const builtin = @import("builtin"); const std = @import("../../std.zig"); const SYS = std.os.linux.SYS; pub fn syscall0(number: SYS) u32 { // r0 is both an input register and a clobber. musl and glibc achieve this with // a "+" constraint, which isn't supported in Zig, so instead we separately list // r0 as both an input and an output. (Listing it as an input and a clobber would // cause the C backend to emit invalid code; see #25209.) var r0_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), : [number] "{r0}" (@intFromEnum(number)), : .{ .memory = true, .cr0 = true, .r4 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall1(number: SYS, arg1: u32) u32 { // r0 is both an input and a clobber. var r0_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), : .{ .memory = true, .cr0 = true, .r4 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall2(number: SYS, arg1: u32, arg2: u32) u32 { // These registers are both inputs and clobbers. var r0_out: u32 = undefined; var r4_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), [r4_out] "={r4}" (r4_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), [arg2] "{r4}" (arg2), : .{ .memory = true, .cr0 = true, .r5 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall3(number: SYS, arg1: u32, arg2: u32, arg3: u32) u32 { // These registers are both inputs and clobbers. var r0_out: u32 = undefined; var r4_out: u32 = undefined; var r5_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), [r4_out] "={r4}" (r4_out), [r5_out] "={r5}" (r5_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), [arg2] "{r4}" (arg2), [arg3] "{r5}" (arg3), : .{ .memory = true, .cr0 = true, .r6 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall4(number: SYS, arg1: u32, arg2: u32, arg3: u32, arg4: u32) u32 { // These registers are both inputs and clobbers. var r0_out: u32 = undefined; var r4_out: u32 = undefined; var r5_out: u32 = undefined; var r6_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), [r4_out] "={r4}" (r4_out), [r5_out] "={r5}" (r5_out), [r6_out] "={r6}" (r6_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), [arg2] "{r4}" (arg2), [arg3] "{r5}" (arg3), [arg4] "{r6}" (arg4), : .{ .memory = true, .cr0 = true, .r7 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall5(number: SYS, arg1: u32, arg2: u32, arg3: u32, arg4: u32, arg5: u32) u32 { // These registers are both inputs and clobbers. var r0_out: u32 = undefined; var r4_out: u32 = undefined; var r5_out: u32 = undefined; var r6_out: u32 = undefined; var r7_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), [r4_out] "={r4}" (r4_out), [r5_out] "={r5}" (r5_out), [r6_out] "={r6}" (r6_out), [r7_out] "={r7}" (r7_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), [arg2] "{r4}" (arg2), [arg3] "{r5}" (arg3), [arg4] "{r6}" (arg4), [arg5] "{r7}" (arg5), : .{ .memory = true, .cr0 = true, .r8 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn syscall6( number: SYS, arg1: u32, arg2: u32, arg3: u32, arg4: u32, arg5: u32, arg6: u32, ) u32 { // These registers are both inputs and clobbers. var r0_out: u32 = undefined; var r4_out: u32 = undefined; var r5_out: u32 = undefined; var r6_out: u32 = undefined; var r7_out: u32 = undefined; var r8_out: u32 = undefined; return asm volatile ( \\ sc \\ bns+ 1f \\ neg 3, 3 \\ 1: : [ret] "={r3}" (-> u32), [r0_out] "={r0}" (r0_out), [r4_out] "={r4}" (r4_out), [r5_out] "={r5}" (r5_out), [r6_out] "={r6}" (r6_out), [r7_out] "={r7}" (r7_out), [r8_out] "={r8}" (r8_out), : [number] "{r0}" (@intFromEnum(number)), [arg1] "{r3}" (arg1), [arg2] "{r4}" (arg2), [arg3] "{r5}" (arg3), [arg4] "{r6}" (arg4), [arg5] "{r7}" (arg5), [arg6] "{r8}" (arg6), : .{ .memory = true, .cr0 = true, .r9 = true, .r10 = true, .r11 = true, .r12 = true, .ctr = true, .xer = true }); } pub fn clone() callconv(.naked) u32 { // __clone(func, stack, flags, arg, ptid, tls, ctid) // 3, 4, 5, 6, 7, 8, 9 // // syscall(SYS_clone, flags, stack, ptid, tls, ctid) // 0 3, 4, 5, 6, 7 asm volatile ( \\ # store non-volatile regs r29, r30 on stack in order to put our \\ # start func and its arg there \\ stwu 29, -16(1) \\ stw 30, 4(1) \\ \\ # save r3 (func) into r29, and r6(arg) into r30 \\ mr 29, 3 \\ mr 30, 6 \\ \\ # create initial stack frame for new thread \\ clrrwi 4, 4, 4 \\ li 0, 0 \\ stwu 0, -16(4) \\ \\ #move c into first arg \\ mr 3, 5 \\ #mr 4, 4 \\ mr 5, 7 \\ mr 6, 8 \\ mr 7, 9 \\ \\ # move syscall number into r0 \\ li 0, 120 # SYS_clone \\ \\ sc \\ \\ # check for syscall error \\ bns+ 1f # jump to label 1 if no summary overflow. \\ #else \\ neg 3, 3 #negate the result (errno) \\ 1: \\ # compare sc result with 0 \\ cmpwi cr7, 3, 0 \\ \\ # if not 0, restore stack and return \\ beq cr7, 2f \\ lwz 29, 0(1) \\ lwz 30, 4(1) \\ addi 1, 1, 16 \\ blr \\ \\ #else: we're the child \\ 2: ); if (builtin.unwind_tables != .none or !builtin.strip_debug_info) asm volatile ( \\ .cfi_undefined lr ); asm volatile ( \\ li 31, 0 \\ mtlr 0 \\ \\ #call funcptr: move arg (d) into r3 \\ mr 3, 30 \\ #move r29 (funcptr) into CTR reg \\ mtctr 29 \\ # call CTR reg \\ bctrl \\ # mov SYS_exit into r0 (the exit param is already in r3) \\ li 0, 1 \\ sc ); } pub const restore = restore_rt; pub fn restore_rt() callconv(.naked) noreturn { switch (builtin.zig_backend) { .stage2_c => asm volatile ( \\ li 0, %[number] \\ sc : : [number] "i" (@intFromEnum(SYS.rt_sigreturn)), ), else => asm volatile ( \\ sc : : [number] "{r0}" (@intFromEnum(SYS.rt_sigreturn)), ), } } pub const VDSO = struct { pub const CGT_SYM = "__kernel_clock_gettime"; pub const CGT_VER = "LINUX_2.6.15"; }; pub const blksize_t = i32; pub const nlink_t = u32; pub const time_t = i32; pub const mode_t = u32; pub const off_t = i64; pub const ino_t = u64; pub const dev_t = u64; pub const blkcnt_t = i64; // The `stat` definition used by the Linux kernel. pub const Stat = extern struct { dev: dev_t, ino: ino_t, mode: mode_t, nlink: nlink_t, uid: std.os.linux.uid_t, gid: std.os.linux.gid_t, rdev: dev_t, __rdev_padding: i16, size: off_t, blksize: blksize_t, blocks: blkcnt_t, atim: std.os.linux.timespec, mtim: std.os.linux.timespec, ctim: std.os.linux.timespec, __unused: [2]u32, pub fn atime(self: @This()) std.os.linux.timespec { return self.atim; } pub fn mtime(self: @This()) std.os.linux.timespec { return self.mtim; } pub fn ctime(self: @This()) std.os.linux.timespec { return self.ctim; } };