const std = @import("../../std.zig"); const builtin = @import("builtin"); const linux = std.os.linux; const mem = std.mem; const elf = std.elf; const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; const fs = std.fs; test "fallocate" { if (builtin.cpu.arch.isMIPS64() and (builtin.abi == .gnuabin32 or builtin.abi == .muslabin32)) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/23809 var tmp = std.testing.tmpDir(.{}); defer tmp.cleanup(); const path = "test_fallocate"; const file = try tmp.dir.createFile(path, .{ .truncate = true, .mode = 0o666 }); defer file.close(); try expect((try file.stat()).size == 0); const len: i64 = 65536; switch (linux.E.init(linux.fallocate(file.handle, 0, 0, len))) { .SUCCESS => {}, .NOSYS => return error.SkipZigTest, .OPNOTSUPP => return error.SkipZigTest, else => |errno| std.debug.panic("unhandled errno: {}", .{errno}), } try expect((try file.stat()).size == len); } test "getpid" { try expect(linux.getpid() != 0); } test "getppid" { try expect(linux.getppid() != 0); } test "timer" { const epoll_fd = linux.epoll_create(); var err: linux.E = linux.E.init(epoll_fd); try expect(err == .SUCCESS); const timer_fd = linux.timerfd_create(linux.TIMERFD_CLOCK.MONOTONIC, .{}); try expect(linux.E.init(timer_fd) == .SUCCESS); const time_interval = linux.timespec{ .sec = 0, .nsec = 2000000, }; const new_time = linux.itimerspec{ .it_interval = time_interval, .it_value = time_interval, }; err = linux.E.init(linux.timerfd_settime(@as(i32, @intCast(timer_fd)), .{}, &new_time, null)); try expect(err == .SUCCESS); var event = linux.epoll_event{ .events = linux.EPOLL.IN | linux.EPOLL.OUT | linux.EPOLL.ET, .data = linux.epoll_data{ .ptr = 0 }, }; err = linux.E.init(linux.epoll_ctl(@as(i32, @intCast(epoll_fd)), linux.EPOLL.CTL_ADD, @as(i32, @intCast(timer_fd)), &event)); try expect(err == .SUCCESS); const events_one: linux.epoll_event = undefined; var events = [_]linux.epoll_event{events_one} ** 8; err = linux.E.init(linux.epoll_wait(@as(i32, @intCast(epoll_fd)), &events, 8, -1)); try expect(err == .SUCCESS); } test "statx" { var tmp = std.testing.tmpDir(.{}); defer tmp.cleanup(); const tmp_file_name = "just_a_temporary_file.txt"; var file = try tmp.dir.createFile(tmp_file_name, .{}); defer file.close(); var statx_buf: linux.Statx = undefined; switch (linux.E.init(linux.statx(file.handle, "", linux.AT.EMPTY_PATH, linux.STATX_BASIC_STATS, &statx_buf))) { .SUCCESS => {}, else => unreachable, } if (builtin.cpu.arch == .riscv32 or builtin.cpu.arch.isLoongArch()) return error.SkipZigTest; // No fstatat, so the rest of the test is meaningless. var stat_buf: linux.Stat = undefined; switch (linux.E.init(linux.fstatat(file.handle, "", &stat_buf, linux.AT.EMPTY_PATH))) { .SUCCESS => {}, else => unreachable, } try expect(stat_buf.mode == statx_buf.mode); try expect(@as(u32, @bitCast(stat_buf.uid)) == statx_buf.uid); try expect(@as(u32, @bitCast(stat_buf.gid)) == statx_buf.gid); try expect(@as(u64, @bitCast(@as(i64, stat_buf.size))) == statx_buf.size); try expect(@as(u64, @bitCast(@as(i64, stat_buf.blksize))) == statx_buf.blksize); try expect(@as(u64, @bitCast(@as(i64, stat_buf.blocks))) == statx_buf.blocks); } test "user and group ids" { if (builtin.link_libc) return error.SkipZigTest; try expectEqual(linux.getauxval(elf.AT_UID), linux.getuid()); try expectEqual(linux.getauxval(elf.AT_GID), linux.getgid()); try expectEqual(linux.getauxval(elf.AT_EUID), linux.geteuid()); try expectEqual(linux.getauxval(elf.AT_EGID), linux.getegid()); } test "fadvise" { var tmp = std.testing.tmpDir(.{}); defer tmp.cleanup(); const tmp_file_name = "temp_posix_fadvise.txt"; var file = try tmp.dir.createFile(tmp_file_name, .{}); defer file.close(); var buf: [2048]u8 = undefined; try file.writeAll(&buf); const ret = linux.fadvise(file.handle, 0, 0, linux.POSIX_FADV.SEQUENTIAL); try expectEqual(@as(usize, 0), ret); } test "sigset_t" { std.debug.assert(@sizeOf(linux.sigset_t) == (linux.NSIG / 8)); var sigset = linux.sigemptyset(); // See that none are set, then set each one, see that they're all set, then // remove them all, and then see that none are set. for (1..linux.NSIG) |i| { try expectEqual(linux.sigismember(&sigset, @truncate(i)), false); } for (1..linux.NSIG) |i| { linux.sigaddset(&sigset, @truncate(i)); } for (1..linux.NSIG) |i| { try expectEqual(linux.sigismember(&sigset, @truncate(i)), true); } for (1..linux.NSIG) |i| { linux.sigdelset(&sigset, @truncate(i)); } for (1..linux.NSIG) |i| { try expectEqual(linux.sigismember(&sigset, @truncate(i)), false); } // Kernel sigset_t is either 2+ 32-bit values or 1+ 64-bit value(s). const sigset_len = @typeInfo(linux.sigset_t).array.len; const sigset_elemis64 = 64 == @bitSizeOf(@typeInfo(linux.sigset_t).array.child); linux.sigaddset(&sigset, 1); try expectEqual(sigset[0], 1); if (sigset_len > 1) { try expectEqual(sigset[1], 0); } linux.sigaddset(&sigset, 31); try expectEqual(sigset[0], 0x4000_0001); if (sigset_len > 1) { try expectEqual(sigset[1], 0); } linux.sigaddset(&sigset, 36); if (sigset_elemis64) { try expectEqual(sigset[0], 0x8_4000_0001); } else { try expectEqual(sigset[0], 0x4000_0001); try expectEqual(sigset[1], 0x8); } linux.sigaddset(&sigset, 64); if (sigset_elemis64) { try expectEqual(sigset[0], 0x8000_0008_4000_0001); } else { try expectEqual(sigset[0], 0x4000_0001); try expectEqual(sigset[1], 0x8000_0008); } } test "sigfillset" { // unlike the C library, all the signals are set in the kernel-level fillset const sigset = linux.sigfillset(); for (1..linux.NSIG) |i| { try expectEqual(linux.sigismember(&sigset, @truncate(i)), true); } } test "sigemptyset" { const sigset = linux.sigemptyset(); for (1..linux.NSIG) |i| { try expectEqual(linux.sigismember(&sigset, @truncate(i)), false); } } test "sysinfo" { var info: linux.Sysinfo = undefined; const result: usize = linux.sysinfo(&info); try expect(std.os.linux.E.init(result) == .SUCCESS); try expect(info.mem_unit > 0); try expect(info.mem_unit <= std.heap.page_size_max); } comptime { std.debug.assert(128 == @as(u32, @bitCast(linux.FUTEX_OP{ .cmd = @enumFromInt(0), .private = true, .realtime = false }))); std.debug.assert(256 == @as(u32, @bitCast(linux.FUTEX_OP{ .cmd = @enumFromInt(0), .private = false, .realtime = true }))); // Check futex_param4 union is packed correctly const param_union = linux.futex_param4{ .val2 = 0xaabbcc, }; std.debug.assert(@intFromPtr(param_union.timeout) == 0xaabbcc); } test "futex v1" { var lock: std.atomic.Value(u32) = std.atomic.Value(u32).init(1); var rc: usize = 0; // No-op wait, lock value is not expected value rc = linux.futex(&lock.raw, .{ .cmd = .WAIT, .private = true }, 2, .{ .timeout = null }, null, 0); try expectEqual(.AGAIN, linux.E.init(rc)); rc = linux.futex_4arg(&lock.raw, .{ .cmd = .WAIT, .private = true }, 2, null); try expectEqual(.AGAIN, linux.E.init(rc)); // Short-fuse wait, timeout kicks in rc = linux.futex(&lock.raw, .{ .cmd = .WAIT, .private = true }, 1, .{ .timeout = &.{ .sec = 0, .nsec = 2 } }, null, 0); try expectEqual(.TIMEDOUT, linux.E.init(rc)); rc = linux.futex_4arg(&lock.raw, .{ .cmd = .WAIT, .private = true }, 1, &.{ .sec = 0, .nsec = 2 }); try expectEqual(.TIMEDOUT, linux.E.init(rc)); // Wakeup (no waiters) rc = linux.futex(&lock.raw, .{ .cmd = .WAKE, .private = true }, 2, .{ .timeout = null }, null, 0); try expectEqual(0, rc); rc = linux.futex_3arg(&lock.raw, .{ .cmd = .WAKE, .private = true }, 2); try expectEqual(0, rc); // CMP_REQUEUE - val3 mismatch rc = linux.futex(&lock.raw, .{ .cmd = .CMP_REQUEUE, .private = true }, 2, .{ .val2 = 0 }, null, 99); try expectEqual(.AGAIN, linux.E.init(rc)); // CMP_REQUEUE - requeue (but no waiters, so ... not much) { const val3 = 1; const wake_nr = 3; const requeue_max = std.math.maxInt(u31); var target_lock: std.atomic.Value(u32) = std.atomic.Value(u32).init(1); rc = linux.futex(&lock.raw, .{ .cmd = .CMP_REQUEUE, .private = true }, wake_nr, .{ .val2 = requeue_max }, &target_lock.raw, val3); try expectEqual(0, rc); } // WAKE_OP - just to see if we can construct the arguments ... { var lock2: std.atomic.Value(u32) = std.atomic.Value(u32).init(1); const wake1_nr = 2; const wake2_nr = 3; const wake_op = linux.FUTEX_WAKE_OP{ .cmd = .ANDN, .arg_shift = true, .cmp = .LT, .oparg = 4, .cmdarg = 5, }; rc = linux.futex(&lock.raw, .{ .cmd = .WAKE_OP, .private = true }, wake1_nr, .{ .val2 = wake2_nr }, &lock2.raw, @bitCast(wake_op)); try expectEqual(0, rc); } // WAIT_BITSET { // val1 return early rc = linux.futex(&lock.raw, .{ .cmd = .WAIT_BITSET, .private = true }, 2, .{ .timeout = null }, null, 0xfff); try expectEqual(.AGAIN, linux.E.init(rc)); // timeout wait const timeout: linux.timespec = .{ .sec = 0, .nsec = 2 }; rc = linux.futex(&lock.raw, .{ .cmd = .WAIT_BITSET, .private = true }, 1, .{ .timeout = &timeout }, null, 0xfff); try expectEqual(.TIMEDOUT, linux.E.init(rc)); } // WAKE_BITSET { rc = linux.futex(&lock.raw, .{ .cmd = .WAKE_BITSET, .private = true }, 2, .{ .timeout = null }, null, 0xfff000); try expectEqual(0, rc); // bitmask must have at least 1 bit set: rc = linux.futex(&lock.raw, .{ .cmd = .WAKE_BITSET, .private = true }, 2, .{ .timeout = null }, null, 0); try expectEqual(.INVAL, linux.E.init(rc)); } } comptime { std.debug.assert(2 == @as(u32, @bitCast(linux.FUTEX2_FLAGS{ .size = .U32, .private = false }))); std.debug.assert(128 == @as(u32, @bitCast(linux.FUTEX2_FLAGS{ .size = @enumFromInt(0), .private = true }))); } test "futex2_waitv" { const locks = [_]std.atomic.Value(u32){ std.atomic.Value(u32).init(1), std.atomic.Value(u32).init(1), std.atomic.Value(u32).init(1), }; const futexes = [_]linux.futex2_waitone{ .{ .val = 1, .uaddr = @intFromPtr(&locks[0].raw), .flags = .{ .size = .U32, .private = true }, }, .{ .val = 1, .uaddr = @intFromPtr(&locks[1].raw), .flags = .{ .size = .U32, .private = true }, }, .{ .val = 1, .uaddr = @intFromPtr(&locks[2].raw), .flags = .{ .size = .U32, .private = true }, }, }; const timeout = linux.kernel_timespec{ .sec = 0, .nsec = 2 }; // absolute timeout, so this is 1970... const rc = linux.futex2_waitv(&futexes, futexes.len, .{}, &timeout, .MONOTONIC); switch (linux.E.init(rc)) { .NOSYS => return error.SkipZigTest, // futex2_waitv added in kernel v5.16 else => |err| try expectEqual(.TIMEDOUT, err), } } // Futex v2 API is only supported on recent kernels (v6.7), so skip tests if the syscalls // return ENOSYS. fn futex2_skip_if_unsupported() !void { const lock: u32 = 0; const rc = linux.futex2_wake(&lock, 0, 1, .{ .size = .U32, .private = true }); if (linux.E.init(rc) == .NOSYS) { return error.SkipZigTest; } } test "futex2_wait" { var lock: std.atomic.Value(u32) = std.atomic.Value(u32).init(1); var rc: usize = 0; const mask = 0x1; try futex2_skip_if_unsupported(); // The API for 8,16,64 bit futexes is defined, but as of kernel v6.14 // (at least) they're not implemented. if (false) { rc = linux.futex2_wait(&lock.raw, 1, mask, .{ .size = .U8, .private = true }, null, .MONOTONIC); try expectEqual(.INVAL, linux.E.init(rc)); rc = linux.futex2_wait(&lock.raw, 1, mask, .{ .size = .U16, .private = true }, null, .MONOTONIC); try expectEqual(.INVAL, linux.E.init(rc)); rc = linux.futex2_wait(&lock.raw, 1, mask, .{ .size = .U64, .private = true }, null, .MONOTONIC); try expectEqual(.INVAL, linux.E.init(rc)); } const flags = linux.FUTEX2_FLAGS{ .size = .U32, .private = true }; // no-wait, lock state mismatch rc = linux.futex2_wait(&lock.raw, 2, mask, flags, null, .MONOTONIC); try expectEqual(.AGAIN, linux.E.init(rc)); // hit timeout on wait rc = linux.futex2_wait(&lock.raw, 1, mask, flags, &.{ .sec = 0, .nsec = 2 }, .MONOTONIC); try expectEqual(.TIMEDOUT, linux.E.init(rc)); // timeout is absolute { var curr: linux.timespec = undefined; rc = linux.clock_gettime(.MONOTONIC, &curr); // gettime() uses platform timespec try expectEqual(0, rc); // ... but futex2_wait always uses 64-bit timespec var timeout: linux.kernel_timespec = .{ .sec = curr.sec, .nsec = curr.nsec + 2, }; rc = linux.futex2_wait(&lock.raw, 1, mask, flags, &timeout, .MONOTONIC); try expectEqual(.TIMEDOUT, linux.E.init(rc)); } rc = linux.futex2_wait(&lock.raw, 1, mask, flags, &.{ .sec = 0, .nsec = 2 }, .REALTIME); try expectEqual(.TIMEDOUT, linux.E.init(rc)); } test "futex2_wake" { var lock: std.atomic.Value(u32) = std.atomic.Value(u32).init(1); try futex2_skip_if_unsupported(); const rc = linux.futex2_wake(&lock.raw, 0xFF, 1, .{ .size = .U32, .private = true }); try expectEqual(0, rc); } test "futex2_requeue" { try futex2_skip_if_unsupported(); const locks = [_]std.atomic.Value(u32){ std.atomic.Value(u32).init(1), std.atomic.Value(u32).init(1), }; const futexes = [_]linux.futex2_waitone{ .{ .val = 1, .uaddr = @intFromPtr(&locks[0].raw), .flags = .{ .size = .U32, .private = true }, }, .{ .val = 1, .uaddr = @intFromPtr(&locks[1].raw), .flags = .{ .size = .U32, .private = true }, }, }; const rc = linux.futex2_requeue(&futexes, .{}, 2, 2); try expectEqual(0, rc); } test { _ = linux.IoUring; }