const std = @import("../std.zig"); const Watch = @This(); const Step = std.Build.Step; const Allocator = std.mem.Allocator; const assert = std.debug.assert; dir_table: DirTable, /// Keyed differently but indexes correspond 1:1 with `dir_table`. handle_table: HandleTable, fan_fd: std.posix.fd_t, generation: Generation, pub const fan_mask: std.os.linux.fanotify.MarkMask = .{ .CLOSE_WRITE = true, .CREATE = true, .DELETE = true, .DELETE_SELF = true, .EVENT_ON_CHILD = true, .MOVED_FROM = true, .MOVED_TO = true, .MOVE_SELF = true, .ONDIR = true, }; pub const init: Watch = .{ .dir_table = .{}, .handle_table = .{}, .fan_fd = -1, .generation = 0, }; /// Key is the directory to watch which contains one or more files we are /// interested in noticing changes to. /// /// Value is generation. const DirTable = std.ArrayHashMapUnmanaged(Cache.Path, void, Cache.Path.TableAdapter, false); const HandleTable = std.ArrayHashMapUnmanaged(LinuxFileHandle, ReactionSet, LinuxFileHandle.Adapter, false); /// Special key of "." means any changes in this directory trigger the steps. const ReactionSet = std.StringArrayHashMapUnmanaged(StepSet); const StepSet = std.AutoArrayHashMapUnmanaged(*Step, Generation); const Generation = u8; const Hash = std.hash.Wyhash; const Cache = std.Build.Cache; pub const Match = struct { /// Relative to the watched directory, the file path that triggers this /// match. basename: []const u8, /// The step to re-run when file corresponding to `basename` is changed. step: *Step, pub const Context = struct { pub fn hash(self: Context, a: Match) u32 { _ = self; var hasher = Hash.init(0); std.hash.autoHash(&hasher, a.step); hasher.update(a.basename); return @truncate(hasher.final()); } pub fn eql(self: Context, a: Match, b: Match, b_index: usize) bool { _ = self; _ = b_index; return a.step == b.step and std.mem.eql(u8, a.basename, b.basename); } }; }; pub const LinuxFileHandle = struct { handle: *align(1) std.os.linux.file_handle, pub fn clone(lfh: LinuxFileHandle, gpa: Allocator) Allocator.Error!LinuxFileHandle { const bytes = lfh.slice(); const new_ptr = try gpa.alignedAlloc( u8, @alignOf(std.os.linux.file_handle), @sizeOf(std.os.linux.file_handle) + bytes.len, ); const new_header: *std.os.linux.file_handle = @ptrCast(new_ptr); new_header.* = lfh.handle.*; const new: LinuxFileHandle = .{ .handle = new_header }; @memcpy(new.slice(), lfh.slice()); return new; } pub fn destroy(lfh: LinuxFileHandle, gpa: Allocator) void { const ptr: [*]u8 = @ptrCast(lfh.handle); const allocated_slice = ptr[0 .. @sizeOf(std.os.linux.file_handle) + lfh.handle.handle_bytes]; return gpa.free(allocated_slice); } pub fn slice(lfh: LinuxFileHandle) []u8 { const ptr: [*]u8 = &lfh.handle.f_handle; return ptr[0..lfh.handle.handle_bytes]; } pub const Adapter = struct { pub fn hash(self: Adapter, a: LinuxFileHandle) u32 { _ = self; const unsigned_type: u32 = @bitCast(a.handle.handle_type); return @truncate(Hash.hash(unsigned_type, a.slice())); } pub fn eql(self: Adapter, a: LinuxFileHandle, b: LinuxFileHandle, b_index: usize) bool { _ = self; _ = b_index; return a.handle.handle_type == b.handle.handle_type and std.mem.eql(u8, a.slice(), b.slice()); } }; }; pub fn getDirHandle(gpa: Allocator, path: std.Build.Cache.Path) !LinuxFileHandle { var file_handle_buffer: [@sizeOf(std.os.linux.file_handle) + 128]u8 align(@alignOf(std.os.linux.file_handle)) = undefined; var mount_id: i32 = undefined; var buf: [std.fs.max_path_bytes]u8 = undefined; const adjusted_path = if (path.sub_path.len == 0) "./" else std.fmt.bufPrint(&buf, "{s}/", .{ path.sub_path, }) catch return error.NameTooLong; const stack_ptr: *std.os.linux.file_handle = @ptrCast(&file_handle_buffer); stack_ptr.handle_bytes = file_handle_buffer.len - @sizeOf(std.os.linux.file_handle); try std.posix.name_to_handle_at(path.root_dir.handle.fd, adjusted_path, stack_ptr, &mount_id, std.os.linux.AT.HANDLE_FID); const stack_lfh: LinuxFileHandle = .{ .handle = stack_ptr }; return stack_lfh.clone(gpa); } pub fn markDirtySteps(w: *Watch, gpa: Allocator) !bool { const fanotify = std.os.linux.fanotify; const M = fanotify.event_metadata; var events_buf: [256 + 4096]u8 = undefined; var any_dirty = false; while (true) { var len = std.posix.read(w.fan_fd, &events_buf) catch |err| switch (err) { error.WouldBlock => return any_dirty, else => |e| return e, }; var meta: [*]align(1) M = @ptrCast(&events_buf); while (len >= @sizeOf(M) and meta[0].event_len >= @sizeOf(M) and meta[0].event_len <= len) : ({ len -= meta[0].event_len; meta = @ptrCast(@as([*]u8, @ptrCast(meta)) + meta[0].event_len); }) { assert(meta[0].vers == M.VERSION); if (meta[0].mask.Q_OVERFLOW) { any_dirty = true; std.log.warn("file system watch queue overflowed; falling back to fstat", .{}); markAllFilesDirty(w, gpa); return true; } const fid: *align(1) fanotify.event_info_fid = @ptrCast(meta + 1); switch (fid.hdr.info_type) { .DFID_NAME => { const file_handle: *align(1) std.os.linux.file_handle = @ptrCast(&fid.handle); const file_name_z: [*:0]u8 = @ptrCast((&file_handle.f_handle).ptr + file_handle.handle_bytes); const file_name = std.mem.span(file_name_z); const lfh: Watch.LinuxFileHandle = .{ .handle = file_handle }; if (w.handle_table.getPtr(lfh)) |reaction_set| { if (reaction_set.getPtr(".")) |glob_set| any_dirty = markStepSetDirty(gpa, glob_set, any_dirty); if (reaction_set.getPtr(file_name)) |step_set| any_dirty = markStepSetDirty(gpa, step_set, any_dirty); } }, else => |t| std.log.warn("unexpected fanotify event '{s}'", .{@tagName(t)}), } } } } pub fn markFailedStepsDirty(gpa: Allocator, all_steps: []const *Step) void { for (all_steps) |step| switch (step.state) { .dependency_failure, .failure, .skipped => step.recursiveReset(gpa), else => continue, }; // Now that all dirty steps have been found, the remaining steps that // succeeded from last run shall be marked "cached". for (all_steps) |step| switch (step.state) { .success => step.result_cached = true, else => continue, }; } fn markAllFilesDirty(w: *Watch, gpa: Allocator) void { for (w.handle_table.values()) |reaction_set| { for (reaction_set.values()) |step_set| { for (step_set.keys()) |step| { step.recursiveReset(gpa); } } } } fn markStepSetDirty(gpa: Allocator, step_set: *StepSet, any_dirty: bool) bool { var this_any_dirty = false; for (step_set.keys()) |step| { if (step.state != .precheck_done) { step.recursiveReset(gpa); this_any_dirty = true; } } return any_dirty or this_any_dirty; }