//! Contains state relevant to stack unwinding through the DWARF `.debug_frame` section, or the //! `.eh_frame` section which is an extension of the former specified by Linux Standard Base Core. //! Like `Dwarf`, no assumptions are made about the host's relationship to the target of the unwind //! information -- unwind data for any target can be read by any host. //! //! `Unwind` specifically deals with loading the data from CIEs and FDEs in the section, and with //! performing fast lookups of a program counter's corresponding FDE. The CFI instructions in the //! CIEs and FDEs can be interpreted by `VirtualMachine`. //! //! The typical usage of `Unwind` is as follows: //! //! * Initialize with `initEhFrameHdr` or `initSection`, depending on the available data //! * Call `prepare` to scan CIEs and, if necessary, construct a search table //! * Call `lookupPc` to find the section offset of the FDE corresponding to a PC //! * Call `getFde` to load the corresponding FDE and CIE //! * Check that the PC does indeed fall in that range (`lookupPc` may return a false positive) //! * Interpret the embedded CFI instructions using `VirtualMachine` //! //! In some cases, such as when using the "compact unwind" data in Mach-O binaries, the FDE offsets //! may already be known. In that case, no call to `lookupPc` is necessary, which means the call to //! `prepare` can be optimized to only scan CIEs. pub const VirtualMachine = @import("Unwind/VirtualMachine.zig"); frame_section: struct { id: Section, /// The virtual address of the start of the section. "Virtual address" refers to the address in /// the binary (e.g. `sh_addr` in an ELF file); the equivalent runtime address may be relocated /// in position-independent binaries. vaddr: u64, /// The full contents of the section. May have imprecise bounds depending on `section`. This /// memory is externally managed. /// /// For `.debug_frame`, the slice length is exactly equal to the section length. This is needed /// to know the number of CIEs and FDEs. /// /// For `.eh_frame`, the slice length may exceed the section length, i.e. the slice may refer to /// more bytes than are in the second. This restriction exists because `.eh_frame_hdr` only /// includes the address of the loaded `.eh_frame` data, not its length. It is not a problem /// because unlike `.debug_frame`, the end of the CIE/FDE list is signaled through a sentinel /// value. If this slice does have bounds, they will still be checked, preventing crashes when /// reading potentially-invalid `.eh_frame` data from files. bytes: []const u8, }, /// A structure allowing fast lookups of the FDE corresponding to a particular PC. We use a binary /// search table for the lookup; essentially, a list of all FDEs ordered by PC range. `null` means /// the lookup data is not yet populated, so `prepare` must be called before `lookupPc`. lookup: ?union(enum) { /// The `.eh_frame_hdr` section contains a pre-computed search table which we can use. eh_frame_hdr: struct { /// Virtual address of the `.eh_frame_hdr` section. vaddr: u64, table: EhFrameHeader.SearchTable, }, /// There is no pre-computed search table, so we have built one ourselves. /// Allocated into `gpa` and freed by `deinit`. sorted_fdes: []SortedFdeEntry, }, /// Initially empty; populated by `prepare`. cie_list: std.MultiArrayList(struct { offset: u64, cie: CommonInformationEntry, }), const SortedFdeEntry = struct { /// This FDE's value of `pc_begin`. pc_begin: u64, /// Offset into the section of the corresponding FDE, including the entry header. fde_offset: u64, }; pub const Section = enum { debug_frame, eh_frame }; /// Initialize with unwind information from a header loaded from an `.eh_frame_hdr` section, and a /// pointer to the contents of the `.eh_frame` section. /// /// `.eh_frame_hdr` may embed a binary search table of FDEs. If it does, we will use that table for /// PC lookups rather than spending time constructing our own search table. pub fn initEhFrameHdr(header: EhFrameHeader, section_vaddr: u64, section_bytes_ptr: [*]const u8) Unwind { return .{ .frame_section = .{ .id = .eh_frame, .bytes = maxSlice(section_bytes_ptr), .vaddr = header.eh_frame_vaddr, }, .lookup = if (header.search_table) |table| .{ .eh_frame_hdr = .{ .vaddr = section_vaddr, .table = table, } } else null, .cie_list = .empty, }; } /// Initialize with unwind information from the contents of a `.debug_frame` or `.eh_frame` section. /// /// If the `.eh_frame_hdr` section is available, consider instead using `initEhFrameHdr`, which /// allows the implementation to use a search table embedded in that section if it is available. pub fn initSection(section: Section, section_vaddr: u64, section_bytes: []const u8) Unwind { return .{ .frame_section = .{ .id = section, .bytes = section_bytes, .vaddr = section_vaddr, }, .lookup = null, .cie_list = .empty, }; } pub fn deinit(unwind: *Unwind, gpa: Allocator) void { if (unwind.lookup) |lookup| switch (lookup) { .eh_frame_hdr => {}, .sorted_fdes => |fdes| gpa.free(fdes), }; for (unwind.cie_list.items(.cie)) |*cie| { if (cie.last_row) |*lr| { gpa.free(lr.cols); } } unwind.cie_list.deinit(gpa); } /// Decoded version of the `.eh_frame_hdr` section. pub const EhFrameHeader = struct { /// The virtual address (i.e. as given in the binary, before relocations) of the `.eh_frame` /// section. This value is important when using `.eh_frame_hdr` to find debug information for /// the current binary, because it allows locating where the `.eh_frame` section is loaded in /// memory (by adding it to the ELF module's base address). eh_frame_vaddr: u64, search_table: ?SearchTable, pub const SearchTable = struct { /// The byte offset of the search table into the `.eh_frame_hdr` section. offset: u8, encoding: EH.PE, fde_count: usize, /// The actual table entries are viewed as a plain byte slice because `encoding` causes the /// size of entries in the table to vary. entries: []const u8, /// Returns the vaddr of the FDE for `pc`, or `null` if no matching FDE was found. fn findEntry( table: *const SearchTable, eh_frame_hdr_vaddr: u64, pc: u64, addr_size_bytes: u8, endian: Endian, ) !?u64 { const table_vaddr = eh_frame_hdr_vaddr + table.offset; const entry_size = try entrySize(table.encoding, addr_size_bytes); var left: usize = 0; var len: usize = table.fde_count; while (len > 1) { const mid = left + len / 2; var entry_reader: Reader = .fixed(table.entries[mid * entry_size ..][0..entry_size]); const pc_begin = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{ .pc_rel_base = table_vaddr + left * entry_size, .data_rel_base = eh_frame_hdr_vaddr, }, endian); if (pc < pc_begin) { len /= 2; } else { left = mid; len -= len / 2; } } if (len == 0) return null; var entry_reader: Reader = .fixed(table.entries[left * entry_size ..][0..entry_size]); // Skip past `pc_begin`; we're now interested in the fde offset _ = try readEhPointerAbs(&entry_reader, table.encoding.type, addr_size_bytes, endian); const fde_ptr = try readEhPointer(&entry_reader, table.encoding, addr_size_bytes, .{ .pc_rel_base = table_vaddr + left * entry_size, .data_rel_base = eh_frame_hdr_vaddr, }, endian); return fde_ptr; } fn entrySize(table_enc: EH.PE, addr_size_bytes: u8) !u8 { return switch (table_enc.type) { .absptr => 2 * addr_size_bytes, .udata2, .sdata2 => 4, .udata4, .sdata4 => 8, .udata8, .sdata8 => 16, .uleb128, .sleb128 => return bad(), // this is a binary search table; all entries must be the same size _ => return bad(), }; } }; pub fn parse( eh_frame_hdr_vaddr: u64, eh_frame_hdr_bytes: []const u8, addr_size_bytes: u8, endian: Endian, ) !EhFrameHeader { var r: Reader = .fixed(eh_frame_hdr_bytes); const version = try r.takeByte(); if (version != 1) return bad(); const eh_frame_ptr_enc: EH.PE = @bitCast(try r.takeByte()); const fde_count_enc: EH.PE = @bitCast(try r.takeByte()); const table_enc: EH.PE = @bitCast(try r.takeByte()); const eh_frame_ptr = try readEhPointer(&r, eh_frame_ptr_enc, addr_size_bytes, .{ .pc_rel_base = eh_frame_hdr_vaddr + r.seek, }, endian); const table: ?SearchTable = table: { if (fde_count_enc == EH.PE.omit) break :table null; if (table_enc == EH.PE.omit) break :table null; const fde_count = try readEhPointer(&r, fde_count_enc, addr_size_bytes, .{ .pc_rel_base = eh_frame_hdr_vaddr + r.seek, }, endian); const entry_size = try SearchTable.entrySize(table_enc, addr_size_bytes); const bytes_offset = r.seek; const bytes_len = cast(usize, fde_count * entry_size) orelse return error.EndOfStream; const bytes = try r.take(bytes_len); break :table .{ .encoding = table_enc, .fde_count = @intCast(fde_count), .entries = bytes, .offset = @intCast(bytes_offset), }; }; return .{ .eh_frame_vaddr = eh_frame_ptr, .search_table = table, }; } }; /// The shared header of an FDE/CIE, containing a length in bytes (DWARF's "initial length field") /// and a value which differentiates CIEs from FDEs and maps FDEs to their corresponding CIEs. The /// `.eh_frame` format also includes a third variation, here called `.terminator`, which acts as a /// sentinel for the whole section. /// /// `CommonInformationEntry.parse` and `FrameDescriptionEntry.parse` expect the `EntryHeader` to /// have been parsed first: they accept data stored in the `EntryHeader`, and only read the bytes /// following this header. const EntryHeader = union(enum) { cie: struct { format: Format, /// Remaining bytes in the CIE. These are parseable by `CommonInformationEntry.parse`. bytes_len: u64, }, fde: struct { /// Offset into the section of the corresponding CIE, *including* its entry header. cie_offset: u64, /// Remaining bytes in the FDE. These are parseable by `FrameDescriptionEntry.parse`. bytes_len: u64, }, /// The `.eh_frame` format includes terminators which indicate that the last CIE/FDE has been /// reached. However, `.debug_frame` does not include such a terminator, so the caller must /// keep track of how many section bytes remain when parsing all entries in `.debug_frame`. terminator, fn read(r: *Reader, header_section_offset: u64, section: Section, endian: Endian) !EntryHeader { const unit_header = try Dwarf.readUnitHeader(r, endian); if (unit_header.unit_length == 0) return .terminator; // Next is a value which will disambiguate CIEs and FDEs. Annoyingly, LSB Core makes this // value always 4-byte, whereas DWARF makes it depend on the `dwarf.Format`. const cie_ptr_or_id_size: u8 = switch (section) { .eh_frame => 4, .debug_frame => switch (unit_header.format) { .@"32" => 4, .@"64" => 8, }, }; const cie_ptr_or_id = switch (cie_ptr_or_id_size) { 4 => try r.takeInt(u32, endian), 8 => try r.takeInt(u64, endian), else => unreachable, }; const remaining_bytes = unit_header.unit_length - cie_ptr_or_id_size; // If this entry is a CIE, then `cie_ptr_or_id` will have this value, which is different // between the DWARF `.debug_frame` section and the LSB Core `.eh_frame` section. const cie_id: u64 = switch (section) { .eh_frame => 0, .debug_frame => switch (unit_header.format) { .@"32" => maxInt(u32), .@"64" => maxInt(u64), }, }; if (cie_ptr_or_id == cie_id) { return .{ .cie = .{ .format = unit_header.format, .bytes_len = remaining_bytes, } }; } // This is an FDE -- `cie_ptr_or_id` points to the associated CIE. Unfortunately, the format // of that pointer again differs between `.debug_frame` and `.eh_frame`. const cie_offset = switch (section) { .eh_frame => try std.math.sub(u64, header_section_offset + unit_header.header_length, cie_ptr_or_id), .debug_frame => cie_ptr_or_id, }; return .{ .fde = .{ .cie_offset = cie_offset, .bytes_len = remaining_bytes, } }; } }; pub const CommonInformationEntry = struct { version: u8, format: Format, /// In version 4, CIEs can specify the address size used in the CIE and associated FDEs. /// This value must be used *only* to parse associated FDEs in `FrameDescriptionEntry.parse`. addr_size_bytes: u8, /// Always 0 for versions which do not specify this (currently all versions other than 4). segment_selector_size: u8, code_alignment_factor: u32, data_alignment_factor: i32, return_address_register: u8, fde_pointer_enc: EH.PE, is_signal_frame: bool, augmentation_kind: AugmentationKind, initial_instructions: []const u8, last_row: ?struct { offset: u64, cfa: VirtualMachine.CfaRule, cols: []VirtualMachine.Column, }, pub const AugmentationKind = enum { none, gcc_eh, lsb_z }; /// This function expects to read the CIE starting with the version field. /// The returned struct references memory backed by `cie_bytes`. /// /// `length_offset` specifies the offset of this CIE's length field in the /// .eh_frame / .debug_frame section. fn parse( format: Format, cie_bytes: []const u8, section: Section, default_addr_size_bytes: u8, ) !CommonInformationEntry { // We only read the data through this reader. var r: Reader = .fixed(cie_bytes); const version = try r.takeByte(); switch (section) { .eh_frame => if (version != 1 and version != 3) return error.UnsupportedDwarfVersion, .debug_frame => if (version != 4) return error.UnsupportedDwarfVersion, } const aug_str = try r.takeSentinel(0); const aug_kind: AugmentationKind = aug: { if (aug_str.len == 0) break :aug .none; if (aug_str[0] == 'z') break :aug .lsb_z; if (std.mem.eql(u8, aug_str, "eh")) break :aug .gcc_eh; // We can't finish parsing the CIE if we don't know what its augmentation means. return bad(); }; switch (aug_kind) { .none => {}, // no extra data .lsb_z => {}, // no extra data yet, but there is a bit later .gcc_eh => try r.discardAll(default_addr_size_bytes), // unsupported data } const addr_size_bytes = if (version == 4) try r.takeByte() else default_addr_size_bytes; const segment_selector_size: u8 = if (version == 4) try r.takeByte() else 0; const code_alignment_factor = try r.takeLeb128(u32); const data_alignment_factor = try r.takeLeb128(i32); const return_address_register = if (version == 1) try r.takeByte() else try r.takeLeb128(u8); // This is where LSB's augmentation might add some data. const fde_pointer_enc: EH.PE, const is_signal_frame: bool = aug: { const default_fde_pointer_enc: EH.PE = .{ .type = .absptr, .rel = .abs }; if (aug_kind != .lsb_z) break :aug .{ default_fde_pointer_enc, false }; const aug_data_len = try r.takeLeb128(u32); var aug_data: Reader = .fixed(try r.take(aug_data_len)); var fde_pointer_enc: EH.PE = default_fde_pointer_enc; var is_signal_frame = false; for (aug_str[1..]) |byte| switch (byte) { 'L' => _ = try aug_data.takeByte(), // we ignore the LSDA pointer 'P' => { const enc: EH.PE = @bitCast(try aug_data.takeByte()); const endian: Endian = .little; // irrelevant because we're discarding the value anyway _ = try readEhPointerAbs(&aug_data, enc.type, addr_size_bytes, endian); // we ignore the personality routine; endianness is irrelevant since we're discarding }, 'R' => fde_pointer_enc = @bitCast(try aug_data.takeByte()), 'S' => is_signal_frame = true, 'B', 'G' => {}, else => return bad(), }; break :aug .{ fde_pointer_enc, is_signal_frame }; }; return .{ .format = format, .version = version, .addr_size_bytes = addr_size_bytes, .segment_selector_size = segment_selector_size, .code_alignment_factor = code_alignment_factor, .data_alignment_factor = data_alignment_factor, .return_address_register = return_address_register, .fde_pointer_enc = fde_pointer_enc, .is_signal_frame = is_signal_frame, .augmentation_kind = aug_kind, .initial_instructions = r.buffered(), .last_row = null, }; } }; pub const FrameDescriptionEntry = struct { pc_begin: u64, pc_range: u64, instructions: []const u8, /// This function expects to read the FDE starting at the PC Begin field. /// The returned struct references memory backed by `fde_bytes`. fn parse( /// The virtual address of the FDE we're parsing, *excluding* its entry header (i.e. the /// address is after the header). If `fde_bytes` is backed by the memory of a loaded /// module's `.eh_frame` section, this will equal `fde_bytes.ptr`. fde_vaddr: u64, fde_bytes: []const u8, cie: *const CommonInformationEntry, endian: Endian, ) !FrameDescriptionEntry { if (cie.segment_selector_size != 0) return error.UnsupportedAddrSize; var r: Reader = .fixed(fde_bytes); const pc_begin = try readEhPointer(&r, cie.fde_pointer_enc, cie.addr_size_bytes, .{ .pc_rel_base = fde_vaddr, }, endian); // I swear I'm not kidding when I say that PC Range is encoded with `cie.fde_pointer_enc`, but ignoring `rel`. const pc_range = switch (try readEhPointerAbs(&r, cie.fde_pointer_enc.type, cie.addr_size_bytes, endian)) { .unsigned => |x| x, .signed => |x| cast(u64, x) orelse return bad(), }; switch (cie.augmentation_kind) { .none, .gcc_eh => {}, .lsb_z => { // There is augmentation data, but it's irrelevant to us -- it // only contains the LSDA pointer, which we don't care about. const aug_data_len = try r.takeLeb128(usize); _ = try r.discardAll(aug_data_len); }, } return .{ .pc_begin = pc_begin, .pc_range = pc_range, .instructions = r.buffered(), }; } }; /// Builds the CIE list and FDE lookup table if they are not already built. It is required to call /// this function at least once before calling `lookupPc` or `getFde`. If only `getFde` is needed, /// then `need_lookup` can be set to `false` to make this function more efficient. pub fn prepare( unwind: *Unwind, gpa: Allocator, addr_size_bytes: u8, endian: Endian, need_lookup: bool, /// The `__eh_frame` section in Mach-O binaries deviates from the standard `.eh_frame` section /// in one way which this function needs to be aware of. is_macho: bool, ) !void { if (unwind.cie_list.len > 0 and (!need_lookup or unwind.lookup != null)) return; unwind.cie_list.clearRetainingCapacity(); if (is_macho) assert(unwind.lookup == null or unwind.lookup.? != .eh_frame_hdr); const section = unwind.frame_section; var r: Reader = .fixed(section.bytes); var fde_list: std.ArrayList(SortedFdeEntry) = .empty; defer fde_list.deinit(gpa); const saw_terminator = while (r.seek < r.buffer.len) { const entry_offset = r.seek; switch (try EntryHeader.read(&r, entry_offset, section.id, endian)) { .cie => |cie_info| { // We will pre-populate a list of CIEs for efficiency: this avoids work re-parsing // them every time we look up an FDE. It also lets us cache the result of evaluating // the CIE's initial CFI instructions, which is useful because in the vast majority // of cases those instructions will be needed to reach the PC we are unwinding to. const bytes_len = cast(usize, cie_info.bytes_len) orelse return error.EndOfStream; const idx = unwind.cie_list.len; try unwind.cie_list.append(gpa, .{ .offset = entry_offset, .cie = try .parse(cie_info.format, try r.take(bytes_len), section.id, addr_size_bytes), }); errdefer _ = unwind.cie_list.pop().?; try VirtualMachine.populateCieLastRow(gpa, &unwind.cie_list.items(.cie)[idx], addr_size_bytes, endian); continue; }, .fde => |fde_info| { const bytes_len = cast(usize, fde_info.bytes_len) orelse return error.EndOfStream; if (!need_lookup) { try r.discardAll(bytes_len); continue; } const cie = unwind.findCie(fde_info.cie_offset) orelse return error.InvalidDebugInfo; const fde: FrameDescriptionEntry = try .parse(section.vaddr + r.seek, try r.take(bytes_len), cie, endian); try fde_list.append(gpa, .{ .pc_begin = fde.pc_begin, .fde_offset = entry_offset, }); }, .terminator => break true, } } else false; const expect_terminator = switch (section.id) { .eh_frame => !is_macho, // `.eh_frame` indicates the end of the CIE/FDE list with a sentinel entry, though macOS omits this .debug_frame => false, // `.debug_frame` uses the section bounds and does not specify a sentinel entry }; if (saw_terminator != expect_terminator) return bad(); if (need_lookup) { std.mem.sortUnstable(SortedFdeEntry, fde_list.items, {}, struct { fn lessThan(ctx: void, a: SortedFdeEntry, b: SortedFdeEntry) bool { ctx; return a.pc_begin < b.pc_begin; } }.lessThan); // This temporary is necessary to avoid an RLS footgun where `lookup` ends up non-null `undefined` on OOM. const final_fdes = try fde_list.toOwnedSlice(gpa); unwind.lookup = .{ .sorted_fdes = final_fdes }; } } fn findCie(unwind: *const Unwind, offset: u64) ?*const CommonInformationEntry { const offsets = unwind.cie_list.items(.offset); if (offsets.len == 0) return null; var start: usize = 0; var len: usize = offsets.len; while (len > 1) { const mid = len / 2; if (offset < offsets[start + mid]) { len = mid; } else { start += mid; len -= mid; } } if (offsets[start] != offset) return null; return &unwind.cie_list.items(.cie)[start]; } /// Given a program counter value, returns the offset of the corresponding FDE, or `null` if no /// matching FDE was found. The returned offset can be passed to `getFde` to load the data /// associated with the FDE. /// /// Before calling this function, `prepare` must return successfully at least once, to ensure that /// `unwind.lookup` is populated. /// /// The return value may be a false positive. After loading the FDE with `loadFde`, the caller must /// validate that `pc` is indeed in its range -- if it is not, then no FDE matches `pc`. pub fn lookupPc(unwind: *const Unwind, pc: u64, addr_size_bytes: u8, endian: Endian) !?u64 { const sorted_fdes: []const SortedFdeEntry = switch (unwind.lookup.?) { .eh_frame_hdr => |eh_frame_hdr| { const fde_vaddr = try eh_frame_hdr.table.findEntry( eh_frame_hdr.vaddr, pc, addr_size_bytes, endian, ) orelse return null; return std.math.sub(u64, fde_vaddr, unwind.frame_section.vaddr) catch bad(); // convert vaddr to offset }, .sorted_fdes => |sorted_fdes| sorted_fdes, }; if (sorted_fdes.len == 0) return null; var start: usize = 0; var len: usize = sorted_fdes.len; while (len > 1) { const half = len / 2; if (pc < sorted_fdes[start + half].pc_begin) { len = half; } else { start += half; len -= half; } } // If any FDE matches, it'll be the one at `start` (maybe false positive). return sorted_fdes[start].fde_offset; } /// Get the FDE at a given offset, as well as its associated CIE. This offset typically comes from /// `lookupPc`. The CFI instructions within can be evaluated with `VirtualMachine`. pub fn getFde(unwind: *const Unwind, fde_offset: u64, endian: Endian) !struct { *const CommonInformationEntry, FrameDescriptionEntry } { const section = unwind.frame_section; if (fde_offset > section.bytes.len) return error.EndOfStream; var fde_reader: Reader = .fixed(section.bytes[@intCast(fde_offset)..]); const fde_info = switch (try EntryHeader.read(&fde_reader, fde_offset, section.id, endian)) { .fde => |info| info, .cie, .terminator => return bad(), // This is meant to be an FDE }; const cie = unwind.findCie(fde_info.cie_offset) orelse return error.InvalidDebugInfo; const fde: FrameDescriptionEntry = try .parse( section.vaddr + fde_offset + fde_reader.seek, try fde_reader.take(cast(usize, fde_info.bytes_len) orelse return error.EndOfStream), cie, endian, ); return .{ cie, fde }; } const EhPointerContext = struct { /// The address of the pointer field itself pc_rel_base: u64, // These relative addressing modes are only used in specific cases, and // might not be available / required in all parsing contexts data_rel_base: ?u64 = null, text_rel_base: ?u64 = null, function_rel_base: ?u64 = null, }; /// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`. fn readEhPointerAbs(r: *Reader, enc_ty: EH.PE.Type, addr_size_bytes: u8, endian: Endian) !union(enum) { signed: i64, unsigned: u64, } { return switch (enc_ty) { .absptr => .{ .unsigned = switch (addr_size_bytes) { 2 => try r.takeInt(u16, endian), 4 => try r.takeInt(u32, endian), 8 => try r.takeInt(u64, endian), else => return error.UnsupportedAddrSize, }, }, .uleb128 => .{ .unsigned = try r.takeLeb128(u64) }, .udata2 => .{ .unsigned = try r.takeInt(u16, endian) }, .udata4 => .{ .unsigned = try r.takeInt(u32, endian) }, .udata8 => .{ .unsigned = try r.takeInt(u64, endian) }, .sleb128 => .{ .signed = try r.takeLeb128(i64) }, .sdata2 => .{ .signed = try r.takeInt(i16, endian) }, .sdata4 => .{ .signed = try r.takeInt(i32, endian) }, .sdata8 => .{ .signed = try r.takeInt(i64, endian) }, else => return bad(), }; } /// Returns `error.InvalidDebugInfo` if the encoding is `EH.PE.omit`. fn readEhPointer(r: *Reader, enc: EH.PE, addr_size_bytes: u8, ctx: EhPointerContext, endian: Endian) !u64 { const offset = try readEhPointerAbs(r, enc.type, addr_size_bytes, endian); if (enc.indirect) return bad(); // GCC extension; not supported const base: u64 = switch (enc.rel) { .abs, .aligned => 0, .pcrel => ctx.pc_rel_base, .textrel => ctx.text_rel_base orelse return bad(), .datarel => ctx.data_rel_base orelse return bad(), .funcrel => ctx.function_rel_base orelse return bad(), _ => return bad(), }; return switch (offset) { .signed => |s| if (s >= 0) try std.math.add(u64, base, @intCast(s)) else try std.math.sub(u64, base, @intCast(-s)), // absptr can actually contain signed values in some cases (aarch64 MachO) .unsigned => |u| u +% base, }; } /// Like `Reader.fixed`, but when the length of the data is unknown and we just want to allow /// reading indefinitely. fn maxSlice(ptr: [*]const u8) []const u8 { const len = std.math.maxInt(usize) - @intFromPtr(ptr); return ptr[0..len]; } const Allocator = std.mem.Allocator; const assert = std.debug.assert; const bad = Dwarf.bad; const cast = std.math.cast; const DW = std.dwarf; const Dwarf = std.debug.Dwarf; const EH = DW.EH; const Endian = std.builtin.Endian; const Format = DW.Format; const maxInt = std.math.maxInt; const missing = Dwarf.missing; const Reader = std.Io.Reader; const std = @import("std"); const Unwind = @This();