applicable to both scalar and vector operations // in SPIR-V, but int and float versions of operations require different opcodes. const info = try self.arithmeticTypeInfo(ty); const opcode_index: usize = switch (info.class) { .composite_integer => { return self.todo("binary operations for composite integers", .{}); }, .strange_integer => blk: { if (!modular) { lhs_id = try self.maskStrangeInt(result_ty_ref, lhs_id, info.bits); rhs_id = try self.maskStrangeInt(result_ty_ref, rhs_id, info.bits); } break :blk switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }; }, .integer => switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }, .float => 0, .bool => unreachable, }; const result_id = self.spv.allocId(); const operands = .{ .id_result_type = self.typeId(result_ty_ref), .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }; switch (opcode_index) { 0 => try self.func.body.emit(self.spv.gpa, fop, operands), 1 => try self.func.body.emit(self.spv.gpa, sop, operands), 2 => try self.func.body.emit(self.spv.gpa, uop, operands), else => unreachable, } // TODO: Trap on overflow? Probably going to be annoying. // TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap. return result_id; } fn airOverflowArithOp(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Bin, ty_pl.payload).data; const lhs = try self.resolve(extra.lhs); const rhs = try self.resolve(extra.rhs); const operand_ty = self.air.typeOf(extra.lhs); const result_ty = self.air.typeOfIndex(inst); const info = try self.arithmeticTypeInfo(operand_ty); switch (info.class) { .composite_integer => return self.todo("overflow ops for composite integers", .{}), .strange_integer => return self.todo("overflow ops for strange integers", .{}), .integer => {}, .float, .bool => unreachable, } const operand_ty_id = try self.resolveTypeId(operand_ty); const result_type_id = try self.resolveTypeId(result_ty); const overflow_member_ty = try self.intType(.unsigned, info.bits); const overflow_member_ty_id = self.typeId(overflow_member_ty); const op_result_id = blk: { // Construct the SPIR-V result type. // It is almost the same as the zig one, except that the fields must be the same type // and they must be unsigned. const overflow_result_ty_ref = try self.spv.simpleStructType(&.{ .{ .ty = overflow_member_ty, .name = "res" }, .{ .ty = overflow_member_ty, .name = "ov" }, }); const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpIAddCarry, .{ .id_result_type = self.typeId(overflow_result_ty_ref), .id_result = result_id, .operand_1 = lhs, .operand_2 = rhs, }); break :blk result_id; }; // Now convert the SPIR-V flavor result into a Zig-flavor result. // First, extract the two fields. const unsigned_result = try self.extractField(overflow_member_ty_id, op_result_id, 0); const overflow = try self.extractField(overflow_member_ty_id, op_result_id, 1); // We need to convert the results to the types that Zig expects here. // The `result` is the same type except unsigned, so we can just bitcast that. const result = try self.bitcast(operand_ty_id, unsigned_result); // The overflow needs to be converted into whatever is used to represent it in Zig. const casted_overflow = blk: { const ov_ty = result_ty.tupleFields().types[1]; const ov_ty_id = try self.resolveTypeId(ov_ty); const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpUConvert, .{ .id_result_type = ov_ty_id, .id_result = result_id, .unsigned_value = overflow, }); break :blk result_id; }; // TODO: If copying this function for borrow, make sure to convert -1 to 1 as appropriate. // Finally, construct the Zig type. // Layout is result, overflow. const result_id = self.spv.allocId(); const constituents = [_]IdRef{ result, casted_overflow }; try self.func.body.emit(self.spv.gpa, .OpCompositeConstruct, .{ .id_result_type = result_type_id, .id_result = result_id, .constituents = &constituents, }); return result_id; } fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty = self.air.typeOfIndex(inst); const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data; const a = try self.resolve(extra.a); const b = try self.resolve(extra.b); const mask = self.air.values[extra.mask]; const mask_len = extra.mask_len; const a_len = self.air.typeOf(extra.a).vectorLen(); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(ty); // Similar to LLVM, SPIR-V uses indices larger than the length of the first vector // to index into the second vector. try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len); self.func.body.writeOperand(spec.IdResultType, result_type_id); self.func.body.writeOperand(spec.IdResult, result_id); self.func.body.writeOperand(spec.IdRef, a); self.func.body.writeOperand(spec.IdRef, b); var i: usize = 0; while (i < mask_len) : (i += 1) { var buf: Value.ElemValueBuffer = undefined; const elem = mask.elemValueBuffer(self.module, i, &buf); if (elem.isUndef()) { self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF); } else { const int = elem.toSignedInt(self.getTarget()); const unsigned = if (int >= 0) @intCast(u32, int) else @intCast(u32, ~int + a_len); self.func.body.writeOperand(spec.LiteralInteger, unsigned); } } return result_id; } fn airCmp(self: *DeclGen, inst: Air.Inst.Index, comptime fop: Opcode, comptime sop: Opcode, comptime uop: Opcode) !?IdRef { if (self.liveness.isUnused(inst)) return null; const bin_op = self.air.instructions.items(.data)[inst].bin_op; var lhs_id = try self.resolve(bin_op.lhs); var rhs_id = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(Type.bool); const op_ty = self.air.typeOf(bin_op.lhs); assert(op_ty.eql(self.air.typeOf(bin_op.rhs), self.module)); // Comparisons are generally applicable to both scalar and vector operations in SPIR-V, // but int and float versions of operations require different opcodes. const info = try self.arithmeticTypeInfo(op_ty); const opcode_index: usize = switch (info.class) { .composite_integer => { return self.todo("binary operations for composite integers", .{}); }, .float => 0, .bool => 1, .strange_integer => blk: { const op_ty_ref = try self.resolveType(op_ty, .direct); lhs_id = try self.maskStrangeInt(op_ty_ref, lhs_id, info.bits); rhs_id = try self.maskStrangeInt(op_ty_ref, rhs_id, info.bits); break :blk switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }; }, .integer => switch (info.signedness) { .signed => @as(usize, 1), .unsigned => @as(usize, 2), }, }; const operands = .{ .id_result_type = result_type_id, .id_result = result_id, .operand_1 = lhs_id, .operand_2 = rhs_id, }; switch (opcode_index) { 0 => try self.func.body.emit(self.spv.gpa, fop, operands), 1 => try self.func.body.emit(self.spv.gpa, sop, operands), 2 => try self.func.body.emit(self.spv.gpa, uop, operands), else => unreachable, } return result_id; } fn bitcast(self: *DeclGen, target_type_id: IdResultType, value_id: IdRef) !IdRef { const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpBitcast, .{ .id_result_type = target_type_id, .id_result = result_id, .operand = value_id, }); return result_id; } fn airBitcast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand_id = try self.resolve(ty_op.operand); const result_type_id = try self.resolveTypeId(self.air.typeOfIndex(inst)); return try self.bitcast(result_type_id, operand_id); } fn airIntcast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand_id = try self.resolve(ty_op.operand); const dest_ty = self.air.typeOfIndex(inst); const dest_info = try self.arithmeticTypeInfo(dest_ty); const dest_ty_id = try self.resolveTypeId(dest_ty); const result_id = self.spv.allocId(); switch (dest_info.signedness) { .signed => try self.func.body.emit(self.spv.gpa, .OpSConvert, .{ .id_result_type = dest_ty_id, .id_result = result_id, .signed_value = operand_id, }), .unsigned => try self.func.body.emit(self.spv.gpa, .OpUConvert, .{ .id_result_type = dest_ty_id, .id_result = result_id, .unsigned_value = operand_id, }), } return result_id; } fn airNot(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const operand_id = try self.resolve(ty_op.operand); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(Type.bool); try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{ .id_result_type = result_type_id, .id_result = result_id, .operand = operand_id, }); return result_id; } fn extractField(self: *DeclGen, result_ty: IdResultType, object: IdRef, field: u32) !IdRef { const result_id = self.spv.allocId(); const indexes = [_]u32{field}; try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{ .id_result_type = result_ty, .id_result = result_id, .composite = object, .indexes = &indexes, }); return result_id; } fn airSliceField(self: *DeclGen, inst: Air.Inst.Index, field: u32) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_op = self.air.instructions.items(.data)[inst].ty_op; return try self.extractField( try self.resolveTypeId(self.air.typeOfIndex(inst)), try self.resolve(ty_op.operand), field, ); } fn airSliceElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const slice_ty = self.air.typeOf(bin_op.lhs); if (!slice_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null; const slice = try self.resolve(bin_op.lhs); const index = try self.resolve(bin_op.rhs); const spv_ptr_ty = try self.resolveTypeId(self.air.typeOfIndex(inst)); const slice_ptr = blk: { const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{ .id_result_type = spv_ptr_ty, .id_result = result_id, .composite = slice, .indexes = &.{0}, }); break :blk result_id; }; const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{ .id_result_type = spv_ptr_ty, .id_result = result_id, .base = slice_ptr, .element = index, }); return result_id; } fn airSliceElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const slice_ty = self.air.typeOf(bin_op.lhs); if (!slice_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null; const slice = try self.resolve(bin_op.lhs); const index = try self.resolve(bin_op.rhs); var slice_buf: Type.SlicePtrFieldTypeBuffer = undefined; const ptr_ty_id = try self.resolveTypeId(slice_ty.slicePtrFieldType(&slice_buf)); const slice_ptr = blk: { const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .composite = slice, .indexes = &.{0}, }); break :blk result_id; }; const elem_ptr = blk: { const result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{ .id_result_type = ptr_ty_id, .id_result = result_id, .base = slice_ptr, .element = index, }); break :blk result_id; }; return try self.load(slice_ty, elem_ptr); } fn airPtrElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data; const ptr_ty = self.air.typeOf(bin_op.lhs); const result_ty = self.air.typeOfIndex(inst); const elem_ty = ptr_ty.childType(); // TODO: Make this return a null ptr or something if (!elem_ty.hasRuntimeBitsIgnoreComptime()) return null; const result_type_id = try self.resolveTypeId(result_ty); const base_ptr = try self.resolve(bin_op.lhs); const rhs = try self.resolve(bin_op.rhs); const result_id = self.spv.allocId(); const indexes = [_]IdRef{rhs}; try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{ .id_result_type = result_type_id, .id_result = result_id, .base = base_ptr, .indexes = &indexes, }); return result_id; } fn airStructFieldVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data; const struct_ty = self.air.typeOf(struct_field.struct_operand); const object = try self.resolve(struct_field.struct_operand); const field_index = struct_field.field_index; const field_ty = struct_ty.structFieldType(field_index); const field_ty_id = try self.resolveTypeId(field_ty); if (!field_ty.hasRuntimeBitsIgnoreComptime()) return null; assert(struct_ty.zigTypeTag() == .Struct); // Cannot do unions yet. const result_id = self.spv.allocId(); const indexes = [_]u32{field_index}; try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{ .id_result_type = field_ty_id, .id_result = result_id, .composite = object, .indexes = &indexes, }); return result_id; } fn structFieldPtr( self: *DeclGen, result_ptr_ty: Type, object_ptr_ty: Type, object_ptr: IdRef, field_index: u32, ) !?IdRef { const object_ty = object_ptr_ty.childType(); switch (object_ty.zigTypeTag()) { .Struct => switch (object_ty.containerLayout()) { .Packed => unreachable, // TODO else => { const u32_ty_id = self.typeId(try self.intType(.unsigned, 32)); const field_index_id = self.spv.allocId(); try self.spv.emitConstant(u32_ty_id, field_index_id, .{ .uint32 = field_index }); const result_id = self.spv.allocId(); const result_type_id = try self.resolveTypeId(result_ptr_ty); const indexes = [_]IdRef{field_index_id}; try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{ .id_result_type = result_type_id, .id_result = result_id, .base = object_ptr, .indexes = &indexes, }); return result_id; }, }, else => unreachable, // TODO } } fn airStructFieldPtrIndex(self: *DeclGen, inst: Air.Inst.Index, field_index: u32) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty_op = self.air.instructions.items(.data)[inst].ty_op; const struct_ptr = try self.resolve(ty_op.operand); const struct_ptr_ty = self.air.typeOf(ty_op.operand); const result_ptr_ty = self.air.typeOfIndex(inst); return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index); } /// We cannot use an OpVariable directly in an OpSpecConstantOp, but we can /// after we insert a dummy AccessChain... /// TODO: Get rid of this fn makePointerConstant( self: *DeclGen, section: *SpvSection, ptr_ty_ref: SpvType.Ref, ptr_id: IdRef, ) !IdRef { const result_id = self.spv.allocId(); try section.emitSpecConstantOp(self.spv.gpa, .OpInBoundsAccessChain, .{ .id_result_type = self.typeId(ptr_ty_ref), .id_result = result_id, .base = ptr_id, }); return result_id; } fn variable( self: *DeclGen, comptime context: enum { function, global }, result_id: IdRef, ptr_ty_ref: SpvType.Ref, initializer: ?IdRef, ) !void { const storage_class = self.spv.typeRefType(ptr_ty_ref).payload(.pointer).storage_class; const actual_storage_class = switch (storage_class) { .Generic => switch (context) { .function => .Function, .global => .CrossWorkgroup, }, else => storage_class, }; const actual_ptr_ty_ref = switch (storage_class) { .Generic => try self.spv.changePtrStorageClass(ptr_ty_ref, actual_storage_class), else => ptr_ty_ref, }; const alloc_result_id = switch (storage_class) { .Generic => self.spv.allocId(), else => result_id, }; const section = switch (actual_storage_class) { .Generic => unreachable, // SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to // directly generate them into func.prologue instead of the body. .Function => &self.func.prologue, else => &self.spv.sections.types_globals_constants, }; try section.emit(self.spv.gpa, .OpVariable, .{ .id_result_type = self.typeId(actual_ptr_ty_ref), .id_result = alloc_result_id, .storage_class = actual_storage_class, .initializer = initializer, }); if (storage_class != .Generic) { return; } // Now we need to convert the pointer. // If this is a function local, we need to perform the conversion at runtime. Otherwise, we can do // it ahead of time using OpSpecConstantOp. switch (actual_storage_class) { .Function => try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{ .id_result_type = self.typeId(ptr_ty_ref), .id_result = result_id, .pointer = alloc_result_id, }), // TODO: Can we do without this cast or move it to runtime? else => { const const_ptr_id = try self.makePointerConstant(section, actual_ptr_ty_ref, alloc_result_id); try section.emitSpecConstantOp(self.spv.gpa, .OpPtrCastToGeneric, .{ .id_result_type = self.typeId(ptr_ty_ref), .id_result = result_id, .pointer = const_ptr_id, }); }, } } fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { if (self.liveness.isUnused(inst)) return null; const ty = self.air.typeOfIndex(inst); const result_ty_ref = try self.resolveType(ty, .direct); const result_id = self.spv.allocId(); try self.variable(.function, result_id, result_ty_ref, null); return result_id; } fn airArg(self: *DeclGen) IdRef { defer self.next_arg_index += 1; return self.args.items[self.next_arg_index]; } fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { // In AIR, a block doesn't really define an entry point like a block, but more like a scope that breaks can jump out of and // "return" a value from. This cannot be directly modelled in SPIR-V, so in a block instruction, we're going to split up // the current block by first generating the code of the block, then a label, and then generate the rest of the current // ir.Block in a different SPIR-V block. const label_id = self.spv.allocId(); // 4 chosen as arbitrary initial capacity. var incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.gpa, 4); try self.blocks.putNoClobber(self.gpa, inst, .{ .label_id = label_id, .incoming_blocks = &incoming_blocks, }); defer { assert(self.blocks.remove(inst)); incoming_blocks.deinit(self.gpa); } const ty = self.air.typeOfIndex(inst); const inst_datas = self.air.instructions.items(.data); const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload); const body = self.air.extra[extra.end..][0..extra.data.body_len]; try self.genBody(body); try self.beginSpvBlock(label_id); // If this block didn't produce a value, simply return here. if (!ty.hasRuntimeBitsIgnoreComptime()) return null; // Combine the result from the blocks using the Phi instruction. const result_id = self.spv.allocId(); // TODO: OpPhi is limited in the types that it may produce, such as pointers. Figure out which other types // are not allowed to be created from a phi node, and throw an error for those. const result_type_id = try self.resolveTypeId(ty); _ = result_type_id; try self.func.body.emitRaw(self.spv.gpa, .OpPhi, 2 + @intCast(u16, incoming_blocks.items.len * 2)); // result type + result + variable/parent... for (incoming_blocks.items) |incoming| { self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id }); } return result_id; } fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void { const br = self.air.instructions.items(.data)[inst].br; const block = self.blocks.get(br.block_inst).?; const operand_ty = self.air.typeOf(br.operand); if (operand_ty.hasRuntimeBits()) { const operand_id = try self.resolve(br.operand); // current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body. try block.incoming_blocks.append(self.gpa, .{ .src_label_id = self.current_block_label_id, .break_value_id = operand_id }); } try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id }); } fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void { const pl_op = self.air.instructions.items(.data)[inst].pl_op; const cond_br = self.air.extraData(Air.CondBr, pl_op.payload); const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]; const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]; const condition_id = try self.resolve(pl_op.operand); // These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block. const then_label_id = self.spv.allocId(); const else_label_id = self.spv.allocId(); // TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to, // but i don't know if those will always resolve to the same block. try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{ .condition = condition_id, .true_label = then_label_id, .false_label = else_label_id, }); try self.beginSpvBlock(then_label_id); try self.genBody(then_body); try self.beginSpvBlock(else_label_id); try self.genBody(else_body); } fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void { const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt; const src_fname_id = try self.spv.resolveSourceFileName(self.module.declPtr(self.decl_index)); try self.func.body.emit(self.spv.gpa, .OpLine, .{ .file = src_fname_id, .line = dbg_stmt.line, .column = dbg_stmt.column, }); } fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { const ty_op = self.air.instructions.items(.data)[inst].ty_op; const ptr_ty = self.air.typeOf(ty_op.operand); const operand = try self.resolve(ty_op.operand); if (!ptr_ty.isVolatilePtr() and self.liveness.isUnused(inst)) return null; return try self.load(ptr_ty, operand); } fn load(self: *DeclGen, ptr_ty: Type, ptr: IdRef) !IdRef { const value_ty = ptr_ty.childType(); const direct_result_ty_ref = try self.resolveType(value_ty, .direct); const indirect_result_ty_ref = try self.resolveType(value_ty, .indirect); const result_id = self.spv.allocId(); const access = spec.MemoryAccess.Extended{ .Volatile = ptr_ty.isVolatilePtr(), }; try self.func.body.emit(self.spv.gpa, .OpLoad, .{ .id_result_type = self.typeId(indirect_result_ty_ref), .id_result = result_id, .pointer = ptr, .memory_access = access, }); if (value_ty.zigTypeTag() == .Bool) { // Convert indirect bool to direct bool const zero_id = try self.constInt(indirect_result_ty_ref, 0); const casted_result_id = self.spv.allocId(); try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{ .id_result_type = self.typeId(direct_result_ty_ref), .id_result = casted_result_id, .operand_1 = result_id, .operand_2 = zero_id, }); return casted_result_id; } return result_id; } fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void { const bin_op = self.air.instructions.items(.data)[inst].bin_op; const ptr_ty = self.air.typeOf(bin_op.lhs); const ptr = try self.resolve(bin_op.lhs); const value = try self.resolve(bin_op.rhs); try self.store(ptr_ty, ptr, value); } fn store(self: *DeclGen, ptr_ty: Type, ptr: IdRef, value: IdRef) !void { const value_ty = ptr_ty.childType(); const converted_value = switch (value_ty.zigTypeTag()) { .Bool => blk: { const indirect_bool_ty_ref = try self.resolveType(value_ty, .indirect); const result_id = self.spv.allocId(); const zero = try self.constInt(indirect_bool_ty_ref, 0); const one = try self.constInt(indirect_bool_ty_ref, 1); try self.func.body.emit(self.spv.gpa, .OpSelect, .{ .id_result_type = self.typeId(indirect_bool_ty_ref), .id_result = result_id, .condition = value, .object_1 = one, .object_2 = zero, }); break :blk result_id; }, else => value, }; const access = spec.MemoryAccess.Extended{ .Volatile = ptr_ty.isVolatilePtr(), }; try self.func.body.emit(self.spv.gpa, .OpStore, .{ .pointer = ptr, .object = converted_value, .memory_access = access, }); } fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const loop = self.air.extraData(Air.Block, ty_pl.payload); const body = self.air.extra[loop.end..][0..loop.data.body_len]; const loop_label_id = self.spv.allocId(); // Jump to the loop entry point try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id }); // TODO: Look into OpLoopMerge. try self.beginSpvBlock(loop_label_id); try self.genBody(body); try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id }); } fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void { const operand = self.air.instructions.items(.data)[inst].un_op; const operand_ty = self.air.typeOf(operand); if (operand_ty.hasRuntimeBits()) { const operand_id = try self.resolve(operand); try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id }); } else { try self.func.body.emit(self.spv.gpa, .OpReturn, {}); } } fn airRetLoad(self: *DeclGen, inst: Air.Inst.Index) !void { const un_op = self.air.instructions.items(.data)[inst].un_op; const ptr_ty = self.air.typeOf(un_op); const ret_ty = ptr_ty.childType(); if (!ret_ty.hasRuntimeBitsIgnoreComptime()) { try self.func.body.emit(self.spv.gpa, .OpReturn, {}); return; } const ptr = try self.resolve(un_op); const value = try self.load(ptr_ty, ptr); try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = value, }); } fn airSwitchBr(self: *DeclGen, inst: Air.Inst.Index) !void { const target = self.getTarget(); const pl_op = self.air.instructions.items(.data)[inst].pl_op; const cond = try self.resolve(pl_op.operand); const cond_ty = self.air.typeOf(pl_op.operand); const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload); const cond_words: u32 = switch (cond_ty.zigTypeTag()) { .Int => blk: { const bits = cond_ty.intInfo(target).bits; const backing_bits = self.backingIntBits(bits) orelse { return self.todo("implement composite int switch", .{}); }; break :blk if (backing_bits <= 32) @as(u32, 1) else 2; }, .Enum => blk: { var buffer: Type.Payload.Bits = undefined; const int_ty = cond_ty.intTagType(&buffer); const int_info = int_ty.intInfo(target); const backing_bits = self.backingIntBits(int_info.bits) orelse { return self.todo("implement composite int switch", .{}); }; break :blk if (backing_bits <= 32) @as(u32, 1) else 2; }, else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag())}), // TODO: Figure out which types apply here, and work around them as we can only do integers. }; const num_cases = switch_br.data.cases_len; // Compute the total number of arms that we need. // Zig switches are grouped by condition, so we need to loop through all of them const num_conditions = blk: { var extra_index: usize = switch_br.end; var case_i: u32 = 0; var num_conditions: u32 = 0; while (case_i < num_cases) : (case_i += 1) { const case = self.air.extraData(Air.SwitchBr.Case, extra_index); const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len]; extra_index = case.end + case.data.items_len + case_body.len; num_conditions += case.data.items_len; } break :blk num_conditions; }; // First, pre-allocate the labels for the cases. const first_case_label = self.spv.allocIds(num_cases); // We always need the default case - if zig has none, we will generate unreachable there. const default = self.spv.allocId(); // Emit the instruction before generating the blocks. try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions); self.func.body.writeOperand(IdRef, cond); self.func.body.writeOperand(IdRef, default); // Emit each of the cases { var extra_index: usize = switch_br.end; var case_i: u32 = 0; while (case_i < num_cases) : (case_i += 1) { // SPIR-V needs a literal here, which' width depends on the case condition. const case = self.air.extraData(Air.SwitchBr.Case, extra_index); const items = @ptrCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]); const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len]; extra_index = case.end + case.data.items_len + case_body.len; const label = IdRef{ .id = first_case_label.id + case_i }; for (items) |item| { const value = self.air.value(item) orelse { return self.todo("switch on runtime value???", .{}); }; const int_val = switch (cond_ty.zigTypeTag()) { .Int => if (cond_ty.isSignedInt()) @bitCast(u64, value.toSignedInt(target)) else value.toUnsignedInt(target), .Enum => blk: { var int_buffer: Value.Payload.U64 = undefined; // TODO: figure out of cond_ty is correct (something with enum literals) break :blk value.enumToInt(cond_ty, &int_buffer).toUnsignedInt(target); // TODO: composite integer constants }, else => unreachable, }; const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) { 1 => .{ .uint32 = @intCast(u32, int_val) }, 2 => .{ .uint64 = int_val }, else => unreachable, }; self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit); self.func.body.writeOperand(IdRef, label); } } } // Now, finally, we can start emitting each of the cases. var extra_index: usize = switch_br.end; var case_i: u32 = 0; while (case_i < num_cases) : (case_i += 1) { const case = self.air.extraData(Air.SwitchBr.Case, extra_index); const items = @ptrCast([]const Air.Inst.Ref, self.air.extra[case.end..][0..case.data.items_len]); const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len]; extra_index = case.end + case.data.items_len + case_body.len; const label = IdResult{ .id = first_case_label.id + case_i }; try self.beginSpvBlock(label); try self.genBody(case_body); } const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len]; try self.beginSpvBlock(default); if (else_body.len != 0) { try self.genBody(else_body); } else { try self.func.body.emit(self.spv.gpa, .OpUnreachable, {}); } } fn airUnreach(self: *DeclGen) !void { try self.func.body.emit(self.spv.gpa, .OpUnreachable, {}); } fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef { const ty_pl = self.air.instructions.items(.data)[inst].ty_pl; const extra = self.air.extraData(Air.Asm, ty_pl.payload); const is_volatile = @truncate(u1, extra.data.flags >> 31) != 0; const clobbers_len = @truncate(u31, extra.data.flags); if (!is_volatile and self.liveness.isUnused(inst)) return null; var extra_i: usize = extra.end; const outputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.outputs_len]); extra_i += outputs.len; const inputs = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra_i..][0..extra.data.inputs_len]); extra_i += inputs.len; if (outputs.len > 1) { return self.todo("implement inline asm with more than 1 output", .{}); } var output_extra_i = extra_i; for (outputs) |output| { if (output != .none) { return self.todo("implement inline asm with non-returned output", .{}); } const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]); const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); extra_i += (constraint.len + name.len + (2 + 3)) / 4; // TODO: Record output and use it somewhere. } var input_extra_i = extra_i; for (inputs) |input| { const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]); const constraint = std.mem.sliceTo(extra_bytes, 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. extra_i += (constraint.len + name.len + (2 + 3)) / 4; // TODO: Record input and use it somewhere. _ = input; } { var clobber_i: u32 = 0; while (clobber_i < clobbers_len) : (clobber_i += 1) { const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0); extra_i += clobber.len / 4 + 1; // TODO: Record clobber and use it somewhere. } } const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len]; var as = SpvAssembler{ .gpa = self.gpa, .src = asm_source, .spv = self.spv, .func = &self.func, }; defer as.deinit(); for (inputs) |input| { const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]); const constraint = std.mem.sliceTo(extra_bytes, 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); // This equation accounts for the fact that even if we have exactly 4 bytes // for the string, we still use the next u32 for the null terminator. input_extra_i += (constraint.len + name.len + (2 + 3)) / 4; const value = try self.resolve(input); try as.value_map.put(as.gpa, name, .{ .value = value }); } as.assemble() catch |err| switch (err) { error.AssembleFail => { // TODO: For now the compiler only supports a single error message per decl, // so to translate the possible multiple errors from the assembler, emit // them as notes here. // TODO: Translate proper error locations. assert(as.errors.items.len != 0); assert(self.error_msg == null); const loc = LazySrcLoc.nodeOffset(0); const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index)); self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{}); const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len); // Sub-scope to prevent `return error.CodegenFail` from running the errdefers. { errdefer self.module.gpa.free(notes); var i: usize = 0; errdefer for (notes[0..i]) |*note| { note.deinit(self.module.gpa); }; while (i < as.errors.items.len) : (i += 1) { notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg}); } } self.error_msg.?.notes = notes; return error.CodegenFail; }, else => |others| return others, }; for (outputs) |output| { _ = output; const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]); const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0); const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0); output_extra_i += (constraint.len + name.len + (2 + 3)) / 4; const result = as.value_map.get(name) orelse return { return self.fail("invalid asm output '{s}'", .{name}); }; switch (result) { .just_declared, .unresolved_forward_reference => unreachable, .ty => return self.fail("cannot return spir-v type as value from assembly", .{}), .value => |ref| return ref, } // TODO: Multiple results } return null; } fn airCall(self: *DeclGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef { _ = modifier; const pl_op = self.air.instructions.items(.data)[inst].pl_op; const extra = self.air.extraData(Air.Call, pl_op.payload); const args = @ptrCast([]const Air.Inst.Ref, self.air.extra[extra.end..][0..extra.data.args_len]); const callee_ty = self.air.typeOf(pl_op.operand); const zig_fn_ty = switch (callee_ty.zigTypeTag()) { .Fn => callee_ty, .Pointer => return self.fail("cannot call function pointers", .{}), else => unreachable, }; const fn_info = zig_fn_ty.fnInfo(); const return_type = fn_info.return_type; const result_type_id = try self.resolveTypeId(return_type); const result_id = self.spv.allocId(); const callee_id = try self.resolve(pl_op.operand); try self.func.body.emitRaw(self.spv.gpa, .OpFunctionCall, 3 + args.len); self.func.body.writeOperand(spec.IdResultType, result_type_id); self.func.body.writeOperand(spec.IdResult, result_id); self.func.body.writeOperand(spec.IdRef, callee_id); for (args) |arg| { const arg_id = try self.resolve(arg); const arg_ty = self.air.typeOf(arg); if (!arg_ty.hasRuntimeBitsIgnoreComptime()) continue; self.func.body.writeOperand(spec.IdRef, arg_id); } if (return_type.isNoReturn()) { try self.func.body.emit(self.spv.gpa, .OpUnreachable, {}); } if (self.liveness.isUnused(inst) or !return_type.hasRuntimeBitsIgnoreComptime()) { return null; } return result_id; } };