//! Contains all the same data as `Target`, additionally introducing the //! concept of "the native target". The purpose of this abstraction is to //! provide meaningful and unsurprising defaults. This struct does reference //! any resources and it is copyable. /// `null` means native. cpu_arch: ?Target.Cpu.Arch = null, cpu_model: CpuModel = CpuModel.determined_by_cpu_arch, /// Sparse set of CPU features to add to the set from `cpu_model`. cpu_features_add: Target.Cpu.Feature.Set = Target.Cpu.Feature.Set.empty, /// Sparse set of CPU features to remove from the set from `cpu_model`. cpu_features_sub: Target.Cpu.Feature.Set = Target.Cpu.Feature.Set.empty, /// `null` means native. os_tag: ?Target.Os.Tag = null, /// `null` means the default version range for `os_tag`. If `os_tag` is `null` (native) /// then `null` for this field means native. os_version_min: ?OsVersion = null, /// When cross compiling, `null` means default (latest known OS version). /// When `os_tag` is native, `null` means equal to the native OS version. os_version_max: ?OsVersion = null, /// `null` means default when cross compiling, or native when os_tag is native. /// If `isGnuLibC()` is `false`, this must be `null` and is ignored. glibc_version: ?SemanticVersion = null, /// `null` means the native C ABI, if `os_tag` is native, otherwise it means the default C ABI. abi: ?Target.Abi = null, /// When `os_tag` is `null`, then `null` means native. Otherwise it means the standard path /// based on the `os_tag`. dynamic_linker: DynamicLinker = DynamicLinker{}, /// `null` means default for the cpu/arch/os combo. ofmt: ?Target.ObjectFormat = null, pub const CpuModel = union(enum) { /// Always native native, /// Always baseline baseline, /// If CPU Architecture is native, then the CPU model will be native. Otherwise, /// it will be baseline. determined_by_cpu_arch, explicit: *const Target.Cpu.Model, }; pub const OsVersion = union(enum) { none: void, semver: SemanticVersion, windows: Target.Os.WindowsVersion, }; pub const SemanticVersion = std.SemanticVersion; pub const DynamicLinker = Target.DynamicLinker; pub fn fromTarget(target: Target) Query { var result: Query = .{ .cpu_arch = target.cpu.arch, .cpu_model = .{ .explicit = target.cpu.model }, .os_tag = target.os.tag, .os_version_min = undefined, .os_version_max = undefined, .abi = target.abi, .glibc_version = if (target.isGnuLibC()) target.os.version_range.linux.glibc else null, }; result.updateOsVersionRange(target.os); const all_features = target.cpu.arch.allFeaturesList(); var cpu_model_set = target.cpu.model.features; cpu_model_set.populateDependencies(all_features); { // The "add" set is the full set with the CPU Model set removed. const add_set = &result.cpu_features_add; add_set.* = target.cpu.features; add_set.removeFeatureSet(cpu_model_set); } { // The "sub" set is the features that are on in CPU Model set and off in the full set. const sub_set = &result.cpu_features_sub; sub_set.* = cpu_model_set; sub_set.removeFeatureSet(target.cpu.features); } return result; } fn updateOsVersionRange(self: *Query, os: Target.Os) void { switch (os.tag) { .freestanding, .ananas, .cloudabi, .fuchsia, .kfreebsd, .lv2, .solaris, .illumos, .zos, .haiku, .minix, .rtems, .nacl, .aix, .cuda, .nvcl, .amdhsa, .ps4, .ps5, .elfiamcu, .mesa3d, .contiki, .amdpal, .hermit, .hurd, .wasi, .emscripten, .driverkit, .shadermodel, .liteos, .uefi, .opencl, .glsl450, .vulkan, .plan9, .other, => { self.os_version_min = .{ .none = {} }; self.os_version_max = .{ .none = {} }; }, .freebsd, .macos, .ios, .tvos, .watchos, .netbsd, .openbsd, .dragonfly, => { self.os_version_min = .{ .semver = os.version_range.semver.min }; self.os_version_max = .{ .semver = os.version_range.semver.max }; }, .linux => { self.os_version_min = .{ .semver = os.version_range.linux.range.min }; self.os_version_max = .{ .semver = os.version_range.linux.range.max }; }, .windows => { self.os_version_min = .{ .windows = os.version_range.windows.min }; self.os_version_max = .{ .windows = os.version_range.windows.max }; }, } } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn toTarget(self: Query) Target { return .{ .cpu = self.getCpu(), .os = self.getOs(), .abi = self.getAbi(), .ofmt = self.getObjectFormat(), }; } pub const ParseOptions = struct { /// This is sometimes called a "triple". It looks roughly like this: /// riscv64-linux-musl /// The fields are, respectively: /// * CPU Architecture /// * Operating System (and optional version range) /// * C ABI (optional, with optional glibc version) /// The string "native" can be used for CPU architecture as well as Operating System. /// If the CPU Architecture is specified as "native", then the Operating System and C ABI may be omitted. arch_os_abi: []const u8 = "native", /// Looks like "name+a+b-c-d+e", where "name" is a CPU Model name, "a", "b", and "e" /// are examples of CPU features to add to the set, and "c" and "d" are examples of CPU features /// to remove from the set. /// The following special strings are recognized for CPU Model name: /// * "baseline" - The "default" set of CPU features for cross-compiling. A conservative set /// of features that is expected to be supported on most available hardware. /// * "native" - The native CPU model is to be detected when compiling. /// If this field is not provided (`null`), then the value will depend on the /// parsed CPU Architecture. If native, then this will be "native". Otherwise, it will be "baseline". cpu_features: ?[]const u8 = null, /// Absolute path to dynamic linker, to override the default, which is either a natively /// detected path, or a standard path. dynamic_linker: ?[]const u8 = null, object_format: ?[]const u8 = null, /// If this is provided, the function will populate some information about parsing failures, /// so that user-friendly error messages can be delivered. diagnostics: ?*Diagnostics = null, pub const Diagnostics = struct { /// If the architecture was determined, this will be populated. arch: ?Target.Cpu.Arch = null, /// If the OS name was determined, this will be populated. os_name: ?[]const u8 = null, /// If the OS tag was determined, this will be populated. os_tag: ?Target.Os.Tag = null, /// If the ABI was determined, this will be populated. abi: ?Target.Abi = null, /// If the CPU name was determined, this will be populated. cpu_name: ?[]const u8 = null, /// If error.UnknownCpuFeature is returned, this will be populated. unknown_feature_name: ?[]const u8 = null, }; }; pub fn parse(args: ParseOptions) !Query { var dummy_diags: ParseOptions.Diagnostics = undefined; const diags = args.diagnostics orelse &dummy_diags; var result: Query = .{ .dynamic_linker = DynamicLinker.init(args.dynamic_linker), }; var it = mem.splitScalar(u8, args.arch_os_abi, '-'); const arch_name = it.first(); const arch_is_native = mem.eql(u8, arch_name, "native"); if (!arch_is_native) { result.cpu_arch = std.meta.stringToEnum(Target.Cpu.Arch, arch_name) orelse return error.UnknownArchitecture; } const arch = result.getCpuArch(); diags.arch = arch; if (it.next()) |os_text| { try parseOs(&result, diags, os_text); } else if (!arch_is_native) { return error.MissingOperatingSystem; } const opt_abi_text = it.next(); if (opt_abi_text) |abi_text| { var abi_it = mem.splitScalar(u8, abi_text, '.'); const abi = std.meta.stringToEnum(Target.Abi, abi_it.first()) orelse return error.UnknownApplicationBinaryInterface; result.abi = abi; diags.abi = abi; const abi_ver_text = abi_it.rest(); if (abi_it.next() != null) { if (result.isGnuLibC()) { result.glibc_version = parseVersion(abi_ver_text) catch |err| switch (err) { error.Overflow => return error.InvalidAbiVersion, error.InvalidVersion => return error.InvalidAbiVersion, }; } else { return error.InvalidAbiVersion; } } } if (it.next() != null) return error.UnexpectedExtraField; if (args.cpu_features) |cpu_features| { const all_features = arch.allFeaturesList(); var index: usize = 0; while (index < cpu_features.len and cpu_features[index] != '+' and cpu_features[index] != '-') { index += 1; } const cpu_name = cpu_features[0..index]; diags.cpu_name = cpu_name; const add_set = &result.cpu_features_add; const sub_set = &result.cpu_features_sub; if (mem.eql(u8, cpu_name, "native")) { result.cpu_model = .native; } else if (mem.eql(u8, cpu_name, "baseline")) { result.cpu_model = .baseline; } else { result.cpu_model = .{ .explicit = try arch.parseCpuModel(cpu_name) }; } while (index < cpu_features.len) { const op = cpu_features[index]; const set = switch (op) { '+' => add_set, '-' => sub_set, else => unreachable, }; index += 1; const start = index; while (index < cpu_features.len and cpu_features[index] != '+' and cpu_features[index] != '-') { index += 1; } const feature_name = cpu_features[start..index]; for (all_features, 0..) |feature, feat_index_usize| { const feat_index = @as(Target.Cpu.Feature.Set.Index, @intCast(feat_index_usize)); if (mem.eql(u8, feature_name, feature.name)) { set.addFeature(feat_index); break; } } else { diags.unknown_feature_name = feature_name; return error.UnknownCpuFeature; } } } if (args.object_format) |ofmt_name| { result.ofmt = std.meta.stringToEnum(Target.ObjectFormat, ofmt_name) orelse return error.UnknownObjectFormat; } return result; } /// Similar to `parse` except instead of fully parsing, it only determines the CPU /// architecture and returns it if it can be determined, and returns `null` otherwise. /// This is intended to be used if the API user of Query needs to learn the /// target CPU architecture in order to fully populate `ParseOptions`. pub fn parseCpuArch(args: ParseOptions) ?Target.Cpu.Arch { var it = mem.splitScalar(u8, args.arch_os_abi, '-'); const arch_name = it.first(); const arch_is_native = mem.eql(u8, arch_name, "native"); if (arch_is_native) { return builtin.cpu.arch; } else { return std.meta.stringToEnum(Target.Cpu.Arch, arch_name); } } /// Similar to `SemanticVersion.parse`, but with following changes: /// * Leading zeroes are allowed. /// * Supports only 2 or 3 version components (major, minor, [patch]). If 3-rd component is omitted, it will be 0. pub fn parseVersion(ver: []const u8) error{ InvalidVersion, Overflow }!SemanticVersion { const parseVersionComponentFn = (struct { fn parseVersionComponentInner(component: []const u8) error{ InvalidVersion, Overflow }!usize { return std.fmt.parseUnsigned(usize, component, 10) catch |err| switch (err) { error.InvalidCharacter => return error.InvalidVersion, error.Overflow => return error.Overflow, }; } }).parseVersionComponentInner; var version_components = mem.splitScalar(u8, ver, '.'); const major = version_components.first(); const minor = version_components.next() orelse return error.InvalidVersion; const patch = version_components.next() orelse "0"; if (version_components.next() != null) return error.InvalidVersion; return .{ .major = try parseVersionComponentFn(major), .minor = try parseVersionComponentFn(minor), .patch = try parseVersionComponentFn(patch), }; } test parseVersion { try std.testing.expectError(error.InvalidVersion, parseVersion("1")); try std.testing.expectEqual(SemanticVersion{ .major = 1, .minor = 2, .patch = 0 }, try parseVersion("1.2")); try std.testing.expectEqual(SemanticVersion{ .major = 1, .minor = 2, .patch = 3 }, try parseVersion("1.2.3")); try std.testing.expectError(error.InvalidVersion, parseVersion("1.2.3.4")); } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn getCpu(self: Query) Target.Cpu { switch (self.cpu_model) { .native => { // This works when doing `zig build` because Zig generates a build executable using // native CPU model & features. However this will not be accurate otherwise, and // will need to be integrated with `std.zig.system.NativeTargetInfo.detect`. return builtin.cpu; }, .baseline => { var adjusted_baseline = Target.Cpu.baseline(self.getCpuArch()); self.updateCpuFeatures(&adjusted_baseline.features); return adjusted_baseline; }, .determined_by_cpu_arch => if (self.cpu_arch == null) { // This works when doing `zig build` because Zig generates a build executable using // native CPU model & features. However this will not be accurate otherwise, and // will need to be integrated with `std.zig.system.NativeTargetInfo.detect`. return builtin.cpu; } else { var adjusted_baseline = Target.Cpu.baseline(self.getCpuArch()); self.updateCpuFeatures(&adjusted_baseline.features); return adjusted_baseline; }, .explicit => |model| { var adjusted_model = model.toCpu(self.getCpuArch()); self.updateCpuFeatures(&adjusted_model.features); return adjusted_model; }, } } pub fn getCpuArch(self: Query) Target.Cpu.Arch { return self.cpu_arch orelse builtin.cpu.arch; } pub fn getCpuModel(self: Query) *const Target.Cpu.Model { return switch (self.cpu_model) { .explicit => |cpu_model| cpu_model, else => self.getCpu().model, }; } pub fn getCpuFeatures(self: Query) Target.Cpu.Feature.Set { return self.getCpu().features; } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn getOs(self: Query) Target.Os { // `builtin.os` works when doing `zig build` because Zig generates a build executable using // native OS version range. However this will not be accurate otherwise, and // will need to be integrated with `std.zig.system.NativeTargetInfo.detect`. var adjusted_os = if (self.os_tag) |os_tag| os_tag.defaultVersionRange(self.getCpuArch()) else builtin.os; if (self.os_version_min) |min| switch (min) { .none => {}, .semver => |semver| switch (self.getOsTag()) { .linux => adjusted_os.version_range.linux.range.min = semver, else => adjusted_os.version_range.semver.min = semver, }, .windows => |win_ver| adjusted_os.version_range.windows.min = win_ver, }; if (self.os_version_max) |max| switch (max) { .none => {}, .semver => |semver| switch (self.getOsTag()) { .linux => adjusted_os.version_range.linux.range.max = semver, else => adjusted_os.version_range.semver.max = semver, }, .windows => |win_ver| adjusted_os.version_range.windows.max = win_ver, }; if (self.glibc_version) |glibc| { assert(self.isGnuLibC()); adjusted_os.version_range.linux.glibc = glibc; } return adjusted_os; } pub fn getOsTag(self: Query) Target.Os.Tag { return self.os_tag orelse builtin.os.tag; } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn getOsVersionMin(self: Query) OsVersion { if (self.os_version_min) |version_min| return version_min; var tmp: Query = undefined; tmp.updateOsVersionRange(self.getOs()); return tmp.os_version_min.?; } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn getOsVersionMax(self: Query) OsVersion { if (self.os_version_max) |version_max| return version_max; var tmp: Query = undefined; tmp.updateOsVersionRange(self.getOs()); return tmp.os_version_max.?; } /// TODO deprecated, use `std.zig.system.NativeTargetInfo.detect`. pub fn getAbi(self: Query) Target.Abi { if (self.abi) |abi| return abi; if (self.os_tag == null) { // This works when doing `zig build` because Zig generates a build executable using // native CPU model & features. However this will not be accurate otherwise, and // will need to be integrated with `std.zig.system.NativeTargetInfo.detect`. return builtin.abi; } return Target.Abi.default(self.getCpuArch(), self.getOs()); } pub fn isFreeBSD(self: Query) bool { return self.getOsTag() == .freebsd; } pub fn isDarwin(self: Query) bool { return self.getOsTag().isDarwin(); } pub fn isNetBSD(self: Query) bool { return self.getOsTag() == .netbsd; } pub fn isOpenBSD(self: Query) bool { return self.getOsTag() == .openbsd; } pub fn isUefi(self: Query) bool { return self.getOsTag() == .uefi; } pub fn isDragonFlyBSD(self: Query) bool { return self.getOsTag() == .dragonfly; } pub fn isLinux(self: Query) bool { return self.getOsTag() == .linux; } pub fn isWindows(self: Query) bool { return self.getOsTag() == .windows; } pub fn exeFileExt(self: Query) [:0]const u8 { return Target.exeFileExtSimple(self.getCpuArch(), self.getOsTag()); } pub fn staticLibSuffix(self: Query) [:0]const u8 { return Target.staticLibSuffix_os_abi(self.getOsTag(), self.getAbi()); } pub fn dynamicLibSuffix(self: Query) [:0]const u8 { return self.getOsTag().dynamicLibSuffix(); } pub fn libPrefix(self: Query) [:0]const u8 { return Target.libPrefix_os_abi(self.getOsTag(), self.getAbi()); } pub fn isNativeCpu(self: Query) bool { return self.cpu_arch == null and (self.cpu_model == .native or self.cpu_model == .determined_by_cpu_arch) and self.cpu_features_sub.isEmpty() and self.cpu_features_add.isEmpty(); } pub fn isNativeOs(self: Query) bool { return self.os_tag == null and self.os_version_min == null and self.os_version_max == null and self.dynamic_linker.get() == null and self.glibc_version == null; } pub fn isNativeAbi(self: Query) bool { return self.os_tag == null and self.abi == null; } pub fn isNative(self: Query) bool { return self.isNativeCpu() and self.isNativeOs() and self.isNativeAbi(); } /// Formats a version with the patch component omitted if it is zero, /// unlike SemanticVersion.format which formats all its version components regardless. fn formatVersion(version: SemanticVersion, writer: anytype) !void { if (version.patch == 0) { try writer.print("{d}.{d}", .{ version.major, version.minor }); } else { try writer.print("{d}.{d}.{d}", .{ version.major, version.minor, version.patch }); } } pub fn zigTriple(self: Query, allocator: mem.Allocator) error{OutOfMemory}![]u8 { if (self.isNative()) { return allocator.dupe(u8, "native"); } const arch_name = if (self.cpu_arch) |arch| @tagName(arch) else "native"; const os_name = if (self.os_tag) |os_tag| @tagName(os_tag) else "native"; var result = std.ArrayList(u8).init(allocator); defer result.deinit(); try result.writer().print("{s}-{s}", .{ arch_name, os_name }); // The zig target syntax does not allow specifying a max os version with no min, so // if either are present, we need the min. if (self.os_version_min != null or self.os_version_max != null) { switch (self.getOsVersionMin()) { .none => {}, .semver => |v| { try result.writer().writeAll("."); try formatVersion(v, result.writer()); }, .windows => |v| try result.writer().print("{s}", .{v}), } } if (self.os_version_max) |max| { switch (max) { .none => {}, .semver => |v| { try result.writer().writeAll("..."); try formatVersion(v, result.writer()); }, .windows => |v| try result.writer().print("..{s}", .{v}), } } if (self.glibc_version) |v| { try result.writer().print("-{s}.", .{@tagName(self.getAbi())}); try formatVersion(v, result.writer()); } else if (self.abi) |abi| { try result.writer().print("-{s}", .{@tagName(abi)}); } return result.toOwnedSlice(); } pub fn allocDescription(self: Query, allocator: mem.Allocator) ![]u8 { // TODO is there anything else worthy of the description that is not // already captured in the triple? return self.zigTriple(allocator); } pub fn linuxTriple(self: Query, allocator: mem.Allocator) ![]u8 { return Target.linuxTripleSimple(allocator, self.getCpuArch(), self.getOsTag(), self.getAbi()); } pub fn isGnuLibC(self: Query) bool { return Target.isGnuLibC_os_tag_abi(self.getOsTag(), self.getAbi()); } pub fn setGnuLibCVersion(self: *Query, major: u32, minor: u32, patch: u32) void { assert(self.isGnuLibC()); self.glibc_version = SemanticVersion{ .major = major, .minor = minor, .patch = patch }; } pub fn getObjectFormat(self: Query) Target.ObjectFormat { return self.ofmt orelse Target.ObjectFormat.default(self.getOsTag(), self.getCpuArch()); } pub fn updateCpuFeatures(self: Query, set: *Target.Cpu.Feature.Set) void { set.removeFeatureSet(self.cpu_features_sub); set.addFeatureSet(self.cpu_features_add); set.populateDependencies(self.getCpuArch().allFeaturesList()); set.removeFeatureSet(self.cpu_features_sub); } fn parseOs(result: *Query, diags: *ParseOptions.Diagnostics, text: []const u8) !void { var it = mem.splitScalar(u8, text, '.'); const os_name = it.first(); diags.os_name = os_name; const os_is_native = mem.eql(u8, os_name, "native"); if (!os_is_native) { result.os_tag = std.meta.stringToEnum(Target.Os.Tag, os_name) orelse return error.UnknownOperatingSystem; } const tag = result.getOsTag(); diags.os_tag = tag; const version_text = it.rest(); if (it.next() == null) return; switch (tag) { .freestanding, .ananas, .cloudabi, .fuchsia, .kfreebsd, .lv2, .solaris, .illumos, .zos, .haiku, .minix, .rtems, .nacl, .aix, .cuda, .nvcl, .amdhsa, .ps4, .ps5, .elfiamcu, .mesa3d, .contiki, .amdpal, .hermit, .hurd, .wasi, .emscripten, .uefi, .opencl, .glsl450, .vulkan, .plan9, .driverkit, .shadermodel, .liteos, .other, => return error.InvalidOperatingSystemVersion, .freebsd, .macos, .ios, .tvos, .watchos, .netbsd, .openbsd, .linux, .dragonfly, => { var range_it = mem.splitSequence(u8, version_text, "..."); const min_text = range_it.next().?; const min_ver = parseVersion(min_text) catch |err| switch (err) { error.Overflow => return error.InvalidOperatingSystemVersion, error.InvalidVersion => return error.InvalidOperatingSystemVersion, }; result.os_version_min = .{ .semver = min_ver }; const max_text = range_it.next() orelse return; const max_ver = parseVersion(max_text) catch |err| switch (err) { error.Overflow => return error.InvalidOperatingSystemVersion, error.InvalidVersion => return error.InvalidOperatingSystemVersion, }; result.os_version_max = .{ .semver = max_ver }; }, .windows => { var range_it = mem.splitSequence(u8, version_text, "..."); const min_text = range_it.first(); const min_ver = std.meta.stringToEnum(Target.Os.WindowsVersion, min_text) orelse return error.InvalidOperatingSystemVersion; result.os_version_min = .{ .windows = min_ver }; const max_text = range_it.next() orelse return; const max_ver = std.meta.stringToEnum(Target.Os.WindowsVersion, max_text) orelse return error.InvalidOperatingSystemVersion; result.os_version_max = .{ .windows = max_ver }; }, } } const Query = @This(); const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const Target = std.Target; const mem = std.mem; test parse { if (builtin.target.isGnuLibC()) { var query = try Query.parse(.{}); query.setGnuLibCVersion(2, 1, 1); const text = try query.zigTriple(std.testing.allocator); defer std.testing.allocator.free(text); var buf: [256]u8 = undefined; const triple = std.fmt.bufPrint( buf[0..], "native-native-{s}.2.1.1", .{@tagName(builtin.abi)}, ) catch unreachable; try std.testing.expectEqualSlices(u8, triple, text); } { const query = try Query.parse(.{ .arch_os_abi = "aarch64-linux", .cpu_features = "native", }); try std.testing.expect(query.cpu_arch.? == .aarch64); try std.testing.expect(query.cpu_model == .native); } { const query = try Query.parse(.{ .arch_os_abi = "native" }); try std.testing.expect(query.cpu_arch == null); try std.testing.expect(query.isNative()); const text = try query.zigTriple(std.testing.allocator); defer std.testing.allocator.free(text); try std.testing.expectEqualSlices(u8, "native", text); } { const query = try Query.parse(.{ .arch_os_abi = "x86_64-linux-gnu", .cpu_features = "x86_64-sse-sse2-avx-cx8", }); const target = query.toTarget(); try std.testing.expect(target.os.tag == .linux); try std.testing.expect(target.abi == .gnu); try std.testing.expect(target.cpu.arch == .x86_64); try std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .sse)); try std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .avx)); try std.testing.expect(!Target.x86.featureSetHas(target.cpu.features, .cx8)); try std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .cmov)); try std.testing.expect(Target.x86.featureSetHas(target.cpu.features, .fxsr)); try std.testing.expect(Target.x86.featureSetHasAny(target.cpu.features, .{ .sse, .avx, .cmov })); try std.testing.expect(!Target.x86.featureSetHasAny(target.cpu.features, .{ .sse, .avx })); try std.testing.expect(Target.x86.featureSetHasAll(target.cpu.features, .{ .mmx, .x87 })); try std.testing.expect(!Target.x86.featureSetHasAll(target.cpu.features, .{ .mmx, .x87, .sse })); const text = try query.zigTriple(std.testing.allocator); defer std.testing.allocator.free(text); try std.testing.expectEqualSlices(u8, "x86_64-linux-gnu", text); } { const query = try Query.parse(.{ .arch_os_abi = "arm-linux-musleabihf", .cpu_features = "generic+v8a", }); const target = query.toTarget(); try std.testing.expect(target.os.tag == .linux); try std.testing.expect(target.abi == .musleabihf); try std.testing.expect(target.cpu.arch == .arm); try std.testing.expect(target.cpu.model == &Target.arm.cpu.generic); try std.testing.expect(Target.arm.featureSetHas(target.cpu.features, .v8a)); const text = try query.zigTriple(std.testing.allocator); defer std.testing.allocator.free(text); try std.testing.expectEqualSlices(u8, "arm-linux-musleabihf", text); } { const query = try Query.parse(.{ .arch_os_abi = "aarch64-linux.3.10...4.4.1-gnu.2.27", .cpu_features = "generic+v8a", }); const target = query.toTarget(); try std.testing.expect(target.cpu.arch == .aarch64); try std.testing.expect(target.os.tag == .linux); try std.testing.expect(target.os.version_range.linux.range.min.major == 3); try std.testing.expect(target.os.version_range.linux.range.min.minor == 10); try std.testing.expect(target.os.version_range.linux.range.min.patch == 0); try std.testing.expect(target.os.version_range.linux.range.max.major == 4); try std.testing.expect(target.os.version_range.linux.range.max.minor == 4); try std.testing.expect(target.os.version_range.linux.range.max.patch == 1); try std.testing.expect(target.os.version_range.linux.glibc.major == 2); try std.testing.expect(target.os.version_range.linux.glibc.minor == 27); try std.testing.expect(target.os.version_range.linux.glibc.patch == 0); try std.testing.expect(target.abi == .gnu); const text = try query.zigTriple(std.testing.allocator); defer std.testing.allocator.free(text); try std.testing.expectEqualSlices(u8, "aarch64-linux.3.10...4.4.1-gnu.2.27", text); } }