const std = @import("std"); const builtin = @import("builtin"); const native_endian = builtin.cpu.arch.endian(); const ofmt_c = builtin.object_format == .c; /// For now, we prefer weak linkage because some of the routines we implement here may also be /// provided by system/dynamic libc. Eventually we should be more disciplined about this on a /// per-symbol, per-target basis: https://github.com/ziglang/zig/issues/11883 pub const linkage: std.builtin.GlobalLinkage = if (builtin.is_test) .internal else if (ofmt_c) .strong else .weak; /// Determines the symbol's visibility to other objects. /// For WebAssembly this allows the symbol to be resolved to other modules, but will not /// export it to the host runtime. pub const visibility: std.builtin.SymbolVisibility = if (linkage == .internal or builtin.link_mode == .dynamic) .default else .hidden; pub const PreferredLoadStoreElement = element: { if (std.simd.suggestVectorLength(u8)) |vec_size| { const Vec = @Vector(vec_size, u8); if (@sizeOf(Vec) == vec_size and std.math.isPowerOfTwo(vec_size)) { break :element Vec; } } break :element usize; }; pub const want_aeabi = switch (builtin.abi) { .eabi, .eabihf, .musleabi, .musleabihf, .gnueabi, .gnueabihf, .android, .androideabi, => switch (builtin.cpu.arch) { .arm, .armeb, .thumb, .thumbeb => true, else => false, }, else => false, }; /// These functions are required on Windows on ARM. They are provided by MSVC libc, but in libc-less /// builds or when linking MinGW libc they are our responsibility. /// Temporarily used for thumb-uefi until https://github.com/ziglang/zig/issues/21630 is addressed. pub const want_windows_arm_abi = e: { if (!builtin.cpu.arch.isArm()) break :e false; switch (builtin.os.tag) { .windows, .uefi => {}, else => break :e false, } // The ABI is needed, but it's only our reponsibility if libc won't provide it. break :e builtin.abi.isGnu() or !builtin.link_libc; }; /// These functions are required by on Windows on x86 on some ABIs. They are provided by MSVC libc, /// but in libc-less builds they are our responsibility. pub const want_windows_x86_msvc_abi = e: { if (builtin.cpu.arch != .x86) break :e false; if (builtin.os.tag != .windows) break :e false; switch (builtin.abi) { .none, .msvc, .itanium => {}, else => break :e false, } // The ABI is needed, but it's only our responsibility if libc won't provide it. break :e !builtin.link_libc; }; pub const want_ppc_abi = builtin.cpu.arch.isPowerPC(); pub const want_float_exceptions = !builtin.cpu.arch.isWasm(); // Libcalls that involve u128 on Windows x86-64 are expected by LLVM to use the // calling convention of @Vector(2, u64), rather than what's standard. pub const want_windows_v2u64_abi = builtin.os.tag == .windows and builtin.cpu.arch == .x86_64 and !ofmt_c; /// This governs whether to use these symbol names for f16/f32 conversions /// rather than the standard names: /// * __gnu_f2h_ieee /// * __gnu_h2f_ieee /// Known correct configurations: /// x86_64-freestanding-none => true /// x86_64-linux-none => true /// x86_64-linux-gnu => true /// x86_64-linux-musl => true /// x86_64-linux-eabi => true /// arm-linux-musleabihf => true /// arm-linux-gnueabihf => true /// arm-linux-eabihf => false /// wasm32-wasi-musl => false /// wasm32-freestanding-none => false /// x86_64-windows-gnu => true /// x86_64-windows-msvc => true /// any-macos-any => false pub const gnu_f16_abi = switch (builtin.cpu.arch) { .wasm32, .wasm64, .riscv64, .riscv64be, .riscv32, .riscv32be, => false, .x86, .x86_64 => true, .arm, .armeb, .thumb, .thumbeb => switch (builtin.abi) { .eabi, .eabihf => false, else => true, }, else => !builtin.os.tag.isDarwin(), }; pub const want_sparc_abi = builtin.cpu.arch.isSPARC(); pub const test_safety = switch (builtin.zig_backend) { .stage2_aarch64 => false, else => builtin.is_test, }; // Avoid dragging in the runtime safety mechanisms into this .o file, unless // we're trying to test compiler-rt. pub const panic = if (test_safety) std.debug.FullPanic(std.debug.defaultPanic) else std.debug.no_panic; /// This seems to mostly correspond to `clang::TargetInfo::HasFloat16`. pub fn F16T(comptime OtherType: type) type { return switch (builtin.cpu.arch) { .amdgcn, .arm, .armeb, .thumb, .thumbeb, .aarch64, .aarch64_be, .hexagon, .loongarch32, .loongarch64, .nvptx, .nvptx64, .riscv32, .riscv32be, .riscv64, .riscv64be, .s390x, .spirv32, .spirv64, => f16, .x86, .x86_64 => if (builtin.target.os.tag.isDarwin()) switch (OtherType) { // Starting with LLVM 16, Darwin uses different abi for f16 // depending on the type of the other return/argument..??? f32, f64 => u16, f80, f128 => f16, else => unreachable, } else f16, else => u16, }; } pub fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { switch (Z) { u16 => { // 16x16 --> 32 bit multiply const product = @as(u32, a) * @as(u32, b); hi.* = @intCast(product >> 16); lo.* = @truncate(product); }, u32 => { // 32x32 --> 64 bit multiply const product = @as(u64, a) * @as(u64, b); hi.* = @truncate(product >> 32); lo.* = @truncate(product); }, u64 => { const S = struct { fn loWord(x: u64) u64 { return @as(u32, @truncate(x)); } fn hiWord(x: u64) u64 { return @as(u32, @truncate(x >> 32)); } }; // 64x64 -> 128 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. // Each of the component 32x32 -> 64 products const plolo: u64 = S.loWord(a) * S.loWord(b); const plohi: u64 = S.loWord(a) * S.hiWord(b); const philo: u64 = S.hiWord(a) * S.loWord(b); const phihi: u64 = S.hiWord(a) * S.hiWord(b); // Sum terms that contribute to lo in a way that allows us to get the carry const r0: u64 = S.loWord(plolo); const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); lo.* = r0 +% (r1 << 32); // Sum terms contributing to hi with the carry from lo hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; }, u128 => { const Word_LoMask: u64 = 0x00000000ffffffff; const Word_HiMask: u64 = 0xffffffff00000000; const Word_FullMask: u64 = 0xffffffffffffffff; const S = struct { fn Word_1(x: u128) u64 { return @as(u32, @truncate(x >> 96)); } fn Word_2(x: u128) u64 { return @as(u32, @truncate(x >> 64)); } fn Word_3(x: u128) u64 { return @as(u32, @truncate(x >> 32)); } fn Word_4(x: u128) u64 { return @as(u32, @truncate(x)); } }; // 128x128 -> 256 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. const product11: u64 = S.Word_1(a) * S.Word_1(b); const product12: u64 = S.Word_1(a) * S.Word_2(b); const product13: u64 = S.Word_1(a) * S.Word_3(b); const product14: u64 = S.Word_1(a) * S.Word_4(b); const product21: u64 = S.Word_2(a) * S.Word_1(b); const product22: u64 = S.Word_2(a) * S.Word_2(b); const product23: u64 = S.Word_2(a) * S.Word_3(b); const product24: u64 = S.Word_2(a) * S.Word_4(b); const product31: u64 = S.Word_3(a) * S.Word_1(b); const product32: u64 = S.Word_3(a) * S.Word_2(b); const product33: u64 = S.Word_3(a) * S.Word_3(b); const product34: u64 = S.Word_3(a) * S.Word_4(b); const product41: u64 = S.Word_4(a) * S.Word_1(b); const product42: u64 = S.Word_4(a) * S.Word_2(b); const product43: u64 = S.Word_4(a) * S.Word_3(b); const product44: u64 = S.Word_4(a) * S.Word_4(b); const sum0: u128 = @as(u128, product44); const sum1: u128 = @as(u128, product34) +% @as(u128, product43); const sum2: u128 = @as(u128, product24) +% @as(u128, product33) +% @as(u128, product42); const sum3: u128 = @as(u128, product14) +% @as(u128, product23) +% @as(u128, product32) +% @as(u128, product41); const sum4: u128 = @as(u128, product13) +% @as(u128, product22) +% @as(u128, product31); const sum5: u128 = @as(u128, product12) +% @as(u128, product21); const sum6: u128 = @as(u128, product11); const r0: u128 = (sum0 & Word_FullMask) +% ((sum1 & Word_LoMask) << 32); const r1: u128 = (sum0 >> 64) +% ((sum1 >> 32) & Word_FullMask) +% (sum2 & Word_FullMask) +% ((sum3 << 32) & Word_HiMask); lo.* = r0 +% (r1 << 64); hi.* = (r1 >> 64) +% (sum1 >> 96) +% (sum2 >> 64) +% (sum3 >> 32) +% sum4 +% (sum5 << 32) +% (sum6 << 64); }, else => @compileError("unsupported"), } } pub fn normalize(comptime T: type, significand: *std.meta.Int(.unsigned, @typeInfo(T).float.bits)) i32 { const Z = std.meta.Int(.unsigned, @typeInfo(T).float.bits); const integerBit = @as(Z, 1) << std.math.floatFractionalBits(T); const shift = @clz(significand.*) - @clz(integerBit); significand.* <<= @as(std.math.Log2Int(Z), @intCast(shift)); return @as(i32, 1) - shift; } pub inline fn fneg(a: anytype) @TypeOf(a) { const F = @TypeOf(a); const bits = @typeInfo(F).float.bits; const U = @Int(.unsigned, bits); const sign_bit_mask = @as(U, 1) << (bits - 1); const negated = @as(U, @bitCast(a)) ^ sign_bit_mask; return @bitCast(negated); } /// Allows to access underlying bits as two equally sized lower and higher /// signed or unsigned integers. pub fn HalveInt(comptime T: type, comptime signed_half: bool) type { return extern union { pub const bits = @divExact(@typeInfo(T).int.bits, 2); pub const HalfTU = std.meta.Int(.unsigned, bits); pub const HalfTS = std.meta.Int(.signed, bits); pub const HalfT = if (signed_half) HalfTS else HalfTU; all: T, s: if (native_endian == .little) extern struct { low: HalfT, high: HalfT } else extern struct { high: HalfT, low: HalfT }, }; }