const std = @import("std.zig"); const assert = std.debug.assert; pub const Options = struct { /// Number of directory levels to skip when extracting files. strip_components: u32 = 0, /// How to handle the "mode" property of files from within the tar file. mode_mode: ModeMode = .executable_bit_only, /// Prevents creation of empty directories. exclude_empty_directories: bool = false, /// Provide this to receive detailed error messages. /// When this is provided, some errors which would otherwise be returned immediately /// will instead be added to this structure. The API user must check the errors /// in diagnostics to know whether the operation succeeded or failed. diagnostics: ?*Diagnostics = null, pub const ModeMode = enum { /// The mode from the tar file is completely ignored. Files are created /// with the default mode when creating files. ignore, /// The mode from the tar file is inspected for the owner executable bit /// only. This bit is copied to the group and other executable bits. /// Other bits of the mode are left as the default when creating files. executable_bit_only, }; pub const Diagnostics = struct { allocator: std.mem.Allocator, errors: std.ArrayListUnmanaged(Error) = .{}, pub const Error = union(enum) { unable_to_create_sym_link: struct { code: anyerror, file_name: []const u8, link_name: []const u8, }, unable_to_create_file: struct { code: anyerror, file_name: []const u8, }, unsupported_file_type: struct { file_name: []const u8, file_type: Header.FileType, }, }; pub fn deinit(d: *Diagnostics) void { for (d.errors.items) |item| { switch (item) { .unable_to_create_sym_link => |info| { d.allocator.free(info.file_name); d.allocator.free(info.link_name); }, .unable_to_create_file => |info| { d.allocator.free(info.file_name); }, .unsupported_file_type => |info| { d.allocator.free(info.file_name); }, } } d.errors.deinit(d.allocator); d.* = undefined; } }; }; const BLOCK_SIZE = 512; pub const Header = struct { bytes: *const [BLOCK_SIZE]u8, pub const FileType = enum(u8) { normal_alias = 0, normal = '0', hard_link = '1', symbolic_link = '2', character_special = '3', block_special = '4', directory = '5', fifo = '6', contiguous = '7', global_extended_header = 'g', extended_header = 'x', // Types 'L' and 'K' are used by the GNU format for a meta file // used to store the path or link name for the next file. gnu_long_name = 'L', gnu_long_link = 'K', _, }; /// Includes prefix concatenated, if any. /// Return value may point into Header buffer, or might point into the /// argument buffer. /// TODO: check against "../" and other nefarious things pub fn fullFileName(header: Header, buffer: *[std.fs.MAX_PATH_BYTES]u8) ![]const u8 { const n = name(header); if (!is_ustar(header)) return n; const p = prefix(header); if (p.len == 0) return n; @memcpy(buffer[0..p.len], p); buffer[p.len] = '/'; @memcpy(buffer[p.len + 1 ..][0..n.len], n); return buffer[0 .. p.len + 1 + n.len]; } pub fn name(header: Header) []const u8 { return header.str(0, 100); } pub fn fileSize(header: Header) !u64 { return header.numeric(124, 12); } pub fn chksum(header: Header) !u64 { return header.octal(148, 8); } pub fn linkName(header: Header) []const u8 { return header.str(157, 100); } pub fn is_ustar(header: Header) bool { const magic = header.bytes[257..][0..6]; return std.mem.eql(u8, magic[0..5], "ustar") and (magic[5] == 0 or magic[5] == ' '); } pub fn prefix(header: Header) []const u8 { return header.str(345, 155); } pub fn fileType(header: Header) FileType { const result: FileType = @enumFromInt(header.bytes[156]); if (result == .normal_alias) return .normal; return result; } fn str(header: Header, start: usize, len: usize) []const u8 { return nullStr(header.bytes[start .. start + len]); } fn numeric(header: Header, start: usize, len: usize) !u64 { const raw = header.bytes[start..][0..len]; // If the leading byte is 0xff (255), all the bytes of the field // (including the leading byte) are concatenated in big-endian order, // with the result being a negative number expressed in two’s // complement form. if (raw[0] == 0xff) return error.TarNumericValueNegative; // If the leading byte is 0x80 (128), the non-leading bytes of the // field are concatenated in big-endian order. if (raw[0] == 0x80) { if (raw[1] + raw[2] + raw[3] != 0) return error.TarNumericValueTooBig; return std.mem.readInt(u64, raw[4..12], .big); } return try header.octal(start, len); } fn octal(header: Header, start: usize, len: usize) !u64 { const raw = header.bytes[start..][0..len]; // Zero-filled octal number in ASCII. Each numeric field of width w // contains w minus 1 digits, and a null const ltrimmed = std.mem.trimLeft(u8, raw, "0 "); const rtrimmed = std.mem.trimRight(u8, ltrimmed, " \x00"); if (rtrimmed.len == 0) return 0; return std.fmt.parseInt(u64, rtrimmed, 8) catch return error.TarHeader; } // Sum of all bytes in the header block. The chksum field is treated as if // it were filled with spaces (ASCII 32). fn computeChksum(header: Header) u64 { var sum: u64 = 0; for (header.bytes, 0..) |b, i| { if (148 <= i and i < 156) continue; // skip chksum field bytes sum += b; } // Treating chksum bytes as spaces. 256 = 8 * 32, 8 spaces. return if (sum > 0) sum + 256 else 0; } // Checks calculated chksum with value of chksum field. // Returns error or chksum value. // Zero value indicates empty block. pub fn checkChksum(header: Header) !u64 { const field = try header.chksum(); const computed = header.computeChksum(); if (field != computed) return error.TarHeaderChksum; return field; } }; // break string on first null char fn nullStr(str: []const u8) []const u8 { for (str, 0..) |c, i| { if (c == 0) return str[0..i]; } return str; } // File size rounded to te block boundary. inline fn roundedFileSize(file_size: usize) usize { return std.mem.alignForward(usize, file_size, BLOCK_SIZE); } // Number of padding bytes in the last file block. inline fn filePadding(file_size: usize) usize { return roundedFileSize(file_size) - file_size; } fn BufferedReader(comptime ReaderType: type) type { return struct { unbuffered_reader: ReaderType, buffer: [BLOCK_SIZE * 8]u8 = undefined, start: usize = 0, end: usize = 0, const Self = @This(); fn readChunk(self: *Self, count: usize) ![]const u8 { self.ensureCapacity(BLOCK_SIZE * 2); const ask = @min(self.buffer.len - self.end, count -| (self.end - self.start)); self.end += try self.unbuffered_reader.readAtLeast(self.buffer[self.end..], ask); return self.buffer[self.start..self.end]; } // Returns slice of size count or part of it. pub fn readSlice(self: *Self, count: usize) ![]const u8 { if (count <= self.end - self.start) { // fastpath, we have enough bytes in buffer return self.buffer[self.start .. self.start + count]; } const chunk_size = roundedFileSize(count) + BLOCK_SIZE; const temp = try self.readChunk(chunk_size); if (temp.len == 0) return error.UnexpectedEndOfStream; return temp[0..@min(count, temp.len)]; } // Returns tar header block, 512 bytes. Before reading advances buffer // for padding of the previous block, to position reader at the start of // new block. After reading advances for block size, to position reader // at the start of the file body. pub fn readBlock(self: *Self, padding: usize) !?[]const u8 { try self.skip(padding); const block_bytes = try self.readChunk(BLOCK_SIZE * 2); switch (block_bytes.len) { 0 => return null, 1...(BLOCK_SIZE - 1) => return error.UnexpectedEndOfStream, else => {}, } self.advance(BLOCK_SIZE); return block_bytes[0..BLOCK_SIZE]; } // Retruns byte at current position in buffer. pub fn readByte(self: *@This()) u8 { return self.buffer[self.start]; } // Advances reader for count bytes, assumes that we have that number of // bytes in buffer. pub fn advance(self: *Self, count: usize) void { self.start += count; assert(self.start <= self.end); } // Advances reader without assuming that count bytes are in the buffer. pub fn skip(self: *Self, count: usize) !void { if (self.start + count > self.end) { try self.unbuffered_reader.skipBytes(self.start + count - self.end, .{}); self.start = self.end; } else { self.advance(count); } } inline fn ensureCapacity(self: *Self, count: usize) void { if (self.buffer.len - self.start < count) { const dest_end = self.end - self.start; @memcpy(self.buffer[0..dest_end], self.buffer[self.start..self.end]); self.end = dest_end; self.start = 0; } } // Write count bytes to the writer. pub fn write(self: *Self, writer: anytype, count: usize) !void { if (self.read(count)) |buf| { try writer.writeAll(buf); return; } var rdr = self.sliceReader(count); while (try rdr.next()) |slice| { try writer.writeAll(slice); } } // Copy dst.len bytes into dst buffer. pub fn copy(self: *Self, dst: []u8) ![]const u8 { if (self.read(dst.len)) |buf| { // fastpath we already have enough bytes in buffer @memcpy(dst, buf); return dst; } var rdr = self.sliceReader(dst.len); var pos: usize = 0; while (try rdr.next()) |slice| : (pos += slice.len) { @memcpy(dst[pos .. pos + slice.len], slice); } return dst; } // Retruns count bytes from buffer and advances for that number of // bytes. If we don't have that much bytes buffered returns null. fn read(self: *Self, count: usize) ?[]const u8 { if (count <= self.end - self.start) { const buf = self.buffer[self.start .. self.start + count]; self.advance(count); return buf; } return null; } const SliceReader = struct { size: usize, offset: usize, reader: *Self, pub fn next(self: *SliceReader) !?[]const u8 { const remaining_size = self.size - self.offset; if (remaining_size == 0) return null; const slice = try self.reader.readSlice(remaining_size); self.advance(slice.len); return slice; } fn advance(self: *SliceReader, len: usize) void { self.offset += len; self.reader.advance(len); } }; pub fn sliceReader(self: *Self, size: usize) SliceReader { return .{ .size = size, .reader = self, .offset = 0, }; } pub fn paxFileReader(self: *Self, size: usize) PaxFileReader { return .{ .size = size, .reader = self, .offset = 0, }; } const PaxFileReader = struct { size: usize, offset: usize = 0, reader: *Self, const PaxKey = enum { path, linkpath, size, }; const PaxAttribute = struct { key: PaxKey, value_len: usize, parent: *PaxFileReader, // Copies pax attribute value into destination buffer. // Must be called with destination buffer of size at least value_len. pub fn value(self: PaxAttribute, dst: []u8) ![]u8 { assert(dst.len >= self.value_len); const buf = dst[0..self.value_len]; _ = try self.parent.reader.copy(buf); self.parent.offset += buf.len; try self.parent.checkAttributeEnding(); return buf; } }; // Caller of the next has to call value in PaxAttribute, to advance // reader across value. pub fn next(self: *PaxFileReader) !?PaxAttribute { const rdr = self.reader; _ = rdr; while (true) { const remaining_size = self.size - self.offset; if (remaining_size == 0) return null; const inf = try parsePaxAttribute( try self.reader.readSlice(remaining_size), remaining_size, ); const key: PaxKey = if (inf.is("path")) .path else if (inf.is("linkpath")) .linkpath else if (inf.is("size")) .size else { try self.advance(inf.value_off + inf.value_len); try self.checkAttributeEnding(); continue; }; try self.advance(inf.value_off); // position reader at the start of the value return PaxAttribute{ .key = key, .value_len = inf.value_len, .parent = self }; } } fn checkAttributeEnding(self: *PaxFileReader) !void { if (self.reader.readByte() != '\n') return error.InvalidPaxAttribute; try self.advance(1); } fn advance(self: *PaxFileReader, len: usize) !void { self.offset += len; try self.reader.skip(len); } }; }; } fn Iterator(comptime ReaderType: type) type { const BufferedReaderType = BufferedReader(ReaderType); return struct { // scratch buffer for file attributes scratch: struct { // size: two paths (name and link_name) and size (24 in pax attribute) buffer: [std.fs.MAX_PATH_BYTES * 2 + 24]u8 = undefined, tail: usize = 0, // Allocate size of the buffer for some attribute. fn alloc(self: *@This(), size: usize) ![]u8 { const free_size = self.buffer.len - self.tail; if (size > free_size) return error.TarScratchBufferOverflow; const head = self.tail; self.tail += size; assert(self.tail <= self.buffer.len); return self.buffer[head..self.tail]; } // Free whole buffer. fn free(self: *@This()) void { self.tail = 0; } } = .{}, reader: BufferedReaderType, diagnostics: ?*Options.Diagnostics, padding: usize = 0, // bytes of file padding const Self = @This(); const File = struct { name: []const u8 = &[_]u8{}, link_name: []const u8 = &[_]u8{}, size: usize = 0, file_type: Header.FileType = .normal, reader: *BufferedReaderType, pub fn write(self: File, writer: anytype) !void { try self.reader.write(writer, self.size); } pub fn skip(self: File) !void { try self.reader.skip(self.size); } fn chksum(self: File) ![16]u8 { var sum = [_]u8{0} ** 16; if (self.size == 0) return sum; var rdr = self.reader.sliceReader(self.size); var h = std.crypto.hash.Md5.init(.{}); while (try rdr.next()) |slice| { h.update(slice); } h.final(&sum); return sum; } }; // Externally, `next` iterates through the tar archive as if it is a // series of files. Internally, the tar format often uses fake "files" // to add meta data that describes the next file. These meta data // "files" should not normally be visible to the outside. As such, this // loop iterates through one or more "header files" until it finds a // "normal file". pub fn next(self: *Self) !?File { var file: File = .{ .reader = &self.reader }; self.scratch.free(); while (try self.reader.readBlock(self.padding)) |block_bytes| { const header = Header{ .bytes = block_bytes[0..BLOCK_SIZE] }; if (try header.checkChksum() == 0) return null; // zero block found const file_type = header.fileType(); const file_size = try header.fileSize(); self.padding = filePadding(file_size); switch (file_type) { // file types to retrun from next .directory, .normal, .symbolic_link => { if (file.size == 0) file.size = file_size; self.padding = filePadding(file.size); if (file.name.len == 0) file.name = try header.fullFileName((try self.scratch.alloc(std.fs.MAX_PATH_BYTES))[0..std.fs.MAX_PATH_BYTES]); if (file.link_name.len == 0) file.link_name = header.linkName(); file.file_type = file_type; return file; }, // prefix header types .gnu_long_name => { file.name = nullStr(try self.reader.copy(try self.scratch.alloc(file_size))); }, .gnu_long_link => { file.link_name = nullStr(try self.reader.copy(try self.scratch.alloc(file_size))); }, .extended_header => { if (file_size == 0) continue; // use just last extended header data self.scratch.free(); file = File{ .reader = &self.reader }; var rdr = self.reader.paxFileReader(file_size); while (try rdr.next()) |attr| { switch (attr.key) { .path => { file.name = try noNull(try attr.value(try self.scratch.alloc(attr.value_len))); }, .linkpath => { file.link_name = try noNull(try attr.value(try self.scratch.alloc(attr.value_len))); }, .size => { file.size = try std.fmt.parseInt(usize, try attr.value(try self.scratch.alloc(attr.value_len)), 10); }, } } }, // ignored header types .global_extended_header => { self.reader.skip(file_size) catch return error.TarHeadersTooBig; }, // unsupported header types else => { const d = self.diagnostics orelse return error.TarUnsupportedFileType; try d.errors.append(d.allocator, .{ .unsupported_file_type = .{ .file_name = try d.allocator.dupe(u8, header.name()), .file_type = file_type, } }); }, } } return null; } }; } pub fn iterator(reader: anytype, diagnostics: ?*Options.Diagnostics) Iterator(@TypeOf(reader)) { const ReaderType = @TypeOf(reader); return .{ .reader = BufferedReader(ReaderType){ .unbuffered_reader = reader }, .diagnostics = diagnostics, }; } pub fn pipeToFileSystem(dir: std.fs.Dir, reader: anytype, options: Options) !void { switch (options.mode_mode) { .ignore => {}, .executable_bit_only => { // This code does not look at the mode bits yet. To implement this feature, // the implementation must be adjusted to look at the mode, and check the // user executable bit, then call fchmod on newly created files when // the executable bit is supposed to be set. // It also needs to properly deal with ACLs on Windows. @panic("TODO: unimplemented: tar ModeMode.executable_bit_only"); }, } var iter = iterator(reader, options.diagnostics); while (try iter.next()) |file| { switch (file.file_type) { .directory => { const file_name = try stripComponents(file.name, options.strip_components); if (file_name.len != 0 and !options.exclude_empty_directories) { try dir.makePath(file_name); } }, .normal => { if (file.size == 0 and file.name.len == 0) return; const file_name = try stripComponents(file.name, options.strip_components); const fs_file = dir.createFile(file_name, .{}) catch |err| switch (err) { error.FileNotFound => again: { const code = code: { if (std.fs.path.dirname(file_name)) |dir_name| { dir.makePath(dir_name) catch |code| break :code code; break :again dir.createFile(file_name, .{}) catch |code| { break :code code; }; } break :code err; }; const d = options.diagnostics orelse return error.UnableToCreateFile; try d.errors.append(d.allocator, .{ .unable_to_create_file = .{ .code = code, .file_name = try d.allocator.dupe(u8, file_name), } }); break :again null; }, else => |e| return e, }; defer if (fs_file) |f| f.close(); if (fs_file) |f| { try file.write(f); } else { try file.skip(); } }, .symbolic_link => { // The file system path of the symbolic link. const file_name = try stripComponents(file.name, options.strip_components); // The data inside the symbolic link. const link_name = file.link_name; dir.symLink(link_name, file_name, .{}) catch |err| again: { const code = code: { if (err == error.FileNotFound) { if (std.fs.path.dirname(file_name)) |dir_name| { dir.makePath(dir_name) catch |code| break :code code; break :again dir.symLink(link_name, file_name, .{}) catch |code| { break :code code; }; } } break :code err; }; const d = options.diagnostics orelse return error.UnableToCreateSymLink; try d.errors.append(d.allocator, .{ .unable_to_create_sym_link = .{ .code = code, .file_name = try d.allocator.dupe(u8, file_name), .link_name = try d.allocator.dupe(u8, link_name), } }); }; }, else => unreachable, } } } fn stripComponents(path: []const u8, count: u32) ![]const u8 { var i: usize = 0; var c = count; while (c > 0) : (c -= 1) { if (std.mem.indexOfScalarPos(u8, path, i, '/')) |pos| { i = pos + 1; } else { return error.TarComponentsOutsideStrippedPrefix; } } return path[i..]; } test stripComponents { const expectEqualStrings = std.testing.expectEqualStrings; try expectEqualStrings("a/b/c", try stripComponents("a/b/c", 0)); try expectEqualStrings("b/c", try stripComponents("a/b/c", 1)); try expectEqualStrings("c", try stripComponents("a/b/c", 2)); } const PaxAttributeInfo = struct { size: usize, key: []const u8, value_off: usize, value_len: usize, inline fn is(self: @This(), key: []const u8) bool { return (std.mem.eql(u8, self.key, key)); } }; fn parsePaxAttribute(data: []const u8, max_size: usize) !PaxAttributeInfo { const pos_space = std.mem.indexOfScalar(u8, data, ' ') orelse return error.InvalidPaxAttribute; const pos_equals = std.mem.indexOfScalarPos(u8, data, pos_space, '=') orelse return error.InvalidPaxAttribute; const kv_size = try std.fmt.parseInt(usize, data[0..pos_space], 10); if (kv_size > max_size) { return error.InvalidPaxAttribute; } const key = data[pos_space + 1 .. pos_equals]; return .{ .size = kv_size, .key = try noNull(key), .value_off = pos_equals + 1, .value_len = kv_size - pos_equals - 2, }; } fn noNull(str: []const u8) ![]const u8 { if (std.mem.indexOfScalar(u8, str, 0)) |_| return error.InvalidPaxAttribute; return str; } test "parsePaxAttribute" { const expectEqual = std.testing.expectEqual; const expectEqualStrings = std.testing.expectEqualStrings; const expectError = std.testing.expectError; const prefix = "1011 path="; const file_name = "0123456789" ** 100; const header = prefix ++ file_name ++ "\n"; const attr_info = try parsePaxAttribute(header, 1011); try expectEqual(@as(usize, 1011), attr_info.size); try expectEqualStrings("path", attr_info.key); try expectEqual(prefix.len, attr_info.value_off); try expectEqual(file_name.len, attr_info.value_len); try expectEqual(attr_info, try parsePaxAttribute(header, 1012)); try expectError(error.InvalidPaxAttribute, parsePaxAttribute(header, 1010)); try expectError(error.InvalidPaxAttribute, parsePaxAttribute("", 0)); try expectError(error.InvalidPaxAttribute, parsePaxAttribute("13 pa\x00th=abc\n", 1024)); // null in key } const TestCase = struct { const File = struct { name: []const u8, size: usize = 0, link_name: []const u8 = &[0]u8{}, file_type: Header.FileType = .normal, truncated: bool = false, // when there is no file body, just header, usefull for huge files }; path: []const u8, // path to the tar archive file on dis files: []const File = &[_]TestCase.File{}, // expected files to found in archive chksums: []const []const u8 = &[_][]const u8{}, // chksums of files content err: ?anyerror = null, // parsing should fail with this error }; test "tar: Go test cases" { const test_dir = try std.fs.openDirAbsolute("/usr/local/go/src/archive/tar/testdata", .{}); const cases = [_]TestCase{ .{ .path = "gnu.tar", .files = &[_]TestCase.File{ .{ .name = "small.txt", .size = 5, }, .{ .name = "small2.txt", .size = 11, }, }, .chksums = &[_][]const u8{ "e38b27eaccb4391bdec553a7f3ae6b2f", "c65bd2e50a56a2138bf1716f2fd56fe9", }, }, .{ .path = "sparse-formats.tar", .err = error.TarUnsupportedFileType, }, .{ .path = "star.tar", .files = &[_]TestCase.File{ .{ .name = "small.txt", .size = 5, }, .{ .name = "small2.txt", .size = 11, }, }, .chksums = &[_][]const u8{ "e38b27eaccb4391bdec553a7f3ae6b2f", "c65bd2e50a56a2138bf1716f2fd56fe9", }, }, .{ .path = "v7.tar", .files = &[_]TestCase.File{ .{ .name = "small.txt", .size = 5, }, .{ .name = "small2.txt", .size = 11, }, }, .chksums = &[_][]const u8{ "e38b27eaccb4391bdec553a7f3ae6b2f", "c65bd2e50a56a2138bf1716f2fd56fe9", }, }, .{ .path = "pax.tar", .files = &[_]TestCase.File{ .{ .name = "a/123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100", .size = 7, }, .{ .name = "a/b", .size = 0, .file_type = .symbolic_link, .link_name = "123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100", }, }, .chksums = &[_][]const u8{ "3c382e8f5b6631aa2db52643912ffd4a", }, }, .{ // pax attribute don't end with \n .path = "pax-bad-hdr-file.tar", .err = error.InvalidPaxAttribute, }, // // .{ // .path = "pax-bad-mtime-file.tar", // .err = error.TarBadHeader, // }, // .{ // size is in pax attribute .path = "pax-pos-size-file.tar", .files = &[_]TestCase.File{ .{ .name = "foo", .size = 999, .file_type = .normal, }, }, .chksums = &[_][]const u8{ "0afb597b283fe61b5d4879669a350556", }, }, .{ // has pax records which we are not interested in .path = "pax-records.tar", .files = &[_]TestCase.File{ .{ .name = "file", }, }, }, .{ // has global records which we are ignoring .path = "pax-global-records.tar", .files = &[_]TestCase.File{ .{ .name = "file1", }, .{ .name = "file2", }, .{ .name = "file3", }, .{ .name = "file4", }, }, }, .{ .path = "nil-uid.tar", .files = &[_]TestCase.File{ .{ .name = "P1050238.JPG.log", .size = 14, .file_type = .normal, }, }, .chksums = &[_][]const u8{ "08d504674115e77a67244beac19668f5", }, }, .{ // has xattrs and pax records which we are ignoring .path = "xattrs.tar", .files = &[_]TestCase.File{ .{ .name = "small.txt", .size = 5, .file_type = .normal, }, .{ .name = "small2.txt", .size = 11, .file_type = .normal, }, }, .chksums = &[_][]const u8{ "e38b27eaccb4391bdec553a7f3ae6b2f", "c65bd2e50a56a2138bf1716f2fd56fe9", }, }, .{ .path = "gnu-multi-hdrs.tar", .files = &[_]TestCase.File{ .{ .name = "GNU2/GNU2/long-path-name", .link_name = "GNU4/GNU4/long-linkpath-name", .file_type = .symbolic_link, }, }, }, .{ // has gnu type D (directory) and S (sparse) blocks .path = "gnu-incremental.tar", .err = error.TarUnsupportedFileType, }, .{ // should use values only from last pax header .path = "pax-multi-hdrs.tar", .files = &[_]TestCase.File{ .{ .name = "bar", .link_name = "PAX4/PAX4/long-linkpath-name", .file_type = .symbolic_link, }, }, }, .{ .path = "gnu-long-nul.tar", .files = &[_]TestCase.File{ .{ .name = "0123456789", }, }, }, .{ .path = "gnu-utf8.tar", .files = &[_]TestCase.File{ .{ .name = "☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹☺☻☹", }, }, }, .{ .path = "gnu-not-utf8.tar", .files = &[_]TestCase.File{ .{ .name = "hi\x80\x81\x82\x83bye", }, }, }, .{ // null in pax key .path = "pax-nul-xattrs.tar", .err = error.InvalidPaxAttribute, }, .{ .path = "pax-nul-path.tar", .err = error.InvalidPaxAttribute, }, .{ .path = "neg-size.tar", .err = error.TarHeader, }, .{ .path = "issue10968.tar", .err = error.TarHeader, }, .{ .path = "issue11169.tar", .err = error.TarHeader, }, .{ .path = "issue12435.tar", .err = error.TarHeaderChksum, }, .{ // has magic with space at end instead of null .path = "invalid-go17.tar", .files = &[_]TestCase.File{ .{ .name = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/foo", }, }, }, .{ .path = "ustar-file-devs.tar", .files = &[_]TestCase.File{ .{ .name = "file", }, }, }, .{ .path = "trailing-slash.tar", .files = &[_]TestCase.File{ .{ .name = "123456789/" ** 30, .file_type = .directory, }, }, }, .{ // Has size in gnu extended format. To represent size bigger than 8 GB. .path = "writer-big.tar", .files = &[_]TestCase.File{ .{ .name = "tmp/16gig.txt", .size = 16 * 1024 * 1024 * 1024, .truncated = true, }, }, }, .{ // Size in gnu extended format, and name in pax attribute. .path = "writer-big-long.tar", .files = &[_]TestCase.File{ .{ .name = "longname/" ** 15 ++ "16gig.txt", .size = 16 * 1024 * 1024 * 1024, .truncated = true, }, }, }, }; for (cases) |case| { //if (!std.mem.eql(u8, case.path, "pax-pos-size-file.tar")) continue; var fs_file = try test_dir.openFile(case.path, .{}); defer fs_file.close(); var iter = iterator(fs_file.reader(), null); var i: usize = 0; while (iter.next() catch |err| { if (case.err) |e| { try std.testing.expectEqual(e, err); continue; } else { return err; } }) |actual| { const expected = case.files[i]; try std.testing.expectEqualStrings(expected.name, actual.name); try std.testing.expectEqual(expected.size, actual.size); try std.testing.expectEqual(expected.file_type, actual.file_type); try std.testing.expectEqualStrings(expected.link_name, actual.link_name); if (case.chksums.len > i) { var actual_chksum = try actual.chksum(); var hex_to_bytes_buffer: [16]u8 = undefined; const expected_chksum = try std.fmt.hexToBytes(&hex_to_bytes_buffer, case.chksums[i]); // std.debug.print("actual chksum: {s}\n", .{std.fmt.fmtSliceHexLower(&actual_chksum)}); try std.testing.expectEqualStrings(expected_chksum, &actual_chksum); } else { if (!expected.truncated) try actual.skip(); // skip file content } i += 1; } try std.testing.expectEqual(case.files.len, i); } }