//! Semantic analysis of ZIR instructions. //! Shared to every Block. Stored on the stack. //! State used for compiling a ZIR into AIR. //! Transforms untyped ZIR instructions into semantically-analyzed AIR instructions. //! Does type checking, comptime control flow, and safety-check generation. //! This is the the heart of the Zig compiler. mod: *Module, /// Alias to `mod.gpa`. gpa: Allocator, /// Points to the temporary arena allocator of the Sema. /// This arena will be cleared when the sema is destroyed. arena: Allocator, code: Zir, air_instructions: std.MultiArrayList(Air.Inst) = .{}, air_extra: std.ArrayListUnmanaged(u32) = .{}, /// Maps ZIR to AIR. inst_map: InstMap = .{}, /// When analyzing an inline function call, owner_decl is the Decl of the caller /// and `src_decl` of `Block` is the `Decl` of the callee. /// This `Decl` owns the arena memory of this `Sema`. owner_decl: *Decl, owner_decl_index: Decl.Index, /// For an inline or comptime function call, this will be the root parent function /// which contains the callsite. Corresponds to `owner_decl`. /// This could be `none`, a `func_decl`, or a `func_instance`. owner_func_index: InternPool.Index, /// The function this ZIR code is the body of, according to the source code. /// This starts out the same as `owner_func_index` and then diverges in the case of /// an inline or comptime function call. /// This could be `none`, a `func_decl`, or a `func_instance`. func_index: InternPool.Index, /// Whether the type of func_index has a calling convention of `.Naked`. func_is_naked: bool, /// Used to restore the error return trace when returning a non-error from a function. error_return_trace_index_on_fn_entry: Air.Inst.Ref = .none, /// When semantic analysis needs to know the return type of the function whose body /// is being analyzed, this `Type` should be used instead of going through `func`. /// This will correctly handle the case of a comptime/inline function call of a /// generic function which uses a type expression for the return type. /// The type will be `void` in the case that `func` is `null`. fn_ret_ty: Type, /// In case of the return type being an error union with an inferred error /// set, this is the inferred error set. `null` otherwise. Allocated with /// `Sema.arena`. fn_ret_ty_ies: ?*InferredErrorSet, branch_quota: u32 = default_branch_quota, branch_count: u32 = 0, /// Populated when returning `error.ComptimeBreak`. Used to communicate the /// break instruction up the stack to find the corresponding Block. comptime_break_inst: Zir.Inst.Index = undefined, /// This field is updated when a new source location becomes active, so that /// instructions which do not have explicitly mapped source locations still have /// access to the source location set by the previous instruction which did /// contain a mapped source location. src: LazySrcLoc = .{ .token_offset = 0 }, decl_val_table: std.AutoHashMapUnmanaged(Decl.Index, Air.Inst.Ref) = .{}, /// When doing a generic function instantiation, this array collects a value /// for each parameter of the generic owner. `none` for non-comptime parameters. /// This is a separate array from `block.params` so that it can be passed /// directly to `comptime_args` when calling `InternPool.getFuncInstance`. /// This memory is allocated by a parent `Sema` in the temporary arena, and is /// used only to add a `func_instance` into the `InternPool`. comptime_args: []InternPool.Index = &.{}, /// Used to communicate from a generic function instantiation to the logic that /// creates a generic function instantiation value in `funcCommon`. generic_owner: InternPool.Index = .none, /// When `generic_owner` is not none, this contains the generic function /// instantiation callsite so that compile errors on the parameter types of the /// instantiation can point back to the instantiation site in addition to the /// declaration site. generic_call_src: LazySrcLoc = .unneeded, /// Corresponds to `generic_call_src`. generic_call_decl: Decl.OptionalIndex = .none, /// The key is types that must be fully resolved prior to machine code /// generation pass. Types are added to this set when resolving them /// immediately could cause a dependency loop, but they do need to be resolved /// before machine code generation passes process the AIR. /// It would work fine if this were an array list instead of an array hash map. /// I chose array hash map with the intention to save time by omitting /// duplicates. types_to_resolve: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{}, /// These are lazily created runtime blocks from block_inline instructions. /// They are created when an break_inline passes through a runtime condition, because /// Sema must convert comptime control flow to runtime control flow, which means /// breaking from a block. post_hoc_blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *LabeledBlock) = .{}, /// Populated with the last compile error created. err: ?*Module.ErrorMsg = null, /// Set to true when analyzing a func type instruction so that nested generic /// function types will emit generic poison instead of a partial type. no_partial_func_ty: bool = false, /// The temporary arena is used for the memory of the `InferredAlloc` values /// here so the values can be dropped without any cleanup. unresolved_inferred_allocs: std.AutoHashMapUnmanaged(Air.Inst.Index, InferredAlloc) = .{}, /// Indices of comptime-mutable decls created by this Sema. These decls' values /// should be interned after analysis completes, as they may refer to memory in /// the Sema arena. /// TODO: this is a workaround for memory bugs triggered by the removal of /// Decl.value_arena. A better solution needs to be found. Probably this will /// involve transitioning comptime-mutable memory away from using Decls at all. comptime_mutable_decls: *std.ArrayList(Decl.Index), /// This is populated when `@setAlignStack` occurs so that if there is a duplicate /// one encountered, the conflicting source location can be shown. prev_stack_alignment_src: ?LazySrcLoc = null, /// While analyzing a type which has a special InternPool index, this is set to the index at which /// the struct/enum/union type created should be placed. Otherwise, it is `.none`. builtin_type_target_index: InternPool.Index = .none, const std = @import("std"); const math = std.math; const mem = std.mem; const Allocator = mem.Allocator; const assert = std.debug.assert; const log = std.log.scoped(.sema); const Sema = @This(); const Value = @import("value.zig").Value; const Type = @import("type.zig").Type; const TypedValue = @import("TypedValue.zig"); const Air = @import("Air.zig"); const Zir = @import("Zir.zig"); const Module = @import("Module.zig"); const trace = @import("tracy.zig").trace; const Namespace = Module.Namespace; const CompileError = Module.CompileError; const SemaError = Module.SemaError; const Decl = Module.Decl; const CaptureScope = Module.CaptureScope; const WipCaptureScope = Module.WipCaptureScope; const LazySrcLoc = Module.LazySrcLoc; const RangeSet = @import("RangeSet.zig"); const target_util = @import("target.zig"); const Package = @import("Package.zig"); const crash_report = @import("crash_report.zig"); const build_options = @import("build_options"); const Compilation = @import("Compilation.zig"); const InternPool = @import("InternPool.zig"); const Alignment = InternPool.Alignment; pub const default_branch_quota = 1000; pub const default_reference_trace_len = 2; pub const InferredErrorSet = struct { /// The function body from which this error set originates. /// This is `none` in the case of a comptime/inline function call, corresponding to /// `InternPool.Index.adhoc_inferred_error_set_type`. /// The function's resolved error set is not set until analysis of the /// function body completes. func: InternPool.Index, /// All currently known errors that this error set contains. This includes /// direct additions via `return error.Foo;`, and possibly also errors that /// are returned from any dependent functions. errors: NameMap = .{}, /// Other inferred error sets which this inferred error set should include. inferred_error_sets: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{}, /// The regular error set created by resolving this inferred error set. resolved: InternPool.Index = .none, pub const NameMap = std.AutoArrayHashMapUnmanaged(InternPool.NullTerminatedString, void); pub fn addErrorSet( self: *InferredErrorSet, err_set_ty: Type, ip: *InternPool, arena: Allocator, ) !void { switch (err_set_ty.toIntern()) { .anyerror_type => self.resolved = .anyerror_type, .adhoc_inferred_error_set_type => {}, // Adding an inferred error set to itself. else => switch (ip.indexToKey(err_set_ty.toIntern())) { .error_set_type => |error_set_type| { for (error_set_type.names.get(ip)) |name| { try self.errors.put(arena, name, {}); } }, .inferred_error_set_type => { try self.inferred_error_sets.put(arena, err_set_ty.toIntern(), {}); }, else => unreachable, }, } } }; /// Stores the mapping from `Zir.Inst.Index -> Air.Inst.Ref`, which is used by sema to resolve /// instructions during analysis. /// Instead of a hash table approach, InstMap is simply a slice that is indexed into using the /// zir instruction index and a start offset. An index is not pressent in the map if the value /// at the index is `Air.Inst.Ref.none`. /// `ensureSpaceForInstructions` can be called to force InstMap to have a mapped range that /// includes all instructions in a slice. After calling this function, `putAssumeCapacity*` can /// be called safely for any of the instructions passed in. pub const InstMap = struct { items: []Air.Inst.Ref = &[_]Air.Inst.Ref{}, start: Zir.Inst.Index = 0, pub fn deinit(map: InstMap, allocator: mem.Allocator) void { allocator.free(map.items); } pub fn get(map: InstMap, key: Zir.Inst.Index) ?Air.Inst.Ref { if (!map.contains(key)) return null; return map.items[key - map.start]; } pub fn putAssumeCapacity( map: *InstMap, key: Zir.Inst.Index, ref: Air.Inst.Ref, ) void { map.items[key - map.start] = ref; } pub fn putAssumeCapacityNoClobber( map: *InstMap, key: Zir.Inst.Index, ref: Air.Inst.Ref, ) void { assert(!map.contains(key)); map.putAssumeCapacity(key, ref); } pub const GetOrPutResult = struct { value_ptr: *Air.Inst.Ref, found_existing: bool, }; pub fn getOrPutAssumeCapacity( map: *InstMap, key: Zir.Inst.Index, ) GetOrPutResult { const index = key - map.start; return GetOrPutResult{ .value_ptr = &map.items[index], .found_existing = map.items[index] != .none, }; } pub fn remove(map: InstMap, key: Zir.Inst.Index) bool { if (!map.contains(key)) return false; map.items[key - map.start] = .none; return true; } pub fn contains(map: InstMap, key: Zir.Inst.Index) bool { return map.items[key - map.start] != .none; } pub fn ensureSpaceForInstructions( map: *InstMap, allocator: mem.Allocator, insts: []const Zir.Inst.Index, ) !void { const min_max = mem.minMax(Zir.Inst.Index, insts); const start = min_max.min; const end = min_max.max; if (map.start <= start and end < map.items.len + map.start) return; const old_start = if (map.items.len == 0) start else map.start; var better_capacity = map.items.len; var better_start = old_start; while (true) { const extra_capacity = better_capacity / 2 + 16; better_capacity += extra_capacity; better_start -|= @as(Zir.Inst.Index, @intCast(extra_capacity / 2)); if (better_start <= start and end < better_capacity + better_start) break; } const start_diff = old_start - better_start; const new_items = try allocator.alloc(Air.Inst.Ref, better_capacity); @memset(new_items[0..start_diff], .none); @memcpy(new_items[start_diff..][0..map.items.len], map.items); @memset(new_items[start_diff + map.items.len ..], .none); allocator.free(map.items); map.items = new_items; map.start = @as(Zir.Inst.Index, @intCast(better_start)); } }; /// This is the context needed to semantically analyze ZIR instructions and /// produce AIR instructions. /// This is a temporary structure stored on the stack; references to it are valid only /// during semantic analysis of the block. pub const Block = struct { parent: ?*Block, /// Shared among all child blocks. sema: *Sema, /// The namespace to use for lookups from this source block /// When analyzing fields, this is different from src_decl.src_namespace. namespace: Namespace.Index, /// The AIR instructions generated for this block. instructions: std.ArrayListUnmanaged(Air.Inst.Index), // `param` instructions are collected here to be used by the `func` instruction. /// When doing a generic function instantiation, this array collects a type /// for each *runtime-known* parameter. This array corresponds to the instance /// function type, while `Sema.comptime_args` corresponds to the generic owner /// function type. /// This memory is allocated by a parent `Sema` in the temporary arena, and is /// used to add a `func_instance` into the `InternPool`. params: std.MultiArrayList(Param) = .{}, wip_capture_scope: *CaptureScope, label: ?*Label = null, inlining: ?*Inlining, /// If runtime_index is not 0 then one of these is guaranteed to be non null. runtime_cond: ?LazySrcLoc = null, runtime_loop: ?LazySrcLoc = null, /// This Decl is the Decl according to the Zig source code corresponding to this Block. /// This can vary during inline or comptime function calls. See `Sema.owner_decl` /// for the one that will be the same for all Block instances. src_decl: Decl.Index, /// Non zero if a non-inline loop or a runtime conditional have been encountered. /// Stores to comptime variables are only allowed when var.runtime_index <= runtime_index. runtime_index: Value.RuntimeIndex = .zero, inline_block: Zir.Inst.Index = 0, comptime_reason: ?*const ComptimeReason = null, // TODO is_comptime and comptime_reason should probably be merged together. is_comptime: bool, is_typeof: bool = false, /// Keep track of the active error return trace index around blocks so that we can correctly /// pop the error trace upon block exit. error_return_trace_index: Air.Inst.Ref = .none, /// when null, it is determined by build mode, changed by @setRuntimeSafety want_safety: ?bool = null, /// What mode to generate float operations in, set by @setFloatMode float_mode: std.builtin.FloatMode = .Strict, c_import_buf: ?*std.ArrayList(u8) = null, const ComptimeReason = union(enum) { c_import: struct { block: *Block, src: LazySrcLoc, }, comptime_ret_ty: struct { block: *Block, func: Air.Inst.Ref, func_src: LazySrcLoc, return_ty: Type, }, fn explain(cr: ComptimeReason, sema: *Sema, msg: ?*Module.ErrorMsg) !void { const parent = msg orelse return; const mod = sema.mod; const prefix = "expression is evaluated at comptime because "; switch (cr) { .c_import => |ci| { try sema.errNote(ci.block, ci.src, parent, prefix ++ "it is inside a @cImport", .{}); }, .comptime_ret_ty => |rt| { const src_loc = if (try sema.funcDeclSrc(rt.func)) |fn_decl| blk: { var src_loc = fn_decl.srcLoc(mod); src_loc.lazy = .{ .node_offset_fn_type_ret_ty = 0 }; break :blk src_loc; } else blk: { const src_decl = mod.declPtr(rt.block.src_decl); break :blk rt.func_src.toSrcLoc(src_decl, mod); }; if (rt.return_ty.isGenericPoison()) { return mod.errNoteNonLazy(src_loc, parent, prefix ++ "the generic function was instantiated with a comptime-only return type", .{}); } try mod.errNoteNonLazy( src_loc, parent, prefix ++ "the function returns a comptime-only type '{}'", .{rt.return_ty.fmt(mod)}, ); try sema.explainWhyTypeIsComptime(parent, src_loc, rt.return_ty); }, } } }; const Param = struct { /// `none` means `anytype`. ty: InternPool.Index, is_comptime: bool, name: Zir.NullTerminatedString, }; /// This `Block` maps a block ZIR instruction to the corresponding /// AIR instruction for break instruction analysis. pub const Label = struct { zir_block: Zir.Inst.Index, merges: Merges, }; /// This `Block` indicates that an inline function call is happening /// and return instructions should be analyzed as a break instruction /// to this AIR block instruction. /// It is shared among all the blocks in an inline or comptime called /// function. pub const Inlining = struct { /// Might be `none`. func: InternPool.Index, comptime_result: Air.Inst.Ref, merges: Merges, }; pub const Merges = struct { block_inst: Air.Inst.Index, /// Separate array list from break_inst_list so that it can be passed directly /// to resolvePeerTypes. results: std.ArrayListUnmanaged(Air.Inst.Ref), /// Keeps track of the break instructions so that the operand can be replaced /// if we need to add type coercion at the end of block analysis. /// Same indexes, capacity, length as `results`. br_list: std.ArrayListUnmanaged(Air.Inst.Index), /// Keeps the source location of the rhs operand of the break instruction, /// to enable more precise compile errors. /// Same indexes, capacity, length as `results`. src_locs: std.ArrayListUnmanaged(?LazySrcLoc), pub fn deinit(merges: *@This(), allocator: mem.Allocator) void { merges.results.deinit(allocator); merges.br_list.deinit(allocator); merges.src_locs.deinit(allocator); } }; /// For debugging purposes. pub fn dump(block: *Block, mod: Module) void { Zir.dumpBlock(mod, block); } pub fn makeSubBlock(parent: *Block) Block { return .{ .parent = parent, .sema = parent.sema, .src_decl = parent.src_decl, .namespace = parent.namespace, .instructions = .{}, .wip_capture_scope = parent.wip_capture_scope, .label = null, .inlining = parent.inlining, .is_comptime = parent.is_comptime, .comptime_reason = parent.comptime_reason, .is_typeof = parent.is_typeof, .runtime_cond = parent.runtime_cond, .runtime_loop = parent.runtime_loop, .runtime_index = parent.runtime_index, .want_safety = parent.want_safety, .float_mode = parent.float_mode, .c_import_buf = parent.c_import_buf, .error_return_trace_index = parent.error_return_trace_index, }; } pub fn wantSafety(block: *const Block) bool { return block.want_safety orelse switch (block.sema.mod.optimizeMode()) { .Debug => true, .ReleaseSafe => true, .ReleaseFast => false, .ReleaseSmall => false, }; } pub fn getFileScope(block: *Block, mod: *Module) *Module.File { return mod.namespacePtr(block.namespace).file_scope; } fn addTy( block: *Block, tag: Air.Inst.Tag, ty: Type, ) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = tag, .data = .{ .ty = ty }, }); } fn addTyOp( block: *Block, tag: Air.Inst.Tag, ty: Type, operand: Air.Inst.Ref, ) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = tag, .data = .{ .ty_op = .{ .ty = Air.internedToRef(ty.toIntern()), .operand = operand, } }, }); } fn addBitCast(block: *Block, ty: Type, operand: Air.Inst.Ref) Allocator.Error!Air.Inst.Ref { return block.addInst(.{ .tag = .bitcast, .data = .{ .ty_op = .{ .ty = Air.internedToRef(ty.toIntern()), .operand = operand, } }, }); } fn addNoOp(block: *Block, tag: Air.Inst.Tag) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = tag, .data = .{ .no_op = {} }, }); } fn addUnOp( block: *Block, tag: Air.Inst.Tag, operand: Air.Inst.Ref, ) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = tag, .data = .{ .un_op = operand }, }); } fn addBr( block: *Block, target_block: Air.Inst.Index, operand: Air.Inst.Ref, ) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = .br, .data = .{ .br = .{ .block_inst = target_block, .operand = operand, } }, }); } fn addBinOp( block: *Block, tag: Air.Inst.Tag, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, ) error{OutOfMemory}!Air.Inst.Ref { return block.addInst(.{ .tag = tag, .data = .{ .bin_op = .{ .lhs = lhs, .rhs = rhs, } }, }); } fn addStructFieldPtr( block: *Block, struct_ptr: Air.Inst.Ref, field_index: u32, ptr_field_ty: Type, ) !Air.Inst.Ref { const ty = Air.internedToRef(ptr_field_ty.toIntern()); const tag: Air.Inst.Tag = switch (field_index) { 0 => .struct_field_ptr_index_0, 1 => .struct_field_ptr_index_1, 2 => .struct_field_ptr_index_2, 3 => .struct_field_ptr_index_3, else => { return block.addInst(.{ .tag = .struct_field_ptr, .data = .{ .ty_pl = .{ .ty = ty, .payload = try block.sema.addExtra(Air.StructField{ .struct_operand = struct_ptr, .field_index = field_index, }), } }, }); }, }; return block.addInst(.{ .tag = tag, .data = .{ .ty_op = .{ .ty = ty, .operand = struct_ptr, } }, }); } fn addStructFieldVal( block: *Block, struct_val: Air.Inst.Ref, field_index: u32, field_ty: Type, ) !Air.Inst.Ref { return block.addInst(.{ .tag = .struct_field_val, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(field_ty.toIntern()), .payload = try block.sema.addExtra(Air.StructField{ .struct_operand = struct_val, .field_index = field_index, }), } }, }); } fn addSliceElemPtr( block: *Block, slice: Air.Inst.Ref, elem_index: Air.Inst.Ref, elem_ptr_ty: Type, ) !Air.Inst.Ref { return block.addInst(.{ .tag = .slice_elem_ptr, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(elem_ptr_ty.toIntern()), .payload = try block.sema.addExtra(Air.Bin{ .lhs = slice, .rhs = elem_index, }), } }, }); } fn addPtrElemPtr( block: *Block, array_ptr: Air.Inst.Ref, elem_index: Air.Inst.Ref, elem_ptr_ty: Type, ) !Air.Inst.Ref { const ty_ref = Air.internedToRef(elem_ptr_ty.toIntern()); return block.addPtrElemPtrTypeRef(array_ptr, elem_index, ty_ref); } fn addPtrElemPtrTypeRef( block: *Block, array_ptr: Air.Inst.Ref, elem_index: Air.Inst.Ref, elem_ptr_ty: Air.Inst.Ref, ) !Air.Inst.Ref { return block.addInst(.{ .tag = .ptr_elem_ptr, .data = .{ .ty_pl = .{ .ty = elem_ptr_ty, .payload = try block.sema.addExtra(Air.Bin{ .lhs = array_ptr, .rhs = elem_index, }), } }, }); } fn addCmpVector(block: *Block, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, cmp_op: std.math.CompareOperator) !Air.Inst.Ref { const sema = block.sema; const mod = sema.mod; return block.addInst(.{ .tag = if (block.float_mode == .Optimized) .cmp_vector_optimized else .cmp_vector, .data = .{ .ty_pl = .{ .ty = Air.internedToRef((try mod.vectorType(.{ .len = sema.typeOf(lhs).vectorLen(mod), .child = .bool_type, })).toIntern()), .payload = try sema.addExtra(Air.VectorCmp{ .lhs = lhs, .rhs = rhs, .op = Air.VectorCmp.encodeOp(cmp_op), }), } }, }); } fn addAggregateInit( block: *Block, aggregate_ty: Type, elements: []const Air.Inst.Ref, ) !Air.Inst.Ref { const sema = block.sema; const ty_ref = Air.internedToRef(aggregate_ty.toIntern()); try sema.air_extra.ensureUnusedCapacity(sema.gpa, elements.len); const extra_index = @as(u32, @intCast(sema.air_extra.items.len)); sema.appendRefsAssumeCapacity(elements); return block.addInst(.{ .tag = .aggregate_init, .data = .{ .ty_pl = .{ .ty = ty_ref, .payload = extra_index, } }, }); } fn addUnionInit( block: *Block, union_ty: Type, field_index: u32, init: Air.Inst.Ref, ) !Air.Inst.Ref { return block.addInst(.{ .tag = .union_init, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(union_ty.toIntern()), .payload = try block.sema.addExtra(Air.UnionInit{ .field_index = field_index, .init = init, }), } }, }); } pub fn addInst(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref { return Air.indexToRef(try block.addInstAsIndex(inst)); } pub fn addInstAsIndex(block: *Block, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index { const sema = block.sema; const gpa = sema.gpa; try sema.air_instructions.ensureUnusedCapacity(gpa, 1); try block.instructions.ensureUnusedCapacity(gpa, 1); const result_index = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); sema.air_instructions.appendAssumeCapacity(inst); block.instructions.appendAssumeCapacity(result_index); return result_index; } /// Insert an instruction into the block at `index`. Moves all following /// instructions forward in the block to make room. Operation is O(N). pub fn insertInst(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Ref { return Air.indexToRef(try block.insertInstAsIndex(index, inst)); } pub fn insertInstAsIndex(block: *Block, index: Air.Inst.Index, inst: Air.Inst) error{OutOfMemory}!Air.Inst.Index { const sema = block.sema; const gpa = sema.gpa; try sema.air_instructions.ensureUnusedCapacity(gpa, 1); const result_index = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); sema.air_instructions.appendAssumeCapacity(inst); try block.instructions.insert(gpa, index, result_index); return result_index; } fn addUnreachable(block: *Block, src: LazySrcLoc, safety_check: bool) !void { if (safety_check and block.wantSafety()) { try block.sema.safetyPanic(block, src, .unreach); } else { _ = try block.addNoOp(.unreach); } } pub fn startAnonDecl(block: *Block) !WipAnonDecl { return WipAnonDecl{ .block = block, .finished = false, }; } pub const WipAnonDecl = struct { block: *Block, finished: bool, pub fn deinit(wad: *WipAnonDecl) void { wad.* = undefined; } /// `alignment` value of 0 means to use ABI alignment. pub fn finish(wad: *WipAnonDecl, ty: Type, val: Value, alignment: Alignment) !Decl.Index { const sema = wad.block.sema; // Do this ahead of time because `createAnonymousDecl` depends on calling // `type.hasRuntimeBits()`. _ = try sema.typeHasRuntimeBits(ty); const new_decl_index = try sema.mod.createAnonymousDecl(wad.block, .{ .ty = ty, .val = val, }); const new_decl = sema.mod.declPtr(new_decl_index); new_decl.alignment = alignment; errdefer sema.mod.abortAnonDecl(new_decl_index); wad.finished = true; try sema.mod.finalizeAnonDecl(new_decl_index); return new_decl_index; } }; }; const LabeledBlock = struct { block: Block, label: Block.Label, fn destroy(lb: *LabeledBlock, gpa: Allocator) void { lb.block.instructions.deinit(gpa); lb.label.merges.deinit(gpa); gpa.destroy(lb); } }; /// The value stored in the inferred allocation. This will go into /// peer type resolution. This is stored in a separate list so that /// the items are contiguous in memory and thus can be passed to /// `Module.resolvePeerTypes`. const InferredAlloc = struct { prongs: std.MultiArrayList(struct { /// The dummy instruction used as a peer to resolve the type. /// Although this has a redundant type with placeholder, this is /// needed in addition because it may be a constant value, which /// affects peer type resolution. stored_inst: Air.Inst.Ref, /// The bitcast instruction used as a placeholder when the /// new result pointer type is not yet known. placeholder: Air.Inst.Index, }) = .{}, }; pub fn deinit(sema: *Sema) void { const gpa = sema.gpa; sema.air_instructions.deinit(gpa); sema.air_extra.deinit(gpa); sema.inst_map.deinit(gpa); sema.decl_val_table.deinit(gpa); sema.types_to_resolve.deinit(gpa); { var it = sema.post_hoc_blocks.iterator(); while (it.next()) |entry| { const labeled_block = entry.value_ptr.*; labeled_block.destroy(gpa); } sema.post_hoc_blocks.deinit(gpa); } sema.unresolved_inferred_allocs.deinit(gpa); sema.* = undefined; } /// Returns only the result from the body that is specified. /// Only appropriate to call when it is determined at comptime that this body /// has no peers. fn resolveBody( sema: *Sema, block: *Block, body: []const Zir.Inst.Index, /// This is the instruction that a break instruction within `body` can /// use to return from the body. body_inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const break_data = (try sema.analyzeBodyBreak(block, body)) orelse return Air.Inst.Ref.unreachable_value; // For comptime control flow, we need to detect when `analyzeBody` reports // that we need to break from an outer block. In such case we // use Zig's error mechanism to send control flow up the stack until // we find the corresponding block to this break. if (block.is_comptime and break_data.block_inst != body_inst) { sema.comptime_break_inst = break_data.inst; return error.ComptimeBreak; } return try sema.resolveInst(break_data.operand); } fn analyzeBodyRuntimeBreak(sema: *Sema, block: *Block, body: []const Zir.Inst.Index) !void { _ = sema.analyzeBodyInner(block, body) catch |err| switch (err) { error.ComptimeBreak => { const zir_datas = sema.code.instructions.items(.data); const break_data = zir_datas[sema.comptime_break_inst].@"break"; const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data; try sema.addRuntimeBreak(block, .{ .block_inst = extra.block_inst, .operand = break_data.operand, .inst = sema.comptime_break_inst, }); }, else => |e| return e, }; } pub fn analyzeBody( sema: *Sema, block: *Block, body: []const Zir.Inst.Index, ) !void { _ = sema.analyzeBodyInner(block, body) catch |err| switch (err) { error.ComptimeBreak => unreachable, // unexpected comptime control flow else => |e| return e, }; } const BreakData = struct { block_inst: Zir.Inst.Index, operand: Zir.Inst.Ref, inst: Zir.Inst.Index, }; pub fn analyzeBodyBreak( sema: *Sema, block: *Block, body: []const Zir.Inst.Index, ) CompileError!?BreakData { const break_inst = sema.analyzeBodyInner(block, body) catch |err| switch (err) { error.ComptimeBreak => sema.comptime_break_inst, else => |e| return e, }; if (block.instructions.items.len != 0 and sema.isNoReturn(Air.indexToRef(block.instructions.items[block.instructions.items.len - 1]))) return null; const break_data = sema.code.instructions.items(.data)[break_inst].@"break"; const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data; return BreakData{ .block_inst = extra.block_inst, .operand = break_data.operand, .inst = break_inst, }; } /// ZIR instructions which are always `noreturn` return this. This matches the /// return type of `analyzeBody` so that we can tail call them. /// Only appropriate to return when the instruction is known to be NoReturn /// solely based on the ZIR tag. const always_noreturn: CompileError!Zir.Inst.Index = @as(Zir.Inst.Index, undefined); /// This function is the main loop of `Sema` and it can be used in two different ways: /// * The traditional way where there are N breaks out of the block and peer type /// resolution is done on the break operands. In this case, the `Zir.Inst.Index` /// part of the return value will be `undefined`, and callsites should ignore it, /// finding the block result value via the block scope. /// * The "flat" way. There is only 1 break out of the block, and it is with a `break_inline` /// instruction. In this case, the `Zir.Inst.Index` part of the return value will be /// the break instruction. This communicates both which block the break applies to, as /// well as the operand. No block scope needs to be created for this strategy. fn analyzeBodyInner( sema: *Sema, block: *Block, body: []const Zir.Inst.Index, ) CompileError!Zir.Inst.Index { // No tracy calls here, to avoid interfering with the tail call mechanism. try sema.inst_map.ensureSpaceForInstructions(sema.gpa, body); // Most of the time, we don't need to construct a new capture scope for a // block. However, successive iterations of comptime loops can capture // different values for the same Zir.Inst.Index, so in those cases, we will // have to create nested capture scopes; see the `.repeat` case below. const parent_capture_scope = block.wip_capture_scope; parent_capture_scope.incRef(); var wip_captures: WipCaptureScope = .{ .scope = parent_capture_scope, .gpa = sema.gpa, .finalized = true, // don't finalize the parent scope }; defer wip_captures.deinit(); const mod = sema.mod; const map = &sema.inst_map; const tags = sema.code.instructions.items(.tag); const datas = sema.code.instructions.items(.data); var orig_captures: usize = parent_capture_scope.captures.count(); var crash_info = crash_report.prepAnalyzeBody(sema, block, body); crash_info.push(); defer crash_info.pop(); var dbg_block_begins: u32 = 0; // We use a while (true) loop here to avoid a redundant way of breaking out of // the loop. The only way to break out of the loop is with a `noreturn` // instruction. var i: u32 = 0; const result = while (true) { crash_info.setBodyIndex(i); const inst = body[i]; std.log.scoped(.sema_zir).debug("sema ZIR {s} %{d}", .{ mod.namespacePtr(mod.declPtr(block.src_decl).src_namespace).file_scope.sub_file_path, inst, }); const air_inst: Air.Inst.Ref = switch (tags[inst]) { // zig fmt: off .alloc => try sema.zirAlloc(block, inst), .alloc_inferred => try sema.zirAllocInferred(block, inst, true), .alloc_inferred_mut => try sema.zirAllocInferred(block, inst, false), .alloc_inferred_comptime => try sema.zirAllocInferredComptime(inst, true), .alloc_inferred_comptime_mut => try sema.zirAllocInferredComptime(inst, false), .alloc_mut => try sema.zirAllocMut(block, inst), .alloc_comptime_mut => try sema.zirAllocComptime(block, inst), .make_ptr_const => try sema.zirMakePtrConst(block, inst), .anyframe_type => try sema.zirAnyframeType(block, inst), .array_cat => try sema.zirArrayCat(block, inst), .array_mul => try sema.zirArrayMul(block, inst), .array_type => try sema.zirArrayType(block, inst), .array_type_sentinel => try sema.zirArrayTypeSentinel(block, inst), .vector_type => try sema.zirVectorType(block, inst), .as => try sema.zirAs(block, inst), .as_node => try sema.zirAsNode(block, inst), .as_shift_operand => try sema.zirAsShiftOperand(block, inst), .bit_and => try sema.zirBitwise(block, inst, .bit_and), .bit_not => try sema.zirBitNot(block, inst), .bit_or => try sema.zirBitwise(block, inst, .bit_or), .bitcast => try sema.zirBitcast(block, inst), .suspend_block => try sema.zirSuspendBlock(block, inst), .bool_not => try sema.zirBoolNot(block, inst), .bool_br_and => try sema.zirBoolBr(block, inst, false), .bool_br_or => try sema.zirBoolBr(block, inst, true), .c_import => try sema.zirCImport(block, inst), .call => try sema.zirCall(block, inst, .direct), .field_call => try sema.zirCall(block, inst, .field), .closure_get => try sema.zirClosureGet(block, inst), .cmp_lt => try sema.zirCmp(block, inst, .lt), .cmp_lte => try sema.zirCmp(block, inst, .lte), .cmp_eq => try sema.zirCmpEq(block, inst, .eq, Air.Inst.Tag.fromCmpOp(.eq, block.float_mode == .Optimized)), .cmp_gte => try sema.zirCmp(block, inst, .gte), .cmp_gt => try sema.zirCmp(block, inst, .gt), .cmp_neq => try sema.zirCmpEq(block, inst, .neq, Air.Inst.Tag.fromCmpOp(.neq, block.float_mode == .Optimized)), .coerce_result_ptr => try sema.zirCoerceResultPtr(block, inst), .decl_ref => try sema.zirDeclRef(block, inst), .decl_val => try sema.zirDeclVal(block, inst), .load => try sema.zirLoad(block, inst), .elem_ptr => try sema.zirElemPtr(block, inst), .elem_ptr_node => try sema.zirElemPtrNode(block, inst), .elem_ptr_imm => try sema.zirElemPtrImm(block, inst), .elem_val => try sema.zirElemVal(block, inst), .elem_val_node => try sema.zirElemValNode(block, inst), .elem_type_index => try sema.zirElemTypeIndex(block, inst), .elem_type => try sema.zirElemType(block, inst), .vector_elem_type => try sema.zirVectorElemType(block, inst), .enum_literal => try sema.zirEnumLiteral(block, inst), .int_from_enum => try sema.zirIntFromEnum(block, inst), .enum_from_int => try sema.zirEnumFromInt(block, inst), .err_union_code => try sema.zirErrUnionCode(block, inst), .err_union_code_ptr => try sema.zirErrUnionCodePtr(block, inst), .err_union_payload_unsafe => try sema.zirErrUnionPayload(block, inst), .err_union_payload_unsafe_ptr => try sema.zirErrUnionPayloadPtr(block, inst), .error_union_type => try sema.zirErrorUnionType(block, inst), .error_value => try sema.zirErrorValue(block, inst), .field_ptr => try sema.zirFieldPtr(block, inst, false), .field_ptr_init => try sema.zirFieldPtr(block, inst, true), .field_ptr_named => try sema.zirFieldPtrNamed(block, inst), .field_val => try sema.zirFieldVal(block, inst), .field_val_named => try sema.zirFieldValNamed(block, inst), .func => try sema.zirFunc(block, inst, false), .func_inferred => try sema.zirFunc(block, inst, true), .func_fancy => try sema.zirFuncFancy(block, inst), .import => try sema.zirImport(block, inst), .indexable_ptr_len => try sema.zirIndexablePtrLen(block, inst), .int => try sema.zirInt(block, inst), .int_big => try sema.zirIntBig(block, inst), .float => try sema.zirFloat(block, inst), .float128 => try sema.zirFloat128(block, inst), .int_type => try sema.zirIntType(inst), .is_non_err => try sema.zirIsNonErr(block, inst), .is_non_err_ptr => try sema.zirIsNonErrPtr(block, inst), .ret_is_non_err => try sema.zirRetIsNonErr(block, inst), .is_non_null => try sema.zirIsNonNull(block, inst), .is_non_null_ptr => try sema.zirIsNonNullPtr(block, inst), .merge_error_sets => try sema.zirMergeErrorSets(block, inst), .negate => try sema.zirNegate(block, inst), .negate_wrap => try sema.zirNegateWrap(block, inst), .optional_payload_safe => try sema.zirOptionalPayload(block, inst, true), .optional_payload_safe_ptr => try sema.zirOptionalPayloadPtr(block, inst, true), .optional_payload_unsafe => try sema.zirOptionalPayload(block, inst, false), .optional_payload_unsafe_ptr => try sema.zirOptionalPayloadPtr(block, inst, false), .optional_type => try sema.zirOptionalType(block, inst), .ptr_type => try sema.zirPtrType(block, inst), .ref => try sema.zirRef(block, inst), .ret_err_value_code => try sema.zirRetErrValueCode(inst), .shr => try sema.zirShr(block, inst, .shr), .shr_exact => try sema.zirShr(block, inst, .shr_exact), .slice_end => try sema.zirSliceEnd(block, inst), .slice_sentinel => try sema.zirSliceSentinel(block, inst), .slice_start => try sema.zirSliceStart(block, inst), .slice_length => try sema.zirSliceLength(block, inst), .str => try sema.zirStr(block, inst), .switch_block => try sema.zirSwitchBlock(block, inst, false), .switch_block_ref => try sema.zirSwitchBlock(block, inst, true), .type_info => try sema.zirTypeInfo(block, inst), .size_of => try sema.zirSizeOf(block, inst), .bit_size_of => try sema.zirBitSizeOf(block, inst), .typeof => try sema.zirTypeof(block, inst), .typeof_builtin => try sema.zirTypeofBuiltin(block, inst), .typeof_log2_int_type => try sema.zirTypeofLog2IntType(block, inst), .xor => try sema.zirBitwise(block, inst, .xor), .struct_init_empty => try sema.zirStructInitEmpty(block, inst), .struct_init => try sema.zirStructInit(block, inst, false), .struct_init_ref => try sema.zirStructInit(block, inst, true), .struct_init_anon => try sema.zirStructInitAnon(block, inst, false), .struct_init_anon_ref => try sema.zirStructInitAnon(block, inst, true), .array_init => try sema.zirArrayInit(block, inst, false), .array_init_ref => try sema.zirArrayInit(block, inst, true), .array_init_anon => try sema.zirArrayInitAnon(block, inst, false), .array_init_anon_ref => try sema.zirArrayInitAnon(block, inst, true), .union_init => try sema.zirUnionInit(block, inst), .field_type => try sema.zirFieldType(block, inst), .field_type_ref => try sema.zirFieldTypeRef(block, inst), .int_from_ptr => try sema.zirIntFromPtr(block, inst), .align_of => try sema.zirAlignOf(block, inst), .int_from_bool => try sema.zirIntFromBool(block, inst), .embed_file => try sema.zirEmbedFile(block, inst), .error_name => try sema.zirErrorName(block, inst), .tag_name => try sema.zirTagName(block, inst), .type_name => try sema.zirTypeName(block, inst), .frame_type => try sema.zirFrameType(block, inst), .frame_size => try sema.zirFrameSize(block, inst), .int_from_float => try sema.zirIntFromFloat(block, inst), .float_from_int => try sema.zirFloatFromInt(block, inst), .ptr_from_int => try sema.zirPtrFromInt(block, inst), .float_cast => try sema.zirFloatCast(block, inst), .int_cast => try sema.zirIntCast(block, inst), .ptr_cast => try sema.zirPtrCast(block, inst), .truncate => try sema.zirTruncate(block, inst), .has_decl => try sema.zirHasDecl(block, inst), .has_field => try sema.zirHasField(block, inst), .byte_swap => try sema.zirByteSwap(block, inst), .bit_reverse => try sema.zirBitReverse(block, inst), .bit_offset_of => try sema.zirBitOffsetOf(block, inst), .offset_of => try sema.zirOffsetOf(block, inst), .splat => try sema.zirSplat(block, inst), .reduce => try sema.zirReduce(block, inst), .shuffle => try sema.zirShuffle(block, inst), .atomic_load => try sema.zirAtomicLoad(block, inst), .atomic_rmw => try sema.zirAtomicRmw(block, inst), .mul_add => try sema.zirMulAdd(block, inst), .builtin_call => try sema.zirBuiltinCall(block, inst), .field_parent_ptr => try sema.zirFieldParentPtr(block, inst), .@"resume" => try sema.zirResume(block, inst), .@"await" => try sema.zirAwait(block, inst), .array_base_ptr => try sema.zirArrayBasePtr(block, inst), .field_base_ptr => try sema.zirFieldBasePtr(block, inst), .for_len => try sema.zirForLen(block, inst), .opt_eu_base_ty => try sema.zirOptEuBaseTy(block, inst), .clz => try sema.zirBitCount(block, inst, .clz, Value.clz), .ctz => try sema.zirBitCount(block, inst, .ctz, Value.ctz), .pop_count => try sema.zirBitCount(block, inst, .popcount, Value.popCount), .sqrt => try sema.zirUnaryMath(block, inst, .sqrt, Value.sqrt), .sin => try sema.zirUnaryMath(block, inst, .sin, Value.sin), .cos => try sema.zirUnaryMath(block, inst, .cos, Value.cos), .tan => try sema.zirUnaryMath(block, inst, .tan, Value.tan), .exp => try sema.zirUnaryMath(block, inst, .exp, Value.exp), .exp2 => try sema.zirUnaryMath(block, inst, .exp2, Value.exp2), .log => try sema.zirUnaryMath(block, inst, .log, Value.log), .log2 => try sema.zirUnaryMath(block, inst, .log2, Value.log2), .log10 => try sema.zirUnaryMath(block, inst, .log10, Value.log10), .fabs => try sema.zirUnaryMath(block, inst, .fabs, Value.fabs), .floor => try sema.zirUnaryMath(block, inst, .floor, Value.floor), .ceil => try sema.zirUnaryMath(block, inst, .ceil, Value.ceil), .round => try sema.zirUnaryMath(block, inst, .round, Value.round), .trunc => try sema.zirUnaryMath(block, inst, .trunc_float, Value.trunc), .error_set_decl => try sema.zirErrorSetDecl(block, inst, .parent), .error_set_decl_anon => try sema.zirErrorSetDecl(block, inst, .anon), .error_set_decl_func => try sema.zirErrorSetDecl(block, inst, .func), .add => try sema.zirArithmetic(block, inst, .add, true), .addwrap => try sema.zirArithmetic(block, inst, .addwrap, true), .add_sat => try sema.zirArithmetic(block, inst, .add_sat, true), .add_unsafe => try sema.zirArithmetic(block, inst, .add_unsafe, false), .mul => try sema.zirArithmetic(block, inst, .mul, true), .mulwrap => try sema.zirArithmetic(block, inst, .mulwrap, true), .mul_sat => try sema.zirArithmetic(block, inst, .mul_sat, true), .sub => try sema.zirArithmetic(block, inst, .sub, true), .subwrap => try sema.zirArithmetic(block, inst, .subwrap, true), .sub_sat => try sema.zirArithmetic(block, inst, .sub_sat, true), .div => try sema.zirDiv(block, inst), .div_exact => try sema.zirDivExact(block, inst), .div_floor => try sema.zirDivFloor(block, inst), .div_trunc => try sema.zirDivTrunc(block, inst), .mod_rem => try sema.zirModRem(block, inst), .mod => try sema.zirMod(block, inst), .rem => try sema.zirRem(block, inst), .max => try sema.zirMinMax(block, inst, .max), .min => try sema.zirMinMax(block, inst, .min), .shl => try sema.zirShl(block, inst, .shl), .shl_exact => try sema.zirShl(block, inst, .shl_exact), .shl_sat => try sema.zirShl(block, inst, .shl_sat), .ret_ptr => try sema.zirRetPtr(block), .ret_type => Air.internedToRef(sema.fn_ret_ty.toIntern()), // Instructions that we know to *always* be noreturn based solely on their tag. // These functions match the return type of analyzeBody so that we can // tail call them here. .compile_error => break sema.zirCompileError(block, inst), .ret_implicit => break sema.zirRetImplicit(block, inst), .ret_node => break sema.zirRetNode(block, inst), .ret_load => break sema.zirRetLoad(block, inst), .ret_err_value => break sema.zirRetErrValue(block, inst), .@"unreachable" => break sema.zirUnreachable(block, inst), .panic => break sema.zirPanic(block, inst), .trap => break sema.zirTrap(block, inst), // zig fmt: on .extended => ext: { const extended = datas[inst].extended; break :ext switch (extended.opcode) { // zig fmt: off .variable => try sema.zirVarExtended( block, extended), .struct_decl => try sema.zirStructDecl( block, extended, inst), .enum_decl => try sema.zirEnumDecl( block, extended, inst), .union_decl => try sema.zirUnionDecl( block, extended, inst), .opaque_decl => try sema.zirOpaqueDecl( block, extended, inst), .this => try sema.zirThis( block, extended), .ret_addr => try sema.zirRetAddr( block, extended), .builtin_src => try sema.zirBuiltinSrc( block, extended), .error_return_trace => try sema.zirErrorReturnTrace( block), .frame => try sema.zirFrame( block, extended), .frame_address => try sema.zirFrameAddress( block, extended), .alloc => try sema.zirAllocExtended( block, extended), .builtin_extern => try sema.zirBuiltinExtern( block, extended), .@"asm" => try sema.zirAsm( block, extended, false), .asm_expr => try sema.zirAsm( block, extended, true), .typeof_peer => try sema.zirTypeofPeer( block, extended), .compile_log => try sema.zirCompileLog( extended), .min_multi => try sema.zirMinMaxMulti( block, extended, .min), .max_multi => try sema.zirMinMaxMulti( block, extended, .max), .add_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode), .sub_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode), .mul_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode), .shl_with_overflow => try sema.zirOverflowArithmetic(block, extended, extended.opcode), .c_undef => try sema.zirCUndef( block, extended), .c_include => try sema.zirCInclude( block, extended), .c_define => try sema.zirCDefine( block, extended), .wasm_memory_size => try sema.zirWasmMemorySize( block, extended), .wasm_memory_grow => try sema.zirWasmMemoryGrow( block, extended), .prefetch => try sema.zirPrefetch( block, extended), .err_set_cast => try sema.zirErrSetCast( block, extended), .await_nosuspend => try sema.zirAwaitNosuspend( block, extended), .select => try sema.zirSelect( block, extended), .int_from_error => try sema.zirIntFromError( block, extended), .error_from_int => try sema.zirErrorFromInt( block, extended), .reify => try sema.zirReify( block, extended, inst), .builtin_async_call => try sema.zirBuiltinAsyncCall( block, extended), .cmpxchg => try sema.zirCmpxchg( block, extended), .c_va_arg => try sema.zirCVaArg( block, extended), .c_va_copy => try sema.zirCVaCopy( block, extended), .c_va_end => try sema.zirCVaEnd( block, extended), .c_va_start => try sema.zirCVaStart( block, extended), .ptr_cast_full => try sema.zirPtrCastFull( block, extended), .ptr_cast_no_dest => try sema.zirPtrCastNoDest( block, extended), .work_item_id => try sema.zirWorkItem( block, extended, extended.opcode), .work_group_size => try sema.zirWorkItem( block, extended, extended.opcode), .work_group_id => try sema.zirWorkItem( block, extended, extended.opcode), .in_comptime => try sema.zirInComptime( block), // zig fmt: on .fence => { try sema.zirFence(block, extended); i += 1; continue; }, .set_float_mode => { try sema.zirSetFloatMode(block, extended); i += 1; continue; }, .set_align_stack => { try sema.zirSetAlignStack(block, extended); i += 1; continue; }, .set_cold => { try sema.zirSetCold(block, extended); i += 1; continue; }, .breakpoint => { if (!block.is_comptime) { _ = try block.addNoOp(.breakpoint); } i += 1; continue; }, .value_placeholder => unreachable, // never appears in a body }; }, // Instructions that we know can *never* be noreturn based solely on // their tag. We avoid needlessly checking if they are noreturn and // continue the loop. // We also know that they cannot be referenced later, so we avoid // putting them into the map. .dbg_stmt => { try sema.zirDbgStmt(block, inst); i += 1; continue; }, .dbg_var_ptr => { try sema.zirDbgVar(block, inst, .dbg_var_ptr); i += 1; continue; }, .dbg_var_val => { try sema.zirDbgVar(block, inst, .dbg_var_val); i += 1; continue; }, .dbg_block_begin => { dbg_block_begins += 1; try sema.zirDbgBlockBegin(block); i += 1; continue; }, .dbg_block_end => { dbg_block_begins -= 1; try sema.zirDbgBlockEnd(block); i += 1; continue; }, .ensure_err_union_payload_void => { try sema.zirEnsureErrUnionPayloadVoid(block, inst); i += 1; continue; }, .ensure_result_non_error => { try sema.zirEnsureResultNonError(block, inst); i += 1; continue; }, .ensure_result_used => { try sema.zirEnsureResultUsed(block, inst); i += 1; continue; }, .set_eval_branch_quota => { try sema.zirSetEvalBranchQuota(block, inst); i += 1; continue; }, .atomic_store => { try sema.zirAtomicStore(block, inst); i += 1; continue; }, .store => { try sema.zirStore(block, inst); i += 1; continue; }, .store_node => { try sema.zirStoreNode(block, inst); i += 1; continue; }, .store_to_inferred_ptr => { try sema.zirStoreToInferredPtr(block, inst); i += 1; continue; }, .resolve_inferred_alloc => { try sema.zirResolveInferredAlloc(block, inst); i += 1; continue; }, .validate_array_init_ty => { try sema.zirValidateArrayInitTy(block, inst); i += 1; continue; }, .validate_struct_init_ty => { try sema.zirValidateStructInitTy(block, inst); i += 1; continue; }, .validate_struct_init => { try sema.zirValidateStructInit(block, inst); i += 1; continue; }, .validate_array_init => { try sema.zirValidateArrayInit(block, inst); i += 1; continue; }, .validate_deref => { try sema.zirValidateDeref(block, inst); i += 1; continue; }, .@"export" => { try sema.zirExport(block, inst); i += 1; continue; }, .export_value => { try sema.zirExportValue(block, inst); i += 1; continue; }, .set_runtime_safety => { try sema.zirSetRuntimeSafety(block, inst); i += 1; continue; }, .param => { try sema.zirParam(block, inst, false); i += 1; continue; }, .param_comptime => { try sema.zirParam(block, inst, true); i += 1; continue; }, .param_anytype => { try sema.zirParamAnytype(block, inst, false); i += 1; continue; }, .param_anytype_comptime => { try sema.zirParamAnytype(block, inst, true); i += 1; continue; }, .closure_capture => { try sema.zirClosureCapture(block, inst); i += 1; continue; }, .memcpy => { try sema.zirMemcpy(block, inst); i += 1; continue; }, .memset => { try sema.zirMemset(block, inst); i += 1; continue; }, .check_comptime_control_flow => { if (!block.is_comptime) { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const inline_block = Zir.refToIndex(inst_data.operand).?; var check_block = block; const target_runtime_index = while (true) { if (check_block.inline_block == inline_block) { break check_block.runtime_index; } check_block = check_block.parent.?; }; if (@intFromEnum(target_runtime_index) < @intFromEnum(block.runtime_index)) { const runtime_src = block.runtime_cond orelse block.runtime_loop.?; const msg = msg: { const msg = try sema.errMsg(block, src, "comptime control flow inside runtime block", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, runtime_src, msg, "runtime control flow here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } i += 1; continue; }, .save_err_ret_index => { try sema.zirSaveErrRetIndex(block, inst); i += 1; continue; }, .restore_err_ret_index => { try sema.zirRestoreErrRetIndex(block, inst); i += 1; continue; }, // Special case instructions to handle comptime control flow. .@"break" => { if (block.is_comptime) { break inst; // same as break_inline } else { break sema.zirBreak(block, inst); } }, .break_inline => { if (block.is_comptime) { break inst; } else { sema.comptime_break_inst = inst; return error.ComptimeBreak; } }, .repeat => { if (block.is_comptime) { // Send comptime control flow back to the beginning of this block. const src = LazySrcLoc.nodeOffset(datas[inst].node); try sema.emitBackwardBranch(block, src); if (wip_captures.scope.captures.count() != orig_captures) { // We need to construct new capture scopes for the next loop iteration so it // can capture values without clobbering the earlier iteration's captures. // At first, we reused the parent capture scope as an optimization, but for // successive scopes we have to create new ones as children of the parent // scope. try wip_captures.reset(parent_capture_scope); block.wip_capture_scope = wip_captures.scope; orig_captures = 0; } i = 0; continue; } else { break always_noreturn; } }, .repeat_inline => { // Send comptime control flow back to the beginning of this block. const src = LazySrcLoc.nodeOffset(datas[inst].node); try sema.emitBackwardBranch(block, src); if (wip_captures.scope.captures.count() != orig_captures) { // We need to construct new capture scopes for the next loop iteration so it // can capture values without clobbering the earlier iteration's captures. // At first, we reused the parent capture scope as an optimization, but for // successive scopes we have to create new ones as children of the parent // scope. try wip_captures.reset(parent_capture_scope); block.wip_capture_scope = wip_captures.scope; orig_captures = 0; } i = 0; continue; }, .loop => blk: { if (!block.is_comptime) break :blk try sema.zirLoop(block, inst); // Same as `block_inline`. TODO https://github.com/ziglang/zig/issues/8220 const inst_data = datas[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index); const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len]; const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .block, .block_comptime => blk: { if (!block.is_comptime) { break :blk try sema.zirBlock(block, inst, tags[inst] == .block_comptime); } // Same as `block_inline`. TODO https://github.com/ziglang/zig/issues/8220 const inst_data = datas[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index); const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len]; // If this block contains a function prototype, we need to reset the // current list of parameters and restore it later. // Note: this probably needs to be resolved in a more general manner. const prev_params = block.params; block.params = .{}; defer block.params = prev_params; const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .block_inline => blk: { // Directly analyze the block body without introducing a new block. // However, in the case of a corresponding break_inline which reaches // through a runtime conditional branch, we must retroactively emit // a block, so we remember the block index here just in case. const block_index = block.instructions.items.len; const inst_data = datas[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index); const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len]; const gpa = sema.gpa; const opt_break_data = b: { // Create a temporary child block so that this inline block is properly // labeled for any .restore_err_ret_index instructions var child_block = block.makeSubBlock(); // If this block contains a function prototype, we need to reset the // current list of parameters and restore it later. // Note: this probably needs to be resolved in a more general manner. child_block.inline_block = if (tags[inline_body[inline_body.len - 1]] == .repeat_inline) inline_body[0] else inst; var label: Block.Label = .{ .zir_block = inst, .merges = undefined, }; child_block.label = &label; // Write these instructions directly into the parent block child_block.instructions = block.instructions; defer block.instructions = child_block.instructions; break :b try sema.analyzeBodyBreak(&child_block, inline_body); }; // A runtime conditional branch that needs a post-hoc block to be // emitted communicates this by mapping the block index into the inst map. if (map.get(inst)) |new_block_ref| ph: { // Comptime control flow populates the map, so we don't actually know // if this is a post-hoc runtime block until we check the // post_hoc_block map. const new_block_inst = Air.refToIndex(new_block_ref) orelse break :ph; const labeled_block = sema.post_hoc_blocks.get(new_block_inst) orelse break :ph; // In this case we need to move all the instructions starting at // block_index from the current block into this new one. if (opt_break_data) |break_data| { // This is a comptime break which we now change to a runtime break // since it crosses a runtime branch. // It may pass through our currently being analyzed block_inline or it // may point directly to it. In the latter case, this modifies the // block that we are about to look up in the post_hoc_blocks map below. try sema.addRuntimeBreak(block, break_data); } else { // Here the comptime control flow ends with noreturn; however // we have runtime control flow continuing after this block. // This branch is therefore handled by the `i += 1; continue;` // logic below. } try labeled_block.block.instructions.appendSlice(gpa, block.instructions.items[block_index..]); block.instructions.items.len = block_index; const block_result = try sema.analyzeBlockBody(block, inst_data.src(), &labeled_block.block, &labeled_block.label.merges); { // Destroy the ad-hoc block entry so that it does not interfere with // the next iteration of comptime control flow, if any. labeled_block.destroy(gpa); assert(sema.post_hoc_blocks.remove(new_block_inst)); } map.putAssumeCapacity(inst, block_result); i += 1; continue; } const break_data = opt_break_data orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .condbr => blk: { if (!block.is_comptime) break sema.zirCondbr(block, inst); // Same as condbr_inline. TODO https://github.com/ziglang/zig/issues/8220 const inst_data = datas[inst].pl_node; const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index); const then_body = sema.code.extra[extra.end..][0..extra.data.then_body_len]; const else_body = sema.code.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; const cond = sema.resolveInstConst(block, cond_src, extra.data.condition, "condition in comptime branch must be comptime-known") catch |err| { if (err == error.AnalysisFail and block.comptime_reason != null) try block.comptime_reason.?.explain(sema, sema.err); return err; }; const inline_body = if (cond.val.toBool()) then_body else else_body; try sema.maybeErrorUnwrapCondbr(block, inline_body, extra.data.condition, cond_src); const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .condbr_inline => blk: { const inst_data = datas[inst].pl_node; const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index); const then_body = sema.code.extra[extra.end..][0..extra.data.then_body_len]; const else_body = sema.code.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; const cond = sema.resolveInstConst(block, cond_src, extra.data.condition, "condition in comptime branch must be comptime-known") catch |err| { if (err == error.AnalysisFail and block.comptime_reason != null) try block.comptime_reason.?.explain(sema, sema.err); return err; }; const inline_body = if (cond.val.toBool()) then_body else else_body; try sema.maybeErrorUnwrapCondbr(block, inline_body, extra.data.condition, cond_src); const old_runtime_index = block.runtime_index; defer block.runtime_index = old_runtime_index; const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .@"try" => blk: { if (!block.is_comptime) break :blk try sema.zirTry(block, inst); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index); const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len]; const err_union = try sema.resolveInst(extra.data.operand); const err_union_ty = sema.typeOf(err_union); if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) { return sema.fail(block, operand_src, "expected error union type, found '{}'", .{ err_union_ty.fmt(mod), }); } const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union); assert(is_non_err != .none); const is_non_err_val = sema.resolveConstValue(block, operand_src, is_non_err, "try operand inside comptime block must be comptime-known") catch |err| { if (err == error.AnalysisFail and block.comptime_reason != null) try block.comptime_reason.?.explain(sema, sema.err); return err; }; if (is_non_err_val.toBool()) { break :blk try sema.analyzeErrUnionPayload(block, src, err_union_ty, err_union, operand_src, false); } const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .try_ptr => blk: { if (!block.is_comptime) break :blk try sema.zirTryPtr(block, inst); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index); const inline_body = sema.code.extra[extra.end..][0..extra.data.body_len]; const operand = try sema.resolveInst(extra.data.operand); const err_union = try sema.analyzeLoad(block, src, operand, operand_src); const is_non_err = try sema.analyzeIsNonErrComptimeOnly(block, operand_src, err_union); assert(is_non_err != .none); const is_non_err_val = sema.resolveConstValue(block, operand_src, is_non_err, "try operand inside comptime block must be comptime-known") catch |err| { if (err == error.AnalysisFail and block.comptime_reason != null) try block.comptime_reason.?.explain(sema, sema.err); return err; }; if (is_non_err_val.toBool()) { break :blk try sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false); } const break_data = (try sema.analyzeBodyBreak(block, inline_body)) orelse break always_noreturn; if (inst == break_data.block_inst) { break :blk try sema.resolveInst(break_data.operand); } else { break break_data.inst; } }, .@"defer" => blk: { const inst_data = sema.code.instructions.items(.data)[inst].@"defer"; const defer_body = sema.code.extra[inst_data.index..][0..inst_data.len]; const break_inst = sema.analyzeBodyInner(block, defer_body) catch |err| switch (err) { error.ComptimeBreak => sema.comptime_break_inst, else => |e| return e, }; if (break_inst != defer_body[defer_body.len - 1]) break always_noreturn; break :blk Air.Inst.Ref.void_value; }, .defer_err_code => blk: { const inst_data = sema.code.instructions.items(.data)[inst].defer_err_code; const extra = sema.code.extraData(Zir.Inst.DeferErrCode, inst_data.payload_index).data; const defer_body = sema.code.extra[extra.index..][0..extra.len]; const err_code = try sema.resolveInst(inst_data.err_code); map.putAssumeCapacity(extra.remapped_err_code, err_code); const break_inst = sema.analyzeBodyInner(block, defer_body) catch |err| switch (err) { error.ComptimeBreak => sema.comptime_break_inst, else => |e| return e, }; if (break_inst != defer_body[defer_body.len - 1]) break always_noreturn; break :blk Air.Inst.Ref.void_value; }, }; if (sema.isNoReturn(air_inst)) { // We're going to assume that the body itself is noreturn, so let's ensure that now assert(block.instructions.items.len > 0); assert(sema.isNoReturn(Air.indexToRef(block.instructions.items[block.instructions.items.len - 1]))); break always_noreturn; } map.putAssumeCapacity(inst, air_inst); i += 1; }; // balance out dbg_block_begins in case of early noreturn const noreturn_inst = block.instructions.popOrNull(); while (dbg_block_begins > 0) { dbg_block_begins -= 1; if (block.is_comptime or mod.comp.bin_file.options.strip) continue; _ = try block.addInst(.{ .tag = .dbg_block_end, .data = undefined, }); } if (noreturn_inst) |some| try block.instructions.append(sema.gpa, some); if (!wip_captures.finalized) { // We've updated the capture scope due to a `repeat` instruction where // the body had a capture; finalize our child scope and reset try wip_captures.finalize(); block.wip_capture_scope = parent_capture_scope; } return result; } pub fn resolveInstAllowNone(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref { if (zir_ref == .none) { return .none; } else { return resolveInst(sema, zir_ref); } } pub fn resolveInst(sema: *Sema, zir_ref: Zir.Inst.Ref) !Air.Inst.Ref { assert(zir_ref != .none); const i = @intFromEnum(zir_ref); // First section of indexes correspond to a set number of constant values. // We intentionally map the same indexes to the same values between ZIR and AIR. if (i < InternPool.static_len) return @as(Air.Inst.Ref, @enumFromInt(i)); // The last section of indexes refers to the map of ZIR => AIR. const inst = sema.inst_map.get(i - InternPool.static_len).?; if (inst == .generic_poison) return error.GenericPoison; return inst; } fn resolveConstBool( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) !bool { const air_inst = try sema.resolveInst(zir_ref); const wanted_type = Type.bool; const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src); const val = try sema.resolveConstValue(block, src, coerced_inst, reason); return val.toBool(); } pub fn resolveConstString( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) ![]u8 { const air_inst = try sema.resolveInst(zir_ref); const wanted_type = Type.slice_const_u8; const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src); const val = try sema.resolveConstValue(block, src, coerced_inst, reason); return val.toAllocatedBytes(wanted_type, sema.arena, sema.mod); } pub fn resolveConstStringIntern( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) !InternPool.NullTerminatedString { const air_inst = try sema.resolveInst(zir_ref); const wanted_type = Type.slice_const_u8; const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src); const val = try sema.resolveConstValue(block, src, coerced_inst, reason); return val.toIpString(wanted_type, sema.mod); } pub fn resolveType(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) !Type { const air_inst = try sema.resolveInst(zir_ref); assert(air_inst != .var_args_param_type); const ty = try sema.analyzeAsType(block, src, air_inst); if (ty.isGenericPoison()) return error.GenericPoison; return ty; } fn resolveDestType( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, strat: enum { remove_eu_opt, remove_eu, remove_opt }, builtin_name: []const u8, ) !Type { const mod = sema.mod; const remove_eu = switch (strat) { .remove_eu_opt, .remove_eu => true, .remove_opt => false, }; const remove_opt = switch (strat) { .remove_eu_opt, .remove_opt => true, .remove_eu => false, }; const raw_ty = sema.resolveType(block, src, zir_ref) catch |err| switch (err) { error.GenericPoison => { // Cast builtins use their result type as the destination type, but // it could be an anytype argument, which we can't catch in AstGen. const msg = msg: { const msg = try sema.errMsg(block, src, "{s} must have a known result type", .{builtin_name}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "result type is unknown due to anytype parameter", .{}); try sema.errNote(block, src, msg, "use @as to provide explicit result type", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, else => |e| return e, }; if (remove_eu and raw_ty.zigTypeTag(mod) == .ErrorUnion) { const eu_child = raw_ty.errorUnionPayload(mod); if (remove_opt and eu_child.zigTypeTag(mod) == .Optional) { return eu_child.childType(mod); } return eu_child; } if (remove_opt and raw_ty.zigTypeTag(mod) == .Optional) { return raw_ty.childType(mod); } return raw_ty; } fn analyzeAsType( sema: *Sema, block: *Block, src: LazySrcLoc, air_inst: Air.Inst.Ref, ) !Type { const wanted_type = Type.type; const coerced_inst = try sema.coerce(block, wanted_type, air_inst, src); const val = try sema.resolveConstValue(block, src, coerced_inst, "types must be comptime-known"); return val.toType(); } pub fn setupErrorReturnTrace(sema: *Sema, block: *Block, last_arg_index: usize) !void { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; if (!mod.backendSupportsFeature(.error_return_trace)) return; assert(!block.is_comptime); var err_trace_block = block.makeSubBlock(); defer err_trace_block.instructions.deinit(gpa); const src: LazySrcLoc = .unneeded; // var addrs: [err_return_trace_addr_count]usize = undefined; const err_return_trace_addr_count = 32; const addr_arr_ty = try mod.arrayType(.{ .len = err_return_trace_addr_count, .child = .usize_type, }); const addrs_ptr = try err_trace_block.addTy(.alloc, try mod.singleMutPtrType(addr_arr_ty)); // var st: StackTrace = undefined; const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const st_ptr = try err_trace_block.addTy(.alloc, try mod.singleMutPtrType(stack_trace_ty)); // st.instruction_addresses = &addrs; const instruction_addresses_field_name = try ip.getOrPutString(gpa, "instruction_addresses"); const addr_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, instruction_addresses_field_name, src, true); try sema.storePtr2(&err_trace_block, src, addr_field_ptr, src, addrs_ptr, src, .store); // st.index = 0; const index_field_name = try ip.getOrPutString(gpa, "index"); const index_field_ptr = try sema.fieldPtr(&err_trace_block, src, st_ptr, index_field_name, src, true); try sema.storePtr2(&err_trace_block, src, index_field_ptr, src, .zero_usize, src, .store); // @errorReturnTrace() = &st; _ = try err_trace_block.addUnOp(.set_err_return_trace, st_ptr); try block.instructions.insertSlice(gpa, last_arg_index, err_trace_block.instructions.items); } /// May return Value Tags: `variable`, `undef`. /// See `resolveConstValue` for an alternative. /// Value Tag `generic_poison` causes `error.GenericPoison` to be returned. fn resolveValue( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, reason: []const u8, ) CompileError!Value { if (try sema.resolveMaybeUndefValAllowVariables(air_ref)) |val| { if (val.isGenericPoison()) return error.GenericPoison; return val; } return sema.failWithNeededComptime(block, src, reason); } /// Value Tag `variable` will cause a compile error. /// Value Tag `undef` may be returned. fn resolveConstMaybeUndefVal( sema: *Sema, block: *Block, src: LazySrcLoc, inst: Air.Inst.Ref, reason: []const u8, ) CompileError!Value { if (try sema.resolveMaybeUndefValAllowVariables(inst)) |val| { if (val.isGenericPoison()) return error.GenericPoison; if (sema.mod.intern_pool.isVariable(val.toIntern())) return sema.failWithNeededComptime(block, src, reason); return val; } return sema.failWithNeededComptime(block, src, reason); } /// Will not return Value Tags: `variable`, `undef`. Instead they will emit compile errors. /// See `resolveValue` for an alternative. fn resolveConstValue( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, reason: []const u8, ) CompileError!Value { if (try sema.resolveMaybeUndefValAllowVariables(air_ref)) |val| { if (val.isGenericPoison()) return error.GenericPoison; if (val.isUndef(sema.mod)) return sema.failWithUseOfUndef(block, src); if (sema.mod.intern_pool.isVariable(val.toIntern())) return sema.failWithNeededComptime(block, src, reason); return val; } return sema.failWithNeededComptime(block, src, reason); } /// Will not return Value Tags: `variable`, `undef`. Instead they will emit compile errors. /// Lazy values are recursively resolved. fn resolveConstLazyValue( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, reason: []const u8, ) CompileError!Value { return sema.resolveLazyValue(try sema.resolveConstValue(block, src, air_ref, reason)); } /// Value Tag `variable` causes this function to return `null`. /// Value Tag `undef` causes this function to return a compile error. fn resolveDefinedValue( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, ) CompileError!?Value { const mod = sema.mod; if (try sema.resolveMaybeUndefVal(air_ref)) |val| { if (val.isUndef(mod)) { if (block.is_typeof) return null; return sema.failWithUseOfUndef(block, src); } return val; } return null; } /// Value Tag `variable` causes this function to return `null`. /// Value Tag `undef` causes this function to return the Value. /// Value Tag `generic_poison` causes `error.GenericPoison` to be returned. fn resolveMaybeUndefVal(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value { const val = (try sema.resolveMaybeUndefValAllowVariables(inst)) orelse return null; if (val.isGenericPoison()) return error.GenericPoison; if (val.ip_index != .none and sema.mod.intern_pool.isVariable(val.toIntern())) return null; return val; } /// Value Tag `variable` causes this function to return `null`. /// Value Tag `undef` causes this function to return the Value. /// Value Tag `generic_poison` causes `error.GenericPoison` to be returned. /// Lazy values are recursively resolved. fn resolveMaybeUndefLazyVal(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value { return try sema.resolveLazyValue((try sema.resolveMaybeUndefVal(inst)) orelse return null); } /// Value Tag `variable` results in `null`. /// Value Tag `undef` results in the Value. /// Value Tag `generic_poison` causes `error.GenericPoison` to be returned. /// Value Tag `decl_ref` and `decl_ref_mut` or any nested such value results in `null`. /// Lazy values are recursively resolved. fn resolveMaybeUndefValIntable(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value { const val = (try sema.resolveMaybeUndefValAllowVariables(inst)) orelse return null; if (val.isGenericPoison()) return error.GenericPoison; if (val.ip_index == .none) return val; if (sema.mod.intern_pool.isVariable(val.toIntern())) return null; if (sema.mod.intern_pool.getBackingAddrTag(val.toIntern())) |addr| switch (addr) { .decl, .mut_decl, .comptime_field => return null, .int => {}, .eu_payload, .opt_payload, .elem, .field => unreachable, }; return try sema.resolveLazyValue(val); } /// Returns all Value tags including `variable` and `undef`. fn resolveMaybeUndefValAllowVariables(sema: *Sema, inst: Air.Inst.Ref) CompileError!?Value { var make_runtime = false; if (try sema.resolveMaybeUndefValAllowVariablesMaybeRuntime(inst, &make_runtime)) |val| { if (make_runtime) return null; return val; } return null; } /// Returns all Value tags including `variable`, `undef` and `runtime_value`. fn resolveMaybeUndefValAllowVariablesMaybeRuntime( sema: *Sema, inst: Air.Inst.Ref, make_runtime: *bool, ) CompileError!?Value { assert(inst != .none); // First section of indexes correspond to a set number of constant values. if (@intFromEnum(inst) < InternPool.static_len) { return @as(InternPool.Index, @enumFromInt(@intFromEnum(inst))).toValue(); } const air_tags = sema.air_instructions.items(.tag); if (try sema.typeHasOnePossibleValue(sema.typeOf(inst))) |opv| { if (Air.refToInterned(inst)) |ip_index| { const val = ip_index.toValue(); if (val.getVariable(sema.mod) != null) return val; } return opv; } const ip_index = Air.refToInterned(inst) orelse { switch (air_tags[Air.refToIndex(inst).?]) { .inferred_alloc => unreachable, .inferred_alloc_comptime => unreachable, else => return null, } }; const val = ip_index.toValue(); if (val.isRuntimeValue(sema.mod)) make_runtime.* = true; if (val.isPtrToThreadLocal(sema.mod)) make_runtime.* = true; return val; } fn failWithNeededComptime(sema: *Sema, block: *Block, src: LazySrcLoc, reason: []const u8) CompileError { const msg = msg: { const msg = try sema.errMsg(block, src, "unable to resolve comptime value", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "{s}", .{reason}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithUseOfUndef(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError { return sema.fail(block, src, "use of undefined value here causes undefined behavior", .{}); } fn failWithDivideByZero(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError { return sema.fail(block, src, "division by zero here causes undefined behavior", .{}); } fn failWithModRemNegative(sema: *Sema, block: *Block, src: LazySrcLoc, lhs_ty: Type, rhs_ty: Type) CompileError { return sema.fail(block, src, "remainder division with '{}' and '{}': signed integers and floats must use @rem or @mod", .{ lhs_ty.fmt(sema.mod), rhs_ty.fmt(sema.mod), }); } fn failWithExpectedOptionalType(sema: *Sema, block: *Block, src: LazySrcLoc, optional_ty: Type) CompileError { return sema.fail(block, src, "expected optional type, found '{}'", .{optional_ty.fmt(sema.mod)}); } fn failWithArrayInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError { const mod = sema.mod; const msg = msg: { const msg = try sema.errMsg(block, src, "type '{}' does not support array initialization syntax", .{ ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); if (ty.isSlice(mod)) { try sema.errNote(block, src, msg, "inferred array length is specified with an underscore: '[_]{}'", .{ty.elemType2(mod).fmt(mod)}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithStructInitNotSupported(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError { return sema.fail(block, src, "type '{}' does not support struct initialization syntax", .{ ty.fmt(sema.mod), }); } fn failWithErrorSetCodeMissing( sema: *Sema, block: *Block, src: LazySrcLoc, dest_err_set_ty: Type, src_err_set_ty: Type, ) CompileError { return sema.fail(block, src, "expected type '{}', found type '{}'", .{ dest_err_set_ty.fmt(sema.mod), src_err_set_ty.fmt(sema.mod), }); } fn failWithIntegerOverflow(sema: *Sema, block: *Block, src: LazySrcLoc, int_ty: Type, val: Value, vector_index: usize) CompileError { const mod = sema.mod; if (int_ty.zigTypeTag(mod) == .Vector) { const msg = msg: { const msg = try sema.errMsg(block, src, "overflow of vector type '{}' with value '{}'", .{ int_ty.fmt(sema.mod), val.fmtValue(int_ty, sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "when computing vector element at index '{d}'", .{vector_index}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return sema.fail(block, src, "overflow of integer type '{}' with value '{}'", .{ int_ty.fmt(sema.mod), val.fmtValue(int_ty, sema.mod), }); } fn failWithInvalidComptimeFieldStore(sema: *Sema, block: *Block, init_src: LazySrcLoc, container_ty: Type, field_index: usize) CompileError { const mod = sema.mod; const msg = msg: { const msg = try sema.errMsg(block, init_src, "value stored in comptime field does not match the default value of the field", .{}); errdefer msg.destroy(sema.gpa); const struct_ty = mod.typeToStruct(container_ty) orelse break :msg msg; const default_value_src = mod.fieldSrcLoc(struct_ty.owner_decl, .{ .index = field_index, .range = .value, }); try mod.errNoteNonLazy(default_value_src, msg, "default value set here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithUseOfAsync(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError { const msg = msg: { const msg = try sema.errMsg(block, src, "async has not been implemented in the self-hosted compiler yet", .{}); errdefer msg.destroy(sema.gpa); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithInvalidFieldAccess( sema: *Sema, block: *Block, src: LazySrcLoc, object_ty: Type, field_name: InternPool.NullTerminatedString, ) CompileError { const mod = sema.mod; const inner_ty = if (object_ty.isSinglePointer(mod)) object_ty.childType(mod) else object_ty; if (inner_ty.zigTypeTag(mod) == .Optional) opt: { const child_ty = inner_ty.optionalChild(mod); if (!typeSupportsFieldAccess(mod, child_ty, field_name)) break :opt; const msg = msg: { const msg = try sema.errMsg(block, src, "optional type '{}' does not support field access", .{object_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "consider using '.?', 'orelse', or 'if'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (inner_ty.zigTypeTag(mod) == .ErrorUnion) err: { const child_ty = inner_ty.errorUnionPayload(mod); if (!typeSupportsFieldAccess(mod, child_ty, field_name)) break :err; const msg = msg: { const msg = try sema.errMsg(block, src, "error union type '{}' does not support field access", .{object_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return sema.fail(block, src, "type '{}' does not support field access", .{object_ty.fmt(sema.mod)}); } fn typeSupportsFieldAccess(mod: *const Module, ty: Type, field_name: InternPool.NullTerminatedString) bool { const ip = &mod.intern_pool; switch (ty.zigTypeTag(mod)) { .Array => return ip.stringEqlSlice(field_name, "len"), .Pointer => { const ptr_info = ty.ptrInfo(mod); if (ptr_info.flags.size == .Slice) { return ip.stringEqlSlice(field_name, "ptr") or ip.stringEqlSlice(field_name, "len"); } else if (ptr_info.child.toType().zigTypeTag(mod) == .Array) { return ip.stringEqlSlice(field_name, "len"); } else return false; }, .Type, .Struct, .Union => return true, else => return false, } } /// We don't return a pointer to the new error note because the pointer /// becomes invalid when you add another one. fn errNote( sema: *Sema, block: *Block, src: LazySrcLoc, parent: *Module.ErrorMsg, comptime format: []const u8, args: anytype, ) error{OutOfMemory}!void { const mod = sema.mod; const src_decl = mod.declPtr(block.src_decl); return mod.errNoteNonLazy(src.toSrcLoc(src_decl, mod), parent, format, args); } fn addFieldErrNote( sema: *Sema, container_ty: Type, field_index: usize, parent: *Module.ErrorMsg, comptime format: []const u8, args: anytype, ) !void { @setCold(true); const mod = sema.mod; const decl_index = container_ty.getOwnerDecl(mod); const decl = mod.declPtr(decl_index); const field_src = blk: { const tree = decl.getFileScope(mod).getTree(sema.gpa) catch |err| { log.err("unable to load AST to report compile error: {s}", .{@errorName(err)}); break :blk decl.srcLoc(mod); }; const container_node = decl.relativeToNodeIndex(0); const node_tags = tree.nodes.items(.tag); var buf: [2]std.zig.Ast.Node.Index = undefined; const container_decl = tree.fullContainerDecl(&buf, container_node) orelse break :blk decl.srcLoc(mod); var it_index: usize = 0; for (container_decl.ast.members) |member_node| { switch (node_tags[member_node]) { .container_field_init, .container_field_align, .container_field, => { if (it_index == field_index) { break :blk decl.nodeOffsetSrcLoc(decl.nodeIndexToRelative(member_node), mod); } it_index += 1; }, else => continue, } } unreachable; }; try mod.errNoteNonLazy(field_src, parent, format, args); } fn errMsg( sema: *Sema, block: *Block, src: LazySrcLoc, comptime format: []const u8, args: anytype, ) error{OutOfMemory}!*Module.ErrorMsg { const mod = sema.mod; const src_decl = mod.declPtr(block.src_decl); return Module.ErrorMsg.create(sema.gpa, src.toSrcLoc(src_decl, mod), format, args); } pub fn fail( sema: *Sema, block: *Block, src: LazySrcLoc, comptime format: []const u8, args: anytype, ) CompileError { const err_msg = try sema.errMsg(block, src, format, args); return sema.failWithOwnedErrorMsg(err_msg); } fn failWithOwnedErrorMsg(sema: *Sema, err_msg: *Module.ErrorMsg) CompileError { @setCold(true); const gpa = sema.gpa; const mod = sema.mod; if (crash_report.is_enabled and mod.comp.debug_compile_errors) { if (err_msg.src_loc.lazy == .unneeded) return error.NeededSourceLocation; var wip_errors: std.zig.ErrorBundle.Wip = undefined; wip_errors.init(gpa) catch unreachable; Compilation.addModuleErrorMsg(mod, &wip_errors, err_msg.*) catch unreachable; std.debug.print("compile error during Sema:\n", .{}); var error_bundle = wip_errors.toOwnedBundle("") catch unreachable; error_bundle.renderToStdErr(.{ .ttyconf = .no_color }); crash_report.compilerPanic("unexpected compile error occurred", null, null); } ref: { errdefer err_msg.destroy(gpa); if (err_msg.src_loc.lazy == .unneeded) { return error.NeededSourceLocation; } try mod.failed_decls.ensureUnusedCapacity(gpa, 1); try mod.failed_files.ensureUnusedCapacity(gpa, 1); const max_references = blk: { if (mod.comp.reference_trace) |num| break :blk num; // Do not add multiple traces without explicit request. if (mod.failed_decls.count() != 0) break :ref; break :blk default_reference_trace_len; }; var referenced_by = if (sema.func_index != .none) mod.funcOwnerDeclIndex(sema.func_index) else sema.owner_decl_index; var reference_stack = std.ArrayList(Module.ErrorMsg.Trace).init(gpa); defer reference_stack.deinit(); // Avoid infinite loops. var seen = std.AutoHashMap(Decl.Index, void).init(gpa); defer seen.deinit(); var cur_reference_trace: u32 = 0; while (sema.mod.reference_table.get(referenced_by)) |ref| : (cur_reference_trace += 1) { const gop = try seen.getOrPut(ref.referencer); if (gop.found_existing) break; if (cur_reference_trace < max_references) { const decl = sema.mod.declPtr(ref.referencer); try reference_stack.append(.{ .decl = decl.name.toOptional(), .src_loc = ref.src.toSrcLoc(decl, mod), }); } referenced_by = ref.referencer; } if (sema.mod.comp.reference_trace == null and cur_reference_trace > 0) { try reference_stack.append(.{ .decl = .none, .src_loc = undefined, .hidden = 0, }); } else if (cur_reference_trace > max_references) { try reference_stack.append(.{ .decl = undefined, .src_loc = undefined, .hidden = cur_reference_trace - max_references, }); } err_msg.reference_trace = try reference_stack.toOwnedSlice(); } const ip = &mod.intern_pool; if (sema.owner_func_index != .none) { ip.funcAnalysis(sema.owner_func_index).state = .sema_failure; } else { sema.owner_decl.analysis = .sema_failure; sema.owner_decl.generation = mod.generation; } if (sema.func_index != .none) { ip.funcAnalysis(sema.func_index).state = .sema_failure; } const gop = mod.failed_decls.getOrPutAssumeCapacity(sema.owner_decl_index); if (gop.found_existing) { // If there are multiple errors for the same Decl, prefer the first one added. sema.err = null; err_msg.destroy(gpa); } else { sema.err = err_msg; gop.value_ptr.* = err_msg; } return error.AnalysisFail; } /// Given an ErrorMsg, modify its message and source location to the given values, turning the /// original message into a note. Notes on the original message are preserved as further notes. /// Reference trace is preserved. fn reparentOwnedErrorMsg( sema: *Sema, block: *Block, src: LazySrcLoc, msg: *Module.ErrorMsg, comptime format: []const u8, args: anytype, ) !void { const mod = sema.mod; const src_decl = mod.declPtr(block.src_decl); const resolved_src = src.toSrcLoc(src_decl, mod); const msg_str = try std.fmt.allocPrint(mod.gpa, format, args); const orig_notes = msg.notes.len; msg.notes = try sema.gpa.realloc(msg.notes, orig_notes + 1); std.mem.copyBackwards(Module.ErrorMsg, msg.notes[1..], msg.notes[0..orig_notes]); msg.notes[0] = .{ .src_loc = msg.src_loc, .msg = msg.msg, }; msg.src_loc = resolved_src; msg.msg = msg_str; } const align_ty = Type.u29; fn analyzeAsAlign( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, ) !Alignment { const alignment_big = try sema.analyzeAsInt(block, src, air_ref, align_ty, "alignment must be comptime-known"); const alignment = @as(u32, @intCast(alignment_big)); // We coerce to u29 in the prev line. try sema.validateAlign(block, src, alignment); return Alignment.fromNonzeroByteUnits(alignment); } fn validateAlign( sema: *Sema, block: *Block, src: LazySrcLoc, alignment: u32, ) !void { if (alignment == 0) return sema.fail(block, src, "alignment must be >= 1", .{}); if (!std.math.isPowerOfTwo(alignment)) { return sema.fail(block, src, "alignment value '{d}' is not a power of two", .{ alignment, }); } } pub fn resolveAlign( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ) !Alignment { const air_ref = try sema.resolveInst(zir_ref); return sema.analyzeAsAlign(block, src, air_ref); } fn resolveInt( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, dest_ty: Type, reason: []const u8, ) !u64 { const air_ref = try sema.resolveInst(zir_ref); return sema.analyzeAsInt(block, src, air_ref, dest_ty, reason); } fn analyzeAsInt( sema: *Sema, block: *Block, src: LazySrcLoc, air_ref: Air.Inst.Ref, dest_ty: Type, reason: []const u8, ) !u64 { const mod = sema.mod; const coerced = try sema.coerce(block, dest_ty, air_ref, src); const val = try sema.resolveConstValue(block, src, coerced, reason); return (try val.getUnsignedIntAdvanced(mod, sema)).?; } // Returns a compile error if the value has tag `variable`. See `resolveInstValue` for // a function that does not. pub fn resolveInstConst( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) CompileError!TypedValue { const air_ref = try sema.resolveInst(zir_ref); const val = try sema.resolveConstValue(block, src, air_ref, reason); return TypedValue{ .ty = sema.typeOf(air_ref), .val = val, }; } // Value Tag may be `undef` or `variable`. // See `resolveInstConst` for an alternative. pub fn resolveInstValue( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) CompileError!TypedValue { const air_ref = try sema.resolveInst(zir_ref); const val = try sema.resolveValue(block, src, air_ref, reason); return TypedValue{ .ty = sema.typeOf(air_ref), .val = val, }; } fn zirCoerceResultPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const pointee_ty = try sema.resolveType(block, src, extra.lhs); const ptr = try sema.resolveInst(extra.rhs); const target = mod.getTarget(); const addr_space = target_util.defaultAddressSpace(target, .local); if (Air.refToIndex(ptr)) |ptr_inst| { switch (sema.air_instructions.items(.tag)[ptr_inst]) { .inferred_alloc => { const ia1 = sema.air_instructions.items(.data)[ptr_inst].inferred_alloc; const ia2 = sema.unresolved_inferred_allocs.getPtr(ptr_inst).?; // Add the stored instruction to the set we will use to resolve peer types // for the inferred allocation. // This instruction will not make it to codegen; it is only to participate // in the `stored_inst_list` of the `inferred_alloc`. var trash_block = block.makeSubBlock(); defer trash_block.instructions.deinit(sema.gpa); const operand = try trash_block.addBitCast(pointee_ty, .void_value); const ptr_ty = try mod.ptrType(.{ .child = pointee_ty.toIntern(), .flags = .{ .alignment = ia1.alignment, .address_space = addr_space, }, }); const bitcasted_ptr = try block.addBitCast(ptr_ty, ptr); try ia2.prongs.append(sema.arena, .{ .stored_inst = operand, .placeholder = Air.refToIndex(bitcasted_ptr).?, }); return bitcasted_ptr; }, .inferred_alloc_comptime => { const alignment = sema.air_instructions.items(.data)[ptr_inst].inferred_alloc_comptime.alignment; // There will be only one coerce_result_ptr because we are running at comptime. // The alloc will turn into a Decl. var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const decl_index = try anon_decl.finish( pointee_ty, (try mod.intern(.{ .undef = pointee_ty.toIntern() })).toValue(), alignment, ); sema.air_instructions.items(.data)[ptr_inst].inferred_alloc_comptime.decl_index = decl_index; if (alignment != .none) { try sema.resolveTypeLayout(pointee_ty); } const ptr_ty = try mod.ptrType(.{ .child = pointee_ty.toIntern(), .flags = .{ .alignment = alignment, .address_space = addr_space, }, }); try sema.maybeQueueFuncBodyAnalysis(decl_index); try sema.comptime_mutable_decls.append(decl_index); return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_ty.toIntern(), .addr = .{ .mut_decl = .{ .decl = decl_index, .runtime_index = block.runtime_index, } }, } }))); }, else => {}, } } // Make a dummy store through the pointer to test the coercion. // We will then use the generated instructions to decide what // kind of transformations to make on the result pointer. var trash_block = block.makeSubBlock(); trash_block.is_comptime = false; defer trash_block.instructions.deinit(sema.gpa); const dummy_ptr = try trash_block.addTy(.alloc, sema.typeOf(ptr)); const dummy_operand = try trash_block.addBitCast(pointee_ty, .void_value); return sema.coerceResultPtr(block, src, ptr, dummy_ptr, dummy_operand, &trash_block); } fn coerceResultPtr( sema: *Sema, block: *Block, src: LazySrcLoc, ptr: Air.Inst.Ref, dummy_ptr: Air.Inst.Ref, dummy_operand: Air.Inst.Ref, trash_block: *Block, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const target = sema.mod.getTarget(); const addr_space = target_util.defaultAddressSpace(target, .local); const pointee_ty = sema.typeOf(dummy_operand); const prev_trash_len = trash_block.instructions.items.len; try sema.storePtr2(trash_block, src, dummy_ptr, src, dummy_operand, src, .bitcast); { const air_tags = sema.air_instructions.items(.tag); //std.debug.print("dummy storePtr instructions:\n", .{}); //for (trash_block.instructions.items) |item| { // std.debug.print(" {s}\n", .{@tagName(air_tags[item])}); //} // The last one is always `store`. const trash_inst = trash_block.instructions.items[trash_block.instructions.items.len - 1]; if (air_tags[trash_inst] != .store and air_tags[trash_inst] != .store_safe) { // no store instruction is generated for zero sized types assert((try sema.typeHasOnePossibleValue(pointee_ty)) != null); } else { trash_block.instructions.items.len -= 1; assert(trash_inst == sema.air_instructions.len - 1); sema.air_instructions.len -= 1; } } const ptr_ty = try mod.ptrType(.{ .child = pointee_ty.toIntern(), .flags = .{ .address_space = addr_space }, }); var new_ptr = ptr; while (true) { const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); if (trash_block.instructions.items.len == prev_trash_len) { if (try sema.resolveDefinedValue(block, src, new_ptr)) |ptr_val| { return Air.internedToRef(ptr_val.toIntern()); } if (pointee_ty.eql(Type.null, sema.mod)) { const null_inst = Air.internedToRef(Value.null.toIntern()); _ = try block.addBinOp(.store, new_ptr, null_inst); return Air.Inst.Ref.void_value; } return sema.bitCast(block, ptr_ty, new_ptr, src, null); } const trash_inst = trash_block.instructions.pop(); switch (air_tags[trash_inst]) { // Array coerced to Vector where element size is not equal but coercible. .aggregate_init => { const ty_pl = air_datas[trash_inst].ty_pl; const ptr_operand_ty = try mod.ptrType(.{ .child = (try sema.analyzeAsType(block, src, ty_pl.ty)).toIntern(), .flags = .{ .address_space = addr_space }, }); if (try sema.resolveDefinedValue(block, src, new_ptr)) |ptr_val| { return Air.internedToRef(ptr_val.toIntern()); } else { return sema.bitCast(block, ptr_operand_ty, new_ptr, src, null); } }, .bitcast => { const ty_op = air_datas[trash_inst].ty_op; const operand_ty = sema.typeOf(ty_op.operand); const ptr_operand_ty = try mod.ptrType(.{ .child = operand_ty.toIntern(), .flags = .{ .address_space = addr_space }, }); if (try sema.resolveDefinedValue(block, src, new_ptr)) |ptr_val| { new_ptr = Air.internedToRef((try mod.getCoerced(ptr_val, ptr_operand_ty)).toIntern()); } else { new_ptr = try sema.bitCast(block, ptr_operand_ty, new_ptr, src, null); } }, .wrap_optional => { new_ptr = try sema.analyzeOptionalPayloadPtr(block, src, new_ptr, false, true); }, .wrap_errunion_err => { return sema.fail(block, src, "TODO coerce_result_ptr wrap_errunion_err", .{}); }, .wrap_errunion_payload => { new_ptr = try sema.analyzeErrUnionPayloadPtr(block, src, new_ptr, false, true); }, .array_to_slice => { return sema.fail(block, src, "TODO coerce_result_ptr array_to_slice", .{}); }, .get_union_tag => { return sema.fail(block, src, "TODO coerce_result_ptr get_union_tag", .{}); }, else => { if (std.debug.runtime_safety) { std.debug.panic("unexpected AIR tag for coerce_result_ptr: {}", .{ air_tags[trash_inst], }); } else { unreachable; } }, } } } pub fn analyzeStructDecl( sema: *Sema, new_decl: *Decl, inst: Zir.Inst.Index, struct_index: Module.Struct.Index, ) SemaError!void { const mod = sema.mod; const struct_obj = mod.structPtr(struct_index); const extended = sema.code.instructions.items(.data)[inst].extended; assert(extended.opcode == .struct_decl); const small = @as(Zir.Inst.StructDecl.Small, @bitCast(extended.small)); struct_obj.known_non_opv = small.known_non_opv; if (small.known_comptime_only) { struct_obj.requires_comptime = .yes; } var extra_index: usize = extended.operand; extra_index += @intFromBool(small.has_src_node); extra_index += @intFromBool(small.has_fields_len); const decls_len = if (small.has_decls_len) blk: { const decls_len = sema.code.extra[extra_index]; extra_index += 1; break :blk decls_len; } else 0; if (small.has_backing_int) { const backing_int_body_len = sema.code.extra[extra_index]; extra_index += 1; // backing_int_body_len if (backing_int_body_len == 0) { extra_index += 1; // backing_int_ref } else { extra_index += backing_int_body_len; // backing_int_body_inst } } _ = try mod.scanNamespace(struct_obj.namespace, extra_index, decls_len, new_decl); } fn zirStructDecl( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const small = @as(Zir.Inst.StructDecl.Small, @bitCast(extended.small)); const src: LazySrcLoc = if (small.has_src_node) blk: { const node_offset = @as(i32, @bitCast(sema.code.extra[extended.operand])); break :blk LazySrcLoc.nodeOffset(node_offset); } else sema.src; // Because these three things each reference each other, `undefined` // placeholders are used before being set after the struct type gains an // InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, small.name_strategy, "struct", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer mod.abortAnonDecl(new_decl_index); const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const struct_index = try mod.createStruct(.{ .owner_decl = new_decl_index, .fields = .{}, .zir_index = inst, .layout = small.layout, .status = .none, .known_non_opv = undefined, .is_tuple = small.is_tuple, .namespace = new_namespace_index, }); errdefer mod.destroyStruct(struct_index); const struct_ty = ty: { const ty = try mod.intern_pool.get(gpa, .{ .struct_type = .{ .index = struct_index.toOptional(), .namespace = new_namespace_index.toOptional(), } }); if (sema.builtin_type_target_index != .none) { mod.intern_pool.resolveBuiltinType(sema.builtin_type_target_index, ty); break :ty sema.builtin_type_target_index; } break :ty ty; }; // TODO: figure out InternPool removals for incremental compilation //errdefer mod.intern_pool.remove(struct_ty); new_decl.ty = Type.type; new_decl.val = struct_ty.toValue(); new_namespace.ty = struct_ty.toType(); try sema.analyzeStructDecl(new_decl, inst, struct_index); const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; } fn createAnonymousDeclTypeNamed( sema: *Sema, block: *Block, src: LazySrcLoc, typed_value: TypedValue, name_strategy: Zir.Inst.NameStrategy, anon_prefix: []const u8, inst: ?Zir.Inst.Index, ) !Decl.Index { const mod = sema.mod; const ip = &mod.intern_pool; const gpa = sema.gpa; const namespace = block.namespace; const src_scope = block.wip_capture_scope; const src_decl = mod.declPtr(block.src_decl); const src_node = src_decl.relativeToNodeIndex(src.node_offset.x); const new_decl_index = try mod.allocateNewDecl(namespace, src_node, src_scope); errdefer mod.destroyDecl(new_decl_index); switch (name_strategy) { .anon => { // It would be neat to have "struct:line:column" but this name has // to survive incremental updates, where it may have been shifted down // or up to a different line, but unchanged, and thus not unnecessarily // semantically analyzed. // This name is also used as the key in the parent namespace so it cannot be // renamed. const name = mod.intern_pool.getOrPutStringFmt(gpa, "{}__{s}_{d}", .{ src_decl.name.fmt(&mod.intern_pool), anon_prefix, @intFromEnum(new_decl_index), }) catch unreachable; try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, typed_value, name); return new_decl_index; }, .parent => { const name = mod.declPtr(block.src_decl).name; try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, typed_value, name); return new_decl_index; }, .func => { const fn_info = sema.code.getFnInfo(ip.funcZirBodyInst(sema.func_index)); const zir_tags = sema.code.instructions.items(.tag); var buf = std.ArrayList(u8).init(gpa); defer buf.deinit(); const writer = buf.writer(); try writer.print("{}(", .{mod.declPtr(block.src_decl).name.fmt(&mod.intern_pool)}); var arg_i: usize = 0; for (fn_info.param_body) |zir_inst| switch (zir_tags[zir_inst]) { .param, .param_comptime, .param_anytype, .param_anytype_comptime => { const arg = sema.inst_map.get(zir_inst).?; // If this is being called in a generic function then analyzeCall will // have already resolved the args and this will work. // If not then this is a struct type being returned from a non-generic // function and the name doesn't matter since it will later // result in a compile error. const arg_val = sema.resolveConstMaybeUndefVal(block, .unneeded, arg, "") catch return sema.createAnonymousDeclTypeNamed(block, src, typed_value, .anon, anon_prefix, null); if (arg_i != 0) try writer.writeByte(','); try writer.print("{}", .{arg_val.fmtValue(sema.typeOf(arg), sema.mod)}); arg_i += 1; continue; }, else => continue, }; try writer.writeByte(')'); const name = try mod.intern_pool.getOrPutString(gpa, buf.items); try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, typed_value, name); return new_decl_index; }, .dbg_var => { const ref = Zir.indexToRef(inst.?); const zir_tags = sema.code.instructions.items(.tag); const zir_data = sema.code.instructions.items(.data); var i = inst.?; while (i < zir_tags.len) : (i += 1) switch (zir_tags[i]) { .dbg_var_ptr, .dbg_var_val => { if (zir_data[i].str_op.operand != ref) continue; const name = try mod.intern_pool.getOrPutStringFmt(gpa, "{}.{s}", .{ src_decl.name.fmt(&mod.intern_pool), zir_data[i].str_op.getStr(sema.code), }); try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, typed_value, name); return new_decl_index; }, else => {}, }; return sema.createAnonymousDeclTypeNamed(block, src, typed_value, .anon, anon_prefix, null); }, } } fn zirEnumDecl( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const gpa = sema.gpa; const small = @as(Zir.Inst.EnumDecl.Small, @bitCast(extended.small)); var extra_index: usize = extended.operand; const src: LazySrcLoc = if (small.has_src_node) blk: { const node_offset = @as(i32, @bitCast(sema.code.extra[extra_index])); extra_index += 1; break :blk LazySrcLoc.nodeOffset(node_offset); } else sema.src; const tag_ty_src: LazySrcLoc = .{ .node_offset_container_tag = src.node_offset.x }; const tag_type_ref = if (small.has_tag_type) blk: { const tag_type_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; break :blk tag_type_ref; } else .none; const body_len = if (small.has_body_len) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; break :blk body_len; } else 0; const fields_len = if (small.has_fields_len) blk: { const fields_len = sema.code.extra[extra_index]; extra_index += 1; break :blk fields_len; } else 0; const decls_len = if (small.has_decls_len) blk: { const decls_len = sema.code.extra[extra_index]; extra_index += 1; break :blk decls_len; } else 0; // Because these three things each reference each other, `undefined` // placeholders are used before being set after the enum type gains an // InternPool index. var done = false; const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, small.name_strategy, "enum", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer if (!done) mod.abortAnonDecl(new_decl_index); const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer if (!done) mod.destroyNamespace(new_namespace_index); extra_index = try mod.scanNamespace(new_namespace_index, extra_index, decls_len, new_decl); const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const bit_bags_count = std.math.divCeil(usize, fields_len, 32) catch unreachable; const body_end = extra_index; extra_index += bit_bags_count; const any_values = for (sema.code.extra[body_end..][0..bit_bags_count]) |bag| { if (bag != 0) break true; } else false; const incomplete_enum = incomplete_enum: { var incomplete_enum = try mod.intern_pool.getIncompleteEnum(gpa, .{ .decl = new_decl_index, .namespace = new_namespace_index.toOptional(), .fields_len = fields_len, .has_values = any_values, .tag_mode = if (small.nonexhaustive) .nonexhaustive else if (tag_type_ref == .none) .auto else .explicit, }); if (sema.builtin_type_target_index != .none) { mod.intern_pool.resolveBuiltinType(sema.builtin_type_target_index, incomplete_enum.index); incomplete_enum.index = sema.builtin_type_target_index; } break :incomplete_enum incomplete_enum; }; // TODO: figure out InternPool removals for incremental compilation //errdefer if (!done) mod.intern_pool.remove(incomplete_enum.index); new_decl.ty = Type.type; new_decl.val = incomplete_enum.index.toValue(); new_namespace.ty = incomplete_enum.index.toType(); const decl_val = try sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); done = true; const int_tag_ty = ty: { // We create a block for the field type instructions because they // may need to reference Decls from inside the enum namespace. // Within the field type, default value, and alignment expressions, the "owner decl" // should be the enum itself. const prev_owner_decl = sema.owner_decl; const prev_owner_decl_index = sema.owner_decl_index; sema.owner_decl = new_decl; sema.owner_decl_index = new_decl_index; defer { sema.owner_decl = prev_owner_decl; sema.owner_decl_index = prev_owner_decl_index; } const prev_owner_func_index = sema.owner_func_index; sema.owner_func_index = .none; defer sema.owner_func_index = prev_owner_func_index; const prev_func_index = sema.func_index; sema.func_index = .none; defer sema.func_index = prev_func_index; var wip_captures = try WipCaptureScope.init(gpa, new_decl.src_scope); defer wip_captures.deinit(); var enum_block: Block = .{ .parent = null, .sema = sema, .src_decl = new_decl_index, .namespace = new_namespace_index, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer enum_block.instructions.deinit(sema.gpa); if (body.len != 0) { try sema.analyzeBody(&enum_block, body); } try wip_captures.finalize(); if (tag_type_ref != .none) { const ty = try sema.resolveType(block, tag_ty_src, tag_type_ref); if (ty.zigTypeTag(mod) != .Int and ty.zigTypeTag(mod) != .ComptimeInt) { return sema.fail(block, tag_ty_src, "expected integer tag type, found '{}'", .{ty.fmt(sema.mod)}); } incomplete_enum.setTagType(&mod.intern_pool, ty.toIntern()); break :ty ty; } else if (fields_len == 0) { break :ty try mod.intType(.unsigned, 0); } else { const bits = std.math.log2_int_ceil(usize, fields_len); break :ty try mod.intType(.unsigned, bits); } }; if (small.nonexhaustive and int_tag_ty.toIntern() != .comptime_int_type) { if (fields_len > 1 and std.math.log2_int(u64, fields_len) == int_tag_ty.bitSize(mod)) { return sema.fail(block, src, "non-exhaustive enum specifies every value", .{}); } } var bit_bag_index: usize = body_end; var cur_bit_bag: u32 = undefined; var field_i: u32 = 0; var last_tag_val: ?Value = null; while (field_i < fields_len) : (field_i += 1) { if (field_i % 32 == 0) { cur_bit_bag = sema.code.extra[bit_bag_index]; bit_bag_index += 1; } const has_tag_value = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const field_name_zir = sema.code.nullTerminatedString(sema.code.extra[extra_index]); extra_index += 1; // doc comment extra_index += 1; const field_name = try mod.intern_pool.getOrPutString(gpa, field_name_zir); if (try incomplete_enum.addFieldName(&mod.intern_pool, gpa, field_name)) |other_index| { const field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i }).lazy; const other_field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = other_index }).lazy; const msg = msg: { const msg = try sema.errMsg(block, field_src, "duplicate enum field '{s}'", .{field_name_zir}); errdefer msg.destroy(gpa); try sema.errNote(block, other_field_src, msg, "other field here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const tag_overflow = if (has_tag_value) overflow: { const tag_val_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const tag_inst = try sema.resolveInst(tag_val_ref); last_tag_val = sema.resolveConstValue(block, .unneeded, tag_inst, "") catch |err| switch (err) { error.NeededSourceLocation => { const value_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i, .range = .value, }).lazy; _ = try sema.resolveConstValue(block, value_src, tag_inst, "enum tag value must be comptime-known"); unreachable; }, else => |e| return e, }; if (!(try sema.intFitsInType(last_tag_val.?, int_tag_ty, null))) break :overflow true; last_tag_val = try mod.getCoerced(last_tag_val.?, int_tag_ty); if (try incomplete_enum.addFieldValue(&mod.intern_pool, gpa, last_tag_val.?.toIntern())) |other_index| { const value_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i, .range = .value, }).lazy; const other_field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = other_index }).lazy; const msg = msg: { const msg = try sema.errMsg(block, value_src, "enum tag value {} already taken", .{last_tag_val.?.fmtValue(int_tag_ty, sema.mod)}); errdefer msg.destroy(gpa); try sema.errNote(block, other_field_src, msg, "other occurrence here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } break :overflow false; } else if (any_values) overflow: { var overflow: ?usize = null; last_tag_val = if (last_tag_val) |val| try sema.intAdd(val, try mod.intValue(int_tag_ty, 1), int_tag_ty, &overflow) else try mod.intValue(int_tag_ty, 0); if (overflow != null) break :overflow true; if (try incomplete_enum.addFieldValue(&mod.intern_pool, gpa, last_tag_val.?.toIntern())) |other_index| { const field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i }).lazy; const other_field_src = mod.fieldSrcLoc(new_decl_index, .{ .index = other_index }).lazy; const msg = msg: { const msg = try sema.errMsg(block, field_src, "enum tag value {} already taken", .{last_tag_val.?.fmtValue(int_tag_ty, sema.mod)}); errdefer msg.destroy(gpa); try sema.errNote(block, other_field_src, msg, "other occurrence here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } break :overflow false; } else overflow: { last_tag_val = try mod.intValue(Type.comptime_int, field_i); if (!try sema.intFitsInType(last_tag_val.?, int_tag_ty, null)) break :overflow true; last_tag_val = try mod.getCoerced(last_tag_val.?, int_tag_ty); break :overflow false; }; if (tag_overflow) { const value_src = mod.fieldSrcLoc(new_decl_index, .{ .index = field_i, .range = if (has_tag_value) .value else .name, }).lazy; const msg = try sema.errMsg(block, value_src, "enumeration value '{}' too large for type '{}'", .{ last_tag_val.?.fmtValue(int_tag_ty, mod), int_tag_ty.fmt(mod), }); return sema.failWithOwnedErrorMsg(msg); } } return decl_val; } fn zirUnionDecl( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const gpa = sema.gpa; const small = @as(Zir.Inst.UnionDecl.Small, @bitCast(extended.small)); var extra_index: usize = extended.operand; const src: LazySrcLoc = if (small.has_src_node) blk: { const node_offset = @as(i32, @bitCast(sema.code.extra[extra_index])); extra_index += 1; break :blk LazySrcLoc.nodeOffset(node_offset); } else sema.src; extra_index += @intFromBool(small.has_tag_type); extra_index += @intFromBool(small.has_body_len); extra_index += @intFromBool(small.has_fields_len); const decls_len = if (small.has_decls_len) blk: { const decls_len = sema.code.extra[extra_index]; extra_index += 1; break :blk decls_len; } else 0; // Because these three things each reference each other, `undefined` // placeholders are used before being set after the union type gains an // InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, small.name_strategy, "union", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer mod.abortAnonDecl(new_decl_index); const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const union_index = try mod.createUnion(.{ .owner_decl = new_decl_index, .tag_ty = Type.null, .fields = .{}, .zir_index = inst, .layout = small.layout, .status = .none, .namespace = new_namespace_index, }); errdefer mod.destroyUnion(union_index); const union_ty = ty: { const ty = try mod.intern_pool.get(gpa, .{ .union_type = .{ .index = union_index, .runtime_tag = if (small.has_tag_type or small.auto_enum_tag) .tagged else if (small.layout != .Auto) .none else switch (block.sema.mod.optimizeMode()) { .Debug, .ReleaseSafe => .safety, .ReleaseFast, .ReleaseSmall => .none, }, } }); if (sema.builtin_type_target_index != .none) { mod.intern_pool.resolveBuiltinType(sema.builtin_type_target_index, ty); break :ty sema.builtin_type_target_index; } break :ty ty; }; // TODO: figure out InternPool removals for incremental compilation //errdefer mod.intern_pool.remove(union_ty); new_decl.ty = Type.type; new_decl.val = union_ty.toValue(); new_namespace.ty = union_ty.toType(); _ = try mod.scanNamespace(new_namespace_index, extra_index, decls_len, new_decl); const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; } fn zirOpaqueDecl( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const small = @as(Zir.Inst.OpaqueDecl.Small, @bitCast(extended.small)); var extra_index: usize = extended.operand; const src: LazySrcLoc = if (small.has_src_node) blk: { const node_offset = @as(i32, @bitCast(sema.code.extra[extra_index])); extra_index += 1; break :blk LazySrcLoc.nodeOffset(node_offset); } else sema.src; const decls_len = if (small.has_decls_len) blk: { const decls_len = sema.code.extra[extra_index]; extra_index += 1; break :blk decls_len; } else 0; // Because these three things each reference each other, `undefined` // placeholders are used in two places before being set after the opaque // type gains an InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, small.name_strategy, "opaque", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer mod.abortAnonDecl(new_decl_index); const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const opaque_ty = try mod.intern(.{ .opaque_type = .{ .decl = new_decl_index, .namespace = new_namespace_index, } }); // TODO: figure out InternPool removals for incremental compilation //errdefer mod.intern_pool.remove(opaque_ty); new_decl.ty = Type.type; new_decl.val = opaque_ty.toValue(); new_namespace.ty = opaque_ty.toType(); extra_index = try mod.scanNamespace(new_namespace_index, extra_index, decls_len, new_decl); const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; } fn zirErrorSetDecl( sema: *Sema, block: *Block, inst: Zir.Inst.Index, name_strategy: Zir.Inst.NameStrategy, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const gpa = sema.gpa; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.ErrorSetDecl, inst_data.payload_index); var names: InferredErrorSet.NameMap = .{}; try names.ensureUnusedCapacity(sema.arena, extra.data.fields_len); var extra_index = @as(u32, @intCast(extra.end)); const extra_index_end = extra_index + (extra.data.fields_len * 2); while (extra_index < extra_index_end) : (extra_index += 2) { // +2 to skip over doc_string const str_index = sema.code.extra[extra_index]; const name = sema.code.nullTerminatedString(str_index); const name_ip = try mod.intern_pool.getOrPutString(gpa, name); _ = try mod.getErrorValue(name_ip); const result = names.getOrPutAssumeCapacity(name_ip); assert(!result.found_existing); // verified in AstGen } const error_set_ty = try mod.errorSetFromUnsortedNames(names.keys()); const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.type, .val = error_set_ty.toValue(), }, name_strategy, "error", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer mod.abortAnonDecl(new_decl_index); const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; } fn zirRetPtr(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); if (block.is_comptime or try sema.typeRequiresComptime(sema.fn_ret_ty)) { try sema.resolveTypeFields(sema.fn_ret_ty); return sema.analyzeComptimeAlloc(block, sema.fn_ret_ty, .none); } const target = sema.mod.getTarget(); const ptr_type = try sema.mod.ptrType(.{ .child = sema.fn_ret_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); if (block.inlining != null) { // We are inlining a function call; this should be emitted as an alloc, not a ret_ptr. // TODO when functions gain result location support, the inlining struct in // Block should contain the return pointer, and we would pass that through here. return block.addTy(.alloc, ptr_type); } return block.addTy(.ret_ptr, ptr_type); } fn zirRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_tok; const operand = try sema.resolveInst(inst_data.operand); return sema.analyzeRef(block, inst_data.src(), operand); } fn zirEnsureResultUsed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const src = inst_data.src(); return sema.ensureResultUsed(block, sema.typeOf(operand), src); } fn ensureResultUsed( sema: *Sema, block: *Block, ty: Type, src: LazySrcLoc, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Void, .NoReturn => return, .ErrorSet, .ErrorUnion => { const msg = msg: { const msg = try sema.errMsg(block, src, "error is ignored", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, else => { const msg = msg: { const msg = try sema.errMsg(block, src, "value of type '{}' ignored", .{ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "all non-void values must be used", .{}); try sema.errNote(block, src, msg, "this error can be suppressed by assigning the value to '_'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, } } fn zirEnsureResultNonError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const src = inst_data.src(); const operand_ty = sema.typeOf(operand); switch (operand_ty.zigTypeTag(mod)) { .ErrorSet, .ErrorUnion => { const msg = msg: { const msg = try sema.errMsg(block, src, "error is discarded", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "consider using 'try', 'catch', or 'if'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, else => return, } } fn zirEnsureErrUnionPayloadVoid(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const err_union_ty = if (operand_ty.zigTypeTag(mod) == .Pointer) operand_ty.childType(mod) else operand_ty; if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) return; const payload_ty = err_union_ty.errorUnionPayload(mod).zigTypeTag(mod); if (payload_ty != .Void and payload_ty != .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, src, "error union payload is ignored", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "payload value can be explicitly ignored with '|_|'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } fn zirIndexablePtrLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const object = try sema.resolveInst(inst_data.operand); return indexablePtrLen(sema, block, src, object); } fn indexablePtrLen( sema: *Sema, block: *Block, src: LazySrcLoc, object: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const object_ty = sema.typeOf(object); const is_pointer_to = object_ty.isSinglePointer(mod); const indexable_ty = if (is_pointer_to) object_ty.childType(mod) else object_ty; try checkIndexable(sema, block, src, indexable_ty); const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "len"); return sema.fieldVal(block, src, object, field_name, src); } fn indexablePtrLenOrNone( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); try checkMemOperand(sema, block, src, operand_ty); if (operand_ty.ptrSize(mod) == .Many) return .none; const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "len"); return sema.fieldVal(block, src, operand, field_name, src); } fn zirAllocExtended( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const gpa = sema.gpa; const extra = sema.code.extraData(Zir.Inst.AllocExtended, extended.operand); const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = extra.data.src_node }; const align_src: LazySrcLoc = .{ .node_offset_var_decl_align = extra.data.src_node }; const small = @as(Zir.Inst.AllocExtended.Small, @bitCast(extended.small)); var extra_index: usize = extra.end; const var_ty: Type = if (small.has_type) blk: { const type_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; break :blk try sema.resolveType(block, ty_src, type_ref); } else undefined; const alignment = if (small.has_align) blk: { const align_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const alignment = try sema.resolveAlign(block, align_src, align_ref); break :blk alignment; } else .none; if (block.is_comptime or small.is_comptime) { if (small.has_type) { return sema.analyzeComptimeAlloc(block, var_ty, alignment); } else { try sema.air_instructions.append(gpa, .{ .tag = .inferred_alloc_comptime, .data = .{ .inferred_alloc_comptime = .{ .decl_index = undefined, .alignment = alignment, .is_const = small.is_const, } }, }); return Air.indexToRef(@as(u32, @intCast(sema.air_instructions.len - 1))); } } if (small.has_type) { if (!small.is_const) { try sema.validateVarType(block, ty_src, var_ty, false); } const target = sema.mod.getTarget(); try sema.resolveTypeLayout(var_ty); const ptr_type = try sema.mod.ptrType(.{ .child = var_ty.toIntern(), .flags = .{ .alignment = alignment, .address_space = target_util.defaultAddressSpace(target, .local), }, }); return block.addTy(.alloc, ptr_type); } const result_index = try block.addInstAsIndex(.{ .tag = .inferred_alloc, .data = .{ .inferred_alloc = .{ .alignment = alignment, .is_const = small.is_const, } }, }); try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{}); return Air.indexToRef(result_index); } fn zirAllocComptime(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node }; const var_ty = try sema.resolveType(block, ty_src, inst_data.operand); return sema.analyzeComptimeAlloc(block, var_ty, .none); } fn zirMakePtrConst(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const alloc = try sema.resolveInst(inst_data.operand); const alloc_ty = sema.typeOf(alloc); var ptr_info = alloc_ty.ptrInfo(mod); const elem_ty = ptr_info.child.toType(); // Detect if all stores to an `.alloc` were comptime-known. ct: { var search_index: usize = block.instructions.items.len; const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); const store_inst = while (true) { if (search_index == 0) break :ct; search_index -= 1; const candidate = block.instructions.items[search_index]; switch (air_tags[candidate]) { .dbg_stmt, .dbg_block_begin, .dbg_block_end => continue, .store, .store_safe => break candidate, else => break :ct, } }; while (true) { if (search_index == 0) break :ct; search_index -= 1; const candidate = block.instructions.items[search_index]; switch (air_tags[candidate]) { .dbg_stmt, .dbg_block_begin, .dbg_block_end => continue, .alloc => { if (Air.indexToRef(candidate) != alloc) break :ct; break; }, else => break :ct, } } const store_op = air_datas[store_inst].bin_op; const store_val = (try sema.resolveMaybeUndefVal(store_op.rhs)) orelse break :ct; if (store_op.lhs != alloc) break :ct; // Remove all the unnecessary runtime instructions. block.instructions.shrinkRetainingCapacity(search_index); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); return sema.analyzeDeclRef(try anon_decl.finish(elem_ty, store_val, ptr_info.flags.alignment)); } return sema.makePtrConst(block, alloc); } fn makePtrConst(sema: *Sema, block: *Block, alloc: Air.Inst.Ref) CompileError!Air.Inst.Ref { const mod = sema.mod; const alloc_ty = sema.typeOf(alloc); var ptr_info = alloc_ty.ptrInfo(mod); ptr_info.flags.is_const = true; const const_ptr_ty = try mod.ptrType(ptr_info); // Detect if a comptime value simply needs to have its type changed. if (try sema.resolveMaybeUndefVal(alloc)) |val| { return Air.internedToRef((try mod.getCoerced(val, const_ptr_ty)).toIntern()); } return block.addBitCast(const_ptr_ty, alloc); } fn zirAllocInferredComptime( sema: *Sema, inst: Zir.Inst.Index, is_const: bool, ) CompileError!Air.Inst.Ref { const gpa = sema.gpa; const src_node = sema.code.instructions.items(.data)[inst].node; const src = LazySrcLoc.nodeOffset(src_node); sema.src = src; try sema.air_instructions.append(gpa, .{ .tag = .inferred_alloc_comptime, .data = .{ .inferred_alloc_comptime = .{ .decl_index = undefined, .alignment = .none, .is_const = is_const, } }, }); return Air.indexToRef(@as(u32, @intCast(sema.air_instructions.len - 1))); } fn zirAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node }; const var_ty = try sema.resolveType(block, ty_src, inst_data.operand); if (block.is_comptime) { return sema.analyzeComptimeAlloc(block, var_ty, .none); } const target = sema.mod.getTarget(); const ptr_type = try sema.mod.ptrType(.{ .child = var_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); try sema.queueFullTypeResolution(var_ty); return block.addTy(.alloc, ptr_type); } fn zirAllocMut(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node }; const var_ty = try sema.resolveType(block, ty_src, inst_data.operand); if (block.is_comptime) { return sema.analyzeComptimeAlloc(block, var_ty, .none); } try sema.validateVarType(block, ty_src, var_ty, false); const target = sema.mod.getTarget(); const ptr_type = try sema.mod.ptrType(.{ .child = var_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); try sema.queueFullTypeResolution(var_ty); return block.addTy(.alloc, ptr_type); } fn zirAllocInferred( sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_const: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const gpa = sema.gpa; const src_node = sema.code.instructions.items(.data)[inst].node; const src = LazySrcLoc.nodeOffset(src_node); sema.src = src; if (block.is_comptime) { try sema.air_instructions.append(gpa, .{ .tag = .inferred_alloc_comptime, .data = .{ .inferred_alloc_comptime = .{ .decl_index = undefined, .alignment = .none, .is_const = is_const, } }, }); return Air.indexToRef(@as(u32, @intCast(sema.air_instructions.len - 1))); } const result_index = try block.addInstAsIndex(.{ .tag = .inferred_alloc, .data = .{ .inferred_alloc = .{ .alignment = .none, .is_const = is_const, } }, }); try sema.unresolved_inferred_allocs.putNoClobber(gpa, result_index, .{}); return Air.indexToRef(result_index); } fn zirResolveInferredAlloc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = inst_data.src_node }; const ptr = try sema.resolveInst(inst_data.operand); const ptr_inst = Air.refToIndex(ptr).?; const target = mod.getTarget(); switch (sema.air_instructions.items(.tag)[ptr_inst]) { .inferred_alloc_comptime => { const iac = sema.air_instructions.items(.data)[ptr_inst].inferred_alloc_comptime; const decl_index = iac.decl_index; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); const decl = mod.declPtr(decl_index); if (iac.is_const) _ = try decl.internValue(mod); const final_elem_ty = decl.ty; const final_ptr_ty = try mod.ptrType(.{ .child = final_elem_ty.toIntern(), .flags = .{ .is_const = false, .alignment = iac.alignment, .address_space = target_util.defaultAddressSpace(target, .local), }, }); if (std.debug.runtime_safety) { // The inferred_alloc_comptime should never be referenced again sema.air_instructions.set(ptr_inst, .{ .tag = undefined, .data = undefined }); } try sema.maybeQueueFuncBodyAnalysis(decl_index); const interned = try mod.intern(.{ .ptr = .{ .ty = final_ptr_ty.toIntern(), .addr = if (!iac.is_const) .{ .mut_decl = .{ .decl = decl_index, .runtime_index = block.runtime_index, } } else .{ .decl = decl_index }, } }); // Remap the ZIR operand to the resolved pointer value sema.inst_map.putAssumeCapacity(Zir.refToIndex(inst_data.operand).?, Air.internedToRef(interned)); }, .inferred_alloc => { const ia1 = sema.air_instructions.items(.data)[ptr_inst].inferred_alloc; const ia2 = sema.unresolved_inferred_allocs.fetchRemove(ptr_inst).?.value; const peer_inst_list = ia2.prongs.items(.stored_inst); const final_elem_ty = try sema.resolvePeerTypes(block, ty_src, peer_inst_list, .none); const final_ptr_ty = try mod.ptrType(.{ .child = final_elem_ty.toIntern(), .flags = .{ .alignment = ia1.alignment, .address_space = target_util.defaultAddressSpace(target, .local), }, }); if (!ia1.is_const) { try sema.validateVarType(block, ty_src, final_elem_ty, false); } else ct: { // Detect if the value is comptime-known. In such case, the // last 3 AIR instructions of the block will look like this: // // %a = inferred_alloc // %b = bitcast(%a) // %c = store(%b, %d) // // If `%d` is comptime-known, then we want to store the value // inside an anonymous Decl and then erase these three AIR // instructions from the block, replacing the inst_map entry // corresponding to the ZIR alloc instruction with a constant // decl_ref pointing at our new Decl. // dbg_stmt instructions may be interspersed into this pattern // which must be ignored. if (block.instructions.items.len < 3) break :ct; var search_index: usize = block.instructions.items.len; const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); const store_inst = while (true) { if (search_index == 0) break :ct; search_index -= 1; const candidate = block.instructions.items[search_index]; switch (air_tags[candidate]) { .dbg_stmt, .dbg_block_begin, .dbg_block_end => continue, .store, .store_safe => break candidate, else => break :ct, } }; const bitcast_inst = while (true) { if (search_index == 0) break :ct; search_index -= 1; const candidate = block.instructions.items[search_index]; switch (air_tags[candidate]) { .dbg_stmt, .dbg_block_begin, .dbg_block_end => continue, .bitcast => break candidate, else => break :ct, } }; while (true) { if (search_index == 0) break :ct; search_index -= 1; const candidate = block.instructions.items[search_index]; if (candidate == ptr_inst) break; switch (air_tags[candidate]) { .dbg_stmt, .dbg_block_begin, .dbg_block_end => continue, else => break :ct, } } const store_op = air_datas[store_inst].bin_op; const store_val = (try sema.resolveMaybeUndefVal(store_op.rhs)) orelse break :ct; if (store_op.lhs != Air.indexToRef(bitcast_inst)) break :ct; if (air_datas[bitcast_inst].ty_op.operand != ptr) break :ct; const new_decl_index = d: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const new_decl_index = try anon_decl.finish(final_elem_ty, store_val, ia1.alignment); break :d new_decl_index; }; try mod.declareDeclDependency(sema.owner_decl_index, new_decl_index); // Remove the instruction from the block so that codegen does not see it. block.instructions.shrinkRetainingCapacity(search_index); try sema.maybeQueueFuncBodyAnalysis(new_decl_index); if (std.debug.runtime_safety) { // The inferred_alloc should never be referenced again sema.air_instructions.set(ptr_inst, .{ .tag = undefined, .data = undefined }); } const interned = try mod.intern(.{ .ptr = .{ .ty = final_ptr_ty.toIntern(), .addr = .{ .decl = new_decl_index }, } }); // Remap the ZIR oeprand to the resolved pointer value sema.inst_map.putAssumeCapacity(Zir.refToIndex(inst_data.operand).?, Air.internedToRef(interned)); // Unless the block is comptime, `alloc_inferred` always produces // a runtime constant. The final inferred type needs to be // fully resolved so it can be lowered in codegen. try sema.resolveTypeFully(final_elem_ty); return; } try sema.queueFullTypeResolution(final_elem_ty); // Change it to a normal alloc. sema.air_instructions.set(ptr_inst, .{ .tag = .alloc, .data = .{ .ty = final_ptr_ty }, }); // Now we need to go back over all the coerce_result_ptr instructions, which // previously inserted a bitcast as a placeholder, and do the logic as if // the new result ptr type was available. const placeholders = ia2.prongs.items(.placeholder); const gpa = sema.gpa; var trash_block = block.makeSubBlock(); trash_block.is_comptime = false; defer trash_block.instructions.deinit(gpa); const mut_final_ptr_ty = try mod.ptrType(.{ .child = final_elem_ty.toIntern(), .flags = .{ .alignment = ia1.alignment, .address_space = target_util.defaultAddressSpace(target, .local), }, }); const dummy_ptr = try trash_block.addTy(.alloc, mut_final_ptr_ty); const empty_trash_count = trash_block.instructions.items.len; for (peer_inst_list, placeholders) |peer_inst, placeholder_inst| { const sub_ptr_ty = sema.typeOf(Air.indexToRef(placeholder_inst)); if (mut_final_ptr_ty.eql(sub_ptr_ty, mod)) { // New result location type is the same as the old one; nothing // to do here. continue; } var replacement_block = block.makeSubBlock(); defer replacement_block.instructions.deinit(gpa); const result = switch (sema.air_instructions.items(.tag)[placeholder_inst]) { .bitcast => result: { trash_block.instructions.shrinkRetainingCapacity(empty_trash_count); const sub_ptr = try sema.coerceResultPtr(&replacement_block, src, ptr, dummy_ptr, peer_inst, &trash_block); assert(replacement_block.instructions.items.len > 0); break :result sub_ptr; }, .store, .store_safe => result: { const bin_op = sema.air_instructions.items(.data)[placeholder_inst].bin_op; try sema.storePtr2(&replacement_block, src, bin_op.lhs, src, bin_op.rhs, src, .bitcast); break :result .void_value; }, else => unreachable, }; // If only one instruction is produced then we can replace the bitcast // placeholder instruction with this instruction; no need for an entire block. if (replacement_block.instructions.items.len == 1) { const only_inst = replacement_block.instructions.items[0]; sema.air_instructions.set(placeholder_inst, sema.air_instructions.get(only_inst)); continue; } // Here we replace the placeholder bitcast instruction with a block // that does the coerce_result_ptr logic. _ = try replacement_block.addBr(placeholder_inst, result); const ty_inst = if (result == .void_value) .void_type else sema.air_instructions.items(.data)[placeholder_inst].ty_op.ty; try sema.air_extra.ensureUnusedCapacity( gpa, @typeInfo(Air.Block).Struct.fields.len + replacement_block.instructions.items.len, ); sema.air_instructions.set(placeholder_inst, .{ .tag = .block, .data = .{ .ty_pl = .{ .ty = ty_inst, .payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = @as(u32, @intCast(replacement_block.instructions.items.len)), }), } }, }); sema.air_extra.appendSliceAssumeCapacity(replacement_block.instructions.items); } }, else => unreachable, } } fn zirArrayBasePtr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const start_ptr = try sema.resolveInst(inst_data.operand); var base_ptr = start_ptr; while (true) switch (sema.typeOf(base_ptr).childType(mod).zigTypeTag(mod)) { .ErrorUnion => base_ptr = try sema.analyzeErrUnionPayloadPtr(block, src, base_ptr, false, true), .Optional => base_ptr = try sema.analyzeOptionalPayloadPtr(block, src, base_ptr, false, true), else => break, }; const elem_ty = sema.typeOf(base_ptr).childType(mod); switch (elem_ty.zigTypeTag(mod)) { .Array, .Vector => return base_ptr, .Struct => if (elem_ty.isTuple(mod)) { // TODO validate element count return base_ptr; }, else => {}, } return sema.failWithArrayInitNotSupported(block, src, sema.typeOf(start_ptr).childType(mod)); } fn zirFieldBasePtr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const start_ptr = try sema.resolveInst(inst_data.operand); var base_ptr = start_ptr; while (true) switch (sema.typeOf(base_ptr).childType(mod).zigTypeTag(mod)) { .ErrorUnion => base_ptr = try sema.analyzeErrUnionPayloadPtr(block, src, base_ptr, false, true), .Optional => base_ptr = try sema.analyzeOptionalPayloadPtr(block, src, base_ptr, false, true), else => break, }; const elem_ty = sema.typeOf(base_ptr).childType(mod); switch (elem_ty.zigTypeTag(mod)) { .Struct, .Union => return base_ptr, else => {}, } return sema.failWithStructInitNotSupported(block, src, sema.typeOf(start_ptr).childType(mod)); } fn zirForLen(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index); const args = sema.code.refSlice(extra.end, extra.data.operands_len); const src = inst_data.src(); var len: Air.Inst.Ref = .none; var len_val: ?Value = null; var len_idx: u32 = undefined; var any_runtime = false; const runtime_arg_lens = try gpa.alloc(Air.Inst.Ref, args.len); defer gpa.free(runtime_arg_lens); // First pass to look for comptime values. for (args, 0..) |zir_arg, i_usize| { const i = @as(u32, @intCast(i_usize)); runtime_arg_lens[i] = .none; if (zir_arg == .none) continue; const object = try sema.resolveInst(zir_arg); const object_ty = sema.typeOf(object); // Each arg could be an indexable, or a range, in which case the length // is passed directly as an integer. const is_int = switch (object_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => true, else => false, }; const arg_src: LazySrcLoc = .{ .for_input = .{ .for_node_offset = inst_data.src_node, .input_index = i, } }; const arg_len_uncoerced = if (is_int) object else l: { if (!object_ty.isIndexable(mod)) { // Instead of using checkIndexable we customize this error. const msg = msg: { const msg = try sema.errMsg(block, arg_src, "type '{}' is not indexable and not a range", .{object_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, arg_src, msg, "for loop operand must be a range, array, slice, tuple, or vector", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (!object_ty.indexableHasLen(mod)) continue; break :l try sema.fieldVal(block, arg_src, object, try ip.getOrPutString(gpa, "len"), arg_src); }; const arg_len = try sema.coerce(block, Type.usize, arg_len_uncoerced, arg_src); if (len == .none) { len = arg_len; len_idx = i; } if (try sema.resolveDefinedValue(block, src, arg_len)) |arg_val| { if (len_val) |v| { if (!(try sema.valuesEqual(arg_val, v, Type.usize))) { const msg = msg: { const msg = try sema.errMsg(block, src, "non-matching for loop lengths", .{}); errdefer msg.destroy(gpa); const a_src: LazySrcLoc = .{ .for_input = .{ .for_node_offset = inst_data.src_node, .input_index = len_idx, } }; try sema.errNote(block, a_src, msg, "length {} here", .{ v.fmtValue(Type.usize, sema.mod), }); try sema.errNote(block, arg_src, msg, "length {} here", .{ arg_val.fmtValue(Type.usize, sema.mod), }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } else { len = arg_len; len_val = arg_val; len_idx = i; } continue; } runtime_arg_lens[i] = arg_len; any_runtime = true; } if (len == .none) { const msg = msg: { const msg = try sema.errMsg(block, src, "unbounded for loop", .{}); errdefer msg.destroy(gpa); for (args, 0..) |zir_arg, i_usize| { const i = @as(u32, @intCast(i_usize)); if (zir_arg == .none) continue; const object = try sema.resolveInst(zir_arg); const object_ty = sema.typeOf(object); // Each arg could be an indexable, or a range, in which case the length // is passed directly as an integer. switch (object_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => continue, else => {}, } const arg_src: LazySrcLoc = .{ .for_input = .{ .for_node_offset = inst_data.src_node, .input_index = i, } }; try sema.errNote(block, arg_src, msg, "type '{}' has no upper bound", .{ object_ty.fmt(sema.mod), }); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } // Now for the runtime checks. if (any_runtime and block.wantSafety()) { for (runtime_arg_lens, 0..) |arg_len, i| { if (arg_len == .none) continue; if (i == len_idx) continue; const ok = try block.addBinOp(.cmp_eq, len, arg_len); try sema.addSafetyCheck(block, src, ok, .for_len_mismatch); } } return len; } fn zirOptEuBaseTy( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; var ty = sema.resolveType(block, .unneeded, inst_data.operand) catch |err| switch (err) { // Since this is a ZIR instruction that returns a type, encountering // generic poison should not result in a failed compilation, but the // generic poison type. This prevents unnecessary failures when // constructing types at compile-time. error.GenericPoison => return .generic_poison_type, else => |e| return e, }; while (true) { switch (ty.zigTypeTag(mod)) { .Optional => ty = ty.optionalChild(mod), .ErrorUnion => ty = ty.errorUnionPayload(mod), else => return Air.internedToRef(ty.toIntern()), } } } fn zirValidateArrayInitTy( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!void { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const ty_src: LazySrcLoc = .{ .node_offset_init_ty = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.ArrayInit, inst_data.payload_index).data; const ty = sema.resolveType(block, ty_src, extra.ty) catch |err| switch (err) { // It's okay for the type to be unknown: this will result in an anonymous array init. error.GenericPoison => return, else => |e| return e, }; switch (ty.zigTypeTag(mod)) { .Array => { const array_len = ty.arrayLen(mod); if (extra.init_count != array_len) { return sema.fail(block, src, "expected {d} array elements; found {d}", .{ array_len, extra.init_count, }); } return; }, .Vector => { const array_len = ty.arrayLen(mod); if (extra.init_count != array_len) { return sema.fail(block, src, "expected {d} vector elements; found {d}", .{ array_len, extra.init_count, }); } return; }, .Struct => if (ty.isTuple(mod)) { try sema.resolveTypeFields(ty); const array_len = ty.arrayLen(mod); if (extra.init_count > array_len) { return sema.fail(block, src, "expected at most {d} tuple fields; found {d}", .{ array_len, extra.init_count, }); } return; }, else => {}, } return sema.failWithArrayInitNotSupported(block, ty_src, ty); } fn zirValidateStructInitTy( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!void { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ty = sema.resolveType(block, src, inst_data.operand) catch |err| switch (err) { // It's okay for the type to be unknown: this will result in an anonymous struct init. error.GenericPoison => return, else => |e| return e, }; switch (ty.zigTypeTag(mod)) { .Struct, .Union => return, else => {}, } return sema.failWithStructInitNotSupported(block, src, ty); } fn zirValidateStructInit( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const validate_inst = sema.code.instructions.items(.data)[inst].pl_node; const init_src = validate_inst.src(); const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index); const instrs = sema.code.extra[validate_extra.end..][0..validate_extra.data.body_len]; const field_ptr_data = sema.code.instructions.items(.data)[instrs[0]].pl_node; const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data; const object_ptr = try sema.resolveInst(field_ptr_extra.lhs); const agg_ty = sema.typeOf(object_ptr).childType(mod); switch (agg_ty.zigTypeTag(mod)) { .Struct => return sema.validateStructInit( block, agg_ty, init_src, instrs, ), .Union => return sema.validateUnionInit( block, agg_ty, init_src, instrs, object_ptr, ), else => unreachable, } } fn validateUnionInit( sema: *Sema, block: *Block, union_ty: Type, init_src: LazySrcLoc, instrs: []const Zir.Inst.Index, union_ptr: Air.Inst.Ref, ) CompileError!void { const mod = sema.mod; const gpa = sema.gpa; if (instrs.len != 1) { const msg = msg: { const msg = try sema.errMsg( block, init_src, "cannot initialize multiple union fields at once; unions can only have one active field", .{}, ); errdefer msg.destroy(gpa); for (instrs[1..]) |inst| { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const inst_src: LazySrcLoc = .{ .node_offset_initializer = inst_data.src_node }; try sema.errNote(block, inst_src, msg, "additional initializer here", .{}); } try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (block.is_comptime and (try sema.resolveDefinedValue(block, init_src, union_ptr)) != null) { // In this case, comptime machinery already did everything. No work to do here. return; } const field_ptr = instrs[0]; const field_ptr_data = sema.code.instructions.items(.data)[field_ptr].pl_node; const field_src: LazySrcLoc = .{ .node_offset_initializer = field_ptr_data.src_node }; const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data; const field_name = try mod.intern_pool.getOrPutString(gpa, sema.code.nullTerminatedString(field_ptr_extra.field_name_start)); // Validate the field access but ignore the index since we want the tag enum field index. _ = try sema.unionFieldIndex(block, union_ty, field_name, field_src); const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); const field_ptr_ref = sema.inst_map.get(field_ptr).?; // Our task here is to determine if the union is comptime-known. In such case, // we erase the runtime AIR instructions for initializing the union, and replace // the mapping with the comptime value. Either way, we will need to populate the tag. // We expect to see something like this in the current block AIR: // %a = alloc(*const U) // %b = bitcast(*U, %a) // %c = field_ptr(..., %b) // %e!= store(%c!, %d!) // If %d is a comptime operand, the union is comptime. // If the union is comptime, we want `first_block_index` // to point at %c so that the bitcast becomes the last instruction in the block. // // In the case of a comptime-known pointer to a union, the // the field_ptr instruction is missing, so we have to pattern-match // based only on the store instructions. // `first_block_index` needs to point to the `field_ptr` if it exists; // the `store` otherwise. // // It's also possible for there to be no store instruction, in the case // of nested `coerce_result_ptr` instructions. If we see the `field_ptr` // but we have not found a `store`, treat as a runtime-known field. var first_block_index = block.instructions.items.len; var block_index = block.instructions.items.len - 1; var init_val: ?Value = null; var make_runtime = false; while (block_index > 0) : (block_index -= 1) { const store_inst = block.instructions.items[block_index]; if (Air.indexToRef(store_inst) == field_ptr_ref) break; switch (air_tags[store_inst]) { .store, .store_safe => {}, else => continue, } const bin_op = air_datas[store_inst].bin_op; var ptr_ref = bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref != field_ptr_ref) continue; first_block_index = @min(if (Air.refToIndex(field_ptr_ref)) |field_ptr_inst| std.mem.lastIndexOfScalar( Air.Inst.Index, block.instructions.items[0..block_index], field_ptr_inst, ).? else block_index, first_block_index); init_val = try sema.resolveMaybeUndefValAllowVariablesMaybeRuntime(bin_op.rhs, &make_runtime); break; } const tag_ty = union_ty.unionTagTypeHypothetical(mod); const enum_field_index = @as(u32, @intCast(tag_ty.enumFieldIndex(field_name, mod).?)); const tag_val = try mod.enumValueFieldIndex(tag_ty, enum_field_index); if (init_val) |val| { // Our task is to delete all the `field_ptr` and `store` instructions, and insert // instead a single `store` to the result ptr with a comptime union value. block_index = first_block_index; for (block.instructions.items[first_block_index..]) |cur_inst| { switch (air_tags[cur_inst]) { .struct_field_ptr, .struct_field_ptr_index_0, .struct_field_ptr_index_1, .struct_field_ptr_index_2, .struct_field_ptr_index_3, => if (Air.indexToRef(cur_inst) == field_ptr_ref) continue, .bitcast => if (air_datas[cur_inst].ty_op.operand == field_ptr_ref) continue, .store, .store_safe => { var ptr_ref = air_datas[cur_inst].bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref == field_ptr_ref) continue; }, else => {}, } block.instructions.items[block_index] = cur_inst; block_index += 1; } block.instructions.shrinkRetainingCapacity(block_index); var union_val = try mod.intern(.{ .un = .{ .ty = union_ty.toIntern(), .tag = tag_val.toIntern(), .val = val.toIntern(), } }); if (make_runtime) union_val = try mod.intern(.{ .runtime_value = .{ .ty = union_ty.toIntern(), .val = union_val, } }); const union_init = Air.internedToRef(union_val); try sema.storePtr2(block, init_src, union_ptr, init_src, union_init, init_src, .store); return; } else if (try sema.typeRequiresComptime(union_ty)) { return sema.failWithNeededComptime(block, field_ptr_data.src(), "initializer of comptime only union must be comptime-known"); } const new_tag = Air.internedToRef(tag_val.toIntern()); _ = try block.addBinOp(.set_union_tag, union_ptr, new_tag); } fn validateStructInit( sema: *Sema, block: *Block, struct_ty: Type, init_src: LazySrcLoc, instrs: []const Zir.Inst.Index, ) CompileError!void { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const field_indices = try gpa.alloc(u32, instrs.len); defer gpa.free(field_indices); // Maps field index to field_ptr index of where it was already initialized. const found_fields = try gpa.alloc(Zir.Inst.Index, struct_ty.structFieldCount(mod)); defer gpa.free(found_fields); @memset(found_fields, 0); var struct_ptr_zir_ref: Zir.Inst.Ref = undefined; for (instrs, field_indices) |field_ptr, *field_index| { const field_ptr_data = sema.code.instructions.items(.data)[field_ptr].pl_node; const field_src: LazySrcLoc = .{ .node_offset_initializer = field_ptr_data.src_node }; const field_ptr_extra = sema.code.extraData(Zir.Inst.Field, field_ptr_data.payload_index).data; struct_ptr_zir_ref = field_ptr_extra.lhs; const field_name = try ip.getOrPutString( gpa, sema.code.nullTerminatedString(field_ptr_extra.field_name_start), ); field_index.* = if (struct_ty.isTuple(mod)) try sema.tupleFieldIndex(block, struct_ty, field_name, field_src) else try sema.structFieldIndex(block, struct_ty, field_name, field_src); if (found_fields[field_index.*] != 0) { const other_field_ptr = found_fields[field_index.*]; const other_field_ptr_data = sema.code.instructions.items(.data)[other_field_ptr].pl_node; const other_field_src: LazySrcLoc = .{ .node_offset_initializer = other_field_ptr_data.src_node }; const msg = msg: { const msg = try sema.errMsg(block, field_src, "duplicate field", .{}); errdefer msg.destroy(gpa); try sema.errNote(block, other_field_src, msg, "other field here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } found_fields[field_index.*] = field_ptr; } var root_msg: ?*Module.ErrorMsg = null; errdefer if (root_msg) |msg| msg.destroy(sema.gpa); const struct_ptr = try sema.resolveInst(struct_ptr_zir_ref); if (block.is_comptime and (try sema.resolveDefinedValue(block, init_src, struct_ptr)) != null) { try sema.resolveStructLayout(struct_ty); // In this case the only thing we need to do is evaluate the implicit // store instructions for default field values, and report any missing fields. // Avoid the cost of the extra machinery for detecting a comptime struct init value. for (found_fields, 0..) |field_ptr, i| { if (field_ptr != 0) continue; const default_val = struct_ty.structFieldDefaultValue(i, mod); if (default_val.toIntern() == .unreachable_value) { if (struct_ty.isTuple(mod)) { const template = "missing tuple field with index {d}"; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, .{i}); } else { root_msg = try sema.errMsg(block, init_src, template, .{i}); } continue; } const field_name = struct_ty.structFieldName(i, mod); const template = "missing struct field: {}"; const args = .{field_name.fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, args); } else { root_msg = try sema.errMsg(block, init_src, template, args); } continue; } const field_src = init_src; // TODO better source location const default_field_ptr = if (struct_ty.isTuple(mod)) try sema.tupleFieldPtr(block, init_src, struct_ptr, field_src, @as(u32, @intCast(i)), true) else try sema.structFieldPtrByIndex(block, init_src, struct_ptr, @as(u32, @intCast(i)), field_src, struct_ty, true); const init = Air.internedToRef(default_val.toIntern()); try sema.storePtr2(block, init_src, default_field_ptr, init_src, init, field_src, .store); } if (root_msg) |msg| { if (mod.typeToStruct(struct_ty)) |struct_obj| { const fqn = try struct_obj.getFullyQualifiedName(mod); try mod.errNoteNonLazy( struct_obj.srcLoc(mod), msg, "struct '{}' declared here", .{fqn.fmt(ip)}, ); } root_msg = null; return sema.failWithOwnedErrorMsg(msg); } return; } var struct_is_comptime = true; var first_block_index = block.instructions.items.len; var make_runtime = false; const require_comptime = try sema.typeRequiresComptime(struct_ty); const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); // We collect the comptime field values in case the struct initialization // ends up being comptime-known. const field_values = try sema.arena.alloc(InternPool.Index, struct_ty.structFieldCount(mod)); field: for (found_fields, 0..) |field_ptr, i| { if (field_ptr != 0) { // Determine whether the value stored to this pointer is comptime-known. const field_ty = struct_ty.structFieldType(i, mod); if (try sema.typeHasOnePossibleValue(field_ty)) |opv| { field_values[i] = opv.toIntern(); continue; } const field_ptr_ref = sema.inst_map.get(field_ptr).?; //std.debug.print("validateStructInit (field_ptr_air_inst=%{d}):\n", .{ // field_ptr_air_inst, //}); //for (block.instructions.items) |item| { // std.debug.print(" %{d} = {s}\n", .{item, @tagName(air_tags[item])}); //} // We expect to see something like this in the current block AIR: // %a = field_ptr(...) // store(%a, %b) // With an optional bitcast between the store and the field_ptr. // If %b is a comptime operand, this field is comptime. // // However, in the case of a comptime-known pointer to a struct, the // the field_ptr instruction is missing, so we have to pattern-match // based only on the store instructions. // `first_block_index` needs to point to the `field_ptr` if it exists; // the `store` otherwise. // // It's also possible for there to be no store instruction, in the case // of nested `coerce_result_ptr` instructions. If we see the `field_ptr` // but we have not found a `store`, treat as a runtime-known field. // Possible performance enhancement: save the `block_index` between iterations // of the for loop. var block_index = block.instructions.items.len - 1; while (block_index > 0) : (block_index -= 1) { const store_inst = block.instructions.items[block_index]; if (Air.indexToRef(store_inst) == field_ptr_ref) { struct_is_comptime = false; continue :field; } switch (air_tags[store_inst]) { .store, .store_safe => {}, else => continue, } const bin_op = air_datas[store_inst].bin_op; var ptr_ref = bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref != field_ptr_ref) continue; first_block_index = @min(if (Air.refToIndex(field_ptr_ref)) |field_ptr_inst| std.mem.lastIndexOfScalar( Air.Inst.Index, block.instructions.items[0..block_index], field_ptr_inst, ).? else block_index, first_block_index); if (try sema.resolveMaybeUndefValAllowVariablesMaybeRuntime(bin_op.rhs, &make_runtime)) |val| { field_values[i] = val.toIntern(); } else if (require_comptime) { const field_ptr_data = sema.code.instructions.items(.data)[field_ptr].pl_node; return sema.failWithNeededComptime(block, field_ptr_data.src(), "initializer of comptime only struct must be comptime-known"); } else { struct_is_comptime = false; } continue :field; } struct_is_comptime = false; continue :field; } const default_val = struct_ty.structFieldDefaultValue(i, mod); if (default_val.toIntern() == .unreachable_value) { if (struct_ty.isTuple(mod)) { const template = "missing tuple field with index {d}"; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, .{i}); } else { root_msg = try sema.errMsg(block, init_src, template, .{i}); } continue; } const field_name = struct_ty.structFieldName(i, mod); const template = "missing struct field: {}"; const args = .{field_name.fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, args); } else { root_msg = try sema.errMsg(block, init_src, template, args); } continue; } field_values[i] = default_val.toIntern(); } if (root_msg) |msg| { if (mod.typeToStruct(struct_ty)) |struct_obj| { const fqn = try struct_obj.getFullyQualifiedName(mod); try mod.errNoteNonLazy( struct_obj.srcLoc(mod), msg, "struct '{}' declared here", .{fqn.fmt(ip)}, ); } root_msg = null; return sema.failWithOwnedErrorMsg(msg); } if (struct_is_comptime) { // Our task is to delete all the `field_ptr` and `store` instructions, and insert // instead a single `store` to the struct_ptr with a comptime struct value. var init_index: usize = 0; var field_ptr_ref = Air.Inst.Ref.none; var block_index = first_block_index; for (block.instructions.items[first_block_index..]) |cur_inst| { while (field_ptr_ref == .none and init_index < instrs.len) : (init_index += 1) { const field_ty = struct_ty.structFieldType(field_indices[init_index], mod); if (try field_ty.onePossibleValue(mod)) |_| continue; field_ptr_ref = sema.inst_map.get(instrs[init_index]).?; } switch (air_tags[cur_inst]) { .struct_field_ptr, .struct_field_ptr_index_0, .struct_field_ptr_index_1, .struct_field_ptr_index_2, .struct_field_ptr_index_3, => if (Air.indexToRef(cur_inst) == field_ptr_ref) continue, .bitcast => if (air_datas[cur_inst].ty_op.operand == field_ptr_ref) continue, .store, .store_safe => { var ptr_ref = air_datas[cur_inst].bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref == field_ptr_ref) { field_ptr_ref = .none; continue; } }, else => {}, } block.instructions.items[block_index] = cur_inst; block_index += 1; } block.instructions.shrinkRetainingCapacity(block_index); var struct_val = try mod.intern(.{ .aggregate = .{ .ty = struct_ty.toIntern(), .storage = .{ .elems = field_values }, } }); if (make_runtime) struct_val = try mod.intern(.{ .runtime_value = .{ .ty = struct_ty.toIntern(), .val = struct_val, } }); const struct_init = Air.internedToRef(struct_val); try sema.storePtr2(block, init_src, struct_ptr, init_src, struct_init, init_src, .store); return; } try sema.resolveStructLayout(struct_ty); // Our task is to insert `store` instructions for all the default field values. for (found_fields, 0..) |field_ptr, i| { if (field_ptr != 0) continue; const field_src = init_src; // TODO better source location const default_field_ptr = if (struct_ty.isTuple(mod)) try sema.tupleFieldPtr(block, init_src, struct_ptr, field_src, @as(u32, @intCast(i)), true) else try sema.structFieldPtrByIndex(block, init_src, struct_ptr, @as(u32, @intCast(i)), field_src, struct_ty, true); const init = Air.internedToRef(field_values[i]); try sema.storePtr2(block, init_src, default_field_ptr, init_src, init, field_src, .store); } } fn zirValidateArrayInit( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!void { const mod = sema.mod; const validate_inst = sema.code.instructions.items(.data)[inst].pl_node; const init_src = validate_inst.src(); const validate_extra = sema.code.extraData(Zir.Inst.Block, validate_inst.payload_index); const instrs = sema.code.extra[validate_extra.end..][0..validate_extra.data.body_len]; const first_elem_ptr_data = sema.code.instructions.items(.data)[instrs[0]].pl_node; const elem_ptr_extra = sema.code.extraData(Zir.Inst.ElemPtrImm, first_elem_ptr_data.payload_index).data; const array_ptr = try sema.resolveInst(elem_ptr_extra.ptr); const array_ty = sema.typeOf(array_ptr).childType(mod); const array_len = array_ty.arrayLen(mod); if (instrs.len != array_len) switch (array_ty.zigTypeTag(mod)) { .Struct => { var root_msg: ?*Module.ErrorMsg = null; errdefer if (root_msg) |msg| msg.destroy(sema.gpa); var i = instrs.len; while (i < array_len) : (i += 1) { const default_val = array_ty.structFieldDefaultValue(i, mod); if (default_val.toIntern() == .unreachable_value) { const template = "missing tuple field with index {d}"; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, .{i}); } else { root_msg = try sema.errMsg(block, init_src, template, .{i}); } } } if (root_msg) |msg| { root_msg = null; return sema.failWithOwnedErrorMsg(msg); } }, .Array => { return sema.fail(block, init_src, "expected {d} array elements; found {d}", .{ array_len, instrs.len, }); }, .Vector => { return sema.fail(block, init_src, "expected {d} vector elements; found {d}", .{ array_len, instrs.len, }); }, else => unreachable, }; if (block.is_comptime and (try sema.resolveDefinedValue(block, init_src, array_ptr)) != null) { // In this case the comptime machinery will have evaluated the store instructions // at comptime so we have almost nothing to do here. However, in case of a // sentinel-terminated array, the sentinel will not have been populated by // any ZIR instructions at comptime; we need to do that here. if (array_ty.sentinel(mod)) |sentinel_val| { const array_len_ref = try mod.intRef(Type.usize, array_len); const sentinel_ptr = try sema.elemPtrArray(block, init_src, init_src, array_ptr, init_src, array_len_ref, true, true); const sentinel = Air.internedToRef(sentinel_val.toIntern()); try sema.storePtr2(block, init_src, sentinel_ptr, init_src, sentinel, init_src, .store); } return; } // If the array has one possible value, the value is always comptime-known. if (try sema.typeHasOnePossibleValue(array_ty)) |array_opv| { const array_init = Air.internedToRef(array_opv.toIntern()); try sema.storePtr2(block, init_src, array_ptr, init_src, array_init, init_src, .store); return; } var array_is_comptime = true; var first_block_index = block.instructions.items.len; var make_runtime = false; // Collect the comptime element values in case the array literal ends up // being comptime-known. const element_vals = try sema.arena.alloc( InternPool.Index, try sema.usizeCast(block, init_src, array_len), ); const air_tags = sema.air_instructions.items(.tag); const air_datas = sema.air_instructions.items(.data); outer: for (instrs, 0..) |elem_ptr, i| { // Determine whether the value stored to this pointer is comptime-known. if (array_ty.isTuple(mod)) { if (try array_ty.structFieldValueComptime(mod, i)) |opv| { element_vals[i] = opv.toIntern(); continue; } } const elem_ptr_ref = sema.inst_map.get(elem_ptr).?; // We expect to see something like this in the current block AIR: // %a = elem_ptr(...) // store(%a, %b) // With an optional bitcast between the store and the elem_ptr. // If %b is a comptime operand, this element is comptime. // // However, in the case of a comptime-known pointer to an array, the // the elem_ptr instruction is missing, so we have to pattern-match // based only on the store instructions. // `first_block_index` needs to point to the `elem_ptr` if it exists; // the `store` otherwise. // // It's also possible for there to be no store instruction, in the case // of nested `coerce_result_ptr` instructions. If we see the `elem_ptr` // but we have not found a `store`, treat as a runtime-known element. // // This is nearly identical to similar logic in `validateStructInit`. // Possible performance enhancement: save the `block_index` between iterations // of the for loop. var block_index = block.instructions.items.len - 1; while (block_index > 0) : (block_index -= 1) { const store_inst = block.instructions.items[block_index]; if (Air.indexToRef(store_inst) == elem_ptr_ref) { array_is_comptime = false; continue :outer; } switch (air_tags[store_inst]) { .store, .store_safe => {}, else => continue, } const bin_op = air_datas[store_inst].bin_op; var ptr_ref = bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref != elem_ptr_ref) continue; first_block_index = @min(if (Air.refToIndex(elem_ptr_ref)) |elem_ptr_inst| std.mem.lastIndexOfScalar( Air.Inst.Index, block.instructions.items[0..block_index], elem_ptr_inst, ).? else block_index, first_block_index); if (try sema.resolveMaybeUndefValAllowVariablesMaybeRuntime(bin_op.rhs, &make_runtime)) |val| { element_vals[i] = val.toIntern(); } else { array_is_comptime = false; } continue :outer; } array_is_comptime = false; continue :outer; } if (array_is_comptime) { if (try sema.resolveDefinedValue(block, init_src, array_ptr)) |ptr_val| { switch (mod.intern_pool.indexToKey(ptr_val.toIntern())) { .ptr => |ptr| switch (ptr.addr) { .comptime_field => return, // This store was validated by the individual elem ptrs. else => {}, }, else => {}, } } // Our task is to delete all the `elem_ptr` and `store` instructions, and insert // instead a single `store` to the array_ptr with a comptime struct value. var elem_index: usize = 0; var elem_ptr_ref = Air.Inst.Ref.none; var block_index = first_block_index; for (block.instructions.items[first_block_index..]) |cur_inst| { while (elem_ptr_ref == .none and elem_index < instrs.len) : (elem_index += 1) { if (array_ty.isTuple(mod) and array_ty.structFieldIsComptime(elem_index, mod)) continue; elem_ptr_ref = sema.inst_map.get(instrs[elem_index]).?; } switch (air_tags[cur_inst]) { .ptr_elem_ptr => if (Air.indexToRef(cur_inst) == elem_ptr_ref) continue, .bitcast => if (air_datas[cur_inst].ty_op.operand == elem_ptr_ref) continue, .store, .store_safe => { var ptr_ref = air_datas[cur_inst].bin_op.lhs; if (Air.refToIndex(ptr_ref)) |ptr_inst| if (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; }; if (ptr_ref == elem_ptr_ref) { elem_ptr_ref = .none; continue; } }, else => {}, } block.instructions.items[block_index] = cur_inst; block_index += 1; } block.instructions.shrinkRetainingCapacity(block_index); var array_val = try mod.intern(.{ .aggregate = .{ .ty = array_ty.toIntern(), .storage = .{ .elems = element_vals }, } }); if (make_runtime) array_val = try mod.intern(.{ .runtime_value = .{ .ty = array_ty.toIntern(), .val = array_val, } }); const array_init = Air.internedToRef(array_val); try sema.storePtr2(block, init_src, array_ptr, init_src, array_init, init_src, .store); } } fn zirValidateDeref(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); if (operand_ty.zigTypeTag(mod) != .Pointer) { return sema.fail(block, src, "cannot dereference non-pointer type '{}'", .{operand_ty.fmt(mod)}); } else switch (operand_ty.ptrSize(mod)) { .One, .C => {}, .Many => return sema.fail(block, src, "index syntax required for unknown-length pointer type '{}'", .{operand_ty.fmt(mod)}), .Slice => return sema.fail(block, src, "index syntax required for slice type '{}'", .{operand_ty.fmt(mod)}), } if ((try sema.typeHasOnePossibleValue(operand_ty.childType(mod))) != null) { // No need to validate the actual pointer value, we don't need it! return; } const elem_ty = operand_ty.elemType2(mod); if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) { return sema.fail(block, src, "cannot dereference undefined value", .{}); } } else if (try sema.typeRequiresComptime(elem_ty)) { const msg = msg: { const msg = try sema.errMsg( block, src, "values of type '{}' must be comptime-known, but operand value is runtime-known", .{elem_ty.fmt(mod)}, ); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsComptime(msg, src.toSrcLoc(src_decl, mod), elem_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } fn failWithBadMemberAccess( sema: *Sema, block: *Block, agg_ty: Type, field_src: LazySrcLoc, field_name: InternPool.NullTerminatedString, ) CompileError { const mod = sema.mod; const kw_name = switch (agg_ty.zigTypeTag(mod)) { .Union => "union", .Struct => "struct", .Opaque => "opaque", .Enum => "enum", else => unreachable, }; if (agg_ty.getOwnerDeclOrNull(mod)) |some| if (mod.declIsRoot(some)) { return sema.fail(block, field_src, "root struct of file '{}' has no member named '{}'", .{ agg_ty.fmt(mod), field_name.fmt(&mod.intern_pool), }); }; const msg = msg: { const msg = try sema.errMsg(block, field_src, "{s} '{}' has no member named '{}'", .{ kw_name, agg_ty.fmt(mod), field_name.fmt(&mod.intern_pool), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, agg_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithBadStructFieldAccess( sema: *Sema, block: *Block, struct_obj: *Module.Struct, field_src: LazySrcLoc, field_name: InternPool.NullTerminatedString, ) CompileError { const mod = sema.mod; const gpa = sema.gpa; const fqn = try struct_obj.getFullyQualifiedName(mod); const msg = msg: { const msg = try sema.errMsg( block, field_src, "no field named '{}' in struct '{}'", .{ field_name.fmt(&mod.intern_pool), fqn.fmt(&mod.intern_pool) }, ); errdefer msg.destroy(gpa); try mod.errNoteNonLazy(struct_obj.srcLoc(mod), msg, "struct declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn failWithBadUnionFieldAccess( sema: *Sema, block: *Block, union_obj: *Module.Union, field_src: LazySrcLoc, field_name: InternPool.NullTerminatedString, ) CompileError { const mod = sema.mod; const gpa = sema.gpa; const fqn = try union_obj.getFullyQualifiedName(mod); const msg = msg: { const msg = try sema.errMsg( block, field_src, "no field named '{}' in union '{}'", .{ field_name.fmt(&mod.intern_pool), fqn.fmt(&mod.intern_pool) }, ); errdefer msg.destroy(gpa); try mod.errNoteNonLazy(union_obj.srcLoc(mod), msg, "union declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn addDeclaredHereNote(sema: *Sema, parent: *Module.ErrorMsg, decl_ty: Type) !void { const mod = sema.mod; const src_loc = decl_ty.declSrcLocOrNull(mod) orelse return; const category = switch (decl_ty.zigTypeTag(mod)) { .Union => "union", .Struct => "struct", .Enum => "enum", .Opaque => "opaque", .ErrorSet => "error set", else => unreachable, }; try mod.errNoteNonLazy(src_loc, parent, "{s} declared here", .{category}); } fn zirStoreToInferredPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const src: LazySrcLoc = sema.src; const bin_inst = sema.code.instructions.items(.data)[inst].bin; const ptr = try sema.resolveInst(bin_inst.lhs); const operand = try sema.resolveInst(bin_inst.rhs); const ptr_inst = Air.refToIndex(ptr).?; const air_datas = sema.air_instructions.items(.data); switch (sema.air_instructions.items(.tag)[ptr_inst]) { .inferred_alloc_comptime => { const iac = &air_datas[ptr_inst].inferred_alloc_comptime; return sema.storeToInferredAllocComptime(block, src, operand, iac); }, .inferred_alloc => { const ia = sema.unresolved_inferred_allocs.getPtr(ptr_inst).?; return sema.storeToInferredAlloc(block, ptr, operand, ia); }, else => unreachable, } } fn storeToInferredAlloc( sema: *Sema, block: *Block, ptr: Air.Inst.Ref, operand: Air.Inst.Ref, inferred_alloc: *InferredAlloc, ) CompileError!void { // Create a store instruction as a placeholder. This will be replaced by a // proper store sequence once we know the stored type. const dummy_store = try block.addBinOp(.store, ptr, operand); // Add the stored instruction to the set we will use to resolve peer types // for the inferred allocation. try inferred_alloc.prongs.append(sema.arena, .{ .stored_inst = operand, .placeholder = Air.refToIndex(dummy_store).?, }); } fn storeToInferredAllocComptime( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, iac: *Air.Inst.Data.InferredAllocComptime, ) CompileError!void { const operand_ty = sema.typeOf(operand); // There will be only one store_to_inferred_ptr because we are running at comptime. // The alloc will turn into a Decl. if (try sema.resolveMaybeUndefValAllowVariables(operand)) |operand_val| store: { if (operand_val.getVariable(sema.mod) != null) break :store; var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); iac.decl_index = try anon_decl.finish(operand_ty, operand_val, iac.alignment); try sema.comptime_mutable_decls.append(iac.decl_index); return; } return sema.failWithNeededComptime(block, src, "value being stored to a comptime variable must be comptime-known"); } fn zirSetEvalBranchQuota(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const quota = @as(u32, @intCast(try sema.resolveInt(block, src, inst_data.operand, Type.u32, "eval branch quota must be comptime-known"))); sema.branch_quota = @max(sema.branch_quota, quota); } fn zirStore(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const bin_inst = sema.code.instructions.items(.data)[inst].bin; const ptr = try sema.resolveInst(bin_inst.lhs); const value = try sema.resolveInst(bin_inst.rhs); return sema.storePtr(block, sema.src, ptr, value); } fn zirStoreNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const zir_tags = sema.code.instructions.items(.tag); const zir_datas = sema.code.instructions.items(.data); const inst_data = zir_datas[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const ptr = try sema.resolveInst(extra.lhs); const operand = try sema.resolveInst(extra.rhs); const is_ret = if (Zir.refToIndex(extra.lhs)) |ptr_index| zir_tags[ptr_index] == .ret_ptr else false; // Check for the possibility of this pattern: // %a = ret_ptr // %b = store(%a, %c) // Where %c is an error union or error set. In such case we need to add // to the current function's inferred error set, if any. if (is_ret and sema.fn_ret_ty_ies != null) switch (sema.typeOf(operand).zigTypeTag(mod)) { .ErrorUnion, .ErrorSet => try sema.addToInferredErrorSet(operand), else => {}, }; const ptr_src: LazySrcLoc = .{ .node_offset_store_ptr = inst_data.src_node }; const operand_src: LazySrcLoc = .{ .node_offset_store_operand = inst_data.src_node }; const air_tag: Air.Inst.Tag = if (is_ret) .ret_ptr else if (block.wantSafety()) .store_safe else .store; return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag); } fn zirStr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const bytes = sema.code.instructions.items(.data)[inst].str.get(sema.code); return sema.addStrLit(block, bytes); } fn addStrLit(sema: *Sema, block: *Block, bytes: []const u8) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; // TODO: write something like getCoercedInts to avoid needing to dupe const duped_bytes = try sema.arena.dupe(u8, bytes); const ty = try mod.arrayType(.{ .len = bytes.len, .sentinel = .zero_u8, .child = .u8_type, }); const val = try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .bytes = duped_bytes }, } }); const gop = try mod.memoized_decls.getOrPut(gpa, val); if (!gop.found_existing) { const new_decl_index = try mod.createAnonymousDecl(block, .{ .ty = ty, .val = val.toValue(), }); gop.value_ptr.* = new_decl_index; try mod.finalizeAnonDecl(new_decl_index); } return sema.analyzeDeclRef(gop.value_ptr.*); } fn zirInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const tracy = trace(@src()); defer tracy.end(); const int = sema.code.instructions.items(.data)[inst].int; return sema.mod.intRef(Type.comptime_int, int); } fn zirIntBig(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const int = sema.code.instructions.items(.data)[inst].str; const byte_count = int.len * @sizeOf(std.math.big.Limb); const limb_bytes = sema.code.string_bytes[int.start..][0..byte_count]; // TODO: this allocation and copy is only needed because the limbs may be unaligned. // If ZIR is adjusted so that big int limbs are guaranteed to be aligned, these // two lines can be removed. const limbs = try sema.arena.alloc(std.math.big.Limb, int.len); @memcpy(mem.sliceAsBytes(limbs), limb_bytes); return Air.internedToRef((try mod.intValue_big(Type.comptime_int, .{ .limbs = limbs, .positive = true, })).toIntern()); } fn zirFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const number = sema.code.instructions.items(.data)[inst].float; return Air.internedToRef((try sema.mod.floatValue( Type.comptime_float, number, )).toIntern()); } fn zirFloat128(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Float128, inst_data.payload_index).data; const number = extra.get(); return Air.internedToRef((try sema.mod.floatValue(Type.comptime_float, number)).toIntern()); } fn zirCompileError(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const msg = try sema.resolveConstString(block, operand_src, inst_data.operand, "compile error string must be comptime-known"); return sema.fail(block, src, "{s}", .{msg}); } fn zirCompileLog( sema: *Sema, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; var managed = mod.compile_log_text.toManaged(sema.gpa); defer sema.mod.compile_log_text = managed.moveToUnmanaged(); const writer = managed.writer(); const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand); const src_node = extra.data.src_node; const args = sema.code.refSlice(extra.end, extended.small); for (args, 0..) |arg_ref, i| { if (i != 0) try writer.print(", ", .{}); const arg = try sema.resolveInst(arg_ref); const arg_ty = sema.typeOf(arg); if (try sema.resolveMaybeUndefLazyVal(arg)) |val| { try writer.print("@as({}, {})", .{ arg_ty.fmt(mod), val.fmtValue(arg_ty, mod), }); } else { try writer.print("@as({}, [runtime value])", .{arg_ty.fmt(mod)}); } } try writer.print("\n", .{}); const decl_index = if (sema.func_index != .none) mod.funcOwnerDeclIndex(sema.func_index) else sema.owner_decl_index; const gop = try mod.compile_log_decls.getOrPut(sema.gpa, decl_index); if (!gop.found_existing) { gop.value_ptr.* = src_node; } return Air.Inst.Ref.void_value; } fn zirPanic(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const msg_inst = try sema.resolveInst(inst_data.operand); if (block.is_comptime) { return sema.fail(block, src, "encountered @panic at comptime", .{}); } try sema.panicWithMsg(block, src, msg_inst, .@"@panic"); return always_noreturn; } fn zirTrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const src_node = sema.code.instructions.items(.data)[inst].node; const src = LazySrcLoc.nodeOffset(src_node); sema.src = src; _ = try block.addNoOp(.trap); return always_noreturn; } fn zirLoop(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const gpa = sema.gpa; // AIR expects a block outside the loop block too. // Reserve space for a Loop instruction so that generated Break instructions can // point to it, even if it doesn't end up getting used because the code ends up being // comptime evaluated. const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); const loop_inst = block_inst + 1; try sema.air_instructions.ensureUnusedCapacity(gpa, 2); sema.air_instructions.appendAssumeCapacity(.{ .tag = .block, .data = undefined, }); sema.air_instructions.appendAssumeCapacity(.{ .tag = .loop, .data = .{ .ty_pl = .{ .ty = .noreturn_type, .payload = undefined, } }, }); var label: Block.Label = .{ .zir_block = inst, .merges = .{ .src_locs = .{}, .results = .{}, .br_list = .{}, .block_inst = block_inst, }, }; var child_block = parent_block.makeSubBlock(); child_block.label = &label; child_block.runtime_cond = null; child_block.runtime_loop = src; child_block.runtime_index.increment(); const merges = &child_block.label.?.merges; defer child_block.instructions.deinit(gpa); defer merges.deinit(gpa); var loop_block = child_block.makeSubBlock(); defer loop_block.instructions.deinit(gpa); try sema.analyzeBody(&loop_block, body); const loop_block_len = loop_block.instructions.items.len; if (loop_block_len > 0 and sema.typeOf(Air.indexToRef(loop_block.instructions.items[loop_block_len - 1])).isNoReturn(mod)) { // If the loop ended with a noreturn terminator, then there is no way for it to loop, // so we can just use the block instead. try child_block.instructions.appendSlice(gpa, loop_block.instructions.items); } else { try child_block.instructions.append(gpa, loop_inst); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len + loop_block_len); sema.air_instructions.items(.data)[loop_inst].ty_pl.payload = sema.addExtraAssumeCapacity( Air.Block{ .body_len = @as(u32, @intCast(loop_block_len)) }, ); sema.air_extra.appendSliceAssumeCapacity(loop_block.instructions.items); } return sema.analyzeBlockBody(parent_block, src, &child_block, merges); } fn zirCImport(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const pl_node = sema.code.instructions.items(.data)[inst].pl_node; const src = pl_node.src(); const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; // we check this here to avoid undefined symbols if (!@import("build_options").have_llvm) return sema.fail(parent_block, src, "C import unavailable; Zig compiler built without LLVM extensions", .{}); var c_import_buf = std.ArrayList(u8).init(sema.gpa); defer c_import_buf.deinit(); var comptime_reason: Block.ComptimeReason = .{ .c_import = .{ .block = parent_block, .src = src, } }; var child_block: Block = .{ .parent = parent_block, .sema = sema, .src_decl = parent_block.src_decl, .namespace = parent_block.namespace, .wip_capture_scope = parent_block.wip_capture_scope, .instructions = .{}, .inlining = parent_block.inlining, .is_comptime = true, .comptime_reason = &comptime_reason, .c_import_buf = &c_import_buf, .runtime_cond = parent_block.runtime_cond, .runtime_loop = parent_block.runtime_loop, .runtime_index = parent_block.runtime_index, }; defer child_block.instructions.deinit(sema.gpa); // Ignore the result, all the relevant operations have written to c_import_buf already. _ = try sema.analyzeBodyBreak(&child_block, body); const mod = sema.mod; const c_import_res = mod.comp.cImport(c_import_buf.items) catch |err| return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)}); if (c_import_res.errors.len != 0) { const msg = msg: { defer @import("clang.zig").ErrorMsg.delete(c_import_res.errors.ptr, c_import_res.errors.len); const msg = try sema.errMsg(&child_block, src, "C import failed", .{}); errdefer msg.destroy(sema.gpa); if (!mod.comp.bin_file.options.link_libc) try sema.errNote(&child_block, src, msg, "libc headers not available; compilation does not link against libc", .{}); const gop = try mod.cimport_errors.getOrPut(sema.gpa, sema.owner_decl_index); if (!gop.found_existing) { var errs = try std.ArrayListUnmanaged(Module.CImportError).initCapacity(sema.gpa, c_import_res.errors.len); errdefer { for (errs.items) |err| err.deinit(sema.gpa); errs.deinit(sema.gpa); } for (c_import_res.errors) |c_error| { const path = if (c_error.filename_ptr) |some| try sema.gpa.dupeZ(u8, some[0..c_error.filename_len]) else null; errdefer if (path) |some| sema.gpa.free(some); const c_msg = try sema.gpa.dupeZ(u8, c_error.msg_ptr[0..c_error.msg_len]); errdefer sema.gpa.free(c_msg); const line = line: { const source = c_error.source orelse break :line null; var start = c_error.offset; while (start > 0) : (start -= 1) { if (source[start - 1] == '\n') break; } var end = c_error.offset; while (true) : (end += 1) { if (source[end] == 0) break; if (source[end] == '\n') break; } break :line try sema.gpa.dupeZ(u8, source[start..end]); }; errdefer if (line) |some| sema.gpa.free(some); errs.appendAssumeCapacity(.{ .path = path orelse null, .source_line = line orelse null, .line = c_error.line, .column = c_error.column, .offset = c_error.offset, .msg = c_msg, }); } gop.value_ptr.* = errs.items; } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const c_import_pkg = Package.create( sema.gpa, null, c_import_res.out_zig_path, ) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, else => unreachable, // we pass null for root_src_dir_path }; const result = mod.importPkg(c_import_pkg) catch |err| return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)}); mod.astGenFile(result.file) catch |err| return sema.fail(&child_block, src, "C import failed: {s}", .{@errorName(err)}); try mod.semaFile(result.file); const file_root_decl_index = result.file.root_decl.unwrap().?; const file_root_decl = mod.declPtr(file_root_decl_index); try mod.declareDeclDependency(sema.owner_decl_index, file_root_decl_index); return Air.internedToRef(file_root_decl.val.toIntern()); } fn zirSuspendBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); return sema.failWithUseOfAsync(parent_block, src); } fn zirBlock(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index, force_comptime: bool) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const pl_node = sema.code.instructions.items(.data)[inst].pl_node; const src = pl_node.src(); const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const gpa = sema.gpa; // Reserve space for a Block instruction so that generated Break instructions can // point to it, even if it doesn't end up getting used because the code ends up being // comptime evaluated or is an unlabeled block. const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(gpa, .{ .tag = .block, .data = undefined, }); var label: Block.Label = .{ .zir_block = inst, .merges = .{ .src_locs = .{}, .results = .{}, .br_list = .{}, .block_inst = block_inst, }, }; var child_block: Block = .{ .parent = parent_block, .sema = sema, .src_decl = parent_block.src_decl, .namespace = parent_block.namespace, .wip_capture_scope = parent_block.wip_capture_scope, .instructions = .{}, .label = &label, .inlining = parent_block.inlining, .is_comptime = parent_block.is_comptime or force_comptime, .comptime_reason = parent_block.comptime_reason, .is_typeof = parent_block.is_typeof, .want_safety = parent_block.want_safety, .float_mode = parent_block.float_mode, .c_import_buf = parent_block.c_import_buf, .runtime_cond = parent_block.runtime_cond, .runtime_loop = parent_block.runtime_loop, .runtime_index = parent_block.runtime_index, .error_return_trace_index = parent_block.error_return_trace_index, }; defer child_block.instructions.deinit(gpa); defer label.merges.deinit(gpa); return sema.resolveBlockBody(parent_block, src, &child_block, body, inst, &label.merges); } fn resolveBlockBody( sema: *Sema, parent_block: *Block, src: LazySrcLoc, child_block: *Block, body: []const Zir.Inst.Index, /// This is the instruction that a break instruction within `body` can /// use to return from the body. body_inst: Zir.Inst.Index, merges: *Block.Merges, ) CompileError!Air.Inst.Ref { if (child_block.is_comptime) { return sema.resolveBody(child_block, body, body_inst); } else { if (sema.analyzeBodyInner(child_block, body)) |_| { return sema.analyzeBlockBody(parent_block, src, child_block, merges); } else |err| switch (err) { error.ComptimeBreak => { // Comptime control flow is happening, however child_block may still contain // runtime instructions which need to be copied to the parent block. try parent_block.instructions.appendSlice(sema.gpa, child_block.instructions.items); const break_inst = sema.comptime_break_inst; const break_data = sema.code.instructions.items(.data)[break_inst].@"break"; const extra = sema.code.extraData(Zir.Inst.Break, break_data.payload_index).data; if (extra.block_inst == body_inst) { return try sema.resolveInst(break_data.operand); } else { return error.ComptimeBreak; } }, else => |e| return e, } } } fn analyzeBlockBody( sema: *Sema, parent_block: *Block, src: LazySrcLoc, child_block: *Block, merges: *Block.Merges, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const gpa = sema.gpa; const mod = sema.mod; // Blocks must terminate with noreturn instruction. assert(child_block.instructions.items.len != 0); assert(sema.typeOf(Air.indexToRef(child_block.instructions.items[child_block.instructions.items.len - 1])).isNoReturn(mod)); if (merges.results.items.len == 0) { // No need for a block instruction. We can put the new instructions // directly into the parent block. try parent_block.instructions.appendSlice(gpa, child_block.instructions.items); return Air.indexToRef(child_block.instructions.items[child_block.instructions.items.len - 1]); } if (merges.results.items.len == 1) { const last_inst_index = child_block.instructions.items.len - 1; const last_inst = child_block.instructions.items[last_inst_index]; if (sema.getBreakBlock(last_inst)) |br_block| { if (br_block == merges.block_inst) { // No need for a block instruction. We can put the new instructions directly // into the parent block. Here we omit the break instruction. const without_break = child_block.instructions.items[0..last_inst_index]; try parent_block.instructions.appendSlice(gpa, without_break); return merges.results.items[0]; } } } // It is impossible to have the number of results be > 1 in a comptime scope. assert(!child_block.is_comptime); // Should already got a compile error in the condbr condition. // Need to set the type and emit the Block instruction. This allows machine code generation // to emit a jump instruction to after the block when it encounters the break. try parent_block.instructions.append(gpa, merges.block_inst); const resolved_ty = try sema.resolvePeerTypes(parent_block, src, merges.results.items, .{ .override = merges.src_locs.items }); // TODO add note "missing else causes void value" const type_src = src; // TODO: better source location if (try sema.typeRequiresComptime(resolved_ty)) { const msg = msg: { const msg = try sema.errMsg(child_block, type_src, "value with comptime-only type '{}' depends on runtime control flow", .{resolved_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const runtime_src = child_block.runtime_cond orelse child_block.runtime_loop.?; try sema.errNote(child_block, runtime_src, msg, "runtime control flow here", .{}); const child_src_decl = mod.declPtr(child_block.src_decl); try sema.explainWhyTypeIsComptime(msg, type_src.toSrcLoc(child_src_decl, mod), resolved_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const ty_inst = Air.internedToRef(resolved_ty.toIntern()); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len + child_block.instructions.items.len); sema.air_instructions.items(.data)[merges.block_inst] = .{ .ty_pl = .{ .ty = ty_inst, .payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = @as(u32, @intCast(child_block.instructions.items.len)), }), } }; sema.air_extra.appendSliceAssumeCapacity(child_block.instructions.items); // Now that the block has its type resolved, we need to go back into all the break // instructions, and insert type coercion on the operands. for (merges.br_list.items) |br| { const br_operand = sema.air_instructions.items(.data)[br].br.operand; const br_operand_src = src; const br_operand_ty = sema.typeOf(br_operand); if (br_operand_ty.eql(resolved_ty, mod)) { // No type coercion needed. continue; } var coerce_block = parent_block.makeSubBlock(); defer coerce_block.instructions.deinit(gpa); const coerced_operand = try sema.coerce(&coerce_block, resolved_ty, br_operand, br_operand_src); // If no instructions were produced, such as in the case of a coercion of a // constant value to a new type, we can simply point the br operand to it. if (coerce_block.instructions.items.len == 0) { sema.air_instructions.items(.data)[br].br.operand = coerced_operand; continue; } assert(Air.indexToRef(coerce_block.instructions.items[coerce_block.instructions.items.len - 1]) == coerced_operand); // Convert the br instruction to a block instruction that has the coercion // and then a new br inside that returns the coerced instruction. const sub_block_len = @as(u32, @intCast(coerce_block.instructions.items.len + 1)); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len + sub_block_len); try sema.air_instructions.ensureUnusedCapacity(gpa, 1); const sub_br_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); sema.air_instructions.items(.tag)[br] = .block; sema.air_instructions.items(.data)[br] = .{ .ty_pl = .{ .ty = Air.Inst.Ref.noreturn_type, .payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = sub_block_len, }), } }; sema.air_extra.appendSliceAssumeCapacity(coerce_block.instructions.items); sema.air_extra.appendAssumeCapacity(sub_br_inst); sema.air_instructions.appendAssumeCapacity(.{ .tag = .br, .data = .{ .br = .{ .block_inst = merges.block_inst, .operand = coerced_operand, } }, }); } return Air.indexToRef(merges.block_inst); } fn zirExport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Export, inst_data.payload_index).data; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const decl_name = try mod.intern_pool.getOrPutString(mod.gpa, sema.code.nullTerminatedString(extra.decl_name)); const decl_index = if (extra.namespace != .none) index_blk: { const container_ty = try sema.resolveType(block, operand_src, extra.namespace); const container_namespace = container_ty.getNamespaceIndex(mod).unwrap().?; const maybe_index = try sema.lookupInNamespace(block, operand_src, container_namespace, decl_name, false); break :index_blk maybe_index orelse return sema.failWithBadMemberAccess(block, container_ty, operand_src, decl_name); } else try sema.lookupIdentifier(block, operand_src, decl_name); const options = sema.resolveExportOptions(block, .unneeded, extra.options) catch |err| switch (err) { error.NeededSourceLocation => { _ = try sema.resolveExportOptions(block, options_src, extra.options); unreachable; }, else => |e| return e, }; { try mod.ensureDeclAnalyzed(decl_index); const exported_decl = mod.declPtr(decl_index); if (exported_decl.val.getFunction(mod)) |function| { return sema.analyzeExport(block, src, options, function.owner_decl); } } try sema.analyzeExport(block, src, options, decl_index); } fn zirExportValue(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.ExportValue, inst_data.payload_index).data; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const operand = try sema.resolveInstConst(block, operand_src, extra.operand, "export target must be comptime-known"); const options = sema.resolveExportOptions(block, .unneeded, extra.options) catch |err| switch (err) { error.NeededSourceLocation => { _ = try sema.resolveExportOptions(block, options_src, extra.options); unreachable; }, else => |e| return e, }; const decl_index = if (operand.val.getFunction(sema.mod)) |function| function.owner_decl else blk: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); break :blk try anon_decl.finish(operand.ty, operand.val, .none); }; try sema.analyzeExport(block, src, options, decl_index); } pub fn analyzeExport( sema: *Sema, block: *Block, src: LazySrcLoc, options: Module.Export.Options, exported_decl_index: Decl.Index, ) !void { const Export = Module.Export; const mod = sema.mod; if (options.linkage == .Internal) { return; } try mod.ensureDeclAnalyzed(exported_decl_index); const exported_decl = mod.declPtr(exported_decl_index); if (!try sema.validateExternType(exported_decl.ty, .other)) { const msg = msg: { const msg = try sema.errMsg(block, src, "unable to export type '{}'", .{exported_decl.ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, src.toSrcLoc(src_decl, mod), exported_decl.ty, .other); try sema.addDeclaredHereNote(msg, exported_decl.ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } // TODO: some backends might support re-exporting extern decls if (exported_decl.isExtern(mod)) { return sema.fail(block, src, "export target cannot be extern", .{}); } // This decl is alive no matter what, since it's being exported try mod.markDeclAlive(exported_decl); try sema.maybeQueueFuncBodyAnalysis(exported_decl_index); const gpa = sema.gpa; try mod.decl_exports.ensureUnusedCapacity(gpa, 1); try mod.export_owners.ensureUnusedCapacity(gpa, 1); const new_export = try gpa.create(Export); errdefer gpa.destroy(new_export); new_export.* = .{ .opts = options, .src = src, .owner_decl = sema.owner_decl_index, .src_decl = block.src_decl, .exported_decl = exported_decl_index, .status = .in_progress, }; // Add to export_owners table. const eo_gop = mod.export_owners.getOrPutAssumeCapacity(sema.owner_decl_index); if (!eo_gop.found_existing) { eo_gop.value_ptr.* = .{}; } try eo_gop.value_ptr.append(gpa, new_export); errdefer _ = eo_gop.value_ptr.pop(); // Add to exported_decl table. const de_gop = mod.decl_exports.getOrPutAssumeCapacity(exported_decl_index); if (!de_gop.found_existing) { de_gop.value_ptr.* = .{}; } try de_gop.value_ptr.append(gpa, new_export); errdefer _ = de_gop.value_ptr.pop(); } fn zirSetAlignStack(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const src = LazySrcLoc.nodeOffset(extra.node); const alignment = try sema.resolveAlign(block, operand_src, extra.operand); if (alignment.order(Alignment.fromNonzeroByteUnits(256)).compare(.gt)) { return sema.fail(block, src, "attempt to @setAlignStack({d}); maximum is 256", .{ alignment.toByteUnitsOptional().?, }); } if (sema.func_index == .none) { return sema.fail(block, src, "@setAlignStack outside function body", .{}); } const fn_owner_decl = mod.funcOwnerDeclPtr(sema.func_index); switch (fn_owner_decl.ty.fnCallingConvention(mod)) { .Naked => return sema.fail(block, src, "@setAlignStack in naked function", .{}), .Inline => return sema.fail(block, src, "@setAlignStack in inline function", .{}), else => if (block.inlining != null) { return sema.fail(block, src, "@setAlignStack in inline call", .{}); }, } if (sema.prev_stack_alignment_src) |prev_src| { const msg = msg: { const msg = try sema.errMsg(block, src, "multiple @setAlignStack in the same function body", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, prev_src, msg, "other instance here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const ip = &mod.intern_pool; const a = ip.funcAnalysis(sema.func_index); if (a.stack_alignment != .none) { a.stack_alignment = @enumFromInt(@max( @intFromEnum(alignment), @intFromEnum(a.stack_alignment), )); } } fn zirSetCold(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const is_cold = try sema.resolveConstBool(block, operand_src, extra.operand, "operand to @setCold must be comptime-known"); if (sema.func_index == .none) return; // does nothing outside a function ip.funcAnalysis(sema.func_index).is_cold = is_cold; } fn zirSetFloatMode(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; block.float_mode = try sema.resolveBuiltinEnum(block, src, extra.operand, "FloatMode", "operand to @setFloatMode must be comptime-known"); } fn zirSetRuntimeSafety(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; block.want_safety = try sema.resolveConstBool(block, operand_src, inst_data.operand, "operand to @setRuntimeSafety must be comptime-known"); } fn zirFence(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!void { if (block.is_comptime) return; const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const order = try sema.resolveAtomicOrder(block, order_src, extra.operand, "atomic order of @fence must be comptime-known"); if (@intFromEnum(order) < @intFromEnum(std.builtin.AtomicOrder.Acquire)) { return sema.fail(block, order_src, "atomic ordering must be Acquire or stricter", .{}); } _ = try block.addInst(.{ .tag = .fence, .data = .{ .fence = order }, }); } fn zirBreak(sema: *Sema, start_block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].@"break"; const extra = sema.code.extraData(Zir.Inst.Break, inst_data.payload_index).data; const operand = try sema.resolveInst(inst_data.operand); const zir_block = extra.block_inst; var block = start_block; while (true) { if (block.label) |label| { if (label.zir_block == zir_block) { const br_ref = try start_block.addBr(label.merges.block_inst, operand); const src_loc = if (extra.operand_src_node != Zir.Inst.Break.no_src_node) LazySrcLoc.nodeOffset(extra.operand_src_node) else null; try label.merges.src_locs.append(sema.gpa, src_loc); try label.merges.results.append(sema.gpa, operand); try label.merges.br_list.append(sema.gpa, Air.refToIndex(br_ref).?); block.runtime_index.increment(); if (block.runtime_cond == null and block.runtime_loop == null) { block.runtime_cond = start_block.runtime_cond orelse start_block.runtime_loop; block.runtime_loop = start_block.runtime_loop; } return inst; } } block = block.parent.?; } } fn zirDbgStmt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { // We do not set sema.src here because dbg_stmt instructions are only emitted for // ZIR code that possibly will need to generate runtime code. So error messages // and other source locations must not rely on sema.src being set from dbg_stmt // instructions. if (block.is_comptime or sema.mod.comp.bin_file.options.strip) return; const inst_data = sema.code.instructions.items(.data)[inst].dbg_stmt; if (block.instructions.items.len != 0) { const idx = block.instructions.items[block.instructions.items.len - 1]; if (sema.air_instructions.items(.tag)[idx] == .dbg_stmt) { // The previous dbg_stmt didn't correspond to any actual code, so replace it. sema.air_instructions.items(.data)[idx].dbg_stmt = .{ .line = inst_data.line, .column = inst_data.column, }; return; } } _ = try block.addInst(.{ .tag = .dbg_stmt, .data = .{ .dbg_stmt = .{ .line = inst_data.line, .column = inst_data.column, } }, }); } fn zirDbgBlockBegin(sema: *Sema, block: *Block) CompileError!void { if (block.is_comptime or sema.mod.comp.bin_file.options.strip) return; _ = try block.addInst(.{ .tag = .dbg_block_begin, .data = undefined, }); } fn zirDbgBlockEnd(sema: *Sema, block: *Block) CompileError!void { if (block.is_comptime or sema.mod.comp.bin_file.options.strip) return; _ = try block.addInst(.{ .tag = .dbg_block_end, .data = undefined, }); } fn zirDbgVar( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, ) CompileError!void { if (block.is_comptime or sema.mod.comp.bin_file.options.strip) return; const str_op = sema.code.instructions.items(.data)[inst].str_op; const operand = try sema.resolveInst(str_op.operand); const name = str_op.getStr(sema.code); try sema.addDbgVar(block, operand, air_tag, name); } fn addDbgVar( sema: *Sema, block: *Block, operand: Air.Inst.Ref, air_tag: Air.Inst.Tag, name: []const u8, ) CompileError!void { const mod = sema.mod; const operand_ty = sema.typeOf(operand); switch (air_tag) { .dbg_var_ptr => { if (!(try sema.typeHasRuntimeBits(operand_ty.childType(mod)))) return; }, .dbg_var_val => { if (!(try sema.typeHasRuntimeBits(operand_ty))) return; }, else => unreachable, } try sema.queueFullTypeResolution(operand_ty); // Add the name to the AIR. const name_extra_index = @as(u32, @intCast(sema.air_extra.items.len)); const elements_used = name.len / 4 + 1; try sema.air_extra.ensureUnusedCapacity(sema.gpa, elements_used); const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice()); @memcpy(buffer[0..name.len], name); buffer[name.len] = 0; sema.air_extra.items.len += elements_used; _ = try block.addInst(.{ .tag = air_tag, .data = .{ .pl_op = .{ .payload = name_extra_index, .operand = operand, } }, }); } fn zirDeclRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const src = inst_data.src(); const decl_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code)); const decl_index = try sema.lookupIdentifier(block, src, decl_name); try sema.addReferencedBy(block, src, decl_index); return sema.analyzeDeclRef(decl_index); } fn zirDeclVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const src = inst_data.src(); const decl_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code)); const decl = try sema.lookupIdentifier(block, src, decl_name); return sema.analyzeDeclVal(block, src, decl); } fn lookupIdentifier(sema: *Sema, block: *Block, src: LazySrcLoc, name: InternPool.NullTerminatedString) !Decl.Index { const mod = sema.mod; var namespace = block.namespace; while (true) { if (try sema.lookupInNamespace(block, src, namespace, name, false)) |decl_index| { return decl_index; } namespace = mod.namespacePtr(namespace).parent.unwrap() orelse break; } unreachable; // AstGen detects use of undeclared identifier errors. } /// This looks up a member of a specific namespace. It is affected by `usingnamespace` but /// only for ones in the specified namespace. fn lookupInNamespace( sema: *Sema, block: *Block, src: LazySrcLoc, namespace_index: Namespace.Index, ident_name: InternPool.NullTerminatedString, observe_usingnamespace: bool, ) CompileError!?Decl.Index { const mod = sema.mod; const namespace = mod.namespacePtr(namespace_index); const namespace_decl_index = namespace.getDeclIndex(mod); const namespace_decl = mod.declPtr(namespace_decl_index); if (namespace_decl.analysis == .file_failure) { try mod.declareDeclDependency(sema.owner_decl_index, namespace_decl_index); return error.AnalysisFail; } if (observe_usingnamespace and namespace.usingnamespace_set.count() != 0) { const src_file = mod.namespacePtr(block.namespace).file_scope; const gpa = sema.gpa; var checked_namespaces: std.AutoArrayHashMapUnmanaged(*Namespace, bool) = .{}; defer checked_namespaces.deinit(gpa); // Keep track of name conflicts for error notes. var candidates: std.ArrayListUnmanaged(Decl.Index) = .{}; defer candidates.deinit(gpa); try checked_namespaces.put(gpa, namespace, namespace.file_scope == src_file); var check_i: usize = 0; while (check_i < checked_namespaces.count()) : (check_i += 1) { const check_ns = checked_namespaces.keys()[check_i]; if (check_ns.decls.getKeyAdapted(ident_name, Module.DeclAdapter{ .mod = mod })) |decl_index| { // Skip decls which are not marked pub, which are in a different // file than the `a.b`/`@hasDecl` syntax. const decl = mod.declPtr(decl_index); if (decl.is_pub or (src_file == decl.getFileScope(mod) and checked_namespaces.values()[check_i])) { try candidates.append(gpa, decl_index); } } var it = check_ns.usingnamespace_set.iterator(); while (it.next()) |entry| { const sub_usingnamespace_decl_index = entry.key_ptr.*; // Skip the decl we're currently analysing. if (sub_usingnamespace_decl_index == sema.owner_decl_index) continue; const sub_usingnamespace_decl = mod.declPtr(sub_usingnamespace_decl_index); const sub_is_pub = entry.value_ptr.*; if (!sub_is_pub and src_file != sub_usingnamespace_decl.getFileScope(mod)) { // Skip usingnamespace decls which are not marked pub, which are in // a different file than the `a.b`/`@hasDecl` syntax. continue; } try sema.ensureDeclAnalyzed(sub_usingnamespace_decl_index); const ns_ty = sub_usingnamespace_decl.val.toType(); const sub_ns = ns_ty.getNamespace(mod).?; try checked_namespaces.put(gpa, sub_ns, src_file == sub_usingnamespace_decl.getFileScope(mod)); } } { var i: usize = 0; while (i < candidates.items.len) { if (candidates.items[i] == sema.owner_decl_index) { _ = candidates.orderedRemove(i); } else { i += 1; } } } switch (candidates.items.len) { 0 => {}, 1 => { const decl_index = candidates.items[0]; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); return decl_index; }, else => { const msg = msg: { const msg = try sema.errMsg(block, src, "ambiguous reference", .{}); errdefer msg.destroy(gpa); for (candidates.items) |candidate_index| { const candidate = mod.declPtr(candidate_index); const src_loc = candidate.srcLoc(mod); try mod.errNoteNonLazy(src_loc, msg, "declared here", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, } } else if (namespace.decls.getKeyAdapted(ident_name, Module.DeclAdapter{ .mod = mod })) |decl_index| { try mod.declareDeclDependency(sema.owner_decl_index, decl_index); return decl_index; } // TODO This dependency is too strong. Really, it should only be a dependency // on the non-existence of `ident_name` in the namespace. We can lessen the number of // outdated declarations by making this dependency more sophisticated. try mod.declareDeclDependency(sema.owner_decl_index, namespace_decl_index); return null; } fn funcDeclSrc(sema: *Sema, func_inst: Air.Inst.Ref) !?*Decl { const mod = sema.mod; const func_val = (try sema.resolveMaybeUndefVal(func_inst)) orelse return null; if (func_val.isUndef(mod)) return null; const owner_decl_index = switch (mod.intern_pool.indexToKey(func_val.toIntern())) { .extern_func => |extern_func| extern_func.decl, .func => |func| func.owner_decl, .ptr => |ptr| switch (ptr.addr) { .decl => |decl| mod.declPtr(decl).val.getFunction(mod).?.owner_decl, else => return null, }, else => return null, }; return mod.declPtr(owner_decl_index); } pub fn analyzeSaveErrRetIndex(sema: *Sema, block: *Block) SemaError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const src = sema.src; if (!mod.backendSupportsFeature(.error_return_trace)) return .none; if (!mod.comp.bin_file.options.error_return_tracing) return .none; if (block.is_comptime) return .none; const stack_trace_ty = sema.getBuiltinType("StackTrace") catch |err| switch (err) { error.NeededSourceLocation, error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable, else => |e| return e, }; sema.resolveTypeFields(stack_trace_ty) catch |err| switch (err) { error.NeededSourceLocation, error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable, else => |e| return e, }; const field_name = try mod.intern_pool.getOrPutString(gpa, "index"); const field_index = sema.structFieldIndex(block, stack_trace_ty, field_name, src) catch |err| switch (err) { error.NeededSourceLocation, error.GenericPoison, error.ComptimeReturn, error.ComptimeBreak => unreachable, else => |e| return e, }; return try block.addInst(.{ .tag = .save_err_return_trace_index, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(stack_trace_ty.toIntern()), .payload = @as(u32, @intCast(field_index)), } }, }); } /// Add instructions to block to "pop" the error return trace. /// If `operand` is provided, only pops if operand is non-error. fn popErrorReturnTrace( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, saved_error_trace_index: Air.Inst.Ref, ) CompileError!void { const mod = sema.mod; const gpa = sema.gpa; var is_non_error: ?bool = null; var is_non_error_inst: Air.Inst.Ref = undefined; if (operand != .none) { is_non_error_inst = try sema.analyzeIsNonErr(block, src, operand); if (try sema.resolveDefinedValue(block, src, is_non_error_inst)) |cond_val| is_non_error = cond_val.toBool(); } else is_non_error = true; // no operand means pop unconditionally if (is_non_error == true) { // AstGen determined this result does not go to an error-handling expr (try/catch/return etc.), or // the result is comptime-known to be a non-error. Either way, pop unconditionally. const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty); const err_return_trace = try block.addTy(.err_return_trace, ptr_stack_trace_ty); const field_name = try mod.intern_pool.getOrPutString(gpa, "index"); const field_ptr = try sema.structFieldPtr(block, src, err_return_trace, field_name, src, stack_trace_ty, true); try sema.storePtr2(block, src, field_ptr, src, saved_error_trace_index, src, .store); } else if (is_non_error == null) { // The result might be an error. If it is, we leave the error trace alone. If it isn't, we need // to pop any error trace that may have been propagated from our arguments. try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len); const cond_block_inst = try block.addInstAsIndex(.{ .tag = .block, .data = .{ .ty_pl = .{ .ty = Air.Inst.Ref.void_type, .payload = undefined, // updated below }, }, }); var then_block = block.makeSubBlock(); defer then_block.instructions.deinit(gpa); // If non-error, then pop the error return trace by restoring the index. const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty); const err_return_trace = try then_block.addTy(.err_return_trace, ptr_stack_trace_ty); const field_name = try mod.intern_pool.getOrPutString(gpa, "index"); const field_ptr = try sema.structFieldPtr(&then_block, src, err_return_trace, field_name, src, stack_trace_ty, true); try sema.storePtr2(&then_block, src, field_ptr, src, saved_error_trace_index, src, .store); _ = try then_block.addBr(cond_block_inst, Air.Inst.Ref.void_value); // Otherwise, do nothing var else_block = block.makeSubBlock(); defer else_block.instructions.deinit(gpa); _ = try else_block.addBr(cond_block_inst, Air.Inst.Ref.void_value); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len + then_block.instructions.items.len + else_block.instructions.items.len + @typeInfo(Air.Block).Struct.fields.len + 1); // +1 for the sole .cond_br instruction in the .block const cond_br_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(gpa, .{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = is_non_error_inst, .payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(then_block.instructions.items.len)), .else_body_len = @as(u32, @intCast(else_block.instructions.items.len)), }), } } }); sema.air_extra.appendSliceAssumeCapacity(then_block.instructions.items); sema.air_extra.appendSliceAssumeCapacity(else_block.instructions.items); sema.air_instructions.items(.data)[cond_block_inst].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = 1 }); sema.air_extra.appendAssumeCapacity(cond_br_inst); } } fn zirCall( sema: *Sema, block: *Block, inst: Zir.Inst.Index, comptime kind: enum { direct, field }, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const callee_src: LazySrcLoc = .{ .node_offset_call_func = inst_data.src_node }; const call_src = inst_data.src(); const ExtraType = switch (kind) { .direct => Zir.Inst.Call, .field => Zir.Inst.FieldCall, }; const extra = sema.code.extraData(ExtraType, inst_data.payload_index); const args_len = extra.data.flags.args_len; const modifier = @as(std.builtin.CallModifier, @enumFromInt(extra.data.flags.packed_modifier)); const ensure_result_used = extra.data.flags.ensure_result_used; const pop_error_return_trace = extra.data.flags.pop_error_return_trace; const callee: ResolvedFieldCallee = switch (kind) { .direct => .{ .direct = try sema.resolveInst(extra.data.callee) }, .field => blk: { const object_ptr = try sema.resolveInst(extra.data.obj_ptr); const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.data.field_name_start)); const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node }; break :blk try sema.fieldCallBind(block, callee_src, object_ptr, field_name, field_name_src); }, }; const func: Air.Inst.Ref = switch (callee) { .direct => |func_inst| func_inst, .method => |method| method.func_inst, }; const callee_ty = sema.typeOf(func); const total_args = args_len + @intFromBool(callee == .method); const func_ty = try sema.checkCallArgumentCount(block, func, callee_src, callee_ty, total_args, callee == .method); // The block index before the call, so we can potentially insert an error trace save here later. const block_index: Air.Inst.Index = @intCast(block.instructions.items.len); // This will be set by `analyzeCall` to indicate whether any parameter was an error (making the // error trace potentially dirty). var input_is_error = false; const args_info: CallArgsInfo = .{ .zir_call = .{ .bound_arg = switch (callee) { .direct => .none, .method => |method| method.arg0_inst, }, .bound_arg_src = callee_src, .call_inst = inst, .call_node_offset = inst_data.src_node, .num_args = args_len, .args_body = sema.code.extra[extra.end..], .any_arg_is_error = &input_is_error, } }; // AstGen ensures that a call instruction is always preceded by a dbg_stmt instruction. const call_dbg_node = inst - 1; const call_inst = try sema.analyzeCall(block, func, func_ty, callee_src, call_src, modifier, ensure_result_used, args_info, call_dbg_node, .call); if (sema.owner_func_index == .none or !mod.intern_pool.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn) { // No errorable fn actually called; we have no error return trace input_is_error = false; } if (mod.backendSupportsFeature(.error_return_trace) and mod.comp.bin_file.options.error_return_tracing and !block.is_comptime and !block.is_typeof and (input_is_error or pop_error_return_trace)) { const return_ty = sema.typeOf(call_inst); if (modifier != .always_tail and return_ty.isNoReturn(mod)) return call_inst; // call to "fn(...) noreturn", don't pop // TODO: we don't fix up the error trace for always_tail correctly, we should be doing it // *before* the recursive call. This will be a bit tricky to do and probably requires // moving this logic into analyzeCall. But that's probably a good idea anyway. if (modifier == .always_tail) return call_inst; // If any input is an error-type, we might need to pop any trace it generated. Otherwise, we only // need to clean-up our own trace if we were passed to a non-error-handling expression. if (input_is_error or (pop_error_return_trace and return_ty.isError(mod))) { const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const field_name = try mod.intern_pool.getOrPutString(sema.gpa, "index"); const field_index = try sema.structFieldIndex(block, stack_trace_ty, field_name, call_src); // Insert a save instruction before the arg resolution + call instructions we just generated const save_inst = try block.insertInst(block_index, .{ .tag = .save_err_return_trace_index, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(stack_trace_ty.toIntern()), .payload = @as(u32, @intCast(field_index)), } }, }); // Pop the error return trace, testing the result for non-error if necessary const operand = if (pop_error_return_trace or modifier == .always_tail) .none else call_inst; try sema.popErrorReturnTrace(block, call_src, operand, save_inst); } return call_inst; } else { return call_inst; } } fn checkCallArgumentCount( sema: *Sema, block: *Block, func: Air.Inst.Ref, func_src: LazySrcLoc, callee_ty: Type, total_args: usize, member_fn: bool, ) !Type { const mod = sema.mod; const func_ty = func_ty: { switch (callee_ty.zigTypeTag(mod)) { .Fn => break :func_ty callee_ty, .Pointer => { const ptr_info = callee_ty.ptrInfo(mod); if (ptr_info.flags.size == .One and ptr_info.child.toType().zigTypeTag(mod) == .Fn) { break :func_ty ptr_info.child.toType(); } }, .Optional => { const opt_child = callee_ty.optionalChild(mod); if (opt_child.zigTypeTag(mod) == .Fn or (opt_child.isSinglePointer(mod) and opt_child.childType(mod).zigTypeTag(mod) == .Fn)) { const msg = msg: { const msg = try sema.errMsg(block, func_src, "cannot call optional type '{}'", .{ callee_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, func_src, msg, "consider using '.?', 'orelse' or 'if'", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } }, else => {}, } return sema.fail(block, func_src, "type '{}' not a function", .{callee_ty.fmt(mod)}); }; const func_ty_info = mod.typeToFunc(func_ty).?; const fn_params_len = func_ty_info.param_types.len; const args_len = total_args - @intFromBool(member_fn); if (func_ty_info.is_var_args) { assert(callConvSupportsVarArgs(func_ty_info.cc)); if (total_args >= fn_params_len) return func_ty; } else if (fn_params_len == total_args) { return func_ty; } const maybe_decl = try sema.funcDeclSrc(func); const member_str = if (member_fn) "member function " else ""; const variadic_str = if (func_ty_info.is_var_args) "at least " else ""; const msg = msg: { const msg = try sema.errMsg( block, func_src, "{s}expected {s}{d} argument(s), found {d}", .{ member_str, variadic_str, fn_params_len - @intFromBool(member_fn), args_len, }, ); errdefer msg.destroy(sema.gpa); if (maybe_decl) |fn_decl| try mod.errNoteNonLazy(fn_decl.srcLoc(mod), msg, "function declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn callBuiltin( sema: *Sema, block: *Block, call_src: LazySrcLoc, builtin_fn: Air.Inst.Ref, modifier: std.builtin.CallModifier, args: []const Air.Inst.Ref, operation: CallOperation, ) !void { const mod = sema.mod; const callee_ty = sema.typeOf(builtin_fn); const func_ty = func_ty: { switch (callee_ty.zigTypeTag(mod)) { .Fn => break :func_ty callee_ty, .Pointer => { const ptr_info = callee_ty.ptrInfo(mod); if (ptr_info.flags.size == .One and ptr_info.child.toType().zigTypeTag(mod) == .Fn) { break :func_ty ptr_info.child.toType(); } }, else => {}, } std.debug.panic("type '{}' is not a function calling builtin fn", .{callee_ty.fmt(mod)}); }; const func_ty_info = mod.typeToFunc(func_ty).?; const fn_params_len = func_ty_info.param_types.len; if (args.len != fn_params_len or (func_ty_info.is_var_args and args.len < fn_params_len)) { std.debug.panic("parameter count mismatch calling builtin fn, expected {d}, found {d}", .{ fn_params_len, args.len }); } _ = try sema.analyzeCall( block, builtin_fn, func_ty, call_src, call_src, modifier, false, .{ .resolved = .{ .src = call_src, .args = args } }, null, operation, ); } const CallOperation = enum { call, @"@call", @"@panic", @"safety check", @"error return", }; const CallArgsInfo = union(enum) { /// The full list of resolved (but uncoerced) arguments is known ahead of time. resolved: struct { src: LazySrcLoc, args: []const Air.Inst.Ref, }, /// The list of resolved (but uncoerced) arguments is known ahead of time, but /// originated from a usage of the @call builtin at the given node offset. call_builtin: struct { call_node_offset: i32, args: []const Air.Inst.Ref, }, /// This call corresponds to a ZIR call instruction. The arguments have not yet been /// resolved. They must be resolved by `analyzeCall` so that argument resolution and /// generic instantiation may be interleaved. This is required for RLS to work on /// generic parameters. zir_call: struct { /// This may be `none`, in which case it is ignored. Otherwise, it is the /// already-resolved value of the first argument, from method call syntax. bound_arg: Air.Inst.Ref, /// The source location of `bound_arg` if it is not `null`. Otherwise `undefined`. bound_arg_src: LazySrcLoc, /// The ZIR call instruction. The parameter type is placed at this index while /// analyzing arguments. call_inst: Zir.Inst.Index, /// The node offset of `call_inst`. call_node_offset: i32, /// The number of arguments to this call, not including `bound_arg`. num_args: u32, /// The ZIR corresponding to all function arguments (other than `bound_arg`, if it /// is not `none`). Format is precisely the same as trailing data of ZIR `call`. args_body: []const Zir.Inst.Index, /// This bool will be set to true if any argument evaluated turns out to have an error set or error union type. /// This is used by the caller to restore the error return trace when necessary. any_arg_is_error: *bool, }, fn count(cai: CallArgsInfo) usize { return switch (cai) { inline .resolved, .call_builtin => |resolved| resolved.args.len, .zir_call => |zir_call| zir_call.num_args + @intFromBool(zir_call.bound_arg != .none), }; } fn argSrc(cai: CallArgsInfo, block: *Block, arg_index: usize) LazySrcLoc { return switch (cai) { .resolved => |resolved| resolved.src, .call_builtin => |call_builtin| .{ .call_arg = .{ .decl = block.src_decl, .call_node_offset = call_builtin.call_node_offset, .arg_index = @intCast(arg_index), } }, .zir_call => |zir_call| if (arg_index == 0 and zir_call.bound_arg != .none) { return zir_call.bound_arg_src; } else .{ .call_arg = .{ .decl = block.src_decl, .call_node_offset = zir_call.call_node_offset, .arg_index = @intCast(arg_index - @intFromBool(zir_call.bound_arg != .none)), } }, }; } /// Analyzes the arg at `arg_index` and coerces it to `param_ty`. /// `param_ty` may be `generic_poison` or `var_args_param`. /// `func_ty_info` may be the type before instantiation, even if a generic /// instantiation has been partially completed. fn analyzeArg( cai: CallArgsInfo, sema: *Sema, block: *Block, arg_index: usize, param_ty: Type, func_ty_info: InternPool.Key.FuncType, func_inst: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const param_count = func_ty_info.param_types.len; switch (param_ty.toIntern()) { .generic_poison_type, .var_args_param_type => {}, else => try sema.queueFullTypeResolution(param_ty), } const uncoerced_arg: Air.Inst.Ref = switch (cai) { inline .resolved, .call_builtin => |resolved| resolved.args[arg_index], .zir_call => |zir_call| arg_val: { const has_bound_arg = zir_call.bound_arg != .none; if (arg_index == 0 and has_bound_arg) { break :arg_val zir_call.bound_arg; } const real_arg_idx = arg_index - @intFromBool(has_bound_arg); const arg_body = if (real_arg_idx == 0) blk: { const start = zir_call.num_args; const end = zir_call.args_body[0]; break :blk zir_call.args_body[start..end]; } else blk: { const start = zir_call.args_body[real_arg_idx - 1]; const end = zir_call.args_body[real_arg_idx]; break :blk zir_call.args_body[start..end]; }; // Generate args to comptime params in comptime block const parent_comptime = block.is_comptime; defer block.is_comptime = parent_comptime; // Note that we are indexing into parameters, not arguments, so use `arg_index` instead of `real_arg_idx` if (arg_index < @min(param_count, 32) and func_ty_info.paramIsComptime(@intCast(arg_index))) { block.is_comptime = true; // TODO set comptime_reason } // Give the arg its result type sema.inst_map.putAssumeCapacity(zir_call.call_inst, Air.internedToRef(param_ty.toIntern())); // Resolve the arg! const uncoerced_arg = try sema.resolveBody(block, arg_body, zir_call.call_inst); if (sema.typeOf(uncoerced_arg).zigTypeTag(mod) == .NoReturn) { // This terminates resolution of arguments. The caller should // propagate this. return uncoerced_arg; } if (sema.typeOf(uncoerced_arg).isError(mod)) { zir_call.any_arg_is_error.* = true; } break :arg_val uncoerced_arg; }, }; switch (param_ty.toIntern()) { .generic_poison_type => return uncoerced_arg, .var_args_param_type => return sema.coerceVarArgParam(block, uncoerced_arg, cai.argSrc(block, arg_index)), else => return sema.coerceExtra( block, param_ty, uncoerced_arg, cai.argSrc(block, arg_index), .{ .param_src = .{ .func_inst = func_inst, .param_i = @intCast(arg_index), } }, ) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }, } } }; /// While performing an inline call, we need to switch between two Sema states a few times: the /// state for the caller (with the callee's `code`, `fn_ret_ty`, etc), and the state for the callee. /// These cannot be two separate Sema instances as they must share AIR. /// Therefore, this struct acts as a helper to switch between the two. /// This switching is required during argument evaluation, where function argument analysis must be /// interleaved with resolving generic parameter types. const InlineCallSema = struct { sema: *Sema, cur: enum { caller, callee, }, other_code: Zir, other_func_index: InternPool.Index, other_fn_ret_ty: Type, other_fn_ret_ty_ies: ?*InferredErrorSet, other_inst_map: InstMap, other_error_return_trace_index_on_fn_entry: Air.Inst.Ref, other_generic_owner: InternPool.Index, other_generic_call_src: LazySrcLoc, other_generic_call_decl: Decl.OptionalIndex, /// Sema should currently be set up for the caller (i.e. unchanged yet). This init will not /// change that. The other parameters contain data for the callee Sema. The other modified /// Sema fields are all initialized to default values for the callee. /// Must call deinit on the result. fn init( sema: *Sema, callee_code: Zir, callee_func_index: InternPool.Index, callee_error_return_trace_index_on_fn_entry: Air.Inst.Ref, ) InlineCallSema { return .{ .sema = sema, .cur = .caller, .other_code = callee_code, .other_func_index = callee_func_index, .other_fn_ret_ty = Type.void, .other_fn_ret_ty_ies = null, .other_inst_map = .{}, .other_error_return_trace_index_on_fn_entry = callee_error_return_trace_index_on_fn_entry, .other_generic_owner = .none, .other_generic_call_src = .unneeded, .other_generic_call_decl = .none, }; } /// Switch back to the caller Sema if necessary and free all temporary state of the callee Sema. fn deinit(ics: *InlineCallSema) void { switch (ics.cur) { .caller => {}, .callee => ics.swap(), } // Callee Sema owns the inst_map memory ics.other_inst_map.deinit(ics.sema.gpa); ics.* = undefined; } /// Returns a Sema instance suitable for usage from the caller context. fn caller(ics: *InlineCallSema) *Sema { switch (ics.cur) { .caller => {}, .callee => ics.swap(), } return ics.sema; } /// Returns a Sema instance suitable for usage from the callee context. fn callee(ics: *InlineCallSema) *Sema { switch (ics.cur) { .caller => ics.swap(), .callee => {}, } return ics.sema; } /// Internal use only. Swaps to the other Sema state. fn swap(ics: *InlineCallSema) void { ics.cur = switch (ics.cur) { .caller => .callee, .callee => .caller, }; // zig fmt: off std.mem.swap(Zir, &ics.sema.code, &ics.other_code); std.mem.swap(InternPool.Index, &ics.sema.func_index, &ics.other_func_index); std.mem.swap(Type, &ics.sema.fn_ret_ty, &ics.other_fn_ret_ty); std.mem.swap(?*InferredErrorSet, &ics.sema.fn_ret_ty_ies, &ics.other_fn_ret_ty_ies); std.mem.swap(InstMap, &ics.sema.inst_map, &ics.other_inst_map); std.mem.swap(InternPool.Index, &ics.sema.generic_owner, &ics.other_generic_owner); std.mem.swap(LazySrcLoc, &ics.sema.generic_call_src, &ics.other_generic_call_src); std.mem.swap(Decl.OptionalIndex, &ics.sema.generic_call_decl, &ics.other_generic_call_decl); std.mem.swap(Air.Inst.Ref, &ics.sema.error_return_trace_index_on_fn_entry, &ics.other_error_return_trace_index_on_fn_entry); // zig fmt: on } }; fn analyzeCall( sema: *Sema, block: *Block, func: Air.Inst.Ref, func_ty: Type, func_src: LazySrcLoc, call_src: LazySrcLoc, modifier: std.builtin.CallModifier, ensure_result_used: bool, args_info: CallArgsInfo, call_dbg_node: ?Zir.Inst.Index, operation: CallOperation, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const callee_ty = sema.typeOf(func); const func_ty_info = mod.typeToFunc(func_ty).?; const cc = func_ty_info.cc; if (cc == .Naked) { const maybe_decl = try sema.funcDeclSrc(func); const msg = msg: { const msg = try sema.errMsg( block, func_src, "unable to call function with naked calling convention", .{}, ); errdefer msg.destroy(sema.gpa); if (maybe_decl) |fn_decl| try mod.errNoteNonLazy(fn_decl.srcLoc(mod), msg, "function declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const call_tag: Air.Inst.Tag = switch (modifier) { .auto, .always_inline, .compile_time, .no_async, => Air.Inst.Tag.call, .never_tail => Air.Inst.Tag.call_never_tail, .never_inline => Air.Inst.Tag.call_never_inline, .always_tail => Air.Inst.Tag.call_always_tail, .async_kw => return sema.failWithUseOfAsync(block, call_src), }; if (modifier == .never_inline and func_ty_info.cc == .Inline) { return sema.fail(block, call_src, "'never_inline' call of inline function", .{}); } if (modifier == .always_inline and func_ty_info.is_noinline) { return sema.fail(block, call_src, "'always_inline' call of noinline function", .{}); } const gpa = sema.gpa; var is_generic_call = func_ty_info.is_generic; var is_comptime_call = block.is_comptime or modifier == .compile_time; var comptime_reason: ?*const Block.ComptimeReason = null; if (!is_comptime_call) { if (sema.typeRequiresComptime(func_ty_info.return_type.toType())) |ct| { is_comptime_call = ct; if (ct) { comptime_reason = &.{ .comptime_ret_ty = .{ .block = block, .func = func, .func_src = func_src, .return_ty = func_ty_info.return_type.toType(), } }; } } else |err| switch (err) { error.GenericPoison => is_generic_call = true, else => |e| return e, } } var is_inline_call = is_comptime_call or modifier == .always_inline or func_ty_info.cc == .Inline; if (sema.func_is_naked and !is_inline_call and !is_comptime_call) { const msg = msg: { const msg = try sema.errMsg(block, call_src, "runtime {s} not allowed in naked function", .{@tagName(operation)}); errdefer msg.destroy(sema.gpa); switch (operation) { .call, .@"@call", .@"@panic", .@"error return" => {}, .@"safety check" => try sema.errNote(block, call_src, msg, "use @setRuntimeSafety to disable runtime safety", .{}), } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (!is_inline_call and is_generic_call) { if (sema.instantiateGenericCall( block, func, func_src, call_src, ensure_result_used, args_info, call_tag, call_dbg_node, )) |some| { return some; } else |err| switch (err) { error.GenericPoison => { is_inline_call = true; }, error.ComptimeReturn => { is_inline_call = true; is_comptime_call = true; comptime_reason = &.{ .comptime_ret_ty = .{ .block = block, .func = func, .func_src = func_src, .return_ty = func_ty_info.return_type.toType(), } }; }, else => |e| return e, } } if (is_comptime_call and modifier == .never_inline) { return sema.fail(block, call_src, "unable to perform 'never_inline' call at compile-time", .{}); } const result: Air.Inst.Ref = if (is_inline_call) res: { const func_val = sema.resolveConstValue(block, func_src, func, "function being called at comptime must be comptime-known") catch |err| { if (err == error.AnalysisFail and comptime_reason != null) try comptime_reason.?.explain(sema, sema.err); return err; }; const module_fn_index = switch (mod.intern_pool.indexToKey(func_val.toIntern())) { .extern_func => return sema.fail(block, call_src, "{s} call of extern function", .{ @as([]const u8, if (is_comptime_call) "comptime" else "inline"), }), .func => func_val.toIntern(), .ptr => |ptr| switch (ptr.addr) { .decl => |decl| mod.declPtr(decl).val.toIntern(), else => { assert(callee_ty.isPtrAtRuntime(mod)); return sema.fail(block, call_src, "{s} call of function pointer", .{ @as([]const u8, if (is_comptime_call) "comptime" else "inline"), }); }, }, else => unreachable, }; if (func_ty_info.is_var_args) { return sema.fail(block, call_src, "{s} call of variadic function", .{ @as([]const u8, if (is_comptime_call) "comptime" else "inline"), }); } // Analyze the ZIR. The same ZIR gets analyzed into a runtime function // or an inlined call depending on what union tag the `label` field is // set to in the `Block`. // This block instruction will be used to capture the return value from the // inlined function. const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(gpa, .{ .tag = .block, .data = undefined, }); // This one is shared among sub-blocks within the same callee, but not // shared among the entire inline/comptime call stack. var inlining: Block.Inlining = .{ .func = .none, .comptime_result = undefined, .merges = .{ .src_locs = .{}, .results = .{}, .br_list = .{}, .block_inst = block_inst, }, }; const module_fn = mod.funcInfo(module_fn_index); const fn_owner_decl = mod.declPtr(module_fn.owner_decl); // We effectively want a child Sema here, but can't literally do that, because we need AIR // to be shared. InlineCallSema is a wrapper which handles this for us. While `ics` is in // scope, we should use its `caller`/`callee` methods rather than using `sema` directly // whenever performing an operation where the difference matters. var ics = InlineCallSema.init( sema, fn_owner_decl.getFileScope(mod).zir, module_fn_index, block.error_return_trace_index, ); defer ics.deinit(); try mod.declareDeclDependencyType(ics.callee().owner_decl_index, module_fn.owner_decl, .function_body); var wip_captures = try WipCaptureScope.init(gpa, fn_owner_decl.src_scope); defer wip_captures.deinit(); var child_block: Block = .{ .parent = null, .sema = sema, .src_decl = module_fn.owner_decl, .namespace = fn_owner_decl.src_namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .label = null, .inlining = &inlining, .is_typeof = block.is_typeof, .is_comptime = is_comptime_call, .comptime_reason = comptime_reason, .error_return_trace_index = block.error_return_trace_index, }; const merges = &child_block.inlining.?.merges; defer child_block.instructions.deinit(gpa); defer merges.deinit(gpa); try sema.emitBackwardBranch(block, call_src); // Whether this call should be memoized, set to false if the call can // mutate comptime state. var should_memoize = true; // If it's a comptime function call, we need to memoize it as long as no external // comptime memory is mutated. const memoized_arg_values = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len); const owner_info = mod.typeToFunc(fn_owner_decl.ty).?; var new_fn_info: InternPool.GetFuncTypeKey = .{ .param_types = try sema.arena.alloc(InternPool.Index, owner_info.param_types.len), .return_type = owner_info.return_type, .comptime_bits = 0, .noalias_bits = owner_info.noalias_bits, .alignment = if (owner_info.align_is_generic) null else owner_info.alignment, .cc = if (owner_info.cc_is_generic) null else owner_info.cc, .is_var_args = owner_info.is_var_args, .is_noinline = owner_info.is_noinline, .section_is_generic = owner_info.section_is_generic, .addrspace_is_generic = owner_info.addrspace_is_generic, .is_generic = owner_info.is_generic, }; // This will have return instructions analyzed as break instructions to // the block_inst above. Here we are performing "comptime/inline semantic analysis" // for a function body, which means we must map the parameter ZIR instructions to // the AIR instructions of the callsite. The callee could be a generic function // which means its parameter type expressions must be resolved in order and used // to successively coerce the arguments. const fn_info = ics.callee().code.getFnInfo(module_fn.zir_body_inst); try ics.callee().inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body); var has_comptime_args = false; var arg_i: u32 = 0; for (fn_info.param_body) |inst| { const opt_noreturn_ref = try analyzeInlineCallArg( &ics, block, &child_block, inst, new_fn_info.param_types, &arg_i, args_info, is_comptime_call, &should_memoize, memoized_arg_values, func_ty_info, func, &has_comptime_args, ); if (opt_noreturn_ref) |ref| { // Analyzing this argument gave a ref of a noreturn type. Terminate argument analysis here. return ref; } } // From here, we only really need to use the callee Sema. Make it the active one, then we // can just use `sema` directly. _ = ics.callee(); if (!has_comptime_args and module_fn.analysis(ip).state == .sema_failure) return error.AnalysisFail; const recursive_msg = "inline call is recursive"; var head = if (!has_comptime_args) block else null; while (head) |some| { const parent_inlining = some.inlining orelse break; if (parent_inlining.func == module_fn_index) { return sema.fail(block, call_src, recursive_msg, .{}); } head = some.parent; } if (!has_comptime_args) inlining.func = module_fn_index; // In case it is a generic function with an expression for the return type that depends // on parameters, we must now do the same for the return type as we just did with // each of the parameters, resolving the return type and providing it to the child // `Sema` so that it can be used for the `ret_ptr` instruction. const ret_ty_inst = if (fn_info.ret_ty_body.len != 0) try sema.resolveBody(&child_block, fn_info.ret_ty_body, module_fn.zir_body_inst) else try sema.resolveInst(fn_info.ret_ty_ref); const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 }; sema.fn_ret_ty = try sema.analyzeAsType(&child_block, ret_ty_src, ret_ty_inst); if (module_fn.analysis(ip).inferred_error_set) { // Create a fresh inferred error set type for inline/comptime calls. const ies = try sema.arena.create(InferredErrorSet); ies.* = .{ .func = .none }; sema.fn_ret_ty_ies = ies; sema.fn_ret_ty = (try ip.get(gpa, .{ .error_union_type = .{ .error_set_type = .adhoc_inferred_error_set_type, .payload_type = sema.fn_ret_ty.toIntern(), } })).toType(); } // This `res2` is here instead of directly breaking from `res` due to a stage1 // bug generating invalid LLVM IR. const res2: Air.Inst.Ref = res2: { if (should_memoize and is_comptime_call) { if (mod.intern_pool.getIfExists(.{ .memoized_call = .{ .func = module_fn_index, .arg_values = memoized_arg_values, .result = .none, } })) |memoized_call_index| { const memoized_call = mod.intern_pool.indexToKey(memoized_call_index).memoized_call; break :res2 Air.internedToRef(memoized_call.result); } } new_fn_info.return_type = sema.fn_ret_ty.toIntern(); const new_func_resolved_ty = try mod.funcType(new_fn_info); if (!is_comptime_call and !block.is_typeof) { try sema.emitDbgInline(block, sema.func_index, module_fn_index, new_func_resolved_ty, .dbg_inline_begin); const zir_tags = sema.code.instructions.items(.tag); for (fn_info.param_body) |param| switch (zir_tags[param]) { .param, .param_comptime => { const inst_data = sema.code.instructions.items(.data)[param].pl_tok; const extra = sema.code.extraData(Zir.Inst.Param, inst_data.payload_index); const param_name = sema.code.nullTerminatedString(extra.data.name); const inst = sema.inst_map.get(param).?; try sema.addDbgVar(&child_block, inst, .dbg_var_val, param_name); }, .param_anytype, .param_anytype_comptime => { const inst_data = sema.code.instructions.items(.data)[param].str_tok; const param_name = inst_data.get(sema.code); const inst = sema.inst_map.get(param).?; try sema.addDbgVar(&child_block, inst, .dbg_var_val, param_name); }, else => continue, }; } if (is_comptime_call and ensure_result_used) { try sema.ensureResultUsed(block, sema.fn_ret_ty, call_src); } const result = result: { sema.analyzeBody(&child_block, fn_info.body) catch |err| switch (err) { error.ComptimeReturn => break :result inlining.comptime_result, error.AnalysisFail => { const err_msg = sema.err orelse return err; if (mem.eql(u8, err_msg.msg, recursive_msg)) return err; try sema.errNote(block, call_src, err_msg, "called from here", .{}); err_msg.clearTrace(gpa); return err; }, else => |e| return e, }; break :result try sema.analyzeBlockBody(block, call_src, &child_block, merges); }; if (!is_comptime_call and !block.is_typeof and sema.typeOf(result).zigTypeTag(mod) != .NoReturn) { try sema.emitDbgInline( block, module_fn_index, sema.func_index, mod.funcOwnerDeclPtr(sema.func_index).ty, .dbg_inline_end, ); } if (should_memoize and is_comptime_call) { const result_val = try sema.resolveConstMaybeUndefVal(block, .unneeded, result, ""); const result_interned = try result_val.intern2(sema.fn_ret_ty, mod); // Transform ad-hoc inferred error set types into concrete error sets. const result_transformed = try sema.resolveAdHocInferredErrorSet(block, call_src, result_interned); // TODO: check whether any external comptime memory was mutated by the // comptime function call. If so, then do not memoize the call here. _ = try mod.intern(.{ .memoized_call = .{ .func = module_fn_index, .arg_values = memoized_arg_values, .result = result_transformed, } }); break :res2 Air.internedToRef(result_transformed); } if (try sema.resolveMaybeUndefVal(result)) |result_val| { const result_interned = try result_val.intern2(sema.fn_ret_ty, mod); const result_transformed = try sema.resolveAdHocInferredErrorSet(block, call_src, result_interned); break :res2 Air.internedToRef(result_transformed); } const new_ty = try sema.resolveAdHocInferredErrorSetTy(block, call_src, sema.typeOf(result).toIntern()); if (new_ty != .none) { // TODO: mutate in place the previous instruction if possible // rather than adding a bitcast instruction. break :res2 try block.addBitCast(new_ty.toType(), result); } break :res2 result; }; try wip_captures.finalize(); break :res res2; } else res: { assert(!func_ty_info.is_generic); const args = try sema.arena.alloc(Air.Inst.Ref, args_info.count()); for (args, 0..) |*arg_out, arg_idx| { // Non-generic, so param types are already resolved const param_ty = if (arg_idx < func_ty_info.param_types.len) ty: { break :ty func_ty_info.param_types.get(ip)[arg_idx].toType(); } else InternPool.Index.var_args_param_type.toType(); assert(!param_ty.isGenericPoison()); arg_out.* = try args_info.analyzeArg(sema, block, arg_idx, param_ty, func_ty_info, func); if (sema.typeOf(arg_out.*).zigTypeTag(mod) == .NoReturn) { return arg_out.*; } } if (call_dbg_node) |some| try sema.zirDbgStmt(block, some); try sema.queueFullTypeResolution(func_ty_info.return_type.toType()); if (sema.owner_func_index != .none and func_ty_info.return_type.toType().isError(mod)) { ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn = true; } if (try sema.resolveMaybeUndefVal(func)) |func_val| { if (mod.intern_pool.isFuncBody(func_val.toIntern())) { try mod.ensureFuncBodyAnalysisQueued(func_val.toIntern()); } } try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Call).Struct.fields.len + args.len); const func_inst = try block.addInst(.{ .tag = call_tag, .data = .{ .pl_op = .{ .operand = func, .payload = sema.addExtraAssumeCapacity(Air.Call{ .args_len = @as(u32, @intCast(args.len)), }), } }, }); sema.appendRefsAssumeCapacity(args); if (call_tag == .call_always_tail) { if (ensure_result_used) { try sema.ensureResultUsed(block, sema.typeOf(func_inst), call_src); } return sema.handleTailCall(block, call_src, func_ty, func_inst); } if (block.wantSafety() and func_ty_info.return_type == .noreturn_type) skip_safety: { // Function pointers and extern functions aren't guaranteed to // actually be noreturn so we add a safety check for them. if (try sema.resolveMaybeUndefVal(func)) |func_val| { switch (mod.intern_pool.indexToKey(func_val.toIntern())) { .func => break :skip_safety, .ptr => |ptr| switch (ptr.addr) { .decl => |decl| if (!mod.declPtr(decl).isExtern(mod)) break :skip_safety, else => {}, }, else => {}, } } try sema.safetyPanic(block, call_src, .noreturn_returned); return Air.Inst.Ref.unreachable_value; } if (func_ty_info.return_type == .noreturn_type) { _ = try block.addNoOp(.unreach); return Air.Inst.Ref.unreachable_value; } break :res func_inst; }; if (ensure_result_used) { try sema.ensureResultUsed(block, sema.typeOf(result), call_src); } return result; } fn handleTailCall(sema: *Sema, block: *Block, call_src: LazySrcLoc, func_ty: Type, result: Air.Inst.Ref) !Air.Inst.Ref { const mod = sema.mod; const target = mod.getTarget(); const backend = mod.comp.getZigBackend(); if (!target_util.supportsTailCall(target, backend)) { return sema.fail(block, call_src, "unable to perform tail call: compiler backend '{s}' does not support tail calls on target architecture '{s}' with the selected CPU feature flags", .{ @tagName(backend), @tagName(target.cpu.arch), }); } const func_decl = mod.funcOwnerDeclPtr(sema.owner_func_index); if (!func_ty.eql(func_decl.ty, mod)) { return sema.fail(block, call_src, "unable to perform tail call: type of function being called '{}' does not match type of calling function '{}'", .{ func_ty.fmt(mod), func_decl.ty.fmt(mod), }); } _ = try block.addUnOp(.ret, result); return Air.Inst.Ref.unreachable_value; } /// Usually, returns null. If an argument was noreturn, returns that ref (which should become the call result). fn analyzeInlineCallArg( ics: *InlineCallSema, arg_block: *Block, param_block: *Block, inst: Zir.Inst.Index, new_param_types: []InternPool.Index, arg_i: *u32, args_info: CallArgsInfo, is_comptime_call: bool, should_memoize: *bool, memoized_arg_values: []InternPool.Index, func_ty_info: InternPool.Key.FuncType, func_inst: Air.Inst.Ref, has_comptime_args: *bool, ) !?Air.Inst.Ref { const mod = ics.sema.mod; const ip = &mod.intern_pool; const zir_tags = ics.callee().code.instructions.items(.tag); switch (zir_tags[inst]) { .param_comptime, .param_anytype_comptime => has_comptime_args.* = true, else => {}, } switch (zir_tags[inst]) { .param, .param_comptime => { // Evaluate the parameter type expression now that previous ones have // been mapped, and coerce the corresponding argument to it. const pl_tok = ics.callee().code.instructions.items(.data)[inst].pl_tok; const param_src = pl_tok.src(); const extra = ics.callee().code.extraData(Zir.Inst.Param, pl_tok.payload_index); const param_body = ics.callee().code.extra[extra.end..][0..extra.data.body_len]; const param_ty = param_ty: { const raw_param_ty = func_ty_info.param_types.get(ip)[arg_i.*]; if (raw_param_ty != .generic_poison_type) break :param_ty raw_param_ty; const param_ty_inst = try ics.callee().resolveBody(param_block, param_body, inst); const param_ty = try ics.callee().analyzeAsType(param_block, param_src, param_ty_inst); break :param_ty param_ty.toIntern(); }; new_param_types[arg_i.*] = param_ty; const casted_arg = try args_info.analyzeArg(ics.caller(), arg_block, arg_i.*, param_ty.toType(), func_ty_info, func_inst); if (ics.caller().typeOf(casted_arg).zigTypeTag(mod) == .NoReturn) { return casted_arg; } const arg_src = args_info.argSrc(arg_block, arg_i.*); if (try ics.callee().typeRequiresComptime(param_ty.toType())) { _ = ics.caller().resolveConstMaybeUndefVal(arg_block, arg_src, casted_arg, "argument to parameter with comptime-only type must be comptime-known") catch |err| { if (err == error.AnalysisFail and param_block.comptime_reason != null) try param_block.comptime_reason.?.explain(ics.caller(), ics.caller().err); return err; }; } else if (!is_comptime_call and zir_tags[inst] == .param_comptime) { _ = try ics.caller().resolveConstMaybeUndefVal(arg_block, arg_src, casted_arg, "parameter is comptime"); } if (is_comptime_call) { ics.callee().inst_map.putAssumeCapacityNoClobber(inst, casted_arg); const arg_val = ics.caller().resolveConstMaybeUndefVal(arg_block, arg_src, casted_arg, "argument to function being called at comptime must be comptime-known") catch |err| { if (err == error.AnalysisFail and param_block.comptime_reason != null) try param_block.comptime_reason.?.explain(ics.caller(), ics.caller().err); return err; }; switch (arg_val.toIntern()) { .generic_poison, .generic_poison_type => { // This function is currently evaluated as part of an as-of-yet unresolvable // parameter or return type. return error.GenericPoison; }, else => {}, } // Needed so that lazy values do not trigger // assertion due to type not being resolved // when the hash function is called. const resolved_arg_val = try ics.caller().resolveLazyValue(arg_val); should_memoize.* = should_memoize.* and !resolved_arg_val.canMutateComptimeVarState(mod); memoized_arg_values[arg_i.*] = try resolved_arg_val.intern(param_ty.toType(), mod); } else { ics.callee().inst_map.putAssumeCapacityNoClobber(inst, casted_arg); } if (try ics.caller().resolveMaybeUndefVal(casted_arg)) |_| { has_comptime_args.* = true; } arg_i.* += 1; }, .param_anytype, .param_anytype_comptime => { // No coercion needed. const uncasted_arg = try args_info.analyzeArg(ics.caller(), arg_block, arg_i.*, Type.generic_poison, func_ty_info, func_inst); if (ics.caller().typeOf(uncasted_arg).zigTypeTag(mod) == .NoReturn) { return uncasted_arg; } const arg_src = args_info.argSrc(arg_block, arg_i.*); new_param_types[arg_i.*] = ics.caller().typeOf(uncasted_arg).toIntern(); if (is_comptime_call) { ics.callee().inst_map.putAssumeCapacityNoClobber(inst, uncasted_arg); const arg_val = ics.caller().resolveConstMaybeUndefVal(arg_block, arg_src, uncasted_arg, "argument to function being called at comptime must be comptime-known") catch |err| { if (err == error.AnalysisFail and param_block.comptime_reason != null) try param_block.comptime_reason.?.explain(ics.caller(), ics.caller().err); return err; }; switch (arg_val.toIntern()) { .generic_poison, .generic_poison_type => { // This function is currently evaluated as part of an as-of-yet unresolvable // parameter or return type. return error.GenericPoison; }, else => {}, } // Needed so that lazy values do not trigger // assertion due to type not being resolved // when the hash function is called. const resolved_arg_val = try ics.caller().resolveLazyValue(arg_val); should_memoize.* = should_memoize.* and !resolved_arg_val.canMutateComptimeVarState(mod); memoized_arg_values[arg_i.*] = try resolved_arg_val.intern(ics.caller().typeOf(uncasted_arg), mod); } else { if (zir_tags[inst] == .param_anytype_comptime) { _ = try ics.caller().resolveConstMaybeUndefVal(arg_block, arg_src, uncasted_arg, "parameter is comptime"); } ics.callee().inst_map.putAssumeCapacityNoClobber(inst, uncasted_arg); } if (try ics.caller().resolveMaybeUndefVal(uncasted_arg)) |_| { has_comptime_args.* = true; } arg_i.* += 1; }, else => {}, } return null; } fn analyzeCallArg( sema: *Sema, block: *Block, arg_src: LazySrcLoc, param_ty: Type, uncasted_arg: Air.Inst.Ref, opts: CoerceOpts, ) !Air.Inst.Ref { try sema.resolveTypeFully(param_ty); return sema.coerceExtra(block, param_ty, uncasted_arg, arg_src, opts) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; } fn instantiateGenericCall( sema: *Sema, block: *Block, func: Air.Inst.Ref, func_src: LazySrcLoc, call_src: LazySrcLoc, ensure_result_used: bool, args_info: CallArgsInfo, call_tag: Air.Inst.Tag, call_dbg_node: ?Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const func_val = try sema.resolveConstValue(block, func_src, func, "generic function being called must be comptime-known"); const generic_owner = switch (mod.intern_pool.indexToKey(func_val.toIntern())) { .func => func_val.toIntern(), .ptr => |ptr| mod.declPtr(ptr.addr.decl).val.toIntern(), else => unreachable, }; const generic_owner_func = mod.intern_pool.indexToKey(generic_owner).func; const generic_owner_ty_info = mod.typeToFunc(generic_owner_func.ty.toType()).?; // Even though there may already be a generic instantiation corresponding // to this callsite, we must evaluate the expressions of the generic // function signature with the values of the callsite plugged in. // Importantly, this may include type coercions that determine whether the // instantiation is a match of a previous instantiation. // The actual monomorphization happens via adding `func_instance` to // `InternPool`. const fn_owner_decl = mod.declPtr(generic_owner_func.owner_decl); const namespace_index = fn_owner_decl.src_namespace; const namespace = mod.namespacePtr(namespace_index); const fn_zir = namespace.file_scope.zir; const fn_info = fn_zir.getFnInfo(generic_owner_func.zir_body_inst); const comptime_args = try sema.arena.alloc(InternPool.Index, args_info.count()); @memset(comptime_args, .none); // We may overestimate the number of runtime args, but this will definitely be sufficient. const max_runtime_args = args_info.count() - @popCount(generic_owner_ty_info.comptime_bits); var runtime_args = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(sema.arena, max_runtime_args); // Re-run the block that creates the function, with the comptime parameters // pre-populated inside `inst_map`. This causes `param_comptime` and // `param_anytype_comptime` ZIR instructions to be ignored, resulting in a // new, monomorphized function, with the comptime parameters elided. var child_sema: Sema = .{ .mod = mod, .gpa = gpa, .arena = sema.arena, .code = fn_zir, // We pass the generic callsite's owner decl here because whatever `Decl` // dependencies are chased at this point should be attached to the // callsite, not the `Decl` associated with the `func_instance`. .owner_decl = sema.owner_decl, .owner_decl_index = sema.owner_decl_index, .func_index = sema.owner_func_index, // This may not be known yet, since the calling convention could be generic, but there // should be no illegal instructions encountered while creating the function anyway. .func_is_naked = false, .fn_ret_ty = Type.void, .fn_ret_ty_ies = null, .owner_func_index = .none, .comptime_args = comptime_args, .generic_owner = generic_owner, .generic_call_src = call_src, .generic_call_decl = block.src_decl.toOptional(), .branch_quota = sema.branch_quota, .branch_count = sema.branch_count, .comptime_mutable_decls = sema.comptime_mutable_decls, }; defer child_sema.deinit(); var wip_captures = try WipCaptureScope.init(gpa, sema.owner_decl.src_scope); defer wip_captures.deinit(); var child_block: Block = .{ .parent = null, .sema = &child_sema, .src_decl = generic_owner_func.owner_decl, .namespace = namespace_index, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer child_block.instructions.deinit(gpa); try child_sema.inst_map.ensureSpaceForInstructions(gpa, fn_info.param_body); for (fn_info.param_body[0..args_info.count()], 0..) |param_inst, arg_index| { const param_tag = fn_zir.instructions.items(.tag)[param_inst]; const param_ty = switch (generic_owner_ty_info.param_types.get(ip)[arg_index]) { else => |ty| ty.toType(), // parameter is not generic, so type is already resolved .generic_poison_type => param_ty: { // We have every parameter before this one, so can resolve this parameter's type now. // However, first check the param type, since it may be anytype. switch (param_tag) { .param_anytype, .param_anytype_comptime => { // The parameter doesn't have a type. break :param_ty Type.generic_poison; }, .param, .param_comptime => { // We now know every prior parameter, so can resolve this // parameter's type. The child sema has these types. const param_data = fn_zir.instructions.items(.data)[param_inst].pl_tok; const param_extra = fn_zir.extraData(Zir.Inst.Param, param_data.payload_index); const param_ty_body = fn_zir.extra[param_extra.end..][0..param_extra.data.body_len]; // Make sure any nested instructions don't clobber our work. const prev_params = child_block.params; const prev_no_partial_func_ty = child_sema.no_partial_func_ty; const prev_generic_owner = child_sema.generic_owner; const prev_generic_call_src = child_sema.generic_call_src; const prev_generic_call_decl = child_sema.generic_call_decl; child_block.params = .{}; child_sema.no_partial_func_ty = true; child_sema.generic_owner = .none; child_sema.generic_call_src = .unneeded; child_sema.generic_call_decl = .none; defer { child_block.params = prev_params; child_sema.no_partial_func_ty = prev_no_partial_func_ty; child_sema.generic_owner = prev_generic_owner; child_sema.generic_call_src = prev_generic_call_src; child_sema.generic_call_decl = prev_generic_call_decl; } const param_ty_inst = try child_sema.resolveBody(&child_block, param_ty_body, param_inst); break :param_ty try child_sema.analyzeAsType(&child_block, param_data.src(), param_ty_inst); }, else => unreachable, } }, }; const arg_ref = try args_info.analyzeArg(sema, block, arg_index, param_ty, generic_owner_ty_info, func); const arg_ty = sema.typeOf(arg_ref); if (arg_ty.zigTypeTag(mod) == .NoReturn) { // This terminates argument analysis. return arg_ref; } const arg_is_comptime = switch (param_tag) { .param_comptime, .param_anytype_comptime => true, .param, .param_anytype => try sema.typeRequiresComptime(arg_ty), else => unreachable, }; if (arg_is_comptime) { if (try sema.resolveMaybeUndefVal(arg_ref)) |arg_val| { comptime_args[arg_index] = arg_val.toIntern(); child_sema.inst_map.putAssumeCapacityNoClobber( param_inst, Air.internedToRef(arg_val.toIntern()), ); } else switch (param_tag) { .param_comptime, .param_anytype_comptime, => return sema.failWithOwnedErrorMsg(msg: { const arg_src = args_info.argSrc(block, arg_index); const msg = try sema.errMsg(block, arg_src, "runtime-known argument passed to comptime parameter", .{}); errdefer msg.destroy(sema.gpa); const param_src = switch (param_tag) { .param_comptime => fn_zir.instructions.items(.data)[param_inst].pl_tok.src(), .param_anytype_comptime => fn_zir.instructions.items(.data)[param_inst].str_tok.src(), else => unreachable, }; try child_sema.errNote(&child_block, param_src, msg, "declared comptime here", .{}); break :msg msg; }), .param, .param_anytype, => return sema.failWithOwnedErrorMsg(msg: { const arg_src = args_info.argSrc(block, arg_index); const msg = try sema.errMsg(block, arg_src, "runtime-known argument passed to parameter of comptime-only type", .{}); errdefer msg.destroy(sema.gpa); const param_src = switch (param_tag) { .param => fn_zir.instructions.items(.data)[param_inst].pl_tok.src(), .param_anytype => fn_zir.instructions.items(.data)[param_inst].str_tok.src(), else => unreachable, }; try child_sema.errNote(&child_block, param_src, msg, "declared here", .{}); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsComptime(msg, arg_src.toSrcLoc(src_decl, mod), arg_ty); break :msg msg; }), else => unreachable, } } else { // The parameter is runtime-known. try sema.queueFullTypeResolution(arg_ty); child_sema.inst_map.putAssumeCapacityNoClobber(param_inst, try child_block.addInst(.{ .tag = .arg, .data = .{ .arg = .{ .ty = Air.internedToRef(arg_ty.toIntern()), .src_index = @intCast(arg_index), } }, })); const param_name: Zir.NullTerminatedString = switch (param_tag) { .param_anytype => @enumFromInt(fn_zir.instructions.items(.data)[param_inst].str_tok.start), .param => name: { const inst_data = fn_zir.instructions.items(.data)[param_inst].pl_tok; const extra = fn_zir.extraData(Zir.Inst.Param, inst_data.payload_index); break :name @enumFromInt(extra.data.name); }, else => unreachable, }; try child_block.params.append(sema.arena, .{ .ty = arg_ty.toIntern(), // This is the type after coercion .is_comptime = false, // We're adding only runtime args to the instantiation .name = param_name, }); runtime_args.appendAssumeCapacity(arg_ref); } } // We've already handled parameters, so don't resolve the whole body. Instead, just // do the instructions after the params (i.e. the func itself). const new_func_inst = try child_sema.resolveBody(&child_block, fn_info.param_body[args_info.count()..], fn_info.param_body_inst); const callee_index = (child_sema.resolveConstValue(&child_block, .unneeded, new_func_inst, undefined) catch unreachable).toIntern(); const callee = mod.funcInfo(callee_index); callee.branchQuota(ip).* = @max(callee.branchQuota(ip).*, sema.branch_quota); try sema.addReferencedBy(block, call_src, callee.owner_decl); // Make a runtime call to the new function, making sure to omit the comptime args. const func_ty = callee.ty.toType(); const func_ty_info = mod.typeToFunc(func_ty).?; try wip_captures.finalize(); // If the call evaluated to a return type that requires comptime, never mind // our generic instantiation. Instead we need to perform a comptime call. if (try sema.typeRequiresComptime(func_ty_info.return_type.toType())) { return error.ComptimeReturn; } // Similarly, if the call evaluated to a generic type we need to instead // call it inline. if (func_ty_info.is_generic or func_ty_info.cc == .Inline) { return error.GenericPoison; } try sema.queueFullTypeResolution(func_ty_info.return_type.toType()); if (call_dbg_node) |some| try sema.zirDbgStmt(block, some); if (sema.owner_func_index != .none and func_ty_info.return_type.toType().isError(mod)) { ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn = true; } try mod.ensureFuncBodyAnalysisQueued(callee_index); try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Call).Struct.fields.len + runtime_args.items.len); const result = try block.addInst(.{ .tag = call_tag, .data = .{ .pl_op = .{ .operand = Air.internedToRef(callee_index), .payload = sema.addExtraAssumeCapacity(Air.Call{ .args_len = @intCast(runtime_args.items.len), }), } }, }); sema.appendRefsAssumeCapacity(runtime_args.items); if (ensure_result_used) { try sema.ensureResultUsed(block, sema.typeOf(result), call_src); } if (call_tag == .call_always_tail) { return sema.handleTailCall(block, call_src, func_ty, result); } if (func_ty.fnReturnType(mod).isNoReturn(mod)) { _ = try block.addNoOp(.unreach); return Air.Inst.Ref.unreachable_value; } return result; } fn resolveTupleLazyValues(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void { const mod = sema.mod; const tuple = switch (mod.intern_pool.indexToKey(ty.toIntern())) { .anon_struct_type => |tuple| tuple, else => return, }; for (tuple.types, tuple.values) |field_ty, field_val| { try sema.resolveTupleLazyValues(block, src, field_ty.toType()); if (field_val == .none) continue; // TODO: mutate in intern pool _ = try sema.resolveLazyValue(field_val.toValue()); } } fn emitDbgInline( sema: *Sema, block: *Block, old_func: InternPool.Index, new_func: InternPool.Index, new_func_ty: Type, tag: Air.Inst.Tag, ) CompileError!void { const mod = sema.mod; if (mod.comp.bin_file.options.strip) return; // Recursive inline call; no dbg_inline needed. if (old_func == new_func) return; _ = try block.addInst(.{ .tag = tag, .data = .{ .ty_fn = .{ .ty = Air.internedToRef(new_func_ty.toIntern()), .func = new_func, } }, }); } fn zirIntType(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const int_type = sema.code.instructions.items(.data)[inst].int_type; const ty = try mod.intType(int_type.signedness, int_type.bit_count); return Air.internedToRef(ty.toIntern()); } fn zirOptionalType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node }; const child_type = try sema.resolveType(block, operand_src, inst_data.operand); if (child_type.zigTypeTag(mod) == .Opaque) { return sema.fail(block, operand_src, "opaque type '{}' cannot be optional", .{child_type.fmt(mod)}); } else if (child_type.zigTypeTag(mod) == .Null) { return sema.fail(block, operand_src, "type '{}' cannot be optional", .{child_type.fmt(mod)}); } const opt_type = try mod.optionalType(child_type.toIntern()); return Air.internedToRef(opt_type.toIntern()); } fn zirElemTypeIndex(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const bin = sema.code.instructions.items(.data)[inst].bin; const indexable_ty = sema.resolveType(block, .unneeded, bin.lhs) catch |err| switch (err) { // Since this is a ZIR instruction that returns a type, encountering // generic poison should not result in a failed compilation, but the // generic poison type. This prevents unnecessary failures when // constructing types at compile-time. error.GenericPoison => return .generic_poison_type, else => |e| return e, }; try sema.resolveTypeFields(indexable_ty); assert(indexable_ty.isIndexable(mod)); // validated by a previous instruction if (indexable_ty.zigTypeTag(mod) == .Struct) { const elem_type = indexable_ty.structFieldType(@intFromEnum(bin.rhs), mod); return Air.internedToRef(elem_type.toIntern()); } else { const elem_type = indexable_ty.elemType2(mod); return Air.internedToRef(elem_type.toIntern()); } } fn zirElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const un_node = sema.code.instructions.items(.data)[inst].un_node; const ptr_ty = try sema.resolveType(block, .unneeded, un_node.operand); assert(ptr_ty.zigTypeTag(mod) == .Pointer); // validated by a previous instruction return Air.internedToRef(ptr_ty.childType(mod).toIntern()); } fn zirVectorElemType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const un_node = sema.code.instructions.items(.data)[inst].un_node; const vec_ty = sema.resolveType(block, .unneeded, un_node.operand) catch |err| switch (err) { // Since this is a ZIR instruction that returns a type, encountering // generic poison should not result in a failed compilation, but the // generic poison type. This prevents unnecessary failures when // constructing types at compile-time. error.GenericPoison => return .generic_poison_type, else => |e| return e, }; if (!vec_ty.isVector(mod)) { return sema.fail(block, un_node.src(), "expected vector type, found '{}'", .{vec_ty.fmt(mod)}); } return Air.internedToRef(vec_ty.childType(mod).toIntern()); } fn zirVectorType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const elem_type_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const len_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const len = @as(u32, @intCast(try sema.resolveInt(block, len_src, extra.lhs, Type.u32, "vector length must be comptime-known"))); const elem_type = try sema.resolveType(block, elem_type_src, extra.rhs); try sema.checkVectorElemType(block, elem_type_src, elem_type); const vector_type = try mod.vectorType(.{ .len = len, .child = elem_type.toIntern(), }); return Air.internedToRef(vector_type.toIntern()); } fn zirArrayType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const len_src: LazySrcLoc = .{ .node_offset_array_type_len = inst_data.src_node }; const elem_src: LazySrcLoc = .{ .node_offset_array_type_elem = inst_data.src_node }; const len = try sema.resolveInt(block, len_src, extra.lhs, Type.usize, "array length must be comptime-known"); const elem_type = try sema.resolveType(block, elem_src, extra.rhs); try sema.validateArrayElemType(block, elem_type, elem_src); const array_ty = try sema.mod.arrayType(.{ .len = len, .child = elem_type.toIntern(), }); return Air.internedToRef(array_ty.toIntern()); } fn zirArrayTypeSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.ArrayTypeSentinel, inst_data.payload_index).data; const len_src: LazySrcLoc = .{ .node_offset_array_type_len = inst_data.src_node }; const sentinel_src: LazySrcLoc = .{ .node_offset_array_type_sentinel = inst_data.src_node }; const elem_src: LazySrcLoc = .{ .node_offset_array_type_elem = inst_data.src_node }; const len = try sema.resolveInt(block, len_src, extra.len, Type.usize, "array length must be comptime-known"); const elem_type = try sema.resolveType(block, elem_src, extra.elem_type); try sema.validateArrayElemType(block, elem_type, elem_src); const uncasted_sentinel = try sema.resolveInst(extra.sentinel); const sentinel = try sema.coerce(block, elem_type, uncasted_sentinel, sentinel_src); const sentinel_val = try sema.resolveConstValue(block, sentinel_src, sentinel, "array sentinel value must be comptime-known"); const array_ty = try sema.mod.arrayType(.{ .len = len, .sentinel = sentinel_val.toIntern(), .child = elem_type.toIntern(), }); return Air.internedToRef(array_ty.toIntern()); } fn validateArrayElemType(sema: *Sema, block: *Block, elem_type: Type, elem_src: LazySrcLoc) !void { const mod = sema.mod; if (elem_type.zigTypeTag(mod) == .Opaque) { return sema.fail(block, elem_src, "array of opaque type '{}' not allowed", .{elem_type.fmt(mod)}); } else if (elem_type.zigTypeTag(mod) == .NoReturn) { return sema.fail(block, elem_src, "array of 'noreturn' not allowed", .{}); } } fn zirAnyframeType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; if (true) { return sema.failWithUseOfAsync(block, inst_data.src()); } const mod = sema.mod; const operand_src: LazySrcLoc = .{ .node_offset_anyframe_type = inst_data.src_node }; const return_type = try sema.resolveType(block, operand_src, inst_data.operand); const anyframe_type = try mod.anyframeType(return_type); return Air.internedToRef(anyframe_type.toIntern()); } fn zirErrorUnionType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const error_set = try sema.resolveType(block, lhs_src, extra.lhs); const payload = try sema.resolveType(block, rhs_src, extra.rhs); if (error_set.zigTypeTag(mod) != .ErrorSet) { return sema.fail(block, lhs_src, "expected error set type, found '{}'", .{ error_set.fmt(mod), }); } try sema.validateErrorUnionPayloadType(block, payload, rhs_src); const err_union_ty = try mod.errorUnionType(error_set, payload); return Air.internedToRef(err_union_ty.toIntern()); } fn validateErrorUnionPayloadType(sema: *Sema, block: *Block, payload_ty: Type, payload_src: LazySrcLoc) !void { const mod = sema.mod; if (payload_ty.zigTypeTag(mod) == .Opaque) { return sema.fail(block, payload_src, "error union with payload of opaque type '{}' not allowed", .{ payload_ty.fmt(mod), }); } else if (payload_ty.zigTypeTag(mod) == .ErrorSet) { return sema.fail(block, payload_src, "error union with payload of error set type '{}' not allowed", .{ payload_ty.fmt(mod), }); } } fn zirErrorValue(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code)); _ = try mod.getErrorValue(name); // Create an error set type with only this error value, and return the value. const error_set_type = try mod.singleErrorSetType(name); return Air.internedToRef((try mod.intern(.{ .err = .{ .ty = error_set_type.toIntern(), .name = name, } }))); } fn zirIntFromError(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const ip = &mod.intern_pool; const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const uncasted_operand = try sema.resolveInst(extra.operand); const operand = try sema.coerce(block, Type.anyerror, uncasted_operand, operand_src); if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) { return mod.undefRef(Type.err_int); } const err_name = ip.indexToKey(val.toIntern()).err.name; return Air.internedToRef((try mod.intValue( Type.err_int, try mod.getErrorValue(err_name), )).toIntern()); } const op_ty = sema.typeOf(uncasted_operand); switch (try sema.resolveInferredErrorSetTy(block, src, op_ty.toIntern())) { .anyerror_type => {}, else => |err_set_ty_index| { const names = ip.indexToKey(err_set_ty_index).error_set_type.names; switch (names.len) { 0 => return Air.internedToRef((try mod.intValue(Type.err_int, 0)).toIntern()), 1 => { const int: Module.ErrorInt = @intCast(mod.global_error_set.getIndex(names.get(ip)[0]).?); return mod.intRef(Type.err_int, int); }, else => {}, } }, } try sema.requireRuntimeBlock(block, src, operand_src); return block.addBitCast(Type.err_int, operand); } fn zirErrorFromInt(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const uncasted_operand = try sema.resolveInst(extra.operand); const operand = try sema.coerce(block, Type.err_int, uncasted_operand, operand_src); if (try sema.resolveDefinedValue(block, operand_src, operand)) |value| { const int = try sema.usizeCast(block, operand_src, value.toUnsignedInt(mod)); if (int > mod.global_error_set.count() or int == 0) return sema.fail(block, operand_src, "integer value '{d}' represents no error", .{int}); return Air.internedToRef((try mod.intern(.{ .err = .{ .ty = .anyerror_type, .name = mod.global_error_set.keys()[int], } }))); } try sema.requireRuntimeBlock(block, src, operand_src); if (block.wantSafety()) { const is_lt_len = try block.addUnOp(.cmp_lt_errors_len, operand); const zero_val = Air.internedToRef((try mod.intValue(Type.err_int, 0)).toIntern()); const is_non_zero = try block.addBinOp(.cmp_neq, operand, zero_val); const ok = try block.addBinOp(.bit_and, is_lt_len, is_non_zero); try sema.addSafetyCheck(block, src, ok, .invalid_error_code); } return block.addInst(.{ .tag = .bitcast, .data = .{ .ty_op = .{ .ty = Air.Inst.Ref.anyerror_type, .operand = operand, } }, }); } fn zirMergeErrorSets(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); if (sema.typeOf(lhs).zigTypeTag(mod) == .Bool and sema.typeOf(rhs).zigTypeTag(mod) == .Bool) { const msg = msg: { const msg = try sema.errMsg(block, lhs_src, "expected error set type, found 'bool'", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "'||' merges error sets; 'or' performs boolean OR", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const lhs_ty = try sema.analyzeAsType(block, lhs_src, lhs); const rhs_ty = try sema.analyzeAsType(block, rhs_src, rhs); if (lhs_ty.zigTypeTag(mod) != .ErrorSet) return sema.fail(block, lhs_src, "expected error set type, found '{}'", .{lhs_ty.fmt(mod)}); if (rhs_ty.zigTypeTag(mod) != .ErrorSet) return sema.fail(block, rhs_src, "expected error set type, found '{}'", .{rhs_ty.fmt(mod)}); // Anything merged with anyerror is anyerror. if (lhs_ty.toIntern() == .anyerror_type or rhs_ty.toIntern() == .anyerror_type) { return Air.Inst.Ref.anyerror_type; } if (ip.isInferredErrorSetType(lhs_ty.toIntern())) { switch (try sema.resolveInferredErrorSet(block, src, lhs_ty.toIntern())) { // isAnyError might have changed from a false negative to a true // positive after resolution. .anyerror_type => return .anyerror_type, else => {}, } } if (ip.isInferredErrorSetType(rhs_ty.toIntern())) { switch (try sema.resolveInferredErrorSet(block, src, rhs_ty.toIntern())) { // isAnyError might have changed from a false negative to a true // positive after resolution. .anyerror_type => return .anyerror_type, else => {}, } } const err_set_ty = try sema.errorSetMerge(lhs_ty, rhs_ty); return Air.internedToRef(err_set_ty.toIntern()); } fn zirEnumLiteral(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const name = inst_data.get(sema.code); return Air.internedToRef((try mod.intern(.{ .enum_literal = try mod.intern_pool.getOrPutString(sema.gpa, name), }))); } fn zirIntFromEnum(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const enum_tag: Air.Inst.Ref = switch (operand_ty.zigTypeTag(mod)) { .Enum => operand, .Union => blk: { try sema.resolveTypeFields(operand_ty); const tag_ty = operand_ty.unionTagType(mod) orelse { return sema.fail( block, operand_src, "untagged union '{}' cannot be converted to integer", .{src}, ); }; break :blk try sema.unionToTag(block, tag_ty, operand, operand_src); }, else => { return sema.fail(block, operand_src, "expected enum or tagged union, found '{}'", .{ operand_ty.fmt(mod), }); }, }; const enum_tag_ty = sema.typeOf(enum_tag); const int_tag_ty = enum_tag_ty.intTagType(mod); if (try sema.typeHasOnePossibleValue(enum_tag_ty)) |opv| { return Air.internedToRef((try mod.getCoerced(opv, int_tag_ty)).toIntern()); } if (try sema.resolveMaybeUndefVal(enum_tag)) |enum_tag_val| { const val = try enum_tag_val.intFromEnum(enum_tag_ty, mod); return Air.internedToRef(val.toIntern()); } try sema.requireRuntimeBlock(block, src, operand_src); return block.addBitCast(int_tag_ty, enum_tag); } fn zirEnumFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@enumFromInt"); const operand = try sema.resolveInst(extra.rhs); if (dest_ty.zigTypeTag(mod) != .Enum) { return sema.fail(block, src, "expected enum, found '{}'", .{dest_ty.fmt(mod)}); } _ = try sema.checkIntType(block, operand_src, sema.typeOf(operand)); if (try sema.resolveMaybeUndefVal(operand)) |int_val| { if (dest_ty.isNonexhaustiveEnum(mod)) { const int_tag_ty = dest_ty.intTagType(mod); if (try sema.intFitsInType(int_val, int_tag_ty, null)) { return Air.internedToRef((try mod.getCoerced(int_val, dest_ty)).toIntern()); } const msg = msg: { const msg = try sema.errMsg( block, src, "int value '{}' out of range of non-exhaustive enum '{}'", .{ int_val.fmtValue(sema.typeOf(operand), mod), dest_ty.fmt(mod) }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, dest_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (int_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, operand_src); } if (!(try sema.enumHasInt(dest_ty, int_val))) { const msg = msg: { const msg = try sema.errMsg( block, src, "enum '{}' has no tag with value '{}'", .{ dest_ty.fmt(mod), int_val.fmtValue(sema.typeOf(operand), mod) }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, dest_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return Air.internedToRef((try mod.getCoerced(int_val, dest_ty)).toIntern()); } if (try sema.typeHasOnePossibleValue(dest_ty)) |opv| { const result = Air.internedToRef(opv.toIntern()); // The operand is runtime-known but the result is comptime-known. In // this case we still need a safety check. // TODO add a safety check here. we can't use is_named_enum_value - // it needs to convert the enum back to int and make sure it equals the operand int. return result; } try sema.requireRuntimeBlock(block, src, operand_src); const result = try block.addTyOp(.intcast, dest_ty, operand); if (block.wantSafety() and !dest_ty.isNonexhaustiveEnum(mod) and mod.backendSupportsFeature(.is_named_enum_value)) { const ok = try block.addUnOp(.is_named_enum_value, result); try sema.addSafetyCheck(block, src, ok, .invalid_enum_value); } return result; } /// Pointer in, pointer out. fn zirOptionalPayloadPtr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, safety_check: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const optional_ptr = try sema.resolveInst(inst_data.operand); const src = inst_data.src(); return sema.analyzeOptionalPayloadPtr(block, src, optional_ptr, safety_check, false); } fn analyzeOptionalPayloadPtr( sema: *Sema, block: *Block, src: LazySrcLoc, optional_ptr: Air.Inst.Ref, safety_check: bool, initializing: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const optional_ptr_ty = sema.typeOf(optional_ptr); assert(optional_ptr_ty.zigTypeTag(mod) == .Pointer); const opt_type = optional_ptr_ty.childType(mod); if (opt_type.zigTypeTag(mod) != .Optional) { return sema.fail(block, src, "expected optional type, found '{}'", .{opt_type.fmt(mod)}); } const child_type = opt_type.optionalChild(mod); const child_pointer = try mod.ptrType(.{ .child = child_type.toIntern(), .flags = .{ .is_const = optional_ptr_ty.isConstPtr(mod), .address_space = optional_ptr_ty.ptrAddressSpace(mod), }, }); if (try sema.resolveDefinedValue(block, src, optional_ptr)) |ptr_val| { if (initializing) { if (!ptr_val.isComptimeMutablePtr(mod)) { // If the pointer resulting from this function was stored at comptime, // the optional non-null bit would be set that way. But in this case, // we need to emit a runtime instruction to do it. _ = try block.addTyOp(.optional_payload_ptr_set, child_pointer, optional_ptr); } return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = child_pointer.toIntern(), .addr = .{ .opt_payload = ptr_val.toIntern() }, } }))); } if (try sema.pointerDeref(block, src, ptr_val, optional_ptr_ty)) |val| { if (val.isNull(mod)) { return sema.fail(block, src, "unable to unwrap null", .{}); } // The same Value represents the pointer to the optional and the payload. return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = child_pointer.toIntern(), .addr = .{ .opt_payload = ptr_val.toIntern() }, } }))); } } try sema.requireRuntimeBlock(block, src, null); if (safety_check and block.wantSafety()) { const is_non_null = try block.addUnOp(.is_non_null_ptr, optional_ptr); try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null); } const air_tag: Air.Inst.Tag = if (initializing) .optional_payload_ptr_set else .optional_payload_ptr; return block.addTyOp(air_tag, child_pointer, optional_ptr); } /// Value in, value out. fn zirOptionalPayload( sema: *Sema, block: *Block, inst: Zir.Inst.Index, safety_check: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const result_ty = switch (operand_ty.zigTypeTag(mod)) { .Optional => operand_ty.optionalChild(mod), .Pointer => t: { if (operand_ty.ptrSize(mod) != .C) { return sema.failWithExpectedOptionalType(block, src, operand_ty); } // TODO https://github.com/ziglang/zig/issues/6597 if (true) break :t operand_ty; const ptr_info = operand_ty.ptrInfo(mod); break :t try mod.ptrType(.{ .child = ptr_info.child, .flags = .{ .alignment = ptr_info.flags.alignment, .is_const = ptr_info.flags.is_const, .is_volatile = ptr_info.flags.is_volatile, .is_allowzero = ptr_info.flags.is_allowzero, .address_space = ptr_info.flags.address_space, }, }); }, else => return sema.failWithExpectedOptionalType(block, src, operand_ty), }; if (try sema.resolveDefinedValue(block, src, operand)) |val| { return if (val.optionalValue(mod)) |payload| Air.internedToRef(payload.toIntern()) else sema.fail(block, src, "unable to unwrap null", .{}); } try sema.requireRuntimeBlock(block, src, null); if (safety_check and block.wantSafety()) { const is_non_null = try block.addUnOp(.is_non_null, operand); try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null); } return block.addTyOp(.optional_payload, result_ty, operand); } /// Value in, value out fn zirErrUnionPayload( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_src = src; const err_union_ty = sema.typeOf(operand); if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) { return sema.fail(block, operand_src, "expected error union type, found '{}'", .{ err_union_ty.fmt(mod), }); } return sema.analyzeErrUnionPayload(block, src, err_union_ty, operand, operand_src, false); } fn analyzeErrUnionPayload( sema: *Sema, block: *Block, src: LazySrcLoc, err_union_ty: Type, operand: Air.Inst.Ref, operand_src: LazySrcLoc, safety_check: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const payload_ty = err_union_ty.errorUnionPayload(mod); if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| { if (val.getErrorName(mod).unwrap()) |name| { return sema.fail(block, src, "caught unexpected error '{}'", .{name.fmt(&mod.intern_pool)}); } return Air.internedToRef(mod.intern_pool.indexToKey(val.toIntern()).error_union.val.payload); } try sema.requireRuntimeBlock(block, src, null); // If the error set has no fields then no safety check is needed. if (safety_check and block.wantSafety() and !err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) { try sema.panicUnwrapError(block, src, operand, .unwrap_errunion_err, .is_non_err); } return block.addTyOp(.unwrap_errunion_payload, payload_ty, operand); } /// Pointer in, pointer out. fn zirErrUnionPayloadPtr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const src = inst_data.src(); return sema.analyzeErrUnionPayloadPtr(block, src, operand, false, false); } fn analyzeErrUnionPayloadPtr( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, safety_check: bool, initializing: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); assert(operand_ty.zigTypeTag(mod) == .Pointer); if (operand_ty.childType(mod).zigTypeTag(mod) != .ErrorUnion) { return sema.fail(block, src, "expected error union type, found '{}'", .{ operand_ty.childType(mod).fmt(mod), }); } const err_union_ty = operand_ty.childType(mod); const payload_ty = err_union_ty.errorUnionPayload(mod); const operand_pointer_ty = try mod.ptrType(.{ .child = payload_ty.toIntern(), .flags = .{ .is_const = operand_ty.isConstPtr(mod), .address_space = operand_ty.ptrAddressSpace(mod), }, }); if (try sema.resolveDefinedValue(block, src, operand)) |ptr_val| { if (initializing) { if (!ptr_val.isComptimeMutablePtr(mod)) { // If the pointer resulting from this function was stored at comptime, // the error union error code would be set that way. But in this case, // we need to emit a runtime instruction to do it. try sema.requireRuntimeBlock(block, src, null); _ = try block.addTyOp(.errunion_payload_ptr_set, operand_pointer_ty, operand); } return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = operand_pointer_ty.toIntern(), .addr = .{ .eu_payload = ptr_val.toIntern() }, } }))); } if (try sema.pointerDeref(block, src, ptr_val, operand_ty)) |val| { if (val.getErrorName(mod).unwrap()) |name| { return sema.fail(block, src, "caught unexpected error '{}'", .{name.fmt(&mod.intern_pool)}); } return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = operand_pointer_ty.toIntern(), .addr = .{ .eu_payload = ptr_val.toIntern() }, } }))); } } try sema.requireRuntimeBlock(block, src, null); // If the error set has no fields then no safety check is needed. if (safety_check and block.wantSafety() and !err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) { try sema.panicUnwrapError(block, src, operand, .unwrap_errunion_err_ptr, .is_non_err_ptr); } const air_tag: Air.Inst.Tag = if (initializing) .errunion_payload_ptr_set else .unwrap_errunion_payload_ptr; return block.addTyOp(air_tag, operand_pointer_ty, operand); } /// Value in, value out fn zirErrUnionCode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); return sema.analyzeErrUnionCode(block, src, operand); } fn analyzeErrUnionCode(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); if (operand_ty.zigTypeTag(mod) != .ErrorUnion) { return sema.fail(block, src, "expected error union type, found '{}'", .{ operand_ty.fmt(mod), }); } const result_ty = operand_ty.errorUnionSet(mod); if (try sema.resolveDefinedValue(block, src, operand)) |val| { return Air.internedToRef((try mod.intern(.{ .err = .{ .ty = result_ty.toIntern(), .name = mod.intern_pool.indexToKey(val.toIntern()).error_union.val.err_name, } }))); } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.unwrap_errunion_err, result_ty, operand); } /// Pointer in, value out fn zirErrUnionCodePtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); assert(operand_ty.zigTypeTag(mod) == .Pointer); if (operand_ty.childType(mod).zigTypeTag(mod) != .ErrorUnion) { return sema.fail(block, src, "expected error union type, found '{}'", .{ operand_ty.childType(mod).fmt(mod), }); } const result_ty = operand_ty.childType(mod).errorUnionSet(mod); if (try sema.resolveDefinedValue(block, src, operand)) |pointer_val| { if (try sema.pointerDeref(block, src, pointer_val, operand_ty)) |val| { assert(val.getErrorName(mod) != .none); return Air.internedToRef(val.toIntern()); } } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.unwrap_errunion_err_ptr, result_ty, operand); } fn zirFunc( sema: *Sema, block: *Block, inst: Zir.Inst.Index, inferred_error_set: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Func, inst_data.payload_index); const target = sema.mod.getTarget(); const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = inst_data.src_node }; var extra_index = extra.end; const ret_ty: Type = switch (extra.data.ret_body_len) { 0 => Type.void, 1 => blk: { const ret_ty_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; if (sema.resolveType(block, ret_ty_src, ret_ty_ref)) |ret_ty| { break :blk ret_ty; } else |err| switch (err) { error.GenericPoison => { break :blk Type.generic_poison; }, else => |e| return e, } }, else => blk: { const ret_ty_body = sema.code.extra[extra_index..][0..extra.data.ret_body_len]; extra_index += ret_ty_body.len; const ret_ty_val = try sema.resolveGenericBody(block, ret_ty_src, ret_ty_body, inst, Type.type, "return type must be comptime-known"); break :blk ret_ty_val.toType(); }, }; var src_locs: Zir.Inst.Func.SrcLocs = undefined; const has_body = extra.data.body_len != 0; if (has_body) { extra_index += extra.data.body_len; src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data; } // If this instruction has a body it means it's the type of the `owner_decl` // otherwise it's a function type without a `callconv` attribute and should // never be `.C`. const cc: std.builtin.CallingConvention = if (has_body and mod.declPtr(block.src_decl).is_exported) .C else .Unspecified; return sema.funcCommon( block, inst_data.src_node, inst, .none, target_util.defaultAddressSpace(target, .function), .default, cc, ret_ty, false, inferred_error_set, false, has_body, src_locs, null, 0, false, ); } fn resolveGenericBody( sema: *Sema, block: *Block, src: LazySrcLoc, body: []const Zir.Inst.Index, func_inst: Zir.Inst.Index, dest_ty: Type, reason: []const u8, ) !Value { assert(body.len != 0); const err = err: { // Make sure any nested param instructions don't clobber our work. const prev_params = block.params; const prev_no_partial_func_type = sema.no_partial_func_ty; const prev_generic_owner = sema.generic_owner; const prev_generic_call_src = sema.generic_call_src; const prev_generic_call_decl = sema.generic_call_decl; block.params = .{}; sema.no_partial_func_ty = true; sema.generic_owner = .none; sema.generic_call_src = .unneeded; sema.generic_call_decl = .none; defer { block.params = prev_params; sema.no_partial_func_ty = prev_no_partial_func_type; sema.generic_owner = prev_generic_owner; sema.generic_call_src = prev_generic_call_src; sema.generic_call_decl = prev_generic_call_decl; } const uncasted = sema.resolveBody(block, body, func_inst) catch |err| break :err err; const result = sema.coerce(block, dest_ty, uncasted, src) catch |err| break :err err; const val = sema.resolveConstValue(block, src, result, reason) catch |err| break :err err; return val; }; switch (err) { error.GenericPoison => { if (dest_ty.toIntern() == .type_type) { return Value.generic_poison_type; } else { return Value.generic_poison; } }, else => |e| return e, } } /// Given a library name, examines if the library name should end up in /// `link.File.Options.system_libs` table (for example, libc is always /// specified via dedicated flag `link.File.Options.link_libc` instead), /// and puts it there if it doesn't exist. /// It also dupes the library name which can then be saved as part of the /// respective `Decl` (either `ExternFn` or `Var`). /// The liveness of the duped library name is tied to liveness of `Module`. /// To deallocate, call `deinit` on the respective `Decl` (`ExternFn` or `Var`). fn handleExternLibName( sema: *Sema, block: *Block, src_loc: LazySrcLoc, lib_name: []const u8, ) CompileError![:0]u8 { blk: { const mod = sema.mod; const comp = mod.comp; const target = mod.getTarget(); log.debug("extern fn symbol expected in lib '{s}'", .{lib_name}); if (target_util.is_libc_lib_name(target, lib_name)) { if (!comp.bin_file.options.link_libc and !comp.bin_file.options.parent_compilation_link_libc) { return sema.fail( block, src_loc, "dependency on libc must be explicitly specified in the build command", .{}, ); } comp.bin_file.options.link_libc = true; break :blk; } if (target_util.is_libcpp_lib_name(target, lib_name)) { if (!comp.bin_file.options.link_libcpp) { return sema.fail( block, src_loc, "dependency on libc++ must be explicitly specified in the build command", .{}, ); } comp.bin_file.options.link_libcpp = true; break :blk; } if (mem.eql(u8, lib_name, "unwind")) { comp.bin_file.options.link_libunwind = true; break :blk; } if (!target.isWasm() and !comp.bin_file.options.pic) { return sema.fail( block, src_loc, "dependency on dynamic library '{s}' requires enabling Position Independent Code. Fixed by '-l{s}' or '-fPIC'.", .{ lib_name, lib_name }, ); } comp.addLinkLib(lib_name) catch |err| { return sema.fail(block, src_loc, "unable to add link lib '{s}': {s}", .{ lib_name, @errorName(err), }); }; } return sema.gpa.dupeZ(u8, lib_name); } /// These are calling conventions that are confirmed to work with variadic functions. /// Any calling conventions not included here are either not yet verified to work with variadic /// functions or there are no more other calling conventions that support variadic functions. const calling_conventions_supporting_var_args = [_]std.builtin.CallingConvention{ .C, }; fn callConvSupportsVarArgs(cc: std.builtin.CallingConvention) bool { return for (calling_conventions_supporting_var_args) |supported_cc| { if (cc == supported_cc) return true; } else false; } fn checkCallConvSupportsVarArgs(sema: *Sema, block: *Block, src: LazySrcLoc, cc: std.builtin.CallingConvention) CompileError!void { const CallingConventionsSupportingVarArgsList = struct { pub fn format(_: @This(), comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void { _ = fmt; _ = options; for (calling_conventions_supporting_var_args, 0..) |cc_inner, i| { if (i != 0) try writer.writeAll(", "); try writer.print("'.{s}'", .{@tagName(cc_inner)}); } } }; if (!callConvSupportsVarArgs(cc)) { const msg = msg: { const msg = try sema.errMsg(block, src, "variadic function does not support '.{s}' calling convention", .{@tagName(cc)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "supported calling conventions: {}", .{CallingConventionsSupportingVarArgsList{}}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } const Section = union(enum) { generic, default, explicit: InternPool.NullTerminatedString, }; fn funcCommon( sema: *Sema, block: *Block, src_node_offset: i32, func_inst: Zir.Inst.Index, /// null means generic poison alignment: ?Alignment, /// null means generic poison address_space: ?std.builtin.AddressSpace, section: Section, /// null means generic poison cc: ?std.builtin.CallingConvention, /// this might be Type.generic_poison bare_return_type: Type, var_args: bool, inferred_error_set: bool, is_extern: bool, has_body: bool, src_locs: Zir.Inst.Func.SrcLocs, opt_lib_name: ?[]const u8, noalias_bits: u32, is_noinline: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const target = mod.getTarget(); const ip = &mod.intern_pool; const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = src_node_offset }; const cc_src: LazySrcLoc = .{ .node_offset_fn_type_cc = src_node_offset }; const func_src = LazySrcLoc.nodeOffset(src_node_offset); var is_generic = bare_return_type.isGenericPoison() or alignment == null or address_space == null or section == .generic or cc == null; if (var_args) { if (is_generic) { return sema.fail(block, func_src, "generic function cannot be variadic", .{}); } try sema.checkCallConvSupportsVarArgs(block, cc_src, cc.?); } const is_source_decl = sema.generic_owner == .none; // In the case of generic calling convention, or generic alignment, we use // default values which are only meaningful for the generic function, *not* // the instantiation, which can depend on comptime parameters. // Related proposal: https://github.com/ziglang/zig/issues/11834 const cc_resolved = cc orelse .Unspecified; var comptime_bits: u32 = 0; for (block.params.items(.ty), block.params.items(.is_comptime), 0..) |param_ty_ip, param_is_comptime, i| { const param_ty = param_ty_ip.toType(); const is_noalias = blk: { const index = std.math.cast(u5, i) orelse break :blk false; break :blk @as(u1, @truncate(noalias_bits >> index)) != 0; }; const param_src: LazySrcLoc = .{ .fn_proto_param = .{ .decl = block.src_decl, .fn_proto_node_offset = src_node_offset, .param_index = @intCast(i), } }; const requires_comptime = try sema.typeRequiresComptime(param_ty); if (param_is_comptime or requires_comptime) { comptime_bits |= @as(u32, 1) << @intCast(i); // TODO: handle cast error } const this_generic = param_ty.isGenericPoison(); is_generic = is_generic or this_generic; if (param_is_comptime and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved)) { return sema.fail(block, param_src, "comptime parameters not allowed in function with calling convention '{s}'", .{@tagName(cc_resolved)}); } if (this_generic and !sema.no_partial_func_ty and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved)) { return sema.fail(block, param_src, "generic parameters not allowed in function with calling convention '{s}'", .{@tagName(cc_resolved)}); } if (!param_ty.isValidParamType(mod)) { const opaque_str = if (param_ty.zigTypeTag(mod) == .Opaque) "opaque " else ""; const msg = msg: { const msg = try sema.errMsg(block, param_src, "parameter of {s}type '{}' not allowed", .{ opaque_str, param_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, param_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (!this_generic and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved) and !try sema.validateExternType(param_ty, .param_ty)) { const msg = msg: { const msg = try sema.errMsg(block, param_src, "parameter of type '{}' not allowed in function with calling convention '{s}'", .{ param_ty.fmt(mod), @tagName(cc_resolved), }); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, param_src.toSrcLoc(src_decl, mod), param_ty, .param_ty); try sema.addDeclaredHereNote(msg, param_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (is_source_decl and requires_comptime and !param_is_comptime and has_body) { const msg = msg: { const msg = try sema.errMsg(block, param_src, "parameter of type '{}' must be declared comptime", .{ param_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsComptime(msg, param_src.toSrcLoc(src_decl, mod), param_ty); try sema.addDeclaredHereNote(msg, param_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (is_source_decl and !this_generic and is_noalias and !(param_ty.zigTypeTag(mod) == .Pointer or param_ty.isPtrLikeOptional(mod))) { return sema.fail(block, param_src, "non-pointer parameter declared noalias", .{}); } } var ret_ty_requires_comptime = false; const ret_poison = if (sema.typeRequiresComptime(bare_return_type)) |ret_comptime| rp: { ret_ty_requires_comptime = ret_comptime; break :rp bare_return_type.isGenericPoison(); } else |err| switch (err) { error.GenericPoison => rp: { is_generic = true; break :rp true; }, else => |e| return e, }; const final_is_generic = is_generic or comptime_bits != 0 or ret_ty_requires_comptime; const param_types = block.params.items(.ty); if (!is_source_decl) { assert(has_body); assert(!is_generic); assert(comptime_bits == 0); assert(cc != null); assert(section != .generic); assert(address_space != null); assert(!var_args); if (inferred_error_set) { try sema.validateErrorUnionPayloadType(block, bare_return_type, ret_ty_src); } const func_index = try ip.getFuncInstance(gpa, .{ .param_types = param_types, .noalias_bits = noalias_bits, .bare_return_type = bare_return_type.toIntern(), .cc = cc_resolved, .alignment = alignment.?, .section = switch (section) { .generic => unreachable, .default => .none, .explicit => |x| x.toOptional(), }, .is_noinline = is_noinline, .inferred_error_set = inferred_error_set, .generic_owner = sema.generic_owner, .comptime_args = sema.comptime_args, .generation = mod.generation, }); return finishFunc( sema, block, func_index, .none, ret_poison, bare_return_type, ret_ty_src, cc_resolved, is_source_decl, ret_ty_requires_comptime, func_inst, cc_src, is_noinline, is_generic, final_is_generic, ); } // extern_func and func_decl functions take ownership of `sema.owner_decl`. sema.owner_decl.@"linksection" = switch (section) { .generic => .none, .default => .none, .explicit => |section_name| section_name.toOptional(), }; sema.owner_decl.alignment = alignment orelse .none; sema.owner_decl.@"addrspace" = address_space orelse .generic; if (inferred_error_set) { assert(!is_extern); assert(has_body); if (!ret_poison) try sema.validateErrorUnionPayloadType(block, bare_return_type, ret_ty_src); const func_index = try ip.getFuncDeclIes(gpa, .{ .owner_decl = sema.owner_decl_index, .param_types = param_types, .noalias_bits = noalias_bits, .comptime_bits = comptime_bits, .bare_return_type = bare_return_type.toIntern(), .cc = cc, .alignment = alignment, .section_is_generic = section == .generic, .addrspace_is_generic = address_space == null, .is_var_args = var_args, .is_generic = final_is_generic, .is_noinline = is_noinline, .zir_body_inst = func_inst, .lbrace_line = src_locs.lbrace_line, .rbrace_line = src_locs.rbrace_line, .lbrace_column = @as(u16, @truncate(src_locs.columns)), .rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)), }); return finishFunc( sema, block, func_index, .none, ret_poison, bare_return_type, ret_ty_src, cc_resolved, is_source_decl, ret_ty_requires_comptime, func_inst, cc_src, is_noinline, is_generic, final_is_generic, ); } const func_ty = try ip.getFuncType(gpa, .{ .param_types = param_types, .noalias_bits = noalias_bits, .comptime_bits = comptime_bits, .return_type = bare_return_type.toIntern(), .cc = cc, .alignment = alignment, .section_is_generic = section == .generic, .addrspace_is_generic = address_space == null, .is_var_args = var_args, .is_generic = final_is_generic, .is_noinline = is_noinline, }); if (is_extern) { assert(comptime_bits == 0); assert(cc != null); assert(section != .generic); assert(address_space != null); assert(!is_generic); const func_index = try ip.getExternFunc(gpa, .{ .ty = func_ty, .decl = sema.owner_decl_index, .lib_name = if (opt_lib_name) |lib_name| (try mod.intern_pool.getOrPutString( gpa, try sema.handleExternLibName(block, .{ .node_offset_lib_name = src_node_offset, }, lib_name), )).toOptional() else .none, }); return finishFunc( sema, block, func_index, func_ty, ret_poison, bare_return_type, ret_ty_src, cc_resolved, is_source_decl, ret_ty_requires_comptime, func_inst, cc_src, is_noinline, is_generic, final_is_generic, ); } if (has_body) { const func_index = try ip.getFuncDecl(gpa, .{ .owner_decl = sema.owner_decl_index, .ty = func_ty, .cc = cc, .is_noinline = is_noinline, .zir_body_inst = func_inst, .lbrace_line = src_locs.lbrace_line, .rbrace_line = src_locs.rbrace_line, .lbrace_column = @as(u16, @truncate(src_locs.columns)), .rbrace_column = @as(u16, @truncate(src_locs.columns >> 16)), }); return finishFunc( sema, block, func_index, func_ty, ret_poison, bare_return_type, ret_ty_src, cc_resolved, is_source_decl, ret_ty_requires_comptime, func_inst, cc_src, is_noinline, is_generic, final_is_generic, ); } return finishFunc( sema, block, .none, func_ty, ret_poison, bare_return_type, ret_ty_src, cc_resolved, is_source_decl, ret_ty_requires_comptime, func_inst, cc_src, is_noinline, is_generic, final_is_generic, ); } fn finishFunc( sema: *Sema, block: *Block, opt_func_index: InternPool.Index, func_ty: InternPool.Index, ret_poison: bool, bare_return_type: Type, ret_ty_src: LazySrcLoc, cc_resolved: std.builtin.CallingConvention, is_source_decl: bool, ret_ty_requires_comptime: bool, func_inst: Zir.Inst.Index, cc_src: LazySrcLoc, is_noinline: bool, is_generic: bool, final_is_generic: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const gpa = sema.gpa; const target = mod.getTarget(); const return_type: Type = if (opt_func_index == .none or ret_poison) bare_return_type else ip.funcTypeReturnType(ip.typeOf(opt_func_index)).toType(); if (!return_type.isValidReturnType(mod)) { const opaque_str = if (return_type.zigTypeTag(mod) == .Opaque) "opaque " else ""; const msg = msg: { const msg = try sema.errMsg(block, ret_ty_src, "{s}return type '{}' not allowed", .{ opaque_str, return_type.fmt(mod), }); errdefer msg.destroy(gpa); try sema.addDeclaredHereNote(msg, return_type); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (!ret_poison and !target_util.fnCallConvAllowsZigTypes(target, cc_resolved) and !try sema.validateExternType(return_type, .ret_ty)) { const msg = msg: { const msg = try sema.errMsg(block, ret_ty_src, "return type '{}' not allowed in function with calling convention '{s}'", .{ return_type.fmt(mod), @tagName(cc_resolved), }); errdefer msg.destroy(gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, ret_ty_src.toSrcLoc(src_decl, mod), return_type, .ret_ty); try sema.addDeclaredHereNote(msg, return_type); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } // If the return type is comptime-only but not dependent on parameters then // all parameter types also need to be comptime. if (is_source_decl and opt_func_index != .none and ret_ty_requires_comptime) comptime_check: { for (block.params.items(.is_comptime)) |is_comptime| { if (!is_comptime) break; } else break :comptime_check; const msg = try sema.errMsg( block, ret_ty_src, "function with comptime-only return type '{}' requires all parameters to be comptime", .{return_type.fmt(mod)}, ); try sema.explainWhyTypeIsComptime(msg, ret_ty_src.toSrcLoc(sema.owner_decl, mod), return_type); const tags = sema.code.instructions.items(.tag); const data = sema.code.instructions.items(.data); const param_body = sema.code.getParamBody(func_inst); for ( block.params.items(.is_comptime), block.params.items(.name), param_body[0..block.params.len], ) |is_comptime, name_nts, param_index| { if (!is_comptime) { const param_src = switch (tags[param_index]) { .param => data[param_index].pl_tok.src(), .param_anytype => data[param_index].str_tok.src(), else => unreachable, }; const name = sema.code.nullTerminatedString2(name_nts); if (name.len != 0) { try sema.errNote(block, param_src, msg, "param '{s}' is required to be comptime", .{name}); } else { try sema.errNote(block, param_src, msg, "param is required to be comptime", .{}); } } } return sema.failWithOwnedErrorMsg(msg); } const arch = target.cpu.arch; if (switch (cc_resolved) { .Unspecified, .C, .Naked, .Async, .Inline => null, .Interrupt => switch (arch) { .x86, .x86_64, .avr, .msp430 => null, else => @as([]const u8, "x86, x86_64, AVR, and MSP430"), }, .Signal => switch (arch) { .avr => null, else => @as([]const u8, "AVR"), }, .Stdcall, .Fastcall, .Thiscall => switch (arch) { .x86 => null, else => @as([]const u8, "x86"), }, .Vectorcall => switch (arch) { .x86, .aarch64, .aarch64_be, .aarch64_32 => null, else => @as([]const u8, "x86 and AArch64"), }, .APCS, .AAPCS, .AAPCSVFP => switch (arch) { .arm, .armeb, .aarch64, .aarch64_be, .aarch64_32, .thumb, .thumbeb => null, else => @as([]const u8, "ARM"), }, .SysV, .Win64 => switch (arch) { .x86_64 => null, else => @as([]const u8, "x86_64"), }, .Kernel => switch (arch) { .nvptx, .nvptx64, .amdgcn, .spirv32, .spirv64 => null, else => @as([]const u8, "nvptx, amdgcn and SPIR-V"), }, }) |allowed_platform| { return sema.fail(block, cc_src, "callconv '{s}' is only available on {s}, not {s}", .{ @tagName(cc_resolved), allowed_platform, @tagName(arch), }); } if (cc_resolved == .Inline and is_noinline) { return sema.fail(block, cc_src, "'noinline' function cannot have callconv 'Inline'", .{}); } if (is_generic and sema.no_partial_func_ty) return error.GenericPoison; if (!final_is_generic and sema.wantErrorReturnTracing(return_type)) { // Make sure that StackTrace's fields are resolved so that the backend can // lower this fn type. const unresolved_stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(unresolved_stack_trace_ty); } return Air.internedToRef(if (opt_func_index != .none) opt_func_index else func_ty); } fn zirParam( sema: *Sema, block: *Block, inst: Zir.Inst.Index, comptime_syntax: bool, ) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].pl_tok; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Param, inst_data.payload_index); const param_name: Zir.NullTerminatedString = @enumFromInt(extra.data.name); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const param_ty = param_ty: { const err = err: { // Make sure any nested param instructions don't clobber our work. const prev_params = block.params; const prev_no_partial_func_type = sema.no_partial_func_ty; const prev_generic_owner = sema.generic_owner; const prev_generic_call_src = sema.generic_call_src; const prev_generic_call_decl = sema.generic_call_decl; block.params = .{}; sema.no_partial_func_ty = true; sema.generic_owner = .none; sema.generic_call_src = .unneeded; sema.generic_call_decl = .none; defer { block.params = prev_params; sema.no_partial_func_ty = prev_no_partial_func_type; sema.generic_owner = prev_generic_owner; sema.generic_call_src = prev_generic_call_src; sema.generic_call_decl = prev_generic_call_decl; } if (sema.resolveBody(block, body, inst)) |param_ty_inst| { if (sema.analyzeAsType(block, src, param_ty_inst)) |param_ty| { break :param_ty param_ty; } else |err| break :err err; } else |err| break :err err; }; switch (err) { error.GenericPoison => { // The type is not available until the generic instantiation. // We result the param instruction with a poison value and // insert an anytype parameter. try block.params.append(sema.arena, .{ .ty = .generic_poison_type, .is_comptime = comptime_syntax, .name = param_name, }); sema.inst_map.putAssumeCapacityNoClobber(inst, .generic_poison); return; }, else => |e| return e, } }; const is_comptime = sema.typeRequiresComptime(param_ty) catch |err| switch (err) { error.GenericPoison => { // The type is not available until the generic instantiation. // We result the param instruction with a poison value and // insert an anytype parameter. try block.params.append(sema.arena, .{ .ty = .generic_poison_type, .is_comptime = comptime_syntax, .name = param_name, }); sema.inst_map.putAssumeCapacityNoClobber(inst, .generic_poison); return; }, else => |e| return e, } or comptime_syntax; try block.params.append(sema.arena, .{ .ty = param_ty.toIntern(), .is_comptime = comptime_syntax, .name = param_name, }); if (is_comptime) { // If this is a comptime parameter we can add a constant generic_poison // since this is also a generic parameter. sema.inst_map.putAssumeCapacityNoClobber(inst, .generic_poison); } else { // Otherwise we need a dummy runtime instruction. const result_index: Air.Inst.Index = @intCast(sema.air_instructions.len); try sema.air_instructions.append(sema.gpa, .{ .tag = .alloc, .data = .{ .ty = param_ty }, }); sema.inst_map.putAssumeCapacityNoClobber(inst, Air.indexToRef(result_index)); } } fn zirParamAnytype( sema: *Sema, block: *Block, inst: Zir.Inst.Index, comptime_syntax: bool, ) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const param_name: Zir.NullTerminatedString = @enumFromInt(inst_data.start); // We are evaluating a generic function without any comptime args provided. try block.params.append(sema.arena, .{ .ty = .generic_poison_type, .is_comptime = comptime_syntax, .name = param_name, }); sema.inst_map.putAssumeCapacity(inst, .generic_poison); } fn zirAs(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const bin_inst = sema.code.instructions.items(.data)[inst].bin; return sema.analyzeAs(block, sema.src, bin_inst.lhs, bin_inst.rhs, false); } fn zirAsNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data; sema.src = src; return sema.analyzeAs(block, src, extra.dest_type, extra.operand, false); } fn zirAsShiftOperand(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.As, inst_data.payload_index).data; return sema.analyzeAs(block, src, extra.dest_type, extra.operand, true); } fn analyzeAs( sema: *Sema, block: *Block, src: LazySrcLoc, zir_dest_type: Zir.Inst.Ref, zir_operand: Zir.Inst.Ref, no_cast_to_comptime_int: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand = try sema.resolveInst(zir_operand); if (zir_dest_type == .var_args_param_type) return operand; const dest_ty = sema.resolveType(block, src, zir_dest_type) catch |err| switch (err) { error.GenericPoison => return operand, else => |e| return e, }; if (dest_ty.zigTypeTag(mod) == .NoReturn) { return sema.fail(block, src, "cannot cast to noreturn", .{}); } const is_ret = if (Zir.refToIndex(zir_dest_type)) |ptr_index| sema.code.instructions.items(.tag)[ptr_index] == .ret_type else false; return sema.coerceExtra(block, dest_ty, operand, src, .{ .is_ret = is_ret, .no_cast_to_comptime_int = no_cast_to_comptime_int }) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; } fn zirIntFromPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ptr = try sema.resolveInst(inst_data.operand); const ptr_ty = sema.typeOf(ptr); if (!ptr_ty.isPtrAtRuntime(mod)) { return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ty.fmt(mod)}); } if (try sema.resolveMaybeUndefValIntable(ptr)) |ptr_val| { return Air.internedToRef((try mod.intValue( Type.usize, (try ptr_val.getUnsignedIntAdvanced(mod, sema)).?, )).toIntern()); } try sema.requireRuntimeBlock(block, inst_data.src(), ptr_src); return block.addUnOp(.int_from_ptr, ptr); } fn zirFieldVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data; const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.field_name_start)); const object = try sema.resolveInst(extra.lhs); return sema.fieldVal(block, src, object, field_name, field_name_src); } fn zirFieldPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index, initializing: bool) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Field, inst_data.payload_index).data; const field_name = try mod.intern_pool.getOrPutString(sema.gpa, sema.code.nullTerminatedString(extra.field_name_start)); const object_ptr = try sema.resolveInst(extra.lhs); return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, initializing); } fn zirFieldValNamed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data; const object = try sema.resolveInst(extra.lhs); const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, "field name must be comptime-known"); return sema.fieldVal(block, src, object, field_name, field_name_src); } fn zirFieldPtrNamed(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const field_name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.FieldNamed, inst_data.payload_index).data; const object_ptr = try sema.resolveInst(extra.lhs); const field_name = try sema.resolveConstStringIntern(block, field_name_src, extra.field_name, "field name must be comptime-known"); return sema.fieldPtr(block, src, object_ptr, field_name, field_name_src, false); } fn zirIntCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intCast"); const operand = try sema.resolveInst(extra.rhs); return sema.intCast(block, inst_data.src(), dest_ty, src, operand, operand_src, true); } fn intCast( sema: *Sema, block: *Block, src: LazySrcLoc, dest_ty: Type, dest_ty_src: LazySrcLoc, operand: Air.Inst.Ref, operand_src: LazySrcLoc, runtime_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, dest_ty_src); const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src); if (try sema.isComptimeKnown(operand)) { return sema.coerce(block, dest_ty, operand, operand_src); } else if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeInt) { return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_int'", .{}); } try sema.checkVectorizableBinaryOperands(block, operand_src, dest_ty, operand_ty, dest_ty_src, operand_src); const is_vector = dest_ty.zigTypeTag(mod) == .Vector; if ((try sema.typeHasOnePossibleValue(dest_ty))) |opv| { // requirement: intCast(u0, input) iff input == 0 if (runtime_safety and block.wantSafety()) { try sema.requireRuntimeBlock(block, src, operand_src); const wanted_info = dest_scalar_ty.intInfo(mod); const wanted_bits = wanted_info.bits; if (wanted_bits == 0) { const ok = if (is_vector) ok: { const zeros = try sema.splat(operand_ty, try mod.intValue(operand_scalar_ty, 0)); const zero_inst = Air.internedToRef(zeros.toIntern()); const is_in_range = try block.addCmpVector(operand, zero_inst, .eq); const all_in_range = try block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = is_in_range, .operation = .And } }, }); break :ok all_in_range; } else ok: { const zero_inst = Air.internedToRef((try mod.intValue(operand_ty, 0)).toIntern()); const is_in_range = try block.addBinOp(.cmp_lte, operand, zero_inst); break :ok is_in_range; }; try sema.addSafetyCheck(block, src, ok, .cast_truncated_data); } } return Air.internedToRef(opv.toIntern()); } try sema.requireRuntimeBlock(block, src, operand_src); if (runtime_safety and block.wantSafety()) { const actual_info = operand_scalar_ty.intInfo(mod); const wanted_info = dest_scalar_ty.intInfo(mod); const actual_bits = actual_info.bits; const wanted_bits = wanted_info.bits; const actual_value_bits = actual_bits - @intFromBool(actual_info.signedness == .signed); const wanted_value_bits = wanted_bits - @intFromBool(wanted_info.signedness == .signed); // range shrinkage // requirement: int value fits into target type if (wanted_value_bits < actual_value_bits) { const dest_max_val_scalar = try dest_scalar_ty.maxIntScalar(mod, operand_scalar_ty); const dest_max_val = try sema.splat(operand_ty, dest_max_val_scalar); const dest_max = Air.internedToRef(dest_max_val.toIntern()); const diff = try block.addBinOp(.sub_wrap, dest_max, operand); if (actual_info.signedness == .signed) { // Reinterpret the sign-bit as part of the value. This will make // negative differences (`operand` > `dest_max`) appear too big. const unsigned_operand_ty = try mod.intType(.unsigned, actual_bits); const diff_unsigned = try block.addBitCast(unsigned_operand_ty, diff); // If the destination type is signed, then we need to double its // range to account for negative values. const dest_range_val = if (wanted_info.signedness == .signed) range_val: { const one = try mod.intValue(unsigned_operand_ty, 1); const range_minus_one = try dest_max_val.shl(one, unsigned_operand_ty, sema.arena, mod); break :range_val try sema.intAdd(range_minus_one, one, unsigned_operand_ty, undefined); } else try mod.getCoerced(dest_max_val, unsigned_operand_ty); const dest_range = Air.internedToRef(dest_range_val.toIntern()); const ok = if (is_vector) ok: { const is_in_range = try block.addCmpVector(diff_unsigned, dest_range, .lte); const all_in_range = try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = is_in_range, .operation = .And, } }, }); break :ok all_in_range; } else ok: { const is_in_range = try block.addBinOp(.cmp_lte, diff_unsigned, dest_range); break :ok is_in_range; }; // TODO negative_to_unsigned? try sema.addSafetyCheck(block, src, ok, .cast_truncated_data); } else { const ok = if (is_vector) ok: { const is_in_range = try block.addCmpVector(diff, dest_max, .lte); const all_in_range = try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = is_in_range, .operation = .And, } }, }); break :ok all_in_range; } else ok: { const is_in_range = try block.addBinOp(.cmp_lte, diff, dest_max); break :ok is_in_range; }; try sema.addSafetyCheck(block, src, ok, .cast_truncated_data); } } else if (actual_info.signedness == .signed and wanted_info.signedness == .unsigned) { // no shrinkage, yes sign loss // requirement: signed to unsigned >= 0 const ok = if (is_vector) ok: { const scalar_zero = try mod.intValue(operand_scalar_ty, 0); const zero_val = try sema.splat(operand_ty, scalar_zero); const zero_inst = Air.internedToRef(zero_val.toIntern()); const is_in_range = try block.addCmpVector(operand, zero_inst, .gte); const all_in_range = try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = is_in_range, .operation = .And, } }, }); break :ok all_in_range; } else ok: { const zero_inst = Air.internedToRef((try mod.intValue(operand_ty, 0)).toIntern()); const is_in_range = try block.addBinOp(.cmp_gte, operand, zero_inst); break :ok is_in_range; }; try sema.addSafetyCheck(block, src, ok, .negative_to_unsigned); } } return block.addTyOp(.intcast, dest_ty, operand); } fn zirBitcast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@bitCast"); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); switch (dest_ty.zigTypeTag(mod)) { .AnyFrame, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .ErrorSet, .ErrorUnion, .Fn, .Frame, .NoReturn, .Null, .Opaque, .Optional, .Type, .Undefined, .Void, => return sema.fail(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)}), .Enum => { const msg = msg: { const msg = try sema.errMsg(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); switch (operand_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => try sema.errNote(block, src, msg, "use @enumFromInt to cast from '{}'", .{operand_ty.fmt(mod)}), else => {}, } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Pointer => { const msg = msg: { const msg = try sema.errMsg(block, src, "cannot @bitCast to '{}'", .{dest_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); switch (operand_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => try sema.errNote(block, src, msg, "use @ptrFromInt to cast from '{}'", .{operand_ty.fmt(mod)}), .Pointer => try sema.errNote(block, src, msg, "use @ptrCast to cast from '{}'", .{operand_ty.fmt(mod)}), else => {}, } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Struct, .Union => if (dest_ty.containerLayout(mod) == .Auto) { const container = switch (dest_ty.zigTypeTag(mod)) { .Struct => "struct", .Union => "union", else => unreachable, }; return sema.fail(block, src, "cannot @bitCast to '{}'; {s} does not have a guaranteed in-memory layout", .{ dest_ty.fmt(mod), container, }); }, .Array, .Bool, .Float, .Int, .Vector, => {}, } switch (operand_ty.zigTypeTag(mod)) { .AnyFrame, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .ErrorSet, .ErrorUnion, .Fn, .Frame, .NoReturn, .Null, .Opaque, .Optional, .Type, .Undefined, .Void, => return sema.fail(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)}), .Enum => { const msg = msg: { const msg = try sema.errMsg(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); switch (dest_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => try sema.errNote(block, operand_src, msg, "use @intFromEnum to cast to '{}'", .{dest_ty.fmt(mod)}), else => {}, } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Pointer => { const msg = msg: { const msg = try sema.errMsg(block, operand_src, "cannot @bitCast from '{}'", .{operand_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); switch (dest_ty.zigTypeTag(mod)) { .Int, .ComptimeInt => try sema.errNote(block, operand_src, msg, "use @intFromPtr to cast to '{}'", .{dest_ty.fmt(mod)}), .Pointer => try sema.errNote(block, operand_src, msg, "use @ptrCast to cast to '{}'", .{dest_ty.fmt(mod)}), else => {}, } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Struct, .Union => if (operand_ty.containerLayout(mod) == .Auto) { const container = switch (operand_ty.zigTypeTag(mod)) { .Struct => "struct", .Union => "union", else => unreachable, }; return sema.fail(block, operand_src, "cannot @bitCast from '{}'; {s} does not have a guaranteed in-memory layout", .{ operand_ty.fmt(mod), container, }); }, .Array, .Bool, .Float, .Int, .Vector, => {}, } return sema.bitCast(block, dest_ty, operand, inst_data.src(), operand_src); } fn zirFloatCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatCast"); const operand = try sema.resolveInst(extra.rhs); const target = mod.getTarget(); const dest_is_comptime_float = switch (dest_ty.zigTypeTag(mod)) { .ComptimeFloat => true, .Float => false, else => return sema.fail( block, src, "expected float type, found '{}'", .{dest_ty.fmt(mod)}, ), }; const operand_ty = sema.typeOf(operand); switch (operand_ty.zigTypeTag(mod)) { .ComptimeFloat, .Float, .ComptimeInt => {}, else => return sema.fail( block, operand_src, "expected float type, found '{}'", .{operand_ty.fmt(mod)}, ), } if (try sema.resolveMaybeUndefVal(operand)) |operand_val| { return Air.internedToRef((try operand_val.floatCast(dest_ty, mod)).toIntern()); } if (dest_is_comptime_float) { return sema.fail(block, operand_src, "unable to cast runtime value to 'comptime_float'", .{}); } const src_bits = operand_ty.floatBits(target); const dst_bits = dest_ty.floatBits(target); if (dst_bits >= src_bits) { return sema.coerce(block, dest_ty, operand, operand_src); } try sema.requireRuntimeBlock(block, inst_data.src(), operand_src); return block.addTyOp(.fptrunc, dest_ty, operand); } fn zirElemVal(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const array = try sema.resolveInst(extra.lhs); const elem_index = try sema.resolveInst(extra.rhs); return sema.elemVal(block, src, array, elem_index, src, false); } fn zirElemValNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const array = try sema.resolveInst(extra.lhs); const elem_index = try sema.resolveInst(extra.rhs); return sema.elemVal(block, src, array, elem_index, elem_index_src, true); } fn zirElemPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const elem_index = try sema.resolveInst(extra.rhs); const indexable_ty = sema.typeOf(array_ptr); if (indexable_ty.zigTypeTag(mod) != .Pointer) { const capture_src: LazySrcLoc = .{ .for_capture_from_input = inst_data.src_node }; const msg = msg: { const msg = try sema.errMsg(block, capture_src, "pointer capture of non pointer type '{}'", .{ indexable_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); if (indexable_ty.isIndexable(mod)) { try sema.errNote(block, src, msg, "consider using '&' here", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return sema.elemPtrOneLayerOnly(block, src, array_ptr, elem_index, src, false, false); } fn zirElemPtrNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const elem_index_src: LazySrcLoc = .{ .node_offset_array_access_index = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const elem_index = try sema.resolveInst(extra.rhs); return sema.elemPtr(block, src, array_ptr, elem_index, elem_index_src, false, true); } fn zirElemPtrImm(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.ElemPtrImm, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.ptr); const elem_index = try sema.mod.intRef(Type.usize, extra.index); return sema.elemPtr(block, src, array_ptr, elem_index, src, true, true); } fn zirSliceStart(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.SliceStart, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const start = try sema.resolveInst(extra.start); const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node }; const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node }; const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node }; return sema.analyzeSlice(block, src, array_ptr, start, .none, .none, .unneeded, ptr_src, start_src, end_src, false); } fn zirSliceEnd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.SliceEnd, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const start = try sema.resolveInst(extra.start); const end = try sema.resolveInst(extra.end); const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node }; const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node }; const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node }; return sema.analyzeSlice(block, src, array_ptr, start, end, .none, .unneeded, ptr_src, start_src, end_src, false); } fn zirSliceSentinel(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const sentinel_src: LazySrcLoc = .{ .node_offset_slice_sentinel = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.SliceSentinel, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const start = try sema.resolveInst(extra.start); const end: Air.Inst.Ref = if (extra.end == .none) .none else try sema.resolveInst(extra.end); const sentinel = try sema.resolveInst(extra.sentinel); const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node }; const start_src: LazySrcLoc = .{ .node_offset_slice_start = inst_data.src_node }; const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node }; return sema.analyzeSlice(block, src, array_ptr, start, end, sentinel, sentinel_src, ptr_src, start_src, end_src, false); } fn zirSliceLength(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.SliceLength, inst_data.payload_index).data; const array_ptr = try sema.resolveInst(extra.lhs); const start = try sema.resolveInst(extra.start); const len = try sema.resolveInst(extra.len); const sentinel = if (extra.sentinel == .none) .none else try sema.resolveInst(extra.sentinel); const ptr_src: LazySrcLoc = .{ .node_offset_slice_ptr = inst_data.src_node }; const start_src: LazySrcLoc = .{ .node_offset_slice_start = extra.start_src_node_offset }; const end_src: LazySrcLoc = .{ .node_offset_slice_end = inst_data.src_node }; const sentinel_src: LazySrcLoc = if (sentinel == .none) .unneeded else .{ .node_offset_slice_sentinel = inst_data.src_node }; return sema.analyzeSlice(block, src, array_ptr, start, len, sentinel, sentinel_src, ptr_src, start_src, end_src, true); } /// Holds common data used when analyzing or resolving switch prong bodies, /// including setting up captures. const SwitchProngAnalysis = struct { sema: *Sema, /// The block containing the `switch_block` itself. parent_block: *Block, /// The raw switch operand value (*not* the condition). Always defined. operand: Air.Inst.Ref, /// May be `undefined` if no prong has a by-ref capture. operand_ptr: Air.Inst.Ref, /// The switch condition value. For unions, `operand` is the union and `cond` is its tag. cond: Air.Inst.Ref, /// If this switch is on an error set, this is the type to assign to the /// `else` prong. If `null`, the prong should be unreachable. else_error_ty: ?Type, /// The index of the `switch_block` instruction itself. switch_block_inst: Zir.Inst.Index, /// The dummy index into which inline tag captures should be placed. May be /// undefined if no prong has a tag capture. tag_capture_inst: Zir.Inst.Index, /// Resolve a switch prong which is determined at comptime to have no peers. /// Uses `resolveBlockBody`. Sets up captures as needed. fn resolveProngComptime( spa: SwitchProngAnalysis, child_block: *Block, prong_type: enum { normal, special }, prong_body: []const Zir.Inst.Index, capture: Zir.Inst.SwitchBlock.ProngInfo.Capture, /// Must use the `scalar_capture`, `special_capture`, or `multi_capture` union field. raw_capture_src: Module.SwitchProngSrc, /// The set of all values which can reach this prong. May be undefined /// if the prong is special or contains ranges. case_vals: []const Air.Inst.Ref, /// The inline capture of this prong. If this is not an inline prong, /// this is `.none`. inline_case_capture: Air.Inst.Ref, /// Whether this prong has an inline tag capture. If `true`, then /// `inline_case_capture` cannot be `.none`. has_tag_capture: bool, merges: *Block.Merges, ) CompileError!Air.Inst.Ref { const sema = spa.sema; const src = sema.code.instructions.items(.data)[spa.switch_block_inst].pl_node.src(); if (has_tag_capture) { const tag_ref = try spa.analyzeTagCapture(child_block, raw_capture_src, inline_case_capture); sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref); } defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst)); switch (capture) { .none => { return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges); }, .by_val, .by_ref => { const capture_ref = try spa.analyzeCapture( child_block, capture == .by_ref, prong_type == .special, raw_capture_src, case_vals, inline_case_capture, ); if (sema.typeOf(capture_ref).isNoReturn(sema.mod)) { // This prong should be unreachable! return Air.Inst.Ref.unreachable_value; } sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref); defer assert(sema.inst_map.remove(spa.switch_block_inst)); return sema.resolveBlockBody(spa.parent_block, src, child_block, prong_body, spa.switch_block_inst, merges); }, } } /// Analyze a switch prong which may have peers at runtime. /// Uses `analyzeBodyRuntimeBreak`. Sets up captures as needed. fn analyzeProngRuntime( spa: SwitchProngAnalysis, case_block: *Block, prong_type: enum { normal, special }, prong_body: []const Zir.Inst.Index, capture: Zir.Inst.SwitchBlock.ProngInfo.Capture, /// Must use the `scalar`, `special`, or `multi_capture` union field. raw_capture_src: Module.SwitchProngSrc, /// The set of all values which can reach this prong. May be undefined /// if the prong is special or contains ranges. case_vals: []const Air.Inst.Ref, /// The inline capture of this prong. If this is not an inline prong, /// this is `.none`. inline_case_capture: Air.Inst.Ref, /// Whether this prong has an inline tag capture. If `true`, then /// `inline_case_capture` cannot be `.none`. has_tag_capture: bool, ) CompileError!void { const sema = spa.sema; if (has_tag_capture) { const tag_ref = try spa.analyzeTagCapture(case_block, raw_capture_src, inline_case_capture); sema.inst_map.putAssumeCapacity(spa.tag_capture_inst, tag_ref); } defer if (has_tag_capture) assert(sema.inst_map.remove(spa.tag_capture_inst)); switch (capture) { .none => { return sema.analyzeBodyRuntimeBreak(case_block, prong_body); }, .by_val, .by_ref => { const capture_ref = try spa.analyzeCapture( case_block, capture == .by_ref, prong_type == .special, raw_capture_src, case_vals, inline_case_capture, ); if (sema.typeOf(capture_ref).isNoReturn(sema.mod)) { // No need to analyze any further, the prong is unreachable return; } sema.inst_map.putAssumeCapacity(spa.switch_block_inst, capture_ref); defer assert(sema.inst_map.remove(spa.switch_block_inst)); return sema.analyzeBodyRuntimeBreak(case_block, prong_body); }, } } fn analyzeTagCapture( spa: SwitchProngAnalysis, block: *Block, raw_capture_src: Module.SwitchProngSrc, inline_case_capture: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const sema = spa.sema; const mod = sema.mod; const operand_ty = sema.typeOf(spa.operand); if (operand_ty.zigTypeTag(mod) != .Union) { const zir_datas = sema.code.instructions.items(.data); const switch_node_offset = zir_datas[spa.switch_block_inst].pl_node.src_node; const raw_tag_capture_src: Module.SwitchProngSrc = switch (raw_capture_src) { .scalar_capture => |i| .{ .scalar_tag_capture = i }, .multi_capture => |i| .{ .multi_tag_capture = i }, .special_capture => .special_tag_capture, else => unreachable, }; const capture_src = raw_tag_capture_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, .none); const msg = msg: { const msg = try sema.errMsg(block, capture_src, "cannot capture tag of non-union type '{}'", .{ operand_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, operand_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } assert(inline_case_capture != .none); return inline_case_capture; } fn analyzeCapture( spa: SwitchProngAnalysis, block: *Block, capture_byref: bool, is_special_prong: bool, raw_capture_src: Module.SwitchProngSrc, case_vals: []const Air.Inst.Ref, inline_case_capture: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const sema = spa.sema; const mod = sema.mod; const zir_datas = sema.code.instructions.items(.data); const switch_node_offset = zir_datas[spa.switch_block_inst].pl_node.src_node; const operand_ty = sema.typeOf(spa.operand); const operand_ptr_ty = if (capture_byref) sema.typeOf(spa.operand_ptr) else undefined; const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = switch_node_offset }; if (inline_case_capture != .none) { const item_val = sema.resolveConstValue(block, .unneeded, inline_case_capture, "") catch unreachable; if (operand_ty.zigTypeTag(mod) == .Union) { const field_index = @as(u32, @intCast(operand_ty.unionTagFieldIndex(item_val, mod).?)); const union_obj = mod.typeToUnion(operand_ty).?; const field_ty = union_obj.fields.values()[field_index].ty; if (capture_byref) { const ptr_field_ty = try mod.ptrType(.{ .child = field_ty.toIntern(), .flags = .{ .is_const = !operand_ptr_ty.ptrIsMutable(mod), .is_volatile = operand_ptr_ty.isVolatilePtr(mod), .address_space = operand_ptr_ty.ptrAddressSpace(mod), }, }); if (try sema.resolveDefinedValue(block, sema.src, spa.operand_ptr)) |union_ptr| { return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .field = .{ .base = union_ptr.toIntern(), .index = field_index, } }, } }))); } return block.addStructFieldPtr(spa.operand_ptr, field_index, ptr_field_ty); } else { if (try sema.resolveDefinedValue(block, sema.src, spa.operand)) |union_val| { const tag_and_val = mod.intern_pool.indexToKey(union_val.toIntern()).un; return Air.internedToRef(tag_and_val.val); } return block.addStructFieldVal(spa.operand, field_index, field_ty); } } else if (capture_byref) { return sema.addConstantMaybeRef(block, operand_ty, item_val, true); } else { return inline_case_capture; } } if (is_special_prong) { if (capture_byref) { return spa.operand_ptr; } switch (operand_ty.zigTypeTag(mod)) { .ErrorSet => if (spa.else_error_ty) |ty| { return sema.bitCast(block, ty, spa.operand, operand_src, null); } else { try block.addUnreachable(operand_src, false); return Air.Inst.Ref.unreachable_value; }, else => return spa.operand, } } switch (operand_ty.zigTypeTag(mod)) { .Union => { const union_obj = mod.typeToUnion(operand_ty).?; const first_item_val = sema.resolveConstValue(block, .unneeded, case_vals[0], "") catch unreachable; const first_field_index = @as(u32, @intCast(operand_ty.unionTagFieldIndex(first_item_val, mod).?)); const first_field = union_obj.fields.values()[first_field_index]; const field_tys = try sema.arena.alloc(Type, case_vals.len); for (case_vals, field_tys) |item, *field_ty| { const item_val = sema.resolveConstValue(block, .unneeded, item, "") catch unreachable; const field_idx = @as(u32, @intCast(operand_ty.unionTagFieldIndex(item_val, sema.mod).?)); field_ty.* = union_obj.fields.values()[field_idx].ty; } // Fast path: if all the operands are the same type already, we don't need to hit // PTR! This will also allow us to emit simpler code. const same_types = for (field_tys[1..]) |field_ty| { if (!field_ty.eql(field_tys[0], sema.mod)) break false; } else true; const capture_ty = if (same_types) field_tys[0] else capture_ty: { // We need values to run PTR on, so make a bunch of undef constants. const dummy_captures = try sema.arena.alloc(Air.Inst.Ref, case_vals.len); for (dummy_captures, field_tys) |*dummy, field_ty| { dummy.* = try mod.undefRef(field_ty); } const case_srcs = try sema.arena.alloc(?LazySrcLoc, case_vals.len); @memset(case_srcs, .unneeded); break :capture_ty sema.resolvePeerTypes(block, .unneeded, dummy_captures, .{ .override = case_srcs }) catch |err| switch (err) { error.NeededSourceLocation => { // This must be a multi-prong so this must be a `multi_capture` src const multi_idx = raw_capture_src.multi_capture; const src_decl_ptr = sema.mod.declPtr(block.src_decl); for (case_srcs, 0..) |*case_src, i| { const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @as(u32, @intCast(i)) } }; case_src.* = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none); } const capture_src = raw_capture_src.resolve(mod, src_decl_ptr, switch_node_offset, .none); _ = sema.resolvePeerTypes(block, capture_src, dummy_captures, .{ .override = case_srcs }) catch |err1| switch (err1) { error.AnalysisFail => { const msg = sema.err orelse return error.AnalysisFail; try sema.reparentOwnedErrorMsg(block, capture_src, msg, "capture group with incompatible types", .{}); return error.AnalysisFail; }, else => |e| return e, }; unreachable; }, else => |e| return e, }; }; // By-reference captures have some further restrictions which make them easier to emit if (capture_byref) { const operand_ptr_info = operand_ptr_ty.ptrInfo(mod); const capture_ptr_ty = try mod.ptrType(.{ .child = capture_ty.toIntern(), .flags = .{ // TODO: alignment! .is_const = operand_ptr_info.flags.is_const, .is_volatile = operand_ptr_info.flags.is_volatile, .address_space = operand_ptr_info.flags.address_space, }, }); // By-ref captures of hetereogeneous types are only allowed if each field // pointer type is in-memory coercible to the capture pointer type. if (!same_types) { for (field_tys, 0..) |field_ty, i| { const field_ptr_ty = try mod.ptrType(.{ .child = field_ty.toIntern(), .flags = .{ // TODO: alignment! .is_const = operand_ptr_info.flags.is_const, .is_volatile = operand_ptr_info.flags.is_volatile, .address_space = operand_ptr_info.flags.address_space, }, }); if (.ok != try sema.coerceInMemoryAllowed(block, capture_ptr_ty, field_ptr_ty, false, sema.mod.getTarget(), .unneeded, .unneeded)) { const multi_idx = raw_capture_src.multi_capture; const src_decl_ptr = sema.mod.declPtr(block.src_decl); const capture_src = raw_capture_src.resolve(mod, src_decl_ptr, switch_node_offset, .none); const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @as(u32, @intCast(i)) } }; const case_src = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none); const msg = msg: { const msg = try sema.errMsg(block, capture_src, "capture group with incompatible types", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, case_src, msg, "pointer type child '{}' cannot cast into resolved pointer type child '{}'", .{ field_ty.fmt(sema.mod), capture_ty.fmt(sema.mod), }); try sema.errNote(block, capture_src, msg, "this coercion is only possible when capturing by value", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } } if (try sema.resolveDefinedValue(block, operand_src, spa.operand_ptr)) |op_ptr_val| { if (op_ptr_val.isUndef(mod)) return mod.undefRef(capture_ptr_ty); return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = capture_ptr_ty.toIntern(), .addr = .{ .field = .{ .base = op_ptr_val.toIntern(), .index = first_field_index, } }, } }))); } try sema.requireRuntimeBlock(block, operand_src, null); return block.addStructFieldPtr(spa.operand_ptr, first_field_index, capture_ptr_ty); } if (try sema.resolveDefinedValue(block, operand_src, spa.operand)) |operand_val| { if (operand_val.isUndef(mod)) return mod.undefRef(capture_ty); const union_val = mod.intern_pool.indexToKey(operand_val.toIntern()).un; if (union_val.tag.toValue().isUndef(mod)) return mod.undefRef(capture_ty); const uncoerced = Air.internedToRef(union_val.val); return sema.coerce(block, capture_ty, uncoerced, operand_src); } try sema.requireRuntimeBlock(block, operand_src, null); if (same_types) { return block.addStructFieldVal(spa.operand, first_field_index, capture_ty); } // We may have to emit a switch block which coerces the operand to the capture type. // If we can, try to avoid that using in-memory coercions. const first_non_imc = in_mem: { for (field_tys, 0..) |field_ty, i| { if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, sema.mod.getTarget(), .unneeded, .unneeded)) { break :in_mem i; } } // All fields are in-memory coercible to the resolved type! // Just take the first field and bitcast the result. const uncoerced = try block.addStructFieldVal(spa.operand, first_field_index, first_field.ty); return block.addBitCast(capture_ty, uncoerced); }; // By-val capture with heterogeneous types which are not all in-memory coercible to // the resolved capture type. We finally have to fall back to the ugly method. // However, let's first track which operands are in-memory coercible. There may well // be several, and we can squash all of these cases into the same switch prong using // a simple bitcast. We'll make this the 'else' prong. var in_mem_coercible = try std.DynamicBitSet.initFull(sema.arena, field_tys.len); in_mem_coercible.unset(first_non_imc); { const next = first_non_imc + 1; for (field_tys[next..], next..) |field_ty, i| { if (.ok != try sema.coerceInMemoryAllowed(block, capture_ty, field_ty, false, sema.mod.getTarget(), .unneeded, .unneeded)) { in_mem_coercible.unset(i); } } } const capture_block_inst = try block.addInstAsIndex(.{ .tag = .block, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(capture_ty.toIntern()), .payload = undefined, // updated below }, }, }); const prong_count = field_tys.len - in_mem_coercible.count(); const estimated_extra = prong_count * 6; // 2 for Case, 1 item, probably 3 insts var cases_extra = try std.ArrayList(u32).initCapacity(sema.gpa, estimated_extra); defer cases_extra.deinit(); { // Non-bitcast cases var it = in_mem_coercible.iterator(.{ .kind = .unset }); while (it.next()) |idx| { var coerce_block = block.makeSubBlock(); defer coerce_block.instructions.deinit(sema.gpa); const uncoerced = try coerce_block.addStructFieldVal(spa.operand, @as(u32, @intCast(idx)), field_tys[idx]); const coerced = sema.coerce(&coerce_block, capture_ty, uncoerced, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const multi_idx = raw_capture_src.multi_capture; const src_decl_ptr = sema.mod.declPtr(block.src_decl); const raw_case_src: Module.SwitchProngSrc = .{ .multi = .{ .prong = multi_idx, .item = @as(u32, @intCast(idx)) } }; const case_src = raw_case_src.resolve(mod, src_decl_ptr, switch_node_offset, .none); _ = try sema.coerce(&coerce_block, capture_ty, uncoerced, case_src); unreachable; }, else => |e| return e, }; _ = try coerce_block.addBr(capture_block_inst, coerced); try cases_extra.ensureUnusedCapacity(3 + coerce_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(coerce_block.instructions.items.len))); // body_len cases_extra.appendAssumeCapacity(@intFromEnum(case_vals[idx])); // item cases_extra.appendSliceAssumeCapacity(coerce_block.instructions.items); // body } } const else_body_len = len: { // 'else' prong uses a bitcast var coerce_block = block.makeSubBlock(); defer coerce_block.instructions.deinit(sema.gpa); const first_imc = in_mem_coercible.findFirstSet().?; const uncoerced = try coerce_block.addStructFieldVal(spa.operand, @as(u32, @intCast(first_imc)), field_tys[first_imc]); const coerced = try coerce_block.addBitCast(capture_ty, uncoerced); _ = try coerce_block.addBr(capture_block_inst, coerced); try cases_extra.appendSlice(coerce_block.instructions.items); break :len coerce_block.instructions.items.len; }; try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.SwitchBr).Struct.fields.len + cases_extra.items.len + @typeInfo(Air.Block).Struct.fields.len + 1); const switch_br_inst = @as(u32, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(sema.gpa, .{ .tag = .switch_br, .data = .{ .pl_op = .{ .operand = spa.cond, .payload = sema.addExtraAssumeCapacity(Air.SwitchBr{ .cases_len = @as(u32, @intCast(prong_count)), .else_body_len = @as(u32, @intCast(else_body_len)), }), } }, }); sema.air_extra.appendSliceAssumeCapacity(cases_extra.items); // Set up block body sema.air_instructions.items(.data)[capture_block_inst].ty_pl.payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = 1, }); sema.air_extra.appendAssumeCapacity(switch_br_inst); return Air.indexToRef(capture_block_inst); }, .ErrorSet => { if (capture_byref) { const capture_src = raw_capture_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, .none); return sema.fail( block, capture_src, "error set cannot be captured by reference", .{}, ); } if (case_vals.len == 1) { const item_val = sema.resolveConstValue(block, .unneeded, case_vals[0], "") catch unreachable; const item_ty = try mod.singleErrorSetType(item_val.getErrorName(mod).unwrap().?); return sema.bitCast(block, item_ty, spa.operand, operand_src, null); } var names: InferredErrorSet.NameMap = .{}; try names.ensureUnusedCapacity(sema.arena, case_vals.len); for (case_vals) |err| { const err_val = sema.resolveConstValue(block, .unneeded, err, "") catch unreachable; names.putAssumeCapacityNoClobber(err_val.getErrorName(mod).unwrap().?, {}); } const error_ty = try mod.errorSetFromUnsortedNames(names.keys()); return sema.bitCast(block, error_ty, spa.operand, operand_src, null); }, else => { // In this case the capture value is just the passed-through value // of the switch condition. if (capture_byref) { return spa.operand_ptr; } else { return spa.operand; } }, } } }; fn switchCond( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); switch (operand_ty.zigTypeTag(mod)) { .Type, .Void, .Bool, .Int, .Float, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Pointer, .Fn, .ErrorSet, .Enum, => { if (operand_ty.isSlice(mod)) { return sema.fail(block, src, "switch on type '{}'", .{operand_ty.fmt(mod)}); } if ((try sema.typeHasOnePossibleValue(operand_ty))) |opv| { return Air.internedToRef(opv.toIntern()); } return operand; }, .Union => { try sema.resolveTypeFields(operand_ty); const enum_ty = operand_ty.unionTagType(mod) orelse { const msg = msg: { const msg = try sema.errMsg(block, src, "switch on union with no attached enum", .{}); errdefer msg.destroy(sema.gpa); if (operand_ty.declSrcLocOrNull(mod)) |union_src| { try mod.errNoteNonLazy(union_src, msg, "consider 'union(enum)' here", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; return sema.unionToTag(block, enum_ty, operand, src); }, .ErrorUnion, .NoReturn, .Array, .Struct, .Undefined, .Null, .Optional, .Opaque, .Vector, .Frame, .AnyFrame, => return sema.fail(block, src, "switch on type '{}'", .{operand_ty.fmt(mod)}), } } const SwitchErrorSet = std.AutoHashMap(InternPool.NullTerminatedString, Module.SwitchProngSrc); fn zirSwitchBlock(sema: *Sema, block: *Block, inst: Zir.Inst.Index, operand_is_ref: bool) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const src_node_offset = inst_data.src_node; const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset }; const special_prong_src: LazySrcLoc = .{ .node_offset_switch_special_prong = src_node_offset }; const extra = sema.code.extraData(Zir.Inst.SwitchBlock, inst_data.payload_index); const raw_operand: struct { val: Air.Inst.Ref, ptr: Air.Inst.Ref } = blk: { const maybe_ptr = try sema.resolveInst(extra.data.operand); if (operand_is_ref) { const val = try sema.analyzeLoad(block, src, maybe_ptr, operand_src); break :blk .{ .val = val, .ptr = maybe_ptr }; } else { break :blk .{ .val = maybe_ptr, .ptr = undefined }; } }; const operand = try sema.switchCond(block, operand_src, raw_operand.val); // AstGen guarantees that the instruction immediately preceding // switch_block(_ref) is a dbg_stmt const cond_dbg_node_index = inst - 1; var header_extra_index: usize = extra.end; const scalar_cases_len = extra.data.bits.scalar_cases_len; const multi_cases_len = if (extra.data.bits.has_multi_cases) blk: { const multi_cases_len = sema.code.extra[header_extra_index]; header_extra_index += 1; break :blk multi_cases_len; } else 0; const tag_capture_inst: Zir.Inst.Index = if (extra.data.bits.any_has_tag_capture) blk: { const tag_capture_inst = sema.code.extra[header_extra_index]; header_extra_index += 1; // SwitchProngAnalysis wants inst_map to have space for the tag capture. // Note that the normal capture is referred to via the switch block // index, which there is already necessarily space for. try sema.inst_map.ensureSpaceForInstructions(gpa, &.{tag_capture_inst}); break :blk tag_capture_inst; } else undefined; var case_vals = try std.ArrayListUnmanaged(Air.Inst.Ref).initCapacity(gpa, scalar_cases_len + 2 * multi_cases_len); defer case_vals.deinit(gpa); const Special = struct { body: []const Zir.Inst.Index, end: usize, capture: Zir.Inst.SwitchBlock.ProngInfo.Capture, is_inline: bool, has_tag_capture: bool, }; const special_prong = extra.data.bits.specialProng(); const special: Special = switch (special_prong) { .none => .{ .body = &.{}, .end = header_extra_index, .capture = .none, .is_inline = false, .has_tag_capture = false, }, .under, .@"else" => blk: { const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[header_extra_index])); const extra_body_start = header_extra_index + 1; break :blk .{ .body = sema.code.extra[extra_body_start..][0..info.body_len], .end = extra_body_start + info.body_len, .capture = info.capture, .is_inline = info.is_inline, .has_tag_capture = info.has_tag_capture, }; }, }; const maybe_union_ty = sema.typeOf(raw_operand.val); const union_originally = maybe_union_ty.zigTypeTag(mod) == .Union; // Duplicate checking variables later also used for `inline else`. var seen_enum_fields: []?Module.SwitchProngSrc = &.{}; var seen_errors = SwitchErrorSet.init(gpa); var range_set = RangeSet.init(gpa, mod); var true_count: u8 = 0; var false_count: u8 = 0; defer { range_set.deinit(); gpa.free(seen_enum_fields); seen_errors.deinit(); } var empty_enum = false; const operand_ty = sema.typeOf(operand); const err_set = operand_ty.zigTypeTag(mod) == .ErrorSet; var else_error_ty: ?Type = null; // Validate usage of '_' prongs. if (special_prong == .under and (!operand_ty.isNonexhaustiveEnum(mod) or union_originally)) { const msg = msg: { const msg = try sema.errMsg( block, src, "'_' prong only allowed when switching on non-exhaustive enums", .{}, ); errdefer msg.destroy(gpa); try sema.errNote( block, special_prong_src, msg, "'_' prong here", .{}, ); try sema.errNote( block, src, msg, "consider using 'else'", .{}, ); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } // Validate for duplicate items, missing else prong, and invalid range. switch (operand_ty.zigTypeTag(mod)) { .Union => unreachable, // handled in zirSwitchCond .Enum => { seen_enum_fields = try gpa.alloc(?Module.SwitchProngSrc, operand_ty.enumFieldCount(mod)); empty_enum = seen_enum_fields.len == 0 and !operand_ty.isNonexhaustiveEnum(mod); @memset(seen_enum_fields, null); // `range_set` is used for non-exhaustive enum values that do not correspond to any tags. var extra_index: usize = special.end; { var scalar_i: u32 = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { const item_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + info.body_len; case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum( block, seen_enum_fields, &range_set, item_ref, operand_ty, src_node_offset, .{ .scalar = scalar_i }, )); } } { var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const items = sema.code.refSlice(extra_index, items_len); extra_index += items_len + info.body_len; try case_vals.ensureUnusedCapacity(gpa, items.len); for (items, 0..) |item_ref, item_i| { case_vals.appendAssumeCapacity(try sema.validateSwitchItemEnum( block, seen_enum_fields, &range_set, item_ref, operand_ty, src_node_offset, .{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }, )); } try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset); } } const all_tags_handled = for (seen_enum_fields) |seen_src| { if (seen_src == null) break false; } else true; if (special_prong == .@"else") { if (all_tags_handled and !operand_ty.isNonexhaustiveEnum(mod)) return sema.fail( block, special_prong_src, "unreachable else prong; all cases already handled", .{}, ); } else if (!all_tags_handled) { const msg = msg: { const msg = try sema.errMsg( block, src, "switch must handle all possibilities", .{}, ); errdefer msg.destroy(sema.gpa); for (seen_enum_fields, 0..) |seen_src, i| { if (seen_src != null) continue; const field_name = operand_ty.enumFieldName(i, mod); try sema.addFieldErrNote( operand_ty, i, msg, "unhandled enumeration value: '{}'", .{field_name.fmt(&mod.intern_pool)}, ); } try mod.errNoteNonLazy( operand_ty.declSrcLoc(mod), msg, "enum '{}' declared here", .{operand_ty.fmt(mod)}, ); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (special_prong == .none and operand_ty.isNonexhaustiveEnum(mod) and !union_originally) { return sema.fail( block, src, "switch on non-exhaustive enum must include 'else' or '_' prong", .{}, ); } }, .ErrorSet => { var extra_index: usize = special.end; { var scalar_i: u32 = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { const item_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + info.body_len; case_vals.appendAssumeCapacity(try sema.validateSwitchItemError( block, &seen_errors, item_ref, operand_ty, src_node_offset, .{ .scalar = scalar_i }, )); } } { var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const items = sema.code.refSlice(extra_index, items_len); extra_index += items_len + info.body_len; try case_vals.ensureUnusedCapacity(gpa, items.len); for (items, 0..) |item_ref, item_i| { case_vals.appendAssumeCapacity(try sema.validateSwitchItemError( block, &seen_errors, item_ref, operand_ty, src_node_offset, .{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }, )); } try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset); } } switch (try sema.resolveInferredErrorSetTy(block, src, operand_ty.toIntern())) { .anyerror_type => { if (special_prong != .@"else") { return sema.fail( block, src, "else prong required when switching on type 'anyerror'", .{}, ); } else_error_ty = Type.anyerror; }, else => |err_set_ty_index| else_validation: { const error_names = ip.indexToKey(err_set_ty_index).error_set_type.names; var maybe_msg: ?*Module.ErrorMsg = null; errdefer if (maybe_msg) |msg| msg.destroy(sema.gpa); for (error_names.get(ip)) |error_name| { if (!seen_errors.contains(error_name) and special_prong != .@"else") { const msg = maybe_msg orelse blk: { maybe_msg = try sema.errMsg( block, src, "switch must handle all possibilities", .{}, ); break :blk maybe_msg.?; }; try sema.errNote( block, src, msg, "unhandled error value: 'error.{}'", .{error_name.fmt(ip)}, ); } } if (maybe_msg) |msg| { maybe_msg = null; try sema.addDeclaredHereNote(msg, operand_ty); return sema.failWithOwnedErrorMsg(msg); } if (special_prong == .@"else" and seen_errors.count() == error_names.len) { // In order to enable common patterns for generic code allow simple else bodies // else => unreachable, // else => return, // else => |e| return e, // even if all the possible errors were already handled. const tags = sema.code.instructions.items(.tag); for (special.body) |else_inst| switch (tags[else_inst]) { .dbg_block_begin, .dbg_block_end, .dbg_stmt, .dbg_var_val, .ret_type, .as_node, .ret_node, .@"unreachable", .@"defer", .defer_err_code, .err_union_code, .ret_err_value_code, .restore_err_ret_index, .is_non_err, .ret_is_non_err, .condbr, => {}, else => break, } else break :else_validation; return sema.fail( block, special_prong_src, "unreachable else prong; all cases already handled", .{}, ); } var names: InferredErrorSet.NameMap = .{}; try names.ensureUnusedCapacity(sema.arena, error_names.len); for (error_names.get(ip)) |error_name| { if (seen_errors.contains(error_name)) continue; names.putAssumeCapacityNoClobber(error_name, {}); } // No need to keep the hash map metadata correct; here we // extract the (sorted) keys only. else_error_ty = try mod.errorSetFromUnsortedNames(names.keys()); }, } }, .Int, .ComptimeInt => { var extra_index: usize = special.end; { var scalar_i: u32 = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { const item_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + info.body_len; case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt( block, &range_set, item_ref, operand_ty, src_node_offset, .{ .scalar = scalar_i }, )); } } { var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const items = sema.code.refSlice(extra_index, items_len); extra_index += items_len; try case_vals.ensureUnusedCapacity(gpa, items.len); for (items, 0..) |item_ref, item_i| { case_vals.appendAssumeCapacity(try sema.validateSwitchItemInt( block, &range_set, item_ref, operand_ty, src_node_offset, .{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }, )); } try case_vals.ensureUnusedCapacity(gpa, 2 * ranges_len); var range_i: u32 = 0; while (range_i < ranges_len) : (range_i += 1) { const item_first = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const item_last = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const vals = try sema.validateSwitchRange( block, &range_set, item_first, item_last, operand_ty, src_node_offset, .{ .range = .{ .prong = multi_i, .item = range_i } }, ); case_vals.appendAssumeCapacity(vals[0]); case_vals.appendAssumeCapacity(vals[1]); } extra_index += info.body_len; } } check_range: { if (operand_ty.zigTypeTag(mod) == .Int) { const min_int = try operand_ty.minInt(mod, operand_ty); const max_int = try operand_ty.maxInt(mod, operand_ty); if (try range_set.spans(min_int.toIntern(), max_int.toIntern())) { if (special_prong == .@"else") { return sema.fail( block, special_prong_src, "unreachable else prong; all cases already handled", .{}, ); } break :check_range; } } if (special_prong != .@"else") { return sema.fail( block, src, "switch must handle all possibilities", .{}, ); } } }, .Bool => { var extra_index: usize = special.end; { var scalar_i: u32 = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { const item_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + info.body_len; case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool( block, &true_count, &false_count, item_ref, src_node_offset, .{ .scalar = scalar_i }, )); } } { var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const items = sema.code.refSlice(extra_index, items_len); extra_index += items_len + info.body_len; try case_vals.ensureUnusedCapacity(gpa, items.len); for (items, 0..) |item_ref, item_i| { case_vals.appendAssumeCapacity(try sema.validateSwitchItemBool( block, &true_count, &false_count, item_ref, src_node_offset, .{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }, )); } try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset); } } switch (special_prong) { .@"else" => { if (true_count + false_count == 2) { return sema.fail( block, special_prong_src, "unreachable else prong; all cases already handled", .{}, ); } }, .under, .none => { if (true_count + false_count < 2) { return sema.fail( block, src, "switch must handle all possibilities", .{}, ); } }, } }, .EnumLiteral, .Void, .Fn, .Pointer, .Type => { if (special_prong != .@"else") { return sema.fail( block, src, "else prong required when switching on type '{}'", .{operand_ty.fmt(mod)}, ); } var seen_values = ValueSrcMap{}; defer seen_values.deinit(gpa); var extra_index: usize = special.end; { var scalar_i: u32 = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { const item_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; extra_index += info.body_len; case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse( block, &seen_values, item_ref, operand_ty, src_node_offset, .{ .scalar = scalar_i }, )); } } { var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const items = sema.code.refSlice(extra_index, items_len); extra_index += items_len + info.body_len; try case_vals.ensureUnusedCapacity(gpa, items.len); for (items, 0..) |item_ref, item_i| { case_vals.appendAssumeCapacity(try sema.validateSwitchItemSparse( block, &seen_values, item_ref, operand_ty, src_node_offset, .{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }, )); } try sema.validateSwitchNoRange(block, ranges_len, operand_ty, src_node_offset); } } }, .ErrorUnion, .NoReturn, .Array, .Struct, .Undefined, .Null, .Optional, .Opaque, .Vector, .Frame, .AnyFrame, .ComptimeFloat, .Float, => return sema.fail(block, operand_src, "invalid switch operand type '{}'", .{ operand_ty.fmt(mod), }), } const spa: SwitchProngAnalysis = .{ .sema = sema, .parent_block = block, .operand = raw_operand.val, .operand_ptr = raw_operand.ptr, .cond = operand, .else_error_ty = else_error_ty, .switch_block_inst = inst, .tag_capture_inst = tag_capture_inst, }; const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(gpa, .{ .tag = .block, .data = undefined, }); var label: Block.Label = .{ .zir_block = inst, .merges = .{ .src_locs = .{}, .results = .{}, .br_list = .{}, .block_inst = block_inst, }, }; var child_block: Block = .{ .parent = block, .sema = sema, .src_decl = block.src_decl, .namespace = block.namespace, .wip_capture_scope = block.wip_capture_scope, .instructions = .{}, .label = &label, .inlining = block.inlining, .is_comptime = block.is_comptime, .comptime_reason = block.comptime_reason, .is_typeof = block.is_typeof, .c_import_buf = block.c_import_buf, .runtime_cond = block.runtime_cond, .runtime_loop = block.runtime_loop, .runtime_index = block.runtime_index, .error_return_trace_index = block.error_return_trace_index, }; const merges = &child_block.label.?.merges; defer child_block.instructions.deinit(gpa); defer merges.deinit(gpa); if (try sema.resolveDefinedValue(&child_block, src, operand)) |operand_val| { const resolved_operand_val = try sema.resolveLazyValue(operand_val); var extra_index: usize = special.end; { var scalar_i: usize = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const body = sema.code.extra[extra_index..][0..info.body_len]; extra_index += info.body_len; const item = case_vals.items[scalar_i]; const item_val = sema.resolveConstValue(&child_block, .unneeded, item, "") catch unreachable; if (operand_val.eql(item_val, operand_ty, sema.mod)) { if (err_set) try sema.maybeErrorUnwrapComptime(&child_block, body, operand); return spa.resolveProngComptime( &child_block, .normal, body, info.capture, .{ .scalar_capture = @as(u32, @intCast(scalar_i)) }, &.{item}, if (info.is_inline) operand else .none, info.has_tag_capture, merges, ); } } } { var multi_i: usize = 0; var case_val_idx: usize = scalar_cases_len; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + items_len; const body = sema.code.extra[extra_index + 2 * ranges_len ..][0..info.body_len]; const items = case_vals.items[case_val_idx..][0..items_len]; case_val_idx += items_len; for (items) |item| { // Validation above ensured these will succeed. const item_val = sema.resolveConstValue(&child_block, .unneeded, item, "") catch unreachable; if (operand_val.eql(item_val, operand_ty, sema.mod)) { if (err_set) try sema.maybeErrorUnwrapComptime(&child_block, body, operand); return spa.resolveProngComptime( &child_block, .normal, body, info.capture, .{ .multi_capture = @as(u32, @intCast(multi_i)) }, items, if (info.is_inline) operand else .none, info.has_tag_capture, merges, ); } } var range_i: usize = 0; while (range_i < ranges_len) : (range_i += 1) { const range_items = case_vals.items[case_val_idx..][0..2]; extra_index += 2; case_val_idx += 2; // Validation above ensured these will succeed. const first_val = sema.resolveConstValue(&child_block, .unneeded, range_items[0], "") catch unreachable; const last_val = sema.resolveConstValue(&child_block, .unneeded, range_items[1], "") catch unreachable; if ((try sema.compareAll(resolved_operand_val, .gte, first_val, operand_ty)) and (try sema.compareAll(resolved_operand_val, .lte, last_val, operand_ty))) { if (err_set) try sema.maybeErrorUnwrapComptime(&child_block, body, operand); return spa.resolveProngComptime( &child_block, .normal, body, info.capture, .{ .multi_capture = @as(u32, @intCast(multi_i)) }, undefined, // case_vals may be undefined for ranges if (info.is_inline) operand else .none, info.has_tag_capture, merges, ); } } extra_index += info.body_len; } } if (err_set) try sema.maybeErrorUnwrapComptime(&child_block, special.body, operand); if (empty_enum) { return Air.Inst.Ref.void_value; } return spa.resolveProngComptime( &child_block, .special, special.body, special.capture, .special_capture, undefined, // case_vals may be undefined for special prongs if (special.is_inline) operand else .none, special.has_tag_capture, merges, ); } if (scalar_cases_len + multi_cases_len == 0 and !special.is_inline) { if (empty_enum) { return Air.Inst.Ref.void_value; } if (special_prong == .none) { return sema.fail(block, src, "switch must handle all possibilities", .{}); } if (err_set and try sema.maybeErrorUnwrap(block, special.body, operand, operand_src)) { return Air.Inst.Ref.unreachable_value; } if (mod.backendSupportsFeature(.is_named_enum_value) and block.wantSafety() and operand_ty.zigTypeTag(mod) == .Enum and (!operand_ty.isNonexhaustiveEnum(mod) or union_originally)) { try sema.zirDbgStmt(block, cond_dbg_node_index); const ok = try block.addUnOp(.is_named_enum_value, operand); try sema.addSafetyCheck(block, src, ok, .corrupt_switch); } return spa.resolveProngComptime( &child_block, .special, special.body, special.capture, .special_capture, undefined, // case_vals may be undefined for special prongs .none, false, merges, ); } if (child_block.is_comptime) { _ = sema.resolveConstValue(&child_block, operand_src, operand, "condition in comptime switch must be comptime-known") catch |err| { if (err == error.AnalysisFail and child_block.comptime_reason != null) try child_block.comptime_reason.?.explain(sema, sema.err); return err; }; unreachable; } const estimated_cases_extra = (scalar_cases_len + multi_cases_len) * @typeInfo(Air.SwitchBr.Case).Struct.fields.len + 2; var cases_extra = try std.ArrayListUnmanaged(u32).initCapacity(gpa, estimated_cases_extra); defer cases_extra.deinit(gpa); var case_block = child_block.makeSubBlock(); case_block.runtime_loop = null; case_block.runtime_cond = operand_src; case_block.runtime_index.increment(); defer case_block.instructions.deinit(gpa); var extra_index: usize = special.end; var scalar_i: usize = 0; while (scalar_i < scalar_cases_len) : (scalar_i += 1) { extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1; const body = sema.code.extra[extra_index..][0..info.body_len]; extra_index += info.body_len; var wip_captures = try WipCaptureScope.init(gpa, child_block.wip_capture_scope); defer wip_captures.deinit(); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = wip_captures.scope; const item = case_vals.items[scalar_i]; // `item` is already guaranteed to be constant known. const analyze_body = if (union_originally) blk: { const item_val = sema.resolveConstLazyValue(block, .unneeded, item, "") catch unreachable; const field_ty = maybe_union_ty.unionFieldType(item_val, mod); break :blk field_ty.zigTypeTag(mod) != .NoReturn; } else true; if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src)) { // nothing to do here } else if (analyze_body) { try spa.analyzeProngRuntime( &case_block, .normal, body, info.capture, .{ .scalar_capture = @as(u32, @intCast(scalar_i)) }, &.{item}, if (info.is_inline) item else .none, info.has_tag_capture, ); } else { _ = try case_block.addNoOp(.unreach); } try wip_captures.finalize(); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } var is_first = true; var prev_cond_br: Air.Inst.Index = undefined; var first_else_body: []const Air.Inst.Index = &.{}; defer gpa.free(first_else_body); var prev_then_body: []const Air.Inst.Index = &.{}; defer gpa.free(prev_then_body); var cases_len = scalar_cases_len; var case_val_idx: usize = scalar_cases_len; var multi_i: u32 = 0; while (multi_i < multi_cases_len) : (multi_i += 1) { const items_len = sema.code.extra[extra_index]; extra_index += 1; const ranges_len = sema.code.extra[extra_index]; extra_index += 1; const info = @as(Zir.Inst.SwitchBlock.ProngInfo, @bitCast(sema.code.extra[extra_index])); extra_index += 1 + items_len; const items = case_vals.items[case_val_idx..][0..items_len]; case_val_idx += items_len; case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; // Generate all possible cases as scalar prongs. if (info.is_inline) { const body_start = extra_index + 2 * ranges_len; const body = sema.code.extra[body_start..][0..info.body_len]; var emit_bb = false; var range_i: u32 = 0; while (range_i < ranges_len) : (range_i += 1) { const range_items = case_vals.items[case_val_idx..][0..2]; extra_index += 2; case_val_idx += 2; const item_first_ref = range_items[0]; const item_last_ref = range_items[1]; var item = sema.resolveConstValue(block, .unneeded, item_first_ref, undefined) catch unreachable; const item_last = sema.resolveConstValue(block, .unneeded, item_last_ref, undefined) catch unreachable; while (item.compareScalar(.lte, item_last, operand_ty, mod)) : ({ // Previous validation has resolved any possible lazy values. item = sema.intAddScalar(item, try mod.intValue(operand_ty, 1), operand_ty) catch |err| switch (err) { error.Overflow => unreachable, else => |e| return e, }; }) { cases_len += 1; const item_ref = Air.internedToRef(item.toIntern()); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; if (emit_bb) sema.emitBackwardBranch(block, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const case_src = Module.SwitchProngSrc{ .range = .{ .prong = multi_i, .item = range_i } }; const decl = mod.declPtr(case_block.src_decl); try sema.emitBackwardBranch(block, case_src.resolve(mod, decl, src_node_offset, .none)); unreachable; }, else => return err, }; emit_bb = true; try spa.analyzeProngRuntime( &case_block, .normal, body, info.capture, .{ .multi_capture = multi_i }, undefined, // case_vals may be undefined for ranges item_ref, info.has_tag_capture, ); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item_ref)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); if (item.compareScalar(.eq, item_last, operand_ty, mod)) break; } } for (items, 0..) |item, item_i| { cases_len += 1; case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; const analyze_body = if (union_originally) blk: { const item_val = sema.resolveConstValue(block, .unneeded, item, undefined) catch unreachable; const field_ty = maybe_union_ty.unionFieldType(item_val, mod); break :blk field_ty.zigTypeTag(mod) != .NoReturn; } else true; if (emit_bb) sema.emitBackwardBranch(block, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const case_src = Module.SwitchProngSrc{ .multi = .{ .prong = multi_i, .item = @as(u32, @intCast(item_i)) } }; const decl = mod.declPtr(case_block.src_decl); try sema.emitBackwardBranch(block, case_src.resolve(mod, decl, src_node_offset, .none)); unreachable; }, else => return err, }; emit_bb = true; if (analyze_body) { try spa.analyzeProngRuntime( &case_block, .normal, body, info.capture, .{ .multi_capture = multi_i }, &.{item}, item, info.has_tag_capture, ); } else { _ = try case_block.addNoOp(.unreach); } try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } extra_index += info.body_len; continue; } var any_ok: Air.Inst.Ref = .none; // If there are any ranges, we have to put all the items into the // else prong. Otherwise, we can take advantage of multiple items // mapping to the same body. if (ranges_len == 0) { cases_len += 1; const analyze_body = if (union_originally) for (items) |item| { const item_val = sema.resolveConstValue(block, .unneeded, item, "") catch unreachable; const field_ty = maybe_union_ty.unionFieldType(item_val, mod); if (field_ty.zigTypeTag(mod) != .NoReturn) break true; } else false else true; const body = sema.code.extra[extra_index..][0..info.body_len]; extra_index += info.body_len; if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src)) { // nothing to do here } else if (analyze_body) { try spa.analyzeProngRuntime( &case_block, .normal, body, info.capture, .{ .multi_capture = multi_i }, items, .none, false, ); } else { _ = try case_block.addNoOp(.unreach); } try cases_extra.ensureUnusedCapacity(gpa, 2 + items.len + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(@as(u32, @intCast(items.len))); cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); for (items) |item| { cases_extra.appendAssumeCapacity(@intFromEnum(item)); } cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } else { for (items) |item| { const cmp_ok = try case_block.addBinOp(if (case_block.float_mode == .Optimized) .cmp_eq_optimized else .cmp_eq, operand, item); if (any_ok != .none) { any_ok = try case_block.addBinOp(.bool_or, any_ok, cmp_ok); } else { any_ok = cmp_ok; } } var range_i: usize = 0; while (range_i < ranges_len) : (range_i += 1) { const range_items = case_vals.items[case_val_idx..][0..2]; extra_index += 2; case_val_idx += 2; const item_first = range_items[0]; const item_last = range_items[1]; // operand >= first and operand <= last const range_first_ok = try case_block.addBinOp( if (case_block.float_mode == .Optimized) .cmp_gte_optimized else .cmp_gte, operand, item_first, ); const range_last_ok = try case_block.addBinOp( if (case_block.float_mode == .Optimized) .cmp_lte_optimized else .cmp_lte, operand, item_last, ); const range_ok = try case_block.addBinOp( .bool_and, range_first_ok, range_last_ok, ); if (any_ok != .none) { any_ok = try case_block.addBinOp(.bool_or, any_ok, range_ok); } else { any_ok = range_ok; } } const new_cond_br = try case_block.addInstAsIndex(.{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = any_ok, .payload = undefined, }, } }); var cond_body = try case_block.instructions.toOwnedSlice(gpa); defer gpa.free(cond_body); var wip_captures = try WipCaptureScope.init(gpa, child_block.wip_capture_scope); defer wip_captures.deinit(); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = wip_captures.scope; const body = sema.code.extra[extra_index..][0..info.body_len]; extra_index += info.body_len; if (err_set and try sema.maybeErrorUnwrap(&case_block, body, operand, operand_src)) { // nothing to do here } else { try spa.analyzeProngRuntime( &case_block, .normal, body, info.capture, .{ .multi_capture = multi_i }, items, .none, false, ); } try wip_captures.finalize(); if (is_first) { is_first = false; first_else_body = cond_body; cond_body = &.{}; } else { try sema.air_extra.ensureUnusedCapacity( gpa, @typeInfo(Air.CondBr).Struct.fields.len + prev_then_body.len + cond_body.len, ); sema.air_instructions.items(.data)[prev_cond_br].pl_op.payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(prev_then_body.len)), .else_body_len = @as(u32, @intCast(cond_body.len)), }); sema.air_extra.appendSliceAssumeCapacity(prev_then_body); sema.air_extra.appendSliceAssumeCapacity(cond_body); } gpa.free(prev_then_body); prev_then_body = try case_block.instructions.toOwnedSlice(gpa); prev_cond_br = new_cond_br; } } var final_else_body: []const Air.Inst.Index = &.{}; if (special.body.len != 0 or !is_first or case_block.wantSafety()) { var emit_bb = false; if (special.is_inline) switch (operand_ty.zigTypeTag(mod)) { .Enum => { if (operand_ty.isNonexhaustiveEnum(mod) and !union_originally) { return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{ operand_ty.fmt(mod), }); } for (seen_enum_fields, 0..) |f, i| { if (f != null) continue; cases_len += 1; const item_val = try mod.enumValueFieldIndex(operand_ty, @as(u32, @intCast(i))); const item_ref = Air.internedToRef(item_val.toIntern()); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; const analyze_body = if (union_originally) blk: { const field_ty = maybe_union_ty.unionFieldType(item_val, mod); break :blk field_ty.zigTypeTag(mod) != .NoReturn; } else true; if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src); emit_bb = true; if (analyze_body) { try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, &.{item_ref}, item_ref, special.has_tag_capture, ); } else { _ = try case_block.addNoOp(.unreach); } try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item_ref)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } }, .ErrorSet => { if (operand_ty.isAnyError(mod)) { return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{ operand_ty.fmt(mod), }); } for (0..operand_ty.errorSetNames(mod).len) |i| { const error_name = operand_ty.errorSetNames(mod)[i]; if (seen_errors.contains(error_name)) continue; cases_len += 1; const item_val = try mod.intern(.{ .err = .{ .ty = operand_ty.toIntern(), .name = error_name, } }); const item_ref = Air.internedToRef(item_val); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src); emit_bb = true; try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, &.{item_ref}, item_ref, special.has_tag_capture, ); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item_ref)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } }, .Int => { var it = try RangeSetUnhandledIterator.init(sema, operand_ty, range_set); while (try it.next()) |cur| { cases_len += 1; const item_ref = Air.internedToRef(cur); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src); emit_bb = true; try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, &.{item_ref}, item_ref, special.has_tag_capture, ); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(item_ref)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } }, .Bool => { if (true_count == 0) { cases_len += 1; case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src); emit_bb = true; try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, &.{Air.Inst.Ref.bool_true}, Air.Inst.Ref.bool_true, special.has_tag_capture, ); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_true)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } if (false_count == 0) { cases_len += 1; case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = child_block.wip_capture_scope; if (emit_bb) try sema.emitBackwardBranch(block, special_prong_src); emit_bb = true; try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, &.{Air.Inst.Ref.bool_false}, Air.Inst.Ref.bool_false, special.has_tag_capture, ); try cases_extra.ensureUnusedCapacity(gpa, 3 + case_block.instructions.items.len); cases_extra.appendAssumeCapacity(1); // items_len cases_extra.appendAssumeCapacity(@as(u32, @intCast(case_block.instructions.items.len))); cases_extra.appendAssumeCapacity(@intFromEnum(Air.Inst.Ref.bool_false)); cases_extra.appendSliceAssumeCapacity(case_block.instructions.items); } }, else => return sema.fail(block, special_prong_src, "cannot enumerate values of type '{}' for 'inline else'", .{ operand_ty.fmt(mod), }), }; var wip_captures = try WipCaptureScope.init(gpa, child_block.wip_capture_scope); defer wip_captures.deinit(); case_block.instructions.shrinkRetainingCapacity(0); case_block.wip_capture_scope = wip_captures.scope; if (mod.backendSupportsFeature(.is_named_enum_value) and special.body.len != 0 and block.wantSafety() and operand_ty.zigTypeTag(mod) == .Enum and (!operand_ty.isNonexhaustiveEnum(mod) or union_originally)) { try sema.zirDbgStmt(&case_block, cond_dbg_node_index); const ok = try case_block.addUnOp(.is_named_enum_value, operand); try sema.addSafetyCheck(&case_block, src, ok, .corrupt_switch); } const analyze_body = if (union_originally and !special.is_inline) for (seen_enum_fields, 0..) |seen_field, index| { if (seen_field != null) continue; const union_obj = mod.typeToUnion(maybe_union_ty).?; const field_ty = union_obj.fields.values()[index].ty; if (field_ty.zigTypeTag(mod) != .NoReturn) break true; } else false else true; if (special.body.len != 0 and err_set and try sema.maybeErrorUnwrap(&case_block, special.body, operand, operand_src)) { // nothing to do here } else if (special.body.len != 0 and analyze_body and !special.is_inline) { try spa.analyzeProngRuntime( &case_block, .special, special.body, special.capture, .special_capture, undefined, // case_vals may be undefined for special prongs .none, false, ); } else { // We still need a terminator in this block, but we have proven // that it is unreachable. if (case_block.wantSafety()) { try sema.zirDbgStmt(&case_block, cond_dbg_node_index); try sema.safetyPanic(&case_block, src, .corrupt_switch); } else { _ = try case_block.addNoOp(.unreach); } } try wip_captures.finalize(); if (is_first) { final_else_body = case_block.instructions.items; } else { try sema.air_extra.ensureUnusedCapacity(gpa, prev_then_body.len + @typeInfo(Air.CondBr).Struct.fields.len + case_block.instructions.items.len); sema.air_instructions.items(.data)[prev_cond_br].pl_op.payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(prev_then_body.len)), .else_body_len = @as(u32, @intCast(case_block.instructions.items.len)), }); sema.air_extra.appendSliceAssumeCapacity(prev_then_body); sema.air_extra.appendSliceAssumeCapacity(case_block.instructions.items); final_else_body = first_else_body; } } try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.SwitchBr).Struct.fields.len + cases_extra.items.len + final_else_body.len); _ = try child_block.addInst(.{ .tag = .switch_br, .data = .{ .pl_op = .{ .operand = operand, .payload = sema.addExtraAssumeCapacity(Air.SwitchBr{ .cases_len = @as(u32, @intCast(cases_len)), .else_body_len = @as(u32, @intCast(final_else_body.len)), }), } } }); sema.air_extra.appendSliceAssumeCapacity(cases_extra.items); sema.air_extra.appendSliceAssumeCapacity(final_else_body); return sema.analyzeBlockBody(block, src, &child_block, merges); } const RangeSetUnhandledIterator = struct { mod: *Module, cur: ?InternPool.Index, max: InternPool.Index, range_i: usize, ranges: []const RangeSet.Range, limbs: []math.big.Limb, const preallocated_limbs = math.big.int.calcTwosCompLimbCount(128); fn init(sema: *Sema, ty: Type, range_set: RangeSet) !RangeSetUnhandledIterator { const mod = sema.mod; const int_type = mod.intern_pool.indexToKey(ty.toIntern()).int_type; const needed_limbs = math.big.int.calcTwosCompLimbCount(int_type.bits); return .{ .mod = mod, .cur = (try ty.minInt(mod, ty)).toIntern(), .max = (try ty.maxInt(mod, ty)).toIntern(), .range_i = 0, .ranges = range_set.ranges.items, .limbs = if (needed_limbs > preallocated_limbs) try sema.arena.alloc(math.big.Limb, needed_limbs) else &.{}, }; } fn addOne(it: *const RangeSetUnhandledIterator, val: InternPool.Index) !?InternPool.Index { if (val == it.max) return null; const int = it.mod.intern_pool.indexToKey(val).int; switch (int.storage) { inline .u64, .i64 => |val_int| { const next_int = @addWithOverflow(val_int, 1); if (next_int[1] == 0) return (try it.mod.intValue(int.ty.toType(), next_int[0])).toIntern(); }, .big_int => {}, .lazy_align, .lazy_size => unreachable, } var val_space: InternPool.Key.Int.Storage.BigIntSpace = undefined; const val_bigint = int.storage.toBigInt(&val_space); var result_limbs: [preallocated_limbs]math.big.Limb = undefined; var result_bigint = math.big.int.Mutable.init( if (it.limbs.len > 0) it.limbs else &result_limbs, 0, ); result_bigint.addScalar(val_bigint, 1); return (try it.mod.intValue_big(int.ty.toType(), result_bigint.toConst())).toIntern(); } fn next(it: *RangeSetUnhandledIterator) !?InternPool.Index { var cur = it.cur orelse return null; while (it.range_i < it.ranges.len and cur == it.ranges[it.range_i].first) { defer it.range_i += 1; cur = (try it.addOne(it.ranges[it.range_i].last)) orelse { it.cur = null; return null; }; } it.cur = try it.addOne(cur); return cur; } }; const ResolvedSwitchItem = struct { ref: Air.Inst.Ref, val: InternPool.Index, }; fn resolveSwitchItemVal( sema: *Sema, block: *Block, item_ref: Zir.Inst.Ref, /// Coerce `item_ref` to this type. coerce_ty: Type, switch_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, range_expand: Module.SwitchProngSrc.RangeExpand, ) CompileError!ResolvedSwitchItem { const mod = sema.mod; const uncoerced_item = try sema.resolveInst(item_ref); // Constructing a LazySrcLoc is costly because we only have the switch AST node. // Only if we know for sure we need to report a compile error do we resolve the // full source locations. const item = sema.coerce(block, coerce_ty, uncoerced_item, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, range_expand); _ = try sema.coerce(block, coerce_ty, uncoerced_item, src); unreachable; }, else => |e| return e, }; const maybe_lazy = sema.resolveConstValue(block, .unneeded, item, "") catch |err| switch (err) { error.NeededSourceLocation => { const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), switch_node_offset, range_expand); _ = try sema.resolveConstValue(block, src, item, "switch prong values must be comptime-known"); unreachable; }, else => |e| return e, }; const val = try sema.resolveLazyValue(maybe_lazy); const new_item = if (val.toIntern() != maybe_lazy.toIntern()) blk: { break :blk Air.internedToRef(val.toIntern()); } else item; return .{ .ref = new_item, .val = val.toIntern() }; } fn validateSwitchRange( sema: *Sema, block: *Block, range_set: *RangeSet, first_ref: Zir.Inst.Ref, last_ref: Zir.Inst.Ref, operand_ty: Type, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError![2]Air.Inst.Ref { const mod = sema.mod; const first = try sema.resolveSwitchItemVal(block, first_ref, operand_ty, src_node_offset, switch_prong_src, .first); const last = try sema.resolveSwitchItemVal(block, last_ref, operand_ty, src_node_offset, switch_prong_src, .last); if (try first.val.toValue().compareAll(.gt, last.val.toValue(), operand_ty, mod)) { const src = switch_prong_src.resolve(mod, mod.declPtr(block.src_decl), src_node_offset, .first); return sema.fail(block, src, "range start value is greater than the end value", .{}); } const maybe_prev_src = try range_set.add(first.val, last.val, switch_prong_src); try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset); return .{ first.ref, last.ref }; } fn validateSwitchItemInt( sema: *Sema, block: *Block, range_set: *RangeSet, item_ref: Zir.Inst.Ref, operand_ty: Type, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError!Air.Inst.Ref { const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none); const maybe_prev_src = try range_set.add(item.val, item.val, switch_prong_src); try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset); return item.ref; } fn validateSwitchItemEnum( sema: *Sema, block: *Block, seen_fields: []?Module.SwitchProngSrc, range_set: *RangeSet, item_ref: Zir.Inst.Ref, operand_ty: Type, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError!Air.Inst.Ref { const ip = &sema.mod.intern_pool; const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none); const int = ip.indexToKey(item.val).enum_tag.int; const field_index = ip.indexToKey(ip.typeOf(item.val)).enum_type.tagValueIndex(ip, int) orelse { const maybe_prev_src = try range_set.add(int, int, switch_prong_src); try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset); return item.ref; }; const maybe_prev_src = seen_fields[field_index]; seen_fields[field_index] = switch_prong_src; try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset); return item.ref; } fn validateSwitchItemError( sema: *Sema, block: *Block, seen_errors: *SwitchErrorSet, item_ref: Zir.Inst.Ref, operand_ty: Type, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError!Air.Inst.Ref { const ip = &sema.mod.intern_pool; const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none); const error_name = ip.indexToKey(item.val).err.name; const maybe_prev_src = if (try seen_errors.fetchPut(error_name, switch_prong_src)) |prev| prev.value else null; try sema.validateSwitchDupe(block, maybe_prev_src, switch_prong_src, src_node_offset); return item.ref; } fn validateSwitchDupe( sema: *Sema, block: *Block, maybe_prev_src: ?Module.SwitchProngSrc, switch_prong_src: Module.SwitchProngSrc, src_node_offset: i32, ) CompileError!void { const prev_prong_src = maybe_prev_src orelse return; const mod = sema.mod; const block_src_decl = mod.declPtr(block.src_decl); const src = switch_prong_src.resolve(mod, block_src_decl, src_node_offset, .none); const prev_src = prev_prong_src.resolve(mod, block_src_decl, src_node_offset, .none); const msg = msg: { const msg = try sema.errMsg( block, src, "duplicate switch value", .{}, ); errdefer msg.destroy(sema.gpa); try sema.errNote( block, prev_src, msg, "previous value here", .{}, ); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn validateSwitchItemBool( sema: *Sema, block: *Block, true_count: *u8, false_count: *u8, item_ref: Zir.Inst.Ref, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const item = try sema.resolveSwitchItemVal(block, item_ref, Type.bool, src_node_offset, switch_prong_src, .none); if (item.val.toValue().toBool()) { true_count.* += 1; } else { false_count.* += 1; } if (true_count.* > 1 or false_count.* > 1) { const block_src_decl = sema.mod.declPtr(block.src_decl); const src = switch_prong_src.resolve(mod, block_src_decl, src_node_offset, .none); return sema.fail(block, src, "duplicate switch value", .{}); } return item.ref; } const ValueSrcMap = std.AutoHashMapUnmanaged(InternPool.Index, Module.SwitchProngSrc); fn validateSwitchItemSparse( sema: *Sema, block: *Block, seen_values: *ValueSrcMap, item_ref: Zir.Inst.Ref, operand_ty: Type, src_node_offset: i32, switch_prong_src: Module.SwitchProngSrc, ) CompileError!Air.Inst.Ref { const item = try sema.resolveSwitchItemVal(block, item_ref, operand_ty, src_node_offset, switch_prong_src, .none); const kv = (try seen_values.fetchPut(sema.gpa, item.val, switch_prong_src)) orelse return item.ref; try sema.validateSwitchDupe(block, kv.value, switch_prong_src, src_node_offset); unreachable; } fn validateSwitchNoRange( sema: *Sema, block: *Block, ranges_len: u32, operand_ty: Type, src_node_offset: i32, ) CompileError!void { if (ranges_len == 0) return; const operand_src: LazySrcLoc = .{ .node_offset_switch_operand = src_node_offset }; const range_src: LazySrcLoc = .{ .node_offset_switch_range = src_node_offset }; const msg = msg: { const msg = try sema.errMsg( block, operand_src, "ranges not allowed when switching on type '{}'", .{operand_ty.fmt(sema.mod)}, ); errdefer msg.destroy(sema.gpa); try sema.errNote( block, range_src, msg, "range here", .{}, ); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn maybeErrorUnwrap(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, operand: Air.Inst.Ref, operand_src: LazySrcLoc) !bool { const mod = sema.mod; if (!mod.backendSupportsFeature(.panic_unwrap_error)) return false; const tags = sema.code.instructions.items(.tag); for (body) |inst| { switch (tags[inst]) { .@"unreachable" => if (!block.wantSafety()) return false, .save_err_ret_index, .dbg_block_begin, .dbg_block_end, .dbg_stmt, .str, .as_node, .panic, .field_val, => {}, else => return false, } } for (body) |inst| { const air_inst = switch (tags[inst]) { .dbg_block_begin, .dbg_block_end, => continue, .dbg_stmt => { try sema.zirDbgStmt(block, inst); continue; }, .save_err_ret_index => { try sema.zirSaveErrRetIndex(block, inst); continue; }, .str => try sema.zirStr(block, inst), .as_node => try sema.zirAsNode(block, inst), .field_val => try sema.zirFieldVal(block, inst), .@"unreachable" => { if (!mod.comp.formatted_panics) { try sema.safetyPanic(block, operand_src, .unwrap_error); return true; } const panic_fn = try sema.getBuiltin("panicUnwrapError"); const err_return_trace = try sema.getErrorReturnTrace(block); const args: [2]Air.Inst.Ref = .{ err_return_trace, operand }; try sema.callBuiltin(block, operand_src, panic_fn, .auto, &args, .@"safety check"); return true; }, .panic => { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const msg_inst = try sema.resolveInst(inst_data.operand); const panic_fn = try sema.getBuiltin("panic"); const err_return_trace = try sema.getErrorReturnTrace(block); const args: [3]Air.Inst.Ref = .{ msg_inst, err_return_trace, .null_value }; try sema.callBuiltin(block, operand_src, panic_fn, .auto, &args, .@"safety check"); return true; }, else => unreachable, }; if (sema.typeOf(air_inst).isNoReturn(mod)) return true; sema.inst_map.putAssumeCapacity(inst, air_inst); } unreachable; } fn maybeErrorUnwrapCondbr(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, cond: Zir.Inst.Ref, cond_src: LazySrcLoc) !void { const mod = sema.mod; const index = Zir.refToIndex(cond) orelse return; if (sema.code.instructions.items(.tag)[index] != .is_non_err) return; const err_inst_data = sema.code.instructions.items(.data)[index].un_node; const err_operand = try sema.resolveInst(err_inst_data.operand); const operand_ty = sema.typeOf(err_operand); if (operand_ty.zigTypeTag(mod) == .ErrorSet) { try sema.maybeErrorUnwrapComptime(block, body, err_operand); return; } if (try sema.resolveDefinedValue(block, cond_src, err_operand)) |val| { if (!operand_ty.isError(mod)) return; if (val.getErrorName(mod) == .none) return; try sema.maybeErrorUnwrapComptime(block, body, err_operand); } } fn maybeErrorUnwrapComptime(sema: *Sema, block: *Block, body: []const Zir.Inst.Index, operand: Air.Inst.Ref) !void { const tags = sema.code.instructions.items(.tag); const inst = for (body) |inst| { switch (tags[inst]) { .dbg_block_begin, .dbg_block_end, .dbg_stmt, .save_err_ret_index, => {}, .@"unreachable" => break inst, else => return, } } else return; const inst_data = sema.code.instructions.items(.data)[inst].@"unreachable"; const src = inst_data.src(); if (try sema.resolveDefinedValue(block, src, operand)) |val| { if (val.getErrorName(sema.mod).unwrap()) |name| { return sema.fail(block, src, "caught unexpected error '{}'", .{name.fmt(&sema.mod.intern_pool)}); } } } fn zirHasField(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const ty = try sema.resolveType(block, ty_src, extra.lhs); const field_name = try sema.resolveConstStringIntern(block, name_src, extra.rhs, "field name must be comptime-known"); try sema.resolveTypeFields(ty); const ip = &mod.intern_pool; const has_field = hf: { switch (ip.indexToKey(ty.toIntern())) { .ptr_type => |ptr_type| switch (ptr_type.flags.size) { .Slice => { if (ip.stringEqlSlice(field_name, "ptr")) break :hf true; if (ip.stringEqlSlice(field_name, "len")) break :hf true; break :hf false; }, else => {}, }, .anon_struct_type => |anon_struct| { if (anon_struct.names.len != 0) { break :hf mem.indexOfScalar(InternPool.NullTerminatedString, anon_struct.names, field_name) != null; } else { const field_index = field_name.toUnsigned(ip) orelse break :hf false; break :hf field_index < ty.structFieldCount(mod); } }, .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index) orelse break :hf false; assert(struct_obj.haveFieldTypes()); break :hf struct_obj.fields.contains(field_name); }, .union_type => |union_type| { const union_obj = mod.unionPtr(union_type.index); assert(union_obj.haveFieldTypes()); break :hf union_obj.fields.contains(field_name); }, .enum_type => |enum_type| { break :hf enum_type.nameIndex(ip, field_name) != null; }, .array_type => break :hf ip.stringEqlSlice(field_name, "len"), else => {}, } return sema.fail(block, ty_src, "type '{}' does not support '@hasField'", .{ ty.fmt(mod), }); }; if (has_field) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } fn zirHasDecl(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const container_type = try sema.resolveType(block, lhs_src, extra.lhs); const decl_name = try sema.resolveConstStringIntern(block, rhs_src, extra.rhs, "decl name must be comptime-known"); try sema.checkNamespaceType(block, lhs_src, container_type); const namespace = container_type.getNamespaceIndex(mod).unwrap() orelse return Air.Inst.Ref.bool_false; if (try sema.lookupInNamespace(block, src, namespace, decl_name, true)) |decl_index| { const decl = mod.declPtr(decl_index); if (decl.is_pub or decl.getFileScope(mod) == block.getFileScope(mod)) { return Air.Inst.Ref.bool_true; } } return Air.Inst.Ref.bool_false; } fn zirImport(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const operand_src = inst_data.src(); const operand = inst_data.get(sema.code); const result = mod.importFile(block.getFileScope(mod), operand) catch |err| switch (err) { error.ImportOutsidePkgPath => { return sema.fail(block, operand_src, "import of file outside package path: '{s}'", .{operand}); }, error.PackageNotFound => { const name = try block.getFileScope(mod).pkg.getName(sema.gpa, mod.*); defer sema.gpa.free(name); return sema.fail(block, operand_src, "no package named '{s}' available within package '{s}'", .{ operand, name }); }, else => { // TODO: these errors are file system errors; make sure an update() will // retry this and not cache the file system error, which may be transient. return sema.fail(block, operand_src, "unable to open '{s}': {s}", .{ operand, @errorName(err) }); }, }; try mod.semaFile(result.file); const file_root_decl_index = result.file.root_decl.unwrap().?; const file_root_decl = mod.declPtr(file_root_decl_index); try mod.declareDeclDependency(sema.owner_decl_index, file_root_decl_index); return Air.internedToRef(file_root_decl.val.toIntern()); } fn zirEmbedFile(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const name = try sema.resolveConstString(block, operand_src, inst_data.operand, "file path name must be comptime-known"); if (name.len == 0) { return sema.fail(block, operand_src, "file path name cannot be empty", .{}); } const embed_file = mod.embedFile(block.getFileScope(mod), name) catch |err| switch (err) { error.ImportOutsidePkgPath => { return sema.fail(block, operand_src, "embed of file outside package path: '{s}'", .{name}); }, else => { // TODO: these errors are file system errors; make sure an update() will // retry this and not cache the file system error, which may be transient. return sema.fail(block, operand_src, "unable to open '{s}': {s}", .{ name, @errorName(err) }); }, }; var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); // TODO instead of using `.bytes`, create a new value tag for pointing at // a `*Module.EmbedFile`. The purpose of this would be: // - If only the length is read and the bytes are not inspected by comptime code, // there can be an optimization where the codegen backend does a copy_file_range // into the final binary, and never loads the data into memory. // - When a Decl is destroyed, it can free the `*Module.EmbedFile`. const ty = try mod.arrayType(.{ .len = embed_file.bytes.len, .sentinel = .zero_u8, .child = .u8_type, }); embed_file.owner_decl = try anon_decl.finish( ty, (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .bytes = embed_file.bytes }, } })).toValue(), .none, // default alignment ); return sema.analyzeDeclRef(embed_file.owner_decl); } fn zirRetErrValueCode(sema: *Sema, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code)); _ = try mod.getErrorValue(name); const error_set_type = try mod.singleErrorSetType(name); return Air.internedToRef((try mod.intern(.{ .err = .{ .ty = error_set_type.toIntern(), .name = name, } }))); } fn zirShl( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); const scalar_ty = lhs_ty.scalarType(mod); const scalar_rhs_ty = rhs_ty.scalarType(mod); // TODO coerce rhs if air_tag is not shl_sat const rhs_is_comptime_int = try sema.checkIntType(block, rhs_src, scalar_rhs_ty); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(rhs); if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(sema.typeOf(lhs)); } // If rhs is 0, return lhs without doing any calculations. if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return lhs; } if (scalar_ty.zigTypeTag(mod) != .ComptimeInt and air_tag != .shl_sat) { const bit_value = try mod.intValue(Type.comptime_int, scalar_ty.intInfo(mod).bits); if (rhs_ty.zigTypeTag(mod) == .Vector) { var i: usize = 0; while (i < rhs_ty.vectorLen(mod)) : (i += 1) { const rhs_elem = try rhs_val.elemValue(mod, i); if (rhs_elem.compareHetero(.gte, bit_value, mod)) { return sema.fail(block, rhs_src, "shift amount '{}' at index '{d}' is too large for operand type '{}'", .{ rhs_elem.fmtValue(scalar_ty, mod), i, scalar_ty.fmt(mod), }); } } } else if (rhs_val.compareHetero(.gte, bit_value, mod)) { return sema.fail(block, rhs_src, "shift amount '{}' is too large for operand type '{}'", .{ rhs_val.fmtValue(scalar_ty, mod), scalar_ty.fmt(mod), }); } } if (rhs_ty.zigTypeTag(mod) == .Vector) { var i: usize = 0; while (i < rhs_ty.vectorLen(mod)) : (i += 1) { const rhs_elem = try rhs_val.elemValue(mod, i); if (rhs_elem.compareHetero(.lt, try mod.intValue(scalar_rhs_ty, 0), mod)) { return sema.fail(block, rhs_src, "shift by negative amount '{}' at index '{d}'", .{ rhs_elem.fmtValue(scalar_ty, mod), i, }); } } } else if (rhs_val.compareHetero(.lt, try mod.intValue(rhs_ty, 0), mod)) { return sema.fail(block, rhs_src, "shift by negative amount '{}'", .{ rhs_val.fmtValue(scalar_ty, mod), }); } } const runtime_src = if (maybe_lhs_val) |lhs_val| rs: { if (lhs_val.isUndef(mod)) return mod.undefRef(lhs_ty); const rhs_val = maybe_rhs_val orelse { if (scalar_ty.zigTypeTag(mod) == .ComptimeInt) { return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{}); } break :rs rhs_src; }; const val = switch (air_tag) { .shl_exact => val: { const shifted = try lhs_val.shlWithOverflow(rhs_val, lhs_ty, sema.arena, mod); if (scalar_ty.zigTypeTag(mod) == .ComptimeInt) { break :val shifted.wrapped_result; } if (shifted.overflow_bit.compareAllWithZero(.eq, mod)) { break :val shifted.wrapped_result; } return sema.fail(block, src, "operation caused overflow", .{}); }, .shl_sat => if (scalar_ty.zigTypeTag(mod) == .ComptimeInt) try lhs_val.shl(rhs_val, lhs_ty, sema.arena, mod) else try lhs_val.shlSat(rhs_val, lhs_ty, sema.arena, mod), .shl => if (scalar_ty.zigTypeTag(mod) == .ComptimeInt) try lhs_val.shl(rhs_val, lhs_ty, sema.arena, mod) else try lhs_val.shlTrunc(rhs_val, lhs_ty, sema.arena, mod), else => unreachable, }; return Air.internedToRef(val.toIntern()); } else lhs_src; const new_rhs = if (air_tag == .shl_sat) rhs: { // Limit the RHS type for saturating shl to be an integer as small as the LHS. if (rhs_is_comptime_int or scalar_rhs_ty.intInfo(mod).bits > scalar_ty.intInfo(mod).bits) { const max_int = Air.internedToRef((try lhs_ty.maxInt(mod, lhs_ty)).toIntern()); const rhs_limited = try sema.analyzeMinMax(block, rhs_src, .min, &.{ rhs, max_int }, &.{ rhs_src, rhs_src }); break :rhs try sema.intCast(block, src, lhs_ty, rhs_src, rhs_limited, rhs_src, false); } else { break :rhs rhs; } } else rhs; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { const bit_count = scalar_ty.intInfo(mod).bits; if (!std.math.isPowerOfTwo(bit_count)) { const bit_count_val = try mod.intValue(scalar_rhs_ty, bit_count); const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: { const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern()); const lt = try block.addCmpVector(rhs, bit_count_inst, .lt); break :ok try block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = lt, .operation = .And, } }, }); } else ok: { const bit_count_inst = Air.internedToRef(bit_count_val.toIntern()); break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst); }; try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big); } if (air_tag == .shl_exact) { const op_ov_tuple_ty = try sema.overflowArithmeticTupleType(lhs_ty); const op_ov = try block.addInst(.{ .tag = .shl_with_overflow, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(op_ov_tuple_ty.toIntern()), .payload = try sema.addExtra(Air.Bin{ .lhs = lhs, .rhs = rhs, }), } }, }); const ov_bit = try sema.tupleFieldValByIndex(block, src, op_ov, 1, op_ov_tuple_ty); const any_ov_bit = if (lhs_ty.zigTypeTag(mod) == .Vector) try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = ov_bit, .operation = .Or, } }, }) else ov_bit; const zero_ov = Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern()); const no_ov = try block.addBinOp(.cmp_eq, any_ov_bit, zero_ov); try sema.addSafetyCheck(block, src, no_ov, .shl_overflow); return sema.tupleFieldValByIndex(block, src, op_ov, 0, op_ov_tuple_ty); } } return block.addBinOp(air_tag, lhs, new_rhs); } fn zirShr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); const scalar_ty = lhs_ty.scalarType(mod); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(rhs); const runtime_src = if (maybe_rhs_val) |rhs_val| rs: { if (rhs_val.isUndef(mod)) { return mod.undefRef(lhs_ty); } // If rhs is 0, return lhs without doing any calculations. if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return lhs; } if (scalar_ty.zigTypeTag(mod) != .ComptimeInt) { const bit_value = try mod.intValue(Type.comptime_int, scalar_ty.intInfo(mod).bits); if (rhs_ty.zigTypeTag(mod) == .Vector) { var i: usize = 0; while (i < rhs_ty.vectorLen(mod)) : (i += 1) { const rhs_elem = try rhs_val.elemValue(mod, i); if (rhs_elem.compareHetero(.gte, bit_value, mod)) { return sema.fail(block, rhs_src, "shift amount '{}' at index '{d}' is too large for operand type '{}'", .{ rhs_elem.fmtValue(scalar_ty, mod), i, scalar_ty.fmt(mod), }); } } } else if (rhs_val.compareHetero(.gte, bit_value, mod)) { return sema.fail(block, rhs_src, "shift amount '{}' is too large for operand type '{}'", .{ rhs_val.fmtValue(scalar_ty, mod), scalar_ty.fmt(mod), }); } } if (rhs_ty.zigTypeTag(mod) == .Vector) { var i: usize = 0; while (i < rhs_ty.vectorLen(mod)) : (i += 1) { const rhs_elem = try rhs_val.elemValue(mod, i); if (rhs_elem.compareHetero(.lt, try mod.intValue(rhs_ty.childType(mod), 0), mod)) { return sema.fail(block, rhs_src, "shift by negative amount '{}' at index '{d}'", .{ rhs_elem.fmtValue(scalar_ty, mod), i, }); } } } else if (rhs_val.compareHetero(.lt, try mod.intValue(rhs_ty, 0), mod)) { return sema.fail(block, rhs_src, "shift by negative amount '{}'", .{ rhs_val.fmtValue(scalar_ty, mod), }); } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(lhs_ty); } if (air_tag == .shr_exact) { // Detect if any ones would be shifted out. const truncated = try lhs_val.intTruncBitsAsValue(lhs_ty, sema.arena, .unsigned, rhs_val, mod); if (!(try truncated.compareAllWithZeroAdvanced(.eq, sema))) { return sema.fail(block, src, "exact shift shifted out 1 bits", .{}); } } const val = try lhs_val.shr(rhs_val, lhs_ty, sema.arena, mod); return Air.internedToRef(val.toIntern()); } else { break :rs lhs_src; } } else rhs_src; if (maybe_rhs_val == null and scalar_ty.zigTypeTag(mod) == .ComptimeInt) { return sema.fail(block, src, "LHS of shift must be a fixed-width integer type, or RHS must be comptime-known", .{}); } try sema.requireRuntimeBlock(block, src, runtime_src); const result = try block.addBinOp(air_tag, lhs, rhs); if (block.wantSafety()) { const bit_count = scalar_ty.intInfo(mod).bits; if (!std.math.isPowerOfTwo(bit_count)) { const bit_count_val = try mod.intValue(rhs_ty.scalarType(mod), bit_count); const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: { const bit_count_inst = Air.internedToRef((try sema.splat(rhs_ty, bit_count_val)).toIntern()); const lt = try block.addCmpVector(rhs, bit_count_inst, .lt); break :ok try block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = lt, .operation = .And, } }, }); } else ok: { const bit_count_inst = Air.internedToRef(bit_count_val.toIntern()); break :ok try block.addBinOp(.cmp_lt, rhs, bit_count_inst); }; try sema.addSafetyCheck(block, src, ok, .shift_rhs_too_big); } if (air_tag == .shr_exact) { const back = try block.addBinOp(.shl, result, rhs); const ok = if (rhs_ty.zigTypeTag(mod) == .Vector) ok: { const eql = try block.addCmpVector(lhs, back, .eq); break :ok try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = eql, .operation = .And, } }, }); } else try block.addBinOp(.cmp_eq, lhs, back); try sema.addSafetyCheck(block, src, ok, .shr_overflow); } } return result; } fn zirBitwise( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } }); const scalar_type = resolved_type.scalarType(mod); const scalar_tag = scalar_type.zigTypeTag(mod); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; if (!is_int) { return sema.fail(block, src, "invalid operands to binary bitwise expression: '{s}' and '{s}'", .{ @tagName(lhs_ty.zigTypeTag(mod)), @tagName(rhs_ty.zigTypeTag(mod)) }); } const runtime_src = runtime: { // TODO: ask the linker what kind of relocations are available, and // in some cases emit a Value that means "this decl's address AND'd with this operand". if (try sema.resolveMaybeUndefValIntable(casted_lhs)) |lhs_val| { if (try sema.resolveMaybeUndefValIntable(casted_rhs)) |rhs_val| { const result_val = switch (air_tag) { .bit_and => try lhs_val.bitwiseAnd(rhs_val, resolved_type, sema.arena, mod), .bit_or => try lhs_val.bitwiseOr(rhs_val, resolved_type, sema.arena, mod), .xor => try lhs_val.bitwiseXor(rhs_val, resolved_type, sema.arena, mod), else => unreachable, }; return Air.internedToRef(result_val.toIntern()); } else { break :runtime rhs_src; } } else { break :runtime lhs_src; } }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addBinOp(air_tag, casted_lhs, casted_rhs); } fn zirBitNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node }; const operand = try sema.resolveInst(inst_data.operand); const operand_type = sema.typeOf(operand); const scalar_type = operand_type.scalarType(mod); if (scalar_type.zigTypeTag(mod) != .Int) { return sema.fail(block, src, "unable to perform binary not operation on type '{}'", .{ operand_type.fmt(mod), }); } if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) { return mod.undefRef(operand_type); } else if (operand_type.zigTypeTag(mod) == .Vector) { const vec_len = try sema.usizeCast(block, operand_src, operand_type.vectorLen(mod)); const elems = try sema.arena.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(mod, i); elem.* = try (try elem_val.bitwiseNot(scalar_type, sema.arena, mod)).intern(scalar_type, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = operand_type.toIntern(), .storage = .{ .elems = elems }, } }))); } else { const result_val = try val.bitwiseNot(operand_type, sema.arena, mod); return Air.internedToRef(result_val.toIntern()); } } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.not, operand_type, operand); } fn analyzeTupleCat( sema: *Sema, block: *Block, src_node: i32, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const src = LazySrcLoc.nodeOffset(src_node); const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = src_node }; const lhs_len = lhs_ty.structFieldCount(mod); const rhs_len = rhs_ty.structFieldCount(mod); const dest_fields = lhs_len + rhs_len; if (dest_fields == 0) { return Air.internedToRef(Value.empty_struct.toIntern()); } if (lhs_len == 0) { return rhs; } if (rhs_len == 0) { return lhs; } const final_len = try sema.usizeCast(block, rhs_src, dest_fields); const types = try sema.arena.alloc(InternPool.Index, final_len); const values = try sema.arena.alloc(InternPool.Index, final_len); const opt_runtime_src = rs: { var runtime_src: ?LazySrcLoc = null; var i: u32 = 0; while (i < lhs_len) : (i += 1) { types[i] = lhs_ty.structFieldType(i, mod).toIntern(); const default_val = lhs_ty.structFieldDefaultValue(i, mod); values[i] = default_val.toIntern(); const operand_src = lhs_src; // TODO better source location if (default_val.toIntern() == .unreachable_value) { runtime_src = operand_src; values[i] = .none; } } i = 0; while (i < rhs_len) : (i += 1) { types[i + lhs_len] = rhs_ty.structFieldType(i, mod).toIntern(); const default_val = rhs_ty.structFieldDefaultValue(i, mod); values[i + lhs_len] = default_val.toIntern(); const operand_src = rhs_src; // TODO better source location if (default_val.toIntern() == .unreachable_value) { runtime_src = operand_src; values[i + lhs_len] = .none; } } break :rs runtime_src; }; const tuple_ty = try mod.intern(.{ .anon_struct_type = .{ .types = types, .values = values, .names = &.{}, } }); const runtime_src = opt_runtime_src orelse { const tuple_val = try mod.intern(.{ .aggregate = .{ .ty = tuple_ty, .storage = .{ .elems = values }, } }); return Air.internedToRef(tuple_val); }; try sema.requireRuntimeBlock(block, src, runtime_src); const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len); var i: u32 = 0; while (i < lhs_len) : (i += 1) { const operand_src = lhs_src; // TODO better source location element_refs[i] = try sema.tupleFieldValByIndex(block, operand_src, lhs, i, lhs_ty); } i = 0; while (i < rhs_len) : (i += 1) { const operand_src = rhs_src; // TODO better source location element_refs[i + lhs_len] = try sema.tupleFieldValByIndex(block, operand_src, rhs, i, rhs_ty); } return block.addAggregateInit(tuple_ty.toType(), element_refs); } fn zirArrayCat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const src = inst_data.src(); const lhs_is_tuple = lhs_ty.isTuple(mod); const rhs_is_tuple = rhs_ty.isTuple(mod); if (lhs_is_tuple and rhs_is_tuple) { return sema.analyzeTupleCat(block, inst_data.src_node, lhs, rhs); } const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, rhs_ty) orelse lhs_info: { if (lhs_is_tuple) break :lhs_info @as(Type.ArrayInfo, undefined); return sema.fail(block, lhs_src, "expected indexable; found '{}'", .{lhs_ty.fmt(mod)}); }; const rhs_info = try sema.getArrayCatInfo(block, rhs_src, rhs, lhs_ty) orelse { assert(!rhs_is_tuple); return sema.fail(block, rhs_src, "expected indexable; found '{}'", .{rhs_ty.fmt(mod)}); }; const resolved_elem_ty = t: { var trash_block = block.makeSubBlock(); trash_block.is_comptime = false; defer trash_block.instructions.deinit(sema.gpa); const instructions = [_]Air.Inst.Ref{ try trash_block.addBitCast(lhs_info.elem_type, .void_value), try trash_block.addBitCast(rhs_info.elem_type, .void_value), }; break :t try sema.resolvePeerTypes(block, src, &instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); }; // When there is a sentinel mismatch, no sentinel on the result. // Otherwise, use the sentinel value provided by either operand, // coercing it to the peer-resolved element type. const res_sent_val: ?Value = s: { if (lhs_info.sentinel) |lhs_sent_val| { const lhs_sent = Air.internedToRef(lhs_sent_val.toIntern()); if (rhs_info.sentinel) |rhs_sent_val| { const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern()); const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src); const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src); const lhs_sent_casted_val = try sema.resolveConstValue(block, lhs_src, lhs_sent_casted, "array sentinel value must be comptime-known"); const rhs_sent_casted_val = try sema.resolveConstValue(block, rhs_src, rhs_sent_casted, "array sentinel value must be comptime-known"); if (try sema.valuesEqual(lhs_sent_casted_val, rhs_sent_casted_val, resolved_elem_ty)) { break :s lhs_sent_casted_val; } else { break :s null; } } else { const lhs_sent_casted = try sema.coerce(block, resolved_elem_ty, lhs_sent, lhs_src); const lhs_sent_casted_val = try sema.resolveConstValue(block, lhs_src, lhs_sent_casted, "array sentinel value must be comptime-known"); break :s lhs_sent_casted_val; } } else { if (rhs_info.sentinel) |rhs_sent_val| { const rhs_sent = Air.internedToRef(rhs_sent_val.toIntern()); const rhs_sent_casted = try sema.coerce(block, resolved_elem_ty, rhs_sent, rhs_src); const rhs_sent_casted_val = try sema.resolveConstValue(block, rhs_src, rhs_sent_casted, "array sentinel value must be comptime-known"); break :s rhs_sent_casted_val; } else { break :s null; } } }; const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len); const rhs_len = try sema.usizeCast(block, lhs_src, rhs_info.len); const result_len = std.math.add(usize, lhs_len, rhs_len) catch |err| switch (err) { error.Overflow => return sema.fail( block, src, "concatenating arrays of length {d} and {d} produces an array too large for this compiler implementation to handle", .{ lhs_len, rhs_len }, ), }; const result_ty = try mod.arrayType(.{ .len = result_len, .sentinel = if (res_sent_val) |v| v.toIntern() else .none, .child = resolved_elem_ty.toIntern(), }); const ptr_addrspace = p: { if (lhs_ty.zigTypeTag(mod) == .Pointer) break :p lhs_ty.ptrAddressSpace(mod); if (rhs_ty.zigTypeTag(mod) == .Pointer) break :p rhs_ty.ptrAddressSpace(mod); break :p null; }; const runtime_src = if (switch (lhs_ty.zigTypeTag(mod)) { .Array, .Struct => try sema.resolveMaybeUndefVal(lhs), .Pointer => try sema.resolveDefinedValue(block, lhs_src, lhs), else => unreachable, }) |lhs_val| rs: { if (switch (rhs_ty.zigTypeTag(mod)) { .Array, .Struct => try sema.resolveMaybeUndefVal(rhs), .Pointer => try sema.resolveDefinedValue(block, rhs_src, rhs), else => unreachable, }) |rhs_val| { const lhs_sub_val = if (lhs_ty.isSinglePointer(mod)) (try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty)).? else lhs_val; const rhs_sub_val = if (rhs_ty.isSinglePointer(mod)) (try sema.pointerDeref(block, rhs_src, rhs_val, rhs_ty)).? else rhs_val; const element_vals = try sema.arena.alloc(InternPool.Index, result_len); var elem_i: usize = 0; while (elem_i < lhs_len) : (elem_i += 1) { const lhs_elem_i = elem_i; const elem_default_val = if (lhs_is_tuple) lhs_ty.structFieldDefaultValue(lhs_elem_i, mod) else Value.@"unreachable"; const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try lhs_sub_val.elemValue(mod, lhs_elem_i) else elem_default_val; const elem_val_inst = Air.internedToRef(elem_val.toIntern()); const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, .unneeded); const coerced_elem_val = try sema.resolveConstMaybeUndefVal(block, .unneeded, coerced_elem_val_inst, ""); element_vals[elem_i] = try coerced_elem_val.intern(resolved_elem_ty, mod); } while (elem_i < result_len) : (elem_i += 1) { const rhs_elem_i = elem_i - lhs_len; const elem_default_val = if (rhs_is_tuple) rhs_ty.structFieldDefaultValue(rhs_elem_i, mod) else Value.@"unreachable"; const elem_val = if (elem_default_val.toIntern() == .unreachable_value) try rhs_sub_val.elemValue(mod, rhs_elem_i) else elem_default_val; const elem_val_inst = Air.internedToRef(elem_val.toIntern()); const coerced_elem_val_inst = try sema.coerce(block, resolved_elem_ty, elem_val_inst, .unneeded); const coerced_elem_val = try sema.resolveConstMaybeUndefVal(block, .unneeded, coerced_elem_val_inst, ""); element_vals[elem_i] = try coerced_elem_val.intern(resolved_elem_ty, mod); } return sema.addConstantMaybeRef(block, result_ty, (try mod.intern(.{ .aggregate = .{ .ty = result_ty.toIntern(), .storage = .{ .elems = element_vals }, } })).toValue(), ptr_addrspace != null); } else break :rs rhs_src; } else lhs_src; try sema.requireRuntimeBlock(block, src, runtime_src); if (ptr_addrspace) |ptr_as| { const alloc_ty = try mod.ptrType(.{ .child = result_ty.toIntern(), .flags = .{ .address_space = ptr_as }, }); const alloc = try block.addTy(.alloc, alloc_ty); const elem_ptr_ty = try mod.ptrType(.{ .child = resolved_elem_ty.toIntern(), .flags = .{ .address_space = ptr_as }, }); var elem_i: usize = 0; while (elem_i < lhs_len) : (elem_i += 1) { const elem_index = try mod.intRef(Type.usize, elem_i); const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty); const init = try sema.elemVal(block, lhs_src, lhs, elem_index, src, true); try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store); } while (elem_i < result_len) : (elem_i += 1) { const elem_index = try mod.intRef(Type.usize, elem_i); const rhs_index = try mod.intRef(Type.usize, elem_i - lhs_len); const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty); const init = try sema.elemVal(block, rhs_src, rhs, rhs_index, src, true); try sema.storePtr2(block, src, elem_ptr, src, init, rhs_src, .store); } if (res_sent_val) |sent_val| { const elem_index = try mod.intRef(Type.usize, result_len); const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty); const init = Air.internedToRef((try mod.getCoerced(sent_val, lhs_info.elem_type)).toIntern()); try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store); } return alloc; } const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len); { var elem_i: usize = 0; while (elem_i < lhs_len) : (elem_i += 1) { const index = try mod.intRef(Type.usize, elem_i); const init = try sema.elemVal(block, lhs_src, lhs, index, src, true); element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, lhs_src); } while (elem_i < result_len) : (elem_i += 1) { const index = try mod.intRef(Type.usize, elem_i - lhs_len); const init = try sema.elemVal(block, rhs_src, rhs, index, src, true); element_refs[elem_i] = try sema.coerce(block, resolved_elem_ty, init, rhs_src); } } return block.addAggregateInit(result_ty, element_refs); } fn getArrayCatInfo(sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, peer_ty: Type) !?Type.ArrayInfo { const mod = sema.mod; const operand_ty = sema.typeOf(operand); switch (operand_ty.zigTypeTag(mod)) { .Array => return operand_ty.arrayInfo(mod), .Pointer => { const ptr_info = operand_ty.ptrInfo(mod); switch (ptr_info.flags.size) { // TODO: in the Many case here this should only work if the type // has a sentinel, and this code should compute the length based // on the sentinel value. .Slice, .Many => { const val = try sema.resolveConstValue(block, src, operand, "slice value being concatenated must be comptime-known"); return Type.ArrayInfo{ .elem_type = ptr_info.child.toType(), .sentinel = switch (ptr_info.sentinel) { .none => null, else => ptr_info.sentinel.toValue(), }, .len = val.sliceLen(mod), }; }, .One => { if (ptr_info.child.toType().zigTypeTag(mod) == .Array) { return ptr_info.child.toType().arrayInfo(mod); } }, .C => {}, } }, .Struct => { if (operand_ty.isTuple(mod) and peer_ty.isIndexable(mod)) { assert(!peer_ty.isTuple(mod)); return .{ .elem_type = peer_ty.elemType2(mod), .sentinel = null, .len = operand_ty.arrayLen(mod), }; } }, else => {}, } return null; } fn analyzeTupleMul( sema: *Sema, block: *Block, src_node: i32, operand: Air.Inst.Ref, factor: usize, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); const src = LazySrcLoc.nodeOffset(src_node); const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = src_node }; const tuple_len = operand_ty.structFieldCount(mod); const final_len = std.math.mul(usize, tuple_len, factor) catch return sema.fail(block, rhs_src, "operation results in overflow", .{}); if (final_len == 0) { return Air.internedToRef(Value.empty_struct.toIntern()); } const types = try sema.arena.alloc(InternPool.Index, final_len); const values = try sema.arena.alloc(InternPool.Index, final_len); const opt_runtime_src = rs: { var runtime_src: ?LazySrcLoc = null; for (0..tuple_len) |i| { types[i] = operand_ty.structFieldType(i, mod).toIntern(); values[i] = operand_ty.structFieldDefaultValue(i, mod).toIntern(); const operand_src = lhs_src; // TODO better source location if (values[i] == .unreachable_value) { runtime_src = operand_src; values[i] = .none; // TODO don't treat unreachable_value as special } } for (0..factor) |i| { mem.copyForwards(InternPool.Index, types[tuple_len * i ..], types[0..tuple_len]); mem.copyForwards(InternPool.Index, values[tuple_len * i ..], values[0..tuple_len]); } break :rs runtime_src; }; const tuple_ty = try mod.intern(.{ .anon_struct_type = .{ .types = types, .values = values, .names = &.{}, } }); const runtime_src = opt_runtime_src orelse { const tuple_val = try mod.intern(.{ .aggregate = .{ .ty = tuple_ty, .storage = .{ .elems = values }, } }); return Air.internedToRef(tuple_val); }; try sema.requireRuntimeBlock(block, src, runtime_src); const element_refs = try sema.arena.alloc(Air.Inst.Ref, final_len); var i: u32 = 0; while (i < tuple_len) : (i += 1) { const operand_src = lhs_src; // TODO better source location element_refs[i] = try sema.tupleFieldValByIndex(block, operand_src, operand, @as(u32, @intCast(i)), operand_ty); } i = 1; while (i < factor) : (i += 1) { @memcpy(element_refs[tuple_len * i ..][0..tuple_len], element_refs[0..tuple_len]); } return block.addAggregateInit(tuple_ty.toType(), element_refs); } fn zirArrayMul(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const lhs_ty = sema.typeOf(lhs); const src: LazySrcLoc = inst_data.src(); const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const operator_src: LazySrcLoc = .{ .node_offset_main_token = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; if (lhs_ty.isTuple(mod)) { // In `**` rhs must be comptime-known, but lhs can be runtime-known const factor = try sema.resolveInt(block, rhs_src, extra.rhs, Type.usize, "array multiplication factor must be comptime-known"); const factor_casted = try sema.usizeCast(block, rhs_src, factor); return sema.analyzeTupleMul(block, inst_data.src_node, lhs, factor_casted); } // Analyze the lhs first, to catch the case that someone tried to do exponentiation const lhs_info = try sema.getArrayCatInfo(block, lhs_src, lhs, lhs_ty) orelse { const msg = msg: { const msg = try sema.errMsg(block, lhs_src, "expected indexable; found '{}'", .{lhs_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); switch (lhs_ty.zigTypeTag(mod)) { .Int, .Float, .ComptimeFloat, .ComptimeInt, .Vector => { try sema.errNote(block, operator_src, msg, "this operator multiplies arrays; use std.math.pow for exponentiation", .{}); }, else => {}, } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; // In `**` rhs must be comptime-known, but lhs can be runtime-known const factor = try sema.resolveInt(block, rhs_src, extra.rhs, Type.usize, "array multiplication factor must be comptime-known"); const result_len_u64 = std.math.mul(u64, lhs_info.len, factor) catch return sema.fail(block, rhs_src, "operation results in overflow", .{}); const result_len = try sema.usizeCast(block, src, result_len_u64); const result_ty = try mod.arrayType(.{ .len = result_len, .sentinel = if (lhs_info.sentinel) |s| s.toIntern() else .none, .child = lhs_info.elem_type.toIntern(), }); const ptr_addrspace = if (lhs_ty.zigTypeTag(mod) == .Pointer) lhs_ty.ptrAddressSpace(mod) else null; const lhs_len = try sema.usizeCast(block, lhs_src, lhs_info.len); if (try sema.resolveDefinedValue(block, lhs_src, lhs)) |lhs_val| { const lhs_sub_val = if (lhs_ty.isSinglePointer(mod)) (try sema.pointerDeref(block, lhs_src, lhs_val, lhs_ty)).? else lhs_val; const val = v: { // Optimization for the common pattern of a single element repeated N times, such // as zero-filling a byte array. if (lhs_len == 1 and lhs_info.sentinel == null) { const elem_val = try lhs_sub_val.elemValue(mod, 0); break :v try mod.intern(.{ .aggregate = .{ .ty = result_ty.toIntern(), .storage = .{ .repeated_elem = elem_val.toIntern() }, } }); } const element_vals = try sema.arena.alloc(InternPool.Index, result_len); var elem_i: usize = 0; while (elem_i < result_len) { var lhs_i: usize = 0; while (lhs_i < lhs_len) : (lhs_i += 1) { const elem_val = try lhs_sub_val.elemValue(mod, lhs_i); element_vals[elem_i] = elem_val.toIntern(); elem_i += 1; } } break :v try mod.intern(.{ .aggregate = .{ .ty = result_ty.toIntern(), .storage = .{ .elems = element_vals }, } }); }; return sema.addConstantMaybeRef(block, result_ty, val.toValue(), ptr_addrspace != null); } try sema.requireRuntimeBlock(block, src, lhs_src); if (ptr_addrspace) |ptr_as| { const alloc_ty = try mod.ptrType(.{ .child = result_ty.toIntern(), .flags = .{ .address_space = ptr_as }, }); const alloc = try block.addTy(.alloc, alloc_ty); const elem_ptr_ty = try mod.ptrType(.{ .child = lhs_info.elem_type.toIntern(), .flags = .{ .address_space = ptr_as }, }); var elem_i: usize = 0; while (elem_i < result_len) { var lhs_i: usize = 0; while (lhs_i < lhs_len) : (lhs_i += 1) { const elem_index = try mod.intRef(Type.usize, elem_i); elem_i += 1; const lhs_index = try mod.intRef(Type.usize, lhs_i); const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty); const init = try sema.elemVal(block, lhs_src, lhs, lhs_index, src, true); try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store); } } if (lhs_info.sentinel) |sent_val| { const elem_index = try mod.intRef(Type.usize, result_len); const elem_ptr = try block.addPtrElemPtr(alloc, elem_index, elem_ptr_ty); const init = Air.internedToRef(sent_val.toIntern()); try sema.storePtr2(block, src, elem_ptr, src, init, lhs_src, .store); } return alloc; } const element_refs = try sema.arena.alloc(Air.Inst.Ref, result_len); var elem_i: usize = 0; while (elem_i < result_len) { var lhs_i: usize = 0; while (lhs_i < lhs_len) : (lhs_i += 1) { const lhs_index = try mod.intRef(Type.usize, lhs_i); const init = try sema.elemVal(block, lhs_src, lhs, lhs_index, src, true); element_refs[elem_i] = init; elem_i += 1; } } return block.addAggregateInit(result_ty, element_refs); } fn zirNegate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const lhs_src = src; const rhs_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node }; const rhs = try sema.resolveInst(inst_data.operand); const rhs_ty = sema.typeOf(rhs); const rhs_scalar_ty = rhs_ty.scalarType(mod); if (rhs_scalar_ty.isUnsignedInt(mod) or switch (rhs_scalar_ty.zigTypeTag(mod)) { .Int, .ComptimeInt, .Float, .ComptimeFloat => false, else => true, }) { return sema.fail(block, src, "negation of type '{}'", .{rhs_ty.fmt(mod)}); } if (rhs_scalar_ty.isAnyFloat()) { // We handle float negation here to ensure negative zero is represented in the bits. if (try sema.resolveMaybeUndefVal(rhs)) |rhs_val| { if (rhs_val.isUndef(mod)) return mod.undefRef(rhs_ty); return Air.internedToRef((try rhs_val.floatNeg(rhs_ty, sema.arena, mod)).toIntern()); } try sema.requireRuntimeBlock(block, src, null); return block.addUnOp(if (block.float_mode == .Optimized) .neg_optimized else .neg, rhs); } const lhs = Air.internedToRef((try sema.splat(rhs_ty, try mod.intValue(rhs_scalar_ty, 0))).toIntern()); return sema.analyzeArithmetic(block, .sub, lhs, rhs, src, lhs_src, rhs_src, true); } fn zirNegateWrap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const lhs_src = src; const rhs_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node }; const rhs = try sema.resolveInst(inst_data.operand); const rhs_ty = sema.typeOf(rhs); const rhs_scalar_ty = rhs_ty.scalarType(mod); switch (rhs_scalar_ty.zigTypeTag(mod)) { .Int, .ComptimeInt, .Float, .ComptimeFloat => {}, else => return sema.fail(block, src, "negation of type '{}'", .{rhs_ty.fmt(mod)}), } const lhs = Air.internedToRef((try sema.splat(rhs_ty, try mod.intValue(rhs_scalar_ty, 0))).toIntern()); return sema.analyzeArithmetic(block, .subwrap, lhs, rhs, src, lhs_src, rhs_src, true); } fn zirArithmetic( sema: *Sema, block: *Block, inst: Zir.Inst.Index, zir_tag: Zir.Inst.Tag, safety: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; sema.src = .{ .node_offset_bin_op = inst_data.src_node }; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); return sema.analyzeArithmetic(block, zir_tag, lhs, rhs, sema.src, lhs_src, rhs_src, safety); } fn zirDiv(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const lhs_scalar_ty = lhs_ty.scalarType(mod); const rhs_scalar_ty = rhs_ty.scalarType(mod); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); if ((lhs_ty.zigTypeTag(mod) == .ComptimeFloat and rhs_ty.zigTypeTag(mod) == .ComptimeInt) or (lhs_ty.zigTypeTag(mod) == .ComptimeInt and rhs_ty.zigTypeTag(mod) == .ComptimeFloat)) { // If it makes a difference whether we coerce to ints or floats before doing the division, error. // If lhs % rhs is 0, it doesn't matter. const lhs_val = maybe_lhs_val orelse unreachable; const rhs_val = maybe_rhs_val orelse unreachable; const rem = lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod) catch unreachable; if (!rem.compareAllWithZero(.eq, mod)) { return sema.fail( block, src, "ambiguous coercion of division operands '{}' and '{}'; non-zero remainder '{}'", .{ lhs_ty.fmt(mod), rhs_ty.fmt(mod), rem.fmtValue(resolved_type, mod) }, ); } } // TODO: emit compile error when .div is used on integers and there would be an // ambiguous result between div_floor and div_trunc. // For integers: // If the lhs is zero, then zero is returned regardless of rhs. // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined: // * if lhs type is signed: // * if rhs is comptime-known and not -1, result is undefined // * if rhs is -1 or runtime-known, compile error because there is a // possible value (-min_int / -1) for which division would be // illegal behavior. // * if lhs type is unsigned, undef is returned regardless of rhs. // // For floats: // If the rhs is zero: // * comptime_float: compile error for division by zero. // * other float type: // * if the lhs is zero: QNaN // * otherwise: +Inf or -Inf depending on lhs sign // If the rhs is undefined: // * comptime_float: compile error because there is a possible // value (zero) for which the division would be illegal behavior. // * other float type: result is undefined // If the lhs is undefined, result is undefined. switch (scalar_tag) { .Int, .ComptimeInt, .ComptimeFloat => { if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } // TODO: if the RHS is one, return the LHS directly } }, else => {}, } const runtime_src = rs: { if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) { if (maybe_rhs_val) |rhs_val| { if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) { return mod.undefRef(resolved_type); } } return sema.failWithUseOfUndef(block, rhs_src); } return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { if (is_int) { var overflow_idx: ?usize = null; const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx); } return Air.internedToRef(res.toIntern()); } else { return Air.internedToRef((try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else { break :rs rhs_src; } } else { break :rs lhs_src; } }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int); try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } const air_tag = if (is_int) blk: { if (lhs_ty.isSignedInt(mod) or rhs_ty.isSignedInt(mod)) { return sema.fail( block, src, "division with '{}' and '{}': signed integers must use @divTrunc, @divFloor, or @divExact", .{ lhs_ty.fmt(mod), rhs_ty.fmt(mod) }, ); } break :blk Air.Inst.Tag.div_trunc; } else switch (block.float_mode) { .Optimized => Air.Inst.Tag.div_float_optimized, .Strict => Air.Inst.Tag.div_float, }; return block.addBinOp(air_tag, casted_lhs, casted_rhs); } fn zirDivExact(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const lhs_scalar_ty = lhs_ty.scalarType(mod); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_exact); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // If the lhs is zero, then zero is returned regardless of rhs. // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, compile error because there is a possible // value for which the division would result in a remainder. // TODO: emit runtime safety for if there is a remainder // TODO: emit runtime safety for division by zero // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, compile error because there is a possible // value for which the division would result in a remainder. if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } else { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } // TODO: if the RHS is one, return the LHS directly } if (maybe_lhs_val) |lhs_val| { if (maybe_rhs_val) |rhs_val| { if (is_int) { const modulus_val = try lhs_val.intMod(rhs_val, resolved_type, sema.arena, mod); if (!(modulus_val.compareAllWithZero(.eq, mod))) { return sema.fail(block, src, "exact division produced remainder", .{}); } var overflow_idx: ?usize = null; const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx); } return Air.internedToRef(res.toIntern()); } else { const modulus_val = try lhs_val.floatMod(rhs_val, resolved_type, sema.arena, mod); if (!(modulus_val.compareAllWithZero(.eq, mod))) { return sema.fail(block, src, "exact division produced remainder", .{}); } return Air.internedToRef((try lhs_val.floatDiv(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs rhs_src; } else break :rs lhs_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); // Depending on whether safety is enabled, we will have a slightly different strategy // here. The `div_exact` AIR instruction causes undefined behavior if a remainder // is produced, so in the safety check case, it cannot be used. Instead we do a // div_trunc and check for remainder. if (block.wantSafety()) { try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int); try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); const result = try block.addBinOp(.div_trunc, casted_lhs, casted_rhs); const ok = if (!is_int) ok: { const floored = try block.addUnOp(.floor, result); if (resolved_type.zigTypeTag(mod) == .Vector) { const eql = try block.addCmpVector(result, floored, .eq); break :ok try block.addInst(.{ .tag = switch (block.float_mode) { .Strict => .reduce, .Optimized => .reduce_optimized, }, .data = .{ .reduce = .{ .operand = eql, .operation = .And, } }, }); } else { const is_in_range = try block.addBinOp(switch (block.float_mode) { .Strict => .cmp_eq, .Optimized => .cmp_eq_optimized, }, result, floored); break :ok is_in_range; } } else ok: { const remainder = try block.addBinOp(.rem, casted_lhs, casted_rhs); const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; if (resolved_type.zigTypeTag(mod) == .Vector) { const zero_val = try sema.splat(resolved_type, scalar_zero); const zero = Air.internedToRef(zero_val.toIntern()); const eql = try block.addCmpVector(remainder, zero, .eq); break :ok try block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = eql, .operation = .And, } }, }); } else { const zero = Air.internedToRef(scalar_zero.toIntern()); const is_in_range = try block.addBinOp(.cmp_eq, remainder, zero); break :ok is_in_range; } }; try sema.addSafetyCheck(block, src, ok, .exact_division_remainder); return result; } return block.addBinOp(airTag(block, is_int, .div_exact, .div_exact_optimized), casted_lhs, casted_rhs); } fn zirDivFloor(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const lhs_scalar_ty = lhs_ty.scalarType(mod); const rhs_scalar_ty = rhs_ty.scalarType(mod); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_floor); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // If the lhs is zero, then zero is returned regardless of rhs. // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined: // * if lhs type is signed: // * if rhs is comptime-known and not -1, result is undefined // * if rhs is -1 or runtime-known, compile error because there is a // possible value (-min_int / -1) for which division would be // illegal behavior. // * if lhs type is unsigned, undef is returned regardless of rhs. // TODO: emit runtime safety for division by zero // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, result is undefined. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } // TODO: if the RHS is one, return the LHS directly } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) { if (maybe_rhs_val) |rhs_val| { if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) { return mod.undefRef(resolved_type); } } return sema.failWithUseOfUndef(block, rhs_src); } return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { if (is_int) { return Air.internedToRef((try lhs_val.intDivFloor(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } else { return Air.internedToRef((try lhs_val.floatDivFloor(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs rhs_src; } else break :rs lhs_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int); try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } return block.addBinOp(airTag(block, is_int, .div_floor, .div_floor_optimized), casted_lhs, casted_rhs); } fn zirDivTrunc(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const lhs_scalar_ty = lhs_ty.scalarType(mod); const rhs_scalar_ty = rhs_ty.scalarType(mod); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .div_trunc); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // If the lhs is zero, then zero is returned regardless of rhs. // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined: // * if lhs type is signed: // * if rhs is comptime-known and not -1, result is undefined // * if rhs is -1 or runtime-known, compile error because there is a // possible value (-min_int / -1) for which division would be // illegal behavior. // * if lhs type is unsigned, undef is returned regardless of rhs. // TODO: emit runtime safety for division by zero // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, result is undefined. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (lhs_scalar_ty.isSignedInt(mod) and rhs_scalar_ty.isSignedInt(mod)) { if (maybe_rhs_val) |rhs_val| { if (try sema.compareAll(rhs_val, .neq, try mod.intValue(resolved_type, -1), resolved_type)) { return mod.undefRef(resolved_type); } } return sema.failWithUseOfUndef(block, rhs_src); } return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { if (is_int) { var overflow_idx: ?usize = null; const res = try lhs_val.intDiv(rhs_val, resolved_type, &overflow_idx, sema.arena, mod); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, res, vec_idx); } return Air.internedToRef(res.toIntern()); } else { return Air.internedToRef((try lhs_val.floatDivTrunc(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs rhs_src; } else break :rs lhs_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivIntOverflowSafety(block, src, resolved_type, lhs_scalar_ty, maybe_lhs_val, maybe_rhs_val, casted_lhs, casted_rhs, is_int); try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } return block.addBinOp(airTag(block, is_int, .div_trunc, .div_trunc_optimized), casted_lhs, casted_rhs); } fn addDivIntOverflowSafety( sema: *Sema, block: *Block, src: LazySrcLoc, resolved_type: Type, lhs_scalar_ty: Type, maybe_lhs_val: ?Value, maybe_rhs_val: ?Value, casted_lhs: Air.Inst.Ref, casted_rhs: Air.Inst.Ref, is_int: bool, ) CompileError!void { const mod = sema.mod; if (!is_int) return; // If the LHS is unsigned, it cannot cause overflow. if (!lhs_scalar_ty.isSignedInt(mod)) return; // If the LHS is widened to a larger integer type, no overflow is possible. if (lhs_scalar_ty.intInfo(mod).bits < resolved_type.intInfo(mod).bits) { return; } const min_int = try resolved_type.minInt(mod, resolved_type); const neg_one_scalar = try mod.intValue(lhs_scalar_ty, -1); const neg_one = try sema.splat(resolved_type, neg_one_scalar); // If the LHS is comptime-known to be not equal to the min int, // no overflow is possible. if (maybe_lhs_val) |lhs_val| { if (try lhs_val.compareAll(.neq, min_int, resolved_type, mod)) return; } // If the RHS is comptime-known to not be equal to -1, no overflow is possible. if (maybe_rhs_val) |rhs_val| { if (try rhs_val.compareAll(.neq, neg_one, resolved_type, mod)) return; } var ok: Air.Inst.Ref = .none; if (resolved_type.zigTypeTag(mod) == .Vector) { if (maybe_lhs_val == null) { const min_int_ref = Air.internedToRef(min_int.toIntern()); ok = try block.addCmpVector(casted_lhs, min_int_ref, .neq); } if (maybe_rhs_val == null) { const neg_one_ref = Air.internedToRef(neg_one.toIntern()); const rhs_ok = try block.addCmpVector(casted_rhs, neg_one_ref, .neq); if (ok == .none) { ok = rhs_ok; } else { ok = try block.addBinOp(.bool_or, ok, rhs_ok); } } assert(ok != .none); ok = try block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = ok, .operation = .And, } }, }); } else { if (maybe_lhs_val == null) { const min_int_ref = Air.internedToRef(min_int.toIntern()); ok = try block.addBinOp(.cmp_neq, casted_lhs, min_int_ref); } if (maybe_rhs_val == null) { const neg_one_ref = Air.internedToRef(neg_one.toIntern()); const rhs_ok = try block.addBinOp(.cmp_neq, casted_rhs, neg_one_ref); if (ok == .none) { ok = rhs_ok; } else { ok = try block.addBinOp(.bool_or, ok, rhs_ok); } } assert(ok != .none); } try sema.addSafetyCheck(block, src, ok, .integer_overflow); } fn addDivByZeroSafety( sema: *Sema, block: *Block, src: LazySrcLoc, resolved_type: Type, maybe_rhs_val: ?Value, casted_rhs: Air.Inst.Ref, is_int: bool, ) CompileError!void { // Strict IEEE floats have well-defined division by zero. if (!is_int and block.float_mode == .Strict) return; // If rhs was comptime-known to be zero a compile error would have been // emitted above. if (maybe_rhs_val != null) return; const mod = sema.mod; const scalar_zero = if (is_int) try mod.intValue(resolved_type.scalarType(mod), 0) else try mod.floatValue(resolved_type.scalarType(mod), 0.0); const ok = if (resolved_type.zigTypeTag(mod) == .Vector) ok: { const zero_val = try sema.splat(resolved_type, scalar_zero); const zero = Air.internedToRef(zero_val.toIntern()); const ok = try block.addCmpVector(casted_rhs, zero, .neq); break :ok try block.addInst(.{ .tag = if (is_int) .reduce else .reduce_optimized, .data = .{ .reduce = .{ .operand = ok, .operation = .And, } }, }); } else ok: { const zero = Air.internedToRef(scalar_zero.toIntern()); break :ok try block.addBinOp(if (is_int) .cmp_neq else .cmp_neq_optimized, casted_rhs, zero); }; try sema.addSafetyCheck(block, src, ok, .divide_by_zero); } fn airTag(block: *Block, is_int: bool, normal: Air.Inst.Tag, optimized: Air.Inst.Tag) Air.Inst.Tag { if (is_int) return normal; return switch (block.float_mode) { .Strict => normal, .Optimized => optimized, }; } fn zirModRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const is_vector = resolved_type.zigTypeTag(mod) == .Vector; const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const lhs_scalar_ty = lhs_ty.scalarType(mod); const rhs_scalar_ty = rhs_ty.scalarType(mod); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod_rem); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // Either operand being undef is a compile error because there exists // a possible value (TODO what is it?) that would invoke illegal behavior. // TODO: can lhs undef be handled better? // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, result is undefined. // // For either one: if the result would be different between @mod and @rem, // then emit a compile error saying you have to pick one. if (is_int) { if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, lhs_src); } if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(resolved_type.scalarType(mod), 0.0), .ComptimeInt, .Int => try mod.intValue(resolved_type.scalarType(mod), 0), else => unreachable, }; const zero_val = if (is_vector) (try mod.intern(.{ .aggregate = .{ .ty = resolved_type.toIntern(), .storage = .{ .repeated_elem = scalar_zero.toIntern() }, } })).toValue() else scalar_zero; return Air.internedToRef(zero_val.toIntern()); } } else if (lhs_scalar_ty.isSignedInt(mod)) { return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty); } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.gte, sema))) { return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty); } if (maybe_lhs_val) |lhs_val| { const rem_result = try sema.intRem(resolved_type, lhs_val, rhs_val); // If this answer could possibly be different by doing `intMod`, // we must emit a compile error. Otherwise, it's OK. if (!(try lhs_val.compareAllWithZeroAdvanced(.gte, sema)) and !(try rem_result.compareAllWithZeroAdvanced(.eq, sema))) { return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty); } return Air.internedToRef(rem_result.toIntern()); } break :rs lhs_src; } else if (rhs_scalar_ty.isSignedInt(mod)) { return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty); } else { break :rs rhs_src; } } // float operands if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.gte, sema))) { return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty); } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod) or !(try lhs_val.compareAllWithZeroAdvanced(.gte, sema))) { return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty); } return Air.internedToRef((try lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } else { return sema.failWithModRemNegative(block, lhs_src, lhs_ty, rhs_ty); } } else { return sema.failWithModRemNegative(block, rhs_src, lhs_ty, rhs_ty); } }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } const air_tag = airTag(block, is_int, .rem, .rem_optimized); return block.addBinOp(air_tag, casted_lhs, casted_rhs); } fn intRem( sema: *Sema, ty: Type, lhs: Value, rhs: Value, ) CompileError!Value { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod)); const scalar_ty = ty.scalarType(mod); for (result_data, 0..) |*scalar, i| { const lhs_elem = try lhs.elemValue(mod, i); const rhs_elem = try rhs.elemValue(mod, i); scalar.* = try (try sema.intRemScalar(lhs_elem, rhs_elem, scalar_ty)).intern(scalar_ty, mod); } return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(); } return sema.intRemScalar(lhs, rhs, ty); } fn intRemScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) CompileError!Value { const mod = sema.mod; // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema); const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema); const limbs_q = try sema.arena.alloc( math.big.Limb, lhs_bigint.limbs.len, ); const limbs_r = try sema.arena.alloc( math.big.Limb, // TODO: consider reworking Sema to re-use Values rather than // always producing new Value objects. rhs_bigint.limbs.len, ); const limbs_buffer = try sema.arena.alloc( math.big.Limb, math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len), ); var result_q = math.big.int.Mutable{ .limbs = limbs_q, .positive = undefined, .len = undefined }; var result_r = math.big.int.Mutable{ .limbs = limbs_r, .positive = undefined, .len = undefined }; result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer); return mod.intValue_big(scalar_ty, result_r.toConst()); } fn zirMod(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .mod); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // Either operand being undef is a compile error because there exists // a possible value (TODO what is it?) that would invoke illegal behavior. // TODO: can lhs zero be handled better? // TODO: can lhs undef be handled better? // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, result is undefined. if (is_int) { if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, lhs_src); } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } if (maybe_lhs_val) |lhs_val| { return Air.internedToRef((try lhs_val.intMod(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } break :rs lhs_src; } else { break :rs rhs_src; } } // float operands if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { return Air.internedToRef((try lhs_val.floatMod(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } else break :rs rhs_src; } else break :rs lhs_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } const air_tag = airTag(block, is_int, .mod, .mod_optimized); return block.addBinOp(air_tag, casted_lhs, casted_rhs); } fn zirRem(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); try sema.checkInvalidPtrArithmetic(block, src, lhs_ty); const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const scalar_tag = resolved_type.scalarType(mod).zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, .rem); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const runtime_src = rs: { // For integers: // Either operand being undef is a compile error because there exists // a possible value (TODO what is it?) that would invoke illegal behavior. // TODO: can lhs zero be handled better? // TODO: can lhs undef be handled better? // // For floats: // If the rhs is zero, compile error for division by zero. // If the rhs is undefined, compile error because there is a possible // value (zero) for which the division would be illegal behavior. // If the lhs is undefined, result is undefined. if (is_int) { if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, lhs_src); } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } if (maybe_lhs_val) |lhs_val| { return Air.internedToRef((try sema.intRem(resolved_type, lhs_val, rhs_val)).toIntern()); } break :rs lhs_src; } else { break :rs rhs_src; } } // float operands if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, rhs_src); } if (!(try rhs_val.compareAllWithZeroAdvanced(.neq, sema))) { return sema.failWithDivideByZero(block, rhs_src); } } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { return Air.internedToRef((try lhs_val.floatRem(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } else break :rs rhs_src; } else break :rs lhs_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); if (block.wantSafety()) { try sema.addDivByZeroSafety(block, src, resolved_type, maybe_rhs_val, casted_rhs, is_int); } const air_tag = airTag(block, is_int, .rem, .rem_optimized); return block.addBinOp(air_tag, casted_lhs, casted_rhs); } fn zirOverflowArithmetic( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, zir_tag: Zir.Inst.Extended, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const uncasted_lhs = try sema.resolveInst(extra.lhs); const uncasted_rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(uncasted_lhs); const rhs_ty = sema.typeOf(uncasted_rhs); const mod = sema.mod; try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); const instructions = &[_]Air.Inst.Ref{ uncasted_lhs, uncasted_rhs }; const dest_ty = if (zir_tag == .shl_with_overflow) lhs_ty else try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const rhs_dest_ty = if (zir_tag == .shl_with_overflow) try sema.log2IntType(block, lhs_ty, src) else dest_ty; const lhs = try sema.coerce(block, dest_ty, uncasted_lhs, lhs_src); const rhs = try sema.coerce(block, rhs_dest_ty, uncasted_rhs, rhs_src); if (dest_ty.scalarType(mod).zigTypeTag(mod) != .Int) { return sema.fail(block, src, "expected vector of integers or integer tag type, found '{}'", .{dest_ty.fmt(mod)}); } const maybe_lhs_val = try sema.resolveMaybeUndefVal(lhs); const maybe_rhs_val = try sema.resolveMaybeUndefVal(rhs); const tuple_ty = try sema.overflowArithmeticTupleType(dest_ty); const overflow_ty = mod.intern_pool.indexToKey(tuple_ty.toIntern()).anon_struct_type.types[1].toType(); var result: struct { inst: Air.Inst.Ref = .none, wrapped: Value = Value.@"unreachable", overflow_bit: Value, } = result: { const zero_bit = try mod.intValue(Type.u1, 0); switch (zir_tag) { .add_with_overflow => { // If either of the arguments is zero, `false` is returned and the other is stored // to the result, even if it is undefined.. // Otherwise, if either of the argument is undefined, undefined is returned. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs }; } } if (maybe_rhs_val) |rhs_val| { if (!rhs_val.isUndef(mod) and (try rhs_val.compareAllWithZeroAdvanced(.eq, sema))) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } } if (maybe_lhs_val) |lhs_val| { if (maybe_rhs_val) |rhs_val| { if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) { break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef }; } const result = try sema.intAddWithOverflow(lhs_val, rhs_val, dest_ty); break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result }; } } }, .sub_with_overflow => { // If the rhs is zero, then the result is lhs and no overflow occured. // Otherwise, if either result is undefined, both results are undefined. if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef }; } else if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } else if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef }; } const result = try sema.intSubWithOverflow(lhs_val, rhs_val, dest_ty); break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result }; } } }, .mul_with_overflow => { // If either of the arguments is zero, the result is zero and no overflow occured. // If either of the arguments is one, the result is the other and no overflow occured. // Otherwise, if either of the arguments is undefined, both results are undefined. const scalar_one = try mod.intValue(dest_ty.scalarType(mod), 1); if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } else if (try sema.compareAll(lhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs }; } } } if (maybe_rhs_val) |rhs_val| { if (!rhs_val.isUndef(mod)) { if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = rhs }; } else if (try sema.compareAll(rhs_val, .eq, try sema.splat(dest_ty, scalar_one), dest_ty)) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } } } if (maybe_lhs_val) |lhs_val| { if (maybe_rhs_val) |rhs_val| { if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) { break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef }; } const result = try lhs_val.intMulWithOverflow(rhs_val, dest_ty, sema.arena, mod); break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result }; } } }, .shl_with_overflow => { // If lhs is zero, the result is zero and no overflow occurred. // If rhs is zero, the result is lhs (even if undefined) and no overflow occurred. // Oterhwise if either of the arguments is undefined, both results are undefined. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } } if (maybe_rhs_val) |rhs_val| { if (!rhs_val.isUndef(mod) and (try rhs_val.compareAllWithZeroAdvanced(.eq, sema))) { break :result .{ .overflow_bit = try sema.splat(overflow_ty, zero_bit), .inst = lhs }; } } if (maybe_lhs_val) |lhs_val| { if (maybe_rhs_val) |rhs_val| { if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) { break :result .{ .overflow_bit = Value.undef, .wrapped = Value.undef }; } const result = try lhs_val.shlWithOverflow(rhs_val, dest_ty, sema.arena, mod); break :result .{ .overflow_bit = result.overflow_bit, .wrapped = result.wrapped_result }; } } }, else => unreachable, } const air_tag: Air.Inst.Tag = switch (zir_tag) { .add_with_overflow => .add_with_overflow, .mul_with_overflow => .mul_with_overflow, .sub_with_overflow => .sub_with_overflow, .shl_with_overflow => .shl_with_overflow, else => unreachable, }; const runtime_src = if (maybe_lhs_val == null) lhs_src else rhs_src; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addInst(.{ .tag = air_tag, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(tuple_ty.toIntern()), .payload = try block.sema.addExtra(Air.Bin{ .lhs = lhs, .rhs = rhs, }), } }, }); }; if (result.inst != .none) { if (try sema.resolveMaybeUndefVal(result.inst)) |some| { result.wrapped = some; result.inst = .none; } } if (result.inst == .none) { return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = tuple_ty.toIntern(), .storage = .{ .elems = &.{ result.wrapped.toIntern(), result.overflow_bit.toIntern(), } }, } }))); } const element_refs = try sema.arena.alloc(Air.Inst.Ref, 2); element_refs[0] = result.inst; element_refs[1] = Air.internedToRef(result.overflow_bit.toIntern()); return block.addAggregateInit(tuple_ty, element_refs); } fn splat(sema: *Sema, ty: Type, val: Value) !Value { const mod = sema.mod; if (ty.zigTypeTag(mod) != .Vector) return val; const repeated = try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .repeated_elem = val.toIntern() }, } }); return repeated.toValue(); } fn overflowArithmeticTupleType(sema: *Sema, ty: Type) !Type { const mod = sema.mod; const ov_ty = if (ty.zigTypeTag(mod) == .Vector) try mod.vectorType(.{ .len = ty.vectorLen(mod), .child = .u1_type, }) else Type.u1; const types = [2]InternPool.Index{ ty.toIntern(), ov_ty.toIntern() }; const values = [2]InternPool.Index{ .none, .none }; const tuple_ty = try mod.intern(.{ .anon_struct_type = .{ .types = &types, .values = &values, .names = &.{}, } }); return tuple_ty.toType(); } fn analyzeArithmetic( sema: *Sema, block: *Block, /// TODO performance investigation: make this comptime? zir_tag: Zir.Inst.Tag, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, src: LazySrcLoc, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, want_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); if (lhs_zig_ty_tag == .Pointer) switch (lhs_ty.ptrSize(mod)) { .One, .Slice => {}, .Many, .C => { const air_tag: Air.Inst.Tag = switch (zir_tag) { .add => .ptr_add, .sub => .ptr_sub, else => return sema.fail(block, src, "invalid pointer arithmetic operator", .{}), }; return sema.analyzePtrArithmetic(block, src, lhs, rhs, air_tag, lhs_src, rhs_src); }, }; const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); const scalar_type = resolved_type.scalarType(mod); const scalar_tag = scalar_type.zigTypeTag(mod); const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; try sema.checkArithmeticOp(block, src, scalar_tag, lhs_zig_ty_tag, rhs_zig_ty_tag, zir_tag); const maybe_lhs_val = try sema.resolveMaybeUndefValIntable(casted_lhs); const maybe_rhs_val = try sema.resolveMaybeUndefValIntable(casted_rhs); const rs: struct { src: LazySrcLoc, air_tag: Air.Inst.Tag, air_tag_safe: Air.Inst.Tag, } = rs: { switch (zir_tag) { .add, .add_unsafe => { // For integers:intAddSat // If either of the operands are zero, then the other operand is // returned, even if it is undefined. // If either of the operands are undefined, it's a compile error // because there is a possible value for which the addition would // overflow (max_int), causing illegal behavior. // For floats: either operand being undef makes the result undef. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) { return casted_rhs; } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, rhs_src); } else { return mod.undefRef(resolved_type); } } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } } const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .add_optimized else .add; if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, lhs_src); } else { return mod.undefRef(resolved_type); } } if (maybe_rhs_val) |rhs_val| { if (is_int) { var overflow_idx: ?usize = null; const sum = try sema.intAdd(lhs_val, rhs_val, resolved_type, &overflow_idx); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, sum, vec_idx); } return Air.internedToRef(sum.toIntern()); } else { return Air.internedToRef((try Value.floatAdd(lhs_val, rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs .{ .src = rhs_src, .air_tag = air_tag, .air_tag_safe = .add_safe }; } else break :rs .{ .src = lhs_src, .air_tag = air_tag, .air_tag_safe = .add_safe }; }, .addwrap => { // Integers only; floats are checked above. // If either of the operands are zero, the other operand is returned. // If either of the operands are undefined, the result is undefined. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) { return casted_rhs; } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } if (maybe_lhs_val) |lhs_val| { return Air.internedToRef((try sema.numberAddWrapScalar(lhs_val, rhs_val, resolved_type)).toIntern()); } else break :rs .{ .src = lhs_src, .air_tag = .add_wrap, .air_tag_safe = .add_wrap }; } else break :rs .{ .src = rhs_src, .air_tag = .add_wrap, .air_tag_safe = .add_wrap }; }, .add_sat => { // Integers only; floats are checked above. // If either of the operands are zero, then the other operand is returned. // If either of the operands are undefined, the result is undefined. if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod) and (try lhs_val.compareAllWithZeroAdvanced(.eq, sema))) { return casted_rhs; } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } if (maybe_lhs_val) |lhs_val| { const val = if (scalar_tag == .ComptimeInt) try sema.intAdd(lhs_val, rhs_val, resolved_type, undefined) else try lhs_val.intAddSat(rhs_val, resolved_type, sema.arena, mod); return Air.internedToRef(val.toIntern()); } else break :rs .{ .src = lhs_src, .air_tag = .add_sat, .air_tag_safe = .add_sat, }; } else break :rs .{ .src = rhs_src, .air_tag = .add_sat, .air_tag_safe = .add_sat, }; }, .sub => { // For integers: // If the rhs is zero, then the other operand is // returned, even if it is undefined. // If either of the operands are undefined, it's a compile error // because there is a possible value for which the subtraction would // overflow, causing illegal behavior. // For floats: either operand being undef makes the result undef. if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, rhs_src); } else { return mod.undefRef(resolved_type); } } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } } const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .sub_optimized else .sub; if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, lhs_src); } else { return mod.undefRef(resolved_type); } } if (maybe_rhs_val) |rhs_val| { if (is_int) { var overflow_idx: ?usize = null; const diff = try sema.intSub(lhs_val, rhs_val, resolved_type, &overflow_idx); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, diff, vec_idx); } return Air.internedToRef(diff.toIntern()); } else { return Air.internedToRef((try Value.floatSub(lhs_val, rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs .{ .src = rhs_src, .air_tag = air_tag, .air_tag_safe = .sub_safe }; } else break :rs .{ .src = lhs_src, .air_tag = air_tag, .air_tag_safe = .sub_safe }; }, .subwrap => { // Integers only; floats are checked above. // If the RHS is zero, then the other operand is returned, even if it is undefined. // If either of the operands are undefined, the result is undefined. if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { return Air.internedToRef((try sema.numberSubWrapScalar(lhs_val, rhs_val, resolved_type)).toIntern()); } else break :rs .{ .src = rhs_src, .air_tag = .sub_wrap, .air_tag_safe = .sub_wrap }; } else break :rs .{ .src = lhs_src, .air_tag = .sub_wrap, .air_tag_safe = .sub_wrap }; }, .sub_sat => { // Integers only; floats are checked above. // If the RHS is zero, result is LHS. // If either of the operands are undefined, result is undefined. if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { return casted_lhs; } } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (maybe_rhs_val) |rhs_val| { const val = if (scalar_tag == .ComptimeInt) try sema.intSub(lhs_val, rhs_val, resolved_type, undefined) else try lhs_val.intSubSat(rhs_val, resolved_type, sema.arena, mod); return Air.internedToRef(val.toIntern()); } else break :rs .{ .src = rhs_src, .air_tag = .sub_sat, .air_tag_safe = .sub_sat }; } else break :rs .{ .src = lhs_src, .air_tag = .sub_sat, .air_tag_safe = .sub_sat }; }, .mul => { // For integers: // If either of the operands are zero, the result is zero. // If either of the operands are one, the result is the other // operand, even if it is undefined. // If either of the operands are undefined, it's a compile error // because there is a possible value for which the addition would // overflow (max_int), causing illegal behavior. // For floats: either operand being undef makes the result undef. // If either of the operands are inf, and the other operand is zero, // the result is nan. // If either of the operands are nan, the result is nan. const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 0), else => unreachable, }; const scalar_one = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 1), else => unreachable, }; if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (lhs_val.isNan(mod)) { return Air.internedToRef(lhs_val.toIntern()); } if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) lz: { if (maybe_rhs_val) |rhs_val| { if (rhs_val.isNan(mod)) { return Air.internedToRef(rhs_val.toIntern()); } if (rhs_val.isInf(mod)) { return Air.internedToRef((try mod.floatValue(resolved_type, std.math.nan(f128))).toIntern()); } } else if (resolved_type.isAnyFloat()) { break :lz; } const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_rhs; } } } const air_tag: Air.Inst.Tag = if (block.float_mode == .Optimized) .mul_optimized else .mul; if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, rhs_src); } else { return mod.undefRef(resolved_type); } } if (rhs_val.isNan(mod)) { return Air.internedToRef(rhs_val.toIntern()); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) rz: { if (maybe_lhs_val) |lhs_val| { if (lhs_val.isInf(mod)) { return Air.internedToRef((try mod.floatValue(resolved_type, std.math.nan(f128))).toIntern()); } } else if (resolved_type.isAnyFloat()) { break :rz; } const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_lhs; } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { if (is_int) { return sema.failWithUseOfUndef(block, lhs_src); } else { return mod.undefRef(resolved_type); } } if (is_int) { var overflow_idx: ?usize = null; const product = try lhs_val.intMul(rhs_val, resolved_type, &overflow_idx, sema.arena, mod); if (overflow_idx) |vec_idx| { return sema.failWithIntegerOverflow(block, src, resolved_type, product, vec_idx); } return Air.internedToRef(product.toIntern()); } else { return Air.internedToRef((try lhs_val.floatMul(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } } else break :rs .{ .src = lhs_src, .air_tag = air_tag, .air_tag_safe = .mul_safe }; } else break :rs .{ .src = rhs_src, .air_tag = air_tag, .air_tag_safe = .mul_safe }; }, .mulwrap => { // Integers only; floats are handled above. // If either of the operands are zero, result is zero. // If either of the operands are one, result is the other operand. // If either of the operands are undefined, result is undefined. const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 0), else => unreachable, }; const scalar_one = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 1), else => unreachable, }; if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_rhs; } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_lhs; } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } return Air.internedToRef((try lhs_val.numberMulWrap(rhs_val, resolved_type, sema.arena, mod)).toIntern()); } else break :rs .{ .src = lhs_src, .air_tag = .mul_wrap, .air_tag_safe = .mul_wrap }; } else break :rs .{ .src = rhs_src, .air_tag = .mul_wrap, .air_tag_safe = .mul_wrap }; }, .mul_sat => { // Integers only; floats are checked above. // If either of the operands are zero, result is zero. // If either of the operands are one, result is the other operand. // If either of the operands are undefined, result is undefined. const scalar_zero = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 0.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 0), else => unreachable, }; const scalar_one = switch (scalar_tag) { .ComptimeFloat, .Float => try mod.floatValue(scalar_type, 1.0), .ComptimeInt, .Int => try mod.intValue(scalar_type, 1), else => unreachable, }; if (maybe_lhs_val) |lhs_val| { if (!lhs_val.isUndef(mod)) { if (try lhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(lhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_rhs; } } } if (maybe_rhs_val) |rhs_val| { if (rhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } if (try rhs_val.compareAllWithZeroAdvanced(.eq, sema)) { const zero_val = try sema.splat(resolved_type, scalar_zero); return Air.internedToRef(zero_val.toIntern()); } if (try sema.compareAll(rhs_val, .eq, try sema.splat(resolved_type, scalar_one), resolved_type)) { return casted_lhs; } if (maybe_lhs_val) |lhs_val| { if (lhs_val.isUndef(mod)) { return mod.undefRef(resolved_type); } const val = if (scalar_tag == .ComptimeInt) try lhs_val.intMul(rhs_val, resolved_type, undefined, sema.arena, mod) else try lhs_val.intMulSat(rhs_val, resolved_type, sema.arena, mod); return Air.internedToRef(val.toIntern()); } else break :rs .{ .src = lhs_src, .air_tag = .mul_sat, .air_tag_safe = .mul_sat }; } else break :rs .{ .src = rhs_src, .air_tag = .mul_sat, .air_tag_safe = .mul_sat }; }, else => unreachable, } }; try sema.requireRuntimeBlock(block, src, rs.src); if (block.wantSafety() and want_safety and scalar_tag == .Int) { if (mod.backendSupportsFeature(.safety_checked_instructions)) { _ = try sema.preparePanicId(block, .integer_overflow); return block.addBinOp(rs.air_tag_safe, casted_lhs, casted_rhs); } else { const maybe_op_ov: ?Air.Inst.Tag = switch (rs.air_tag) { .add => .add_with_overflow, .sub => .sub_with_overflow, .mul => .mul_with_overflow, else => null, }; if (maybe_op_ov) |op_ov_tag| { const op_ov_tuple_ty = try sema.overflowArithmeticTupleType(resolved_type); const op_ov = try block.addInst(.{ .tag = op_ov_tag, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(op_ov_tuple_ty.toIntern()), .payload = try sema.addExtra(Air.Bin{ .lhs = casted_lhs, .rhs = casted_rhs, }), } }, }); const ov_bit = try sema.tupleFieldValByIndex(block, src, op_ov, 1, op_ov_tuple_ty); const any_ov_bit = if (resolved_type.zigTypeTag(mod) == .Vector) try block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = ov_bit, .operation = .Or, } }, }) else ov_bit; const zero_ov = Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern()); const no_ov = try block.addBinOp(.cmp_eq, any_ov_bit, zero_ov); try sema.addSafetyCheck(block, src, no_ov, .integer_overflow); return sema.tupleFieldValByIndex(block, src, op_ov, 0, op_ov_tuple_ty); } } } return block.addBinOp(rs.air_tag, casted_lhs, casted_rhs); } fn analyzePtrArithmetic( sema: *Sema, block: *Block, op_src: LazySrcLoc, ptr: Air.Inst.Ref, uncasted_offset: Air.Inst.Ref, air_tag: Air.Inst.Tag, ptr_src: LazySrcLoc, offset_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { // TODO if the operand is comptime-known to be negative, or is a negative int, // coerce to isize instead of usize. const offset = try sema.coerce(block, Type.usize, uncasted_offset, offset_src); const mod = sema.mod; const opt_ptr_val = try sema.resolveMaybeUndefVal(ptr); const opt_off_val = try sema.resolveDefinedValue(block, offset_src, offset); const ptr_ty = sema.typeOf(ptr); const ptr_info = ptr_ty.ptrInfo(mod); assert(ptr_info.flags.size == .Many or ptr_info.flags.size == .C); const new_ptr_ty = t: { // Calculate the new pointer alignment. // This code is duplicated in `elemPtrType`. if (ptr_info.flags.alignment == .none) { // ABI-aligned pointer. Any pointer arithmetic maintains the same ABI-alignedness. break :t ptr_ty; } // If the addend is not a comptime-known value we can still count on // it being a multiple of the type size. const elem_size = ptr_info.child.toType().abiSize(mod); const addend = if (opt_off_val) |off_val| a: { const off_int = try sema.usizeCast(block, offset_src, off_val.toUnsignedInt(mod)); break :a elem_size * off_int; } else elem_size; // The resulting pointer is aligned to the lcd between the offset (an // arbitrary number) and the alignment factor (always a power of two, // non zero). const new_align = @as(Alignment, @enumFromInt(@min( @ctz(addend), @intFromEnum(ptr_info.flags.alignment), ))); assert(new_align != .none); break :t try mod.ptrType(.{ .child = ptr_info.child, .sentinel = ptr_info.sentinel, .flags = .{ .size = ptr_info.flags.size, .alignment = new_align, .is_const = ptr_info.flags.is_const, .is_volatile = ptr_info.flags.is_volatile, .is_allowzero = ptr_info.flags.is_allowzero, .address_space = ptr_info.flags.address_space, }, }); }; const runtime_src = rs: { if (opt_ptr_val) |ptr_val| { if (opt_off_val) |offset_val| { if (ptr_val.isUndef(mod)) return mod.undefRef(new_ptr_ty); const offset_int = try sema.usizeCast(block, offset_src, offset_val.toUnsignedInt(mod)); if (offset_int == 0) return ptr; if (try ptr_val.getUnsignedIntAdvanced(mod, sema)) |addr| { const elem_size = ptr_info.child.toType().abiSize(mod); const new_addr = switch (air_tag) { .ptr_add => addr + elem_size * offset_int, .ptr_sub => addr - elem_size * offset_int, else => unreachable, }; const new_ptr_val = try mod.ptrIntValue(new_ptr_ty, new_addr); return Air.internedToRef(new_ptr_val.toIntern()); } if (air_tag == .ptr_sub) { return sema.fail(block, op_src, "TODO implement Sema comptime pointer subtraction", .{}); } const new_ptr_val = try ptr_val.elemPtr(new_ptr_ty, offset_int, mod); return Air.internedToRef(new_ptr_val.toIntern()); } else break :rs offset_src; } else break :rs ptr_src; }; try sema.requireRuntimeBlock(block, op_src, runtime_src); return block.addInst(.{ .tag = air_tag, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(new_ptr_ty.toIntern()), .payload = try sema.addExtra(Air.Bin{ .lhs = ptr, .rhs = offset, }), } }, }); } fn zirLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ptr_src = src; // TODO better source location const ptr = try sema.resolveInst(inst_data.operand); return sema.analyzeLoad(block, src, ptr, ptr_src); } fn zirAsm( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, tmpl_is_expr: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const extra = sema.code.extraData(Zir.Inst.Asm, extended.operand); const src = LazySrcLoc.nodeOffset(extra.data.src_node); const ret_ty_src: LazySrcLoc = .{ .node_offset_asm_ret_ty = extra.data.src_node }; const outputs_len = @as(u5, @truncate(extended.small)); const inputs_len = @as(u5, @truncate(extended.small >> 5)); const clobbers_len = @as(u5, @truncate(extended.small >> 10)); const is_volatile = @as(u1, @truncate(extended.small >> 15)) != 0; const is_global_assembly = sema.func_index == .none; const asm_source: []const u8 = if (tmpl_is_expr) blk: { const tmpl = @as(Zir.Inst.Ref, @enumFromInt(extra.data.asm_source)); const s: []const u8 = try sema.resolveConstString(block, src, tmpl, "assembly code must be comptime-known"); break :blk s; } else sema.code.nullTerminatedString(extra.data.asm_source); if (is_global_assembly) { if (outputs_len != 0) { return sema.fail(block, src, "module-level assembly does not support outputs", .{}); } if (inputs_len != 0) { return sema.fail(block, src, "module-level assembly does not support inputs", .{}); } if (clobbers_len != 0) { return sema.fail(block, src, "module-level assembly does not support clobbers", .{}); } if (is_volatile) { return sema.fail(block, src, "volatile keyword is redundant on module-level assembly", .{}); } try sema.mod.addGlobalAssembly(sema.owner_decl_index, asm_source); return Air.Inst.Ref.void_value; } if (block.is_comptime) { try sema.requireRuntimeBlock(block, src, null); } var extra_i = extra.end; var output_type_bits = extra.data.output_type_bits; var needed_capacity: usize = @typeInfo(Air.Asm).Struct.fields.len + outputs_len + inputs_len; const ConstraintName = struct { c: []const u8, n: []const u8 }; const out_args = try sema.arena.alloc(Air.Inst.Ref, outputs_len); const outputs = try sema.arena.alloc(ConstraintName, outputs_len); var expr_ty = Air.Inst.Ref.void_type; for (out_args, 0..) |*arg, out_i| { const output = sema.code.extraData(Zir.Inst.Asm.Output, extra_i); extra_i = output.end; const is_type = @as(u1, @truncate(output_type_bits)) != 0; output_type_bits >>= 1; if (is_type) { // Indicate the output is the asm instruction return value. arg.* = .none; const out_ty = try sema.resolveType(block, ret_ty_src, output.data.operand); try sema.queueFullTypeResolution(out_ty); expr_ty = Air.internedToRef(out_ty.toIntern()); } else { arg.* = try sema.resolveInst(output.data.operand); } const constraint = sema.code.nullTerminatedString(output.data.constraint); const name = sema.code.nullTerminatedString(output.data.name); needed_capacity += (constraint.len + name.len + (2 + 3)) / 4; outputs[out_i] = .{ .c = constraint, .n = name }; } const args = try sema.arena.alloc(Air.Inst.Ref, inputs_len); const inputs = try sema.arena.alloc(ConstraintName, inputs_len); const mod = sema.mod; for (args, 0..) |*arg, arg_i| { const input = sema.code.extraData(Zir.Inst.Asm.Input, extra_i); extra_i = input.end; const uncasted_arg = try sema.resolveInst(input.data.operand); const uncasted_arg_ty = sema.typeOf(uncasted_arg); switch (uncasted_arg_ty.zigTypeTag(mod)) { .ComptimeInt => arg.* = try sema.coerce(block, Type.usize, uncasted_arg, src), .ComptimeFloat => arg.* = try sema.coerce(block, Type.f64, uncasted_arg, src), else => { arg.* = uncasted_arg; try sema.queueFullTypeResolution(uncasted_arg_ty); }, } const constraint = sema.code.nullTerminatedString(input.data.constraint); const name = sema.code.nullTerminatedString(input.data.name); needed_capacity += (constraint.len + name.len + (2 + 3)) / 4; inputs[arg_i] = .{ .c = constraint, .n = name }; } const clobbers = try sema.arena.alloc([]const u8, clobbers_len); for (clobbers) |*name| { name.* = sema.code.nullTerminatedString(sema.code.extra[extra_i]); extra_i += 1; needed_capacity += name.*.len / 4 + 1; } needed_capacity += (asm_source.len + 3) / 4; const gpa = sema.gpa; try sema.air_extra.ensureUnusedCapacity(gpa, needed_capacity); const asm_air = try block.addInst(.{ .tag = .assembly, .data = .{ .ty_pl = .{ .ty = expr_ty, .payload = sema.addExtraAssumeCapacity(Air.Asm{ .source_len = @as(u32, @intCast(asm_source.len)), .outputs_len = outputs_len, .inputs_len = @as(u32, @intCast(args.len)), .flags = (@as(u32, @intFromBool(is_volatile)) << 31) | @as(u32, @intCast(clobbers.len)), }), } }, }); sema.appendRefsAssumeCapacity(out_args); sema.appendRefsAssumeCapacity(args); for (outputs) |o| { const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice()); @memcpy(buffer[0..o.c.len], o.c); buffer[o.c.len] = 0; @memcpy(buffer[o.c.len + 1 ..][0..o.n.len], o.n); buffer[o.c.len + 1 + o.n.len] = 0; sema.air_extra.items.len += (o.c.len + o.n.len + (2 + 3)) / 4; } for (inputs) |input| { const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice()); @memcpy(buffer[0..input.c.len], input.c); buffer[input.c.len] = 0; @memcpy(buffer[input.c.len + 1 ..][0..input.n.len], input.n); buffer[input.c.len + 1 + input.n.len] = 0; sema.air_extra.items.len += (input.c.len + input.n.len + (2 + 3)) / 4; } for (clobbers) |clobber| { const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice()); @memcpy(buffer[0..clobber.len], clobber); buffer[clobber.len] = 0; sema.air_extra.items.len += clobber.len / 4 + 1; } { const buffer = mem.sliceAsBytes(sema.air_extra.unusedCapacitySlice()); @memcpy(buffer[0..asm_source.len], asm_source); sema.air_extra.items.len += (asm_source.len + 3) / 4; } return asm_air; } /// Only called for equality operators. See also `zirCmp`. fn zirCmpEq( sema: *Sema, block: *Block, inst: Zir.Inst.Index, op: std.math.CompareOperator, air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src: LazySrcLoc = inst_data.src(); const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); const lhs_ty_tag = lhs_ty.zigTypeTag(mod); const rhs_ty_tag = rhs_ty.zigTypeTag(mod); if (lhs_ty_tag == .Null and rhs_ty_tag == .Null) { // null == null, null != null if (op == .eq) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } // comparing null with optionals if (lhs_ty_tag == .Null and (rhs_ty_tag == .Optional or rhs_ty.isCPtr(mod))) { return sema.analyzeIsNull(block, src, rhs, op == .neq); } if (rhs_ty_tag == .Null and (lhs_ty_tag == .Optional or lhs_ty.isCPtr(mod))) { return sema.analyzeIsNull(block, src, lhs, op == .neq); } if (lhs_ty_tag == .Null or rhs_ty_tag == .Null) { const non_null_type = if (lhs_ty_tag == .Null) rhs_ty else lhs_ty; return sema.fail(block, src, "comparison of '{}' with null", .{non_null_type.fmt(mod)}); } if (lhs_ty_tag == .Union and (rhs_ty_tag == .EnumLiteral or rhs_ty_tag == .Enum)) { return sema.analyzeCmpUnionTag(block, src, lhs, lhs_src, rhs, rhs_src, op); } if (rhs_ty_tag == .Union and (lhs_ty_tag == .EnumLiteral or lhs_ty_tag == .Enum)) { return sema.analyzeCmpUnionTag(block, src, rhs, rhs_src, lhs, lhs_src, op); } if (lhs_ty_tag == .ErrorSet and rhs_ty_tag == .ErrorSet) { const runtime_src: LazySrcLoc = src: { if (try sema.resolveMaybeUndefVal(lhs)) |lval| { if (try sema.resolveMaybeUndefVal(rhs)) |rval| { if (lval.isUndef(mod) or rval.isUndef(mod)) { return mod.undefRef(Type.bool); } const lkey = mod.intern_pool.indexToKey(lval.toIntern()); const rkey = mod.intern_pool.indexToKey(rval.toIntern()); if ((lkey.err.name == rkey.err.name) == (op == .eq)) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } else { break :src rhs_src; } } else { break :src lhs_src; } }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addBinOp(air_tag, lhs, rhs); } if (lhs_ty_tag == .Type and rhs_ty_tag == .Type) { const lhs_as_type = try sema.analyzeAsType(block, lhs_src, lhs); const rhs_as_type = try sema.analyzeAsType(block, rhs_src, rhs); if (lhs_as_type.eql(rhs_as_type, mod) == (op == .eq)) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, true); } fn analyzeCmpUnionTag( sema: *Sema, block: *Block, src: LazySrcLoc, un: Air.Inst.Ref, un_src: LazySrcLoc, tag: Air.Inst.Ref, tag_src: LazySrcLoc, op: std.math.CompareOperator, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const union_ty = sema.typeOf(un); try sema.resolveTypeFields(union_ty); const union_tag_ty = union_ty.unionTagType(mod) orelse { const msg = msg: { const msg = try sema.errMsg(block, un_src, "comparison of union and enum literal is only valid for tagged union types", .{}); errdefer msg.destroy(sema.gpa); try mod.errNoteNonLazy(union_ty.declSrcLoc(mod), msg, "union '{}' is not a tagged union", .{union_ty.fmt(mod)}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; // Coerce both the union and the tag to the union's tag type, and then execute the // enum comparison codepath. const coerced_tag = try sema.coerce(block, union_tag_ty, tag, tag_src); const coerced_union = try sema.coerce(block, union_tag_ty, un, un_src); if (try sema.resolveMaybeUndefVal(coerced_tag)) |enum_val| { if (enum_val.isUndef(mod)) return mod.undefRef(Type.bool); const field_ty = union_ty.unionFieldType(enum_val, mod); if (field_ty.zigTypeTag(mod) == .NoReturn) { return Air.Inst.Ref.bool_false; } } return sema.cmpSelf(block, src, coerced_union, coerced_tag, op, un_src, tag_src); } /// Only called for non-equality operators. See also `zirCmpEq`. fn zirCmp( sema: *Sema, block: *Block, inst: Zir.Inst.Index, op: std.math.CompareOperator, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src: LazySrcLoc = inst_data.src(); const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); return sema.analyzeCmp(block, src, lhs, rhs, op, lhs_src, rhs_src, false); } fn analyzeCmp( sema: *Sema, block: *Block, src: LazySrcLoc, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, op: std.math.CompareOperator, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, is_equality_cmp: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); if (lhs_ty.zigTypeTag(mod) != .Optional and rhs_ty.zigTypeTag(mod) != .Optional) { try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); } if (lhs_ty.zigTypeTag(mod) == .Vector and rhs_ty.zigTypeTag(mod) == .Vector) { return sema.cmpVector(block, src, lhs, rhs, op, lhs_src, rhs_src); } if (lhs_ty.isNumeric(mod) and rhs_ty.isNumeric(mod)) { // This operation allows any combination of integer and float types, regardless of the // signed-ness, comptime-ness, and bit-width. So peer type resolution is incorrect for // numeric types. return sema.cmpNumeric(block, src, lhs, rhs, op, lhs_src, rhs_src); } if (is_equality_cmp and lhs_ty.zigTypeTag(mod) == .ErrorUnion and rhs_ty.zigTypeTag(mod) == .ErrorSet) { const casted_lhs = try sema.analyzeErrUnionCode(block, lhs_src, lhs); return sema.cmpSelf(block, src, casted_lhs, rhs, op, lhs_src, rhs_src); } if (is_equality_cmp and lhs_ty.zigTypeTag(mod) == .ErrorSet and rhs_ty.zigTypeTag(mod) == .ErrorUnion) { const casted_rhs = try sema.analyzeErrUnionCode(block, rhs_src, rhs); return sema.cmpSelf(block, src, lhs, casted_rhs, op, lhs_src, rhs_src); } const instructions = &[_]Air.Inst.Ref{ lhs, rhs }; const resolved_type = try sema.resolvePeerTypes(block, src, instructions, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src } }); if (!resolved_type.isSelfComparable(mod, is_equality_cmp)) { return sema.fail(block, src, "operator {s} not allowed for type '{}'", .{ compareOperatorName(op), resolved_type.fmt(mod), }); } const casted_lhs = try sema.coerce(block, resolved_type, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_type, rhs, rhs_src); return sema.cmpSelf(block, src, casted_lhs, casted_rhs, op, lhs_src, rhs_src); } fn compareOperatorName(comp: std.math.CompareOperator) []const u8 { return switch (comp) { .lt => "<", .lte => "<=", .eq => "==", .gte => ">=", .gt => ">", .neq => "!=", }; } fn cmpSelf( sema: *Sema, block: *Block, src: LazySrcLoc, casted_lhs: Air.Inst.Ref, casted_rhs: Air.Inst.Ref, op: std.math.CompareOperator, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const resolved_type = sema.typeOf(casted_lhs); const runtime_src: LazySrcLoc = src: { if (try sema.resolveMaybeUndefVal(casted_lhs)) |lhs_val| { if (lhs_val.isUndef(mod)) return mod.undefRef(Type.bool); if (try sema.resolveMaybeUndefVal(casted_rhs)) |rhs_val| { if (rhs_val.isUndef(mod)) return mod.undefRef(Type.bool); if (resolved_type.zigTypeTag(mod) == .Vector) { const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_type); return Air.internedToRef(cmp_val.toIntern()); } if (try sema.compareAll(lhs_val, op, rhs_val, resolved_type)) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } else { if (resolved_type.zigTypeTag(mod) == .Bool) { // We can lower bool eq/neq more efficiently. return sema.runtimeBoolCmp(block, src, op, casted_rhs, lhs_val.toBool(), rhs_src); } break :src rhs_src; } } else { // For bools, we still check the other operand, because we can lower // bool eq/neq more efficiently. if (resolved_type.zigTypeTag(mod) == .Bool) { if (try sema.resolveMaybeUndefVal(casted_rhs)) |rhs_val| { if (rhs_val.isUndef(mod)) return mod.undefRef(Type.bool); return sema.runtimeBoolCmp(block, src, op, casted_lhs, rhs_val.toBool(), lhs_src); } } break :src lhs_src; } }; try sema.requireRuntimeBlock(block, src, runtime_src); if (resolved_type.zigTypeTag(mod) == .Vector) { return block.addCmpVector(casted_lhs, casted_rhs, op); } const tag = Air.Inst.Tag.fromCmpOp(op, block.float_mode == .Optimized); return block.addBinOp(tag, casted_lhs, casted_rhs); } /// cmp_eq (x, false) => not(x) /// cmp_eq (x, true ) => x /// cmp_neq(x, false) => x /// cmp_neq(x, true ) => not(x) fn runtimeBoolCmp( sema: *Sema, block: *Block, src: LazySrcLoc, op: std.math.CompareOperator, lhs: Air.Inst.Ref, rhs: bool, runtime_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { if ((op == .neq) == rhs) { try sema.requireRuntimeBlock(block, src, runtime_src); return block.addTyOp(.not, Type.bool, lhs); } else { return lhs; } } fn zirSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ty = try sema.resolveType(block, operand_src, inst_data.operand); switch (ty.zigTypeTag(mod)) { .Fn, .NoReturn, .Undefined, .Null, .Opaque, => return sema.fail(block, operand_src, "no size available for type '{}'", .{ty.fmt(mod)}), .Type, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Void, => return mod.intRef(Type.comptime_int, 0), .Bool, .Int, .Float, .Pointer, .Array, .Struct, .Optional, .ErrorUnion, .ErrorSet, .Enum, .Union, .Vector, .Frame, .AnyFrame, => {}, } const val = try ty.lazyAbiSize(mod); if (val.isLazySize(mod)) { try sema.queueFullTypeResolution(ty); } return Air.internedToRef(val.toIntern()); } fn zirBitSizeOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand_ty = try sema.resolveType(block, operand_src, inst_data.operand); switch (operand_ty.zigTypeTag(mod)) { .Fn, .NoReturn, .Undefined, .Null, .Opaque, => return sema.fail(block, operand_src, "no size available for type '{}'", .{operand_ty.fmt(mod)}), .Type, .EnumLiteral, .ComptimeFloat, .ComptimeInt, .Void, => return mod.intRef(Type.comptime_int, 0), .Bool, .Int, .Float, .Pointer, .Array, .Struct, .Optional, .ErrorUnion, .ErrorSet, .Enum, .Union, .Vector, .Frame, .AnyFrame, => {}, } const bit_size = try operand_ty.bitSizeAdvanced(mod, sema); return mod.intRef(Type.comptime_int, bit_size); } fn zirThis( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const this_decl_index = mod.namespaceDeclIndex(block.namespace); const src = LazySrcLoc.nodeOffset(@as(i32, @bitCast(extended.operand))); return sema.analyzeDeclVal(block, src, this_decl_index); } fn zirClosureCapture(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].un_tok; // Closures are not necessarily constant values. For example, the // code might do something like this: // fn foo(x: anytype) void { const S = struct {field: @TypeOf(x)}; } // ...in which case the closure_capture instruction has access to a runtime // value only. In such case we preserve the type and use a dummy runtime value. const operand = try sema.resolveInst(inst_data.operand); const ty = sema.typeOf(operand); const capture: CaptureScope.Capture = blk: { if (try sema.resolveMaybeUndefValAllowVariables(operand)) |val| { const ip_index = try val.intern(ty, sema.mod); break :blk .{ .comptime_val = ip_index }; } break :blk .{ .runtime_val = ty.toIntern() }; }; try block.wip_capture_scope.captures.putNoClobber(sema.gpa, inst, capture); } fn zirClosureGet(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].inst_node; var scope: *CaptureScope = mod.declPtr(block.src_decl).src_scope.?; // Note: The target closure must be in this scope list. // If it's not here, the zir is invalid, or the list is broken. const capture = while (true) { // Note: We don't need to add a dependency here, because // decls always depend on their lexical parents. // Fail this decl if a scope it depended on failed. if (scope.failed()) { if (sema.owner_func_index != .none) { ip.funcAnalysis(sema.owner_func_index).state = .dependency_failure; } else { sema.owner_decl.analysis = .dependency_failure; } return error.AnalysisFail; } if (scope.captures.get(inst_data.inst)) |capture| { break capture; } scope = scope.parent.?; }; if (capture == .runtime_val and !block.is_typeof and sema.func_index == .none) { const msg = msg: { const name = name: { const file = sema.owner_decl.getFileScope(mod); const tree = file.getTree(sema.gpa) catch |err| { // In this case we emit a warning + a less precise source location. log.warn("unable to load {s}: {s}", .{ file.sub_file_path, @errorName(err), }); break :name null; }; const node = sema.owner_decl.relativeToNodeIndex(inst_data.src_node); const token = tree.nodes.items(.main_token)[node]; break :name tree.tokenSlice(token); }; const msg = if (name) |some| try sema.errMsg(block, inst_data.src(), "'{s}' not accessible outside function scope", .{some}) else try sema.errMsg(block, inst_data.src(), "variable not accessible outside function scope", .{}); errdefer msg.destroy(sema.gpa); // TODO add "declared here" note break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (capture == .runtime_val and !block.is_typeof and !block.is_comptime and sema.func_index != .none) { const msg = msg: { const name = name: { const file = sema.owner_decl.getFileScope(mod); const tree = file.getTree(sema.gpa) catch |err| { // In this case we emit a warning + a less precise source location. log.warn("unable to load {s}: {s}", .{ file.sub_file_path, @errorName(err), }); break :name null; }; const node = sema.owner_decl.relativeToNodeIndex(inst_data.src_node); const token = tree.nodes.items(.main_token)[node]; break :name tree.tokenSlice(token); }; const msg = if (name) |some| try sema.errMsg(block, inst_data.src(), "'{s}' not accessible from inner function", .{some}) else try sema.errMsg(block, inst_data.src(), "variable not accessible from inner function", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, LazySrcLoc.nodeOffset(0), msg, "crossed function definition here", .{}); // TODO add "declared here" note break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } switch (capture) { .runtime_val => |ty_ip_index| { assert(block.is_typeof); // We need a dummy runtime instruction with the correct type. return block.addTy(.alloc, ty_ip_index.toType()); }, .comptime_val => |val_ip_index| { return Air.internedToRef(val_ip_index); }, } } fn zirRetAddr( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { _ = extended; if (block.is_comptime) { // TODO: we could give a meaningful lazy value here. #14938 return sema.mod.intRef(Type.usize, 0); } else { return block.addNoOp(.ret_addr); } } fn zirFrameAddress( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const src = LazySrcLoc.nodeOffset(@as(i32, @bitCast(extended.operand))); try sema.requireRuntimeBlock(block, src, null); return try block.addNoOp(.frame_addr); } fn zirBuiltinSrc( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.Src, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); if (sema.func_index == .none) return sema.fail(block, src, "@src outside function", .{}); const fn_owner_decl = mod.funcOwnerDeclPtr(sema.func_index); const func_name_val = blk: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, mod.intern_pool.stringToSlice(fn_owner_decl.name)); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .sentinel = .zero_u8, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :blk try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_sentinel_0_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const file_name_val = blk: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); // The compiler must not call realpath anywhere. const name = try fn_owner_decl.getFileScope(mod).fullPathZ(sema.arena); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .sentinel = .zero_u8, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :blk try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_sentinel_0_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const src_loc_ty = try sema.getBuiltinType("SourceLocation"); const fields = .{ // file: [:0]const u8, file_name_val, // fn_name: [:0]const u8, func_name_val, // line: u32, try mod.intern(.{ .runtime_value = .{ .ty = .u32_type, .val = (try mod.intValue(Type.u32, extra.line + 1)).toIntern(), } }), // column: u32, (try mod.intValue(Type.u32, extra.column + 1)).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = src_loc_ty.toIntern(), .storage = .{ .elems = &fields }, } }))); } fn zirTypeInfo(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ty = try sema.resolveType(block, src, inst_data.operand); const type_info_ty = try sema.getBuiltinType("Type"); const type_info_tag_ty = type_info_ty.unionTagType(mod).?; switch (ty.zigTypeTag(mod)) { .Type, .Void, .Bool, .NoReturn, .ComptimeFloat, .ComptimeInt, .Undefined, .Null, .EnumLiteral, => |type_info_tag| return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(type_info_tag))).toIntern(), .val = .void_value, } }))), .Fn => { // TODO: look into memoizing this result. var params_anon_decl = try block.startAnonDecl(); defer params_anon_decl.deinit(); const fn_info_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Fn"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, fn_info_decl_index); try sema.ensureDeclAnalyzed(fn_info_decl_index); const fn_info_decl = mod.declPtr(fn_info_decl_index); const fn_info_ty = fn_info_decl.val.toType(); const param_info_decl_index = (try sema.namespaceLookup( block, src, fn_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Param"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, param_info_decl_index); try sema.ensureDeclAnalyzed(param_info_decl_index); const param_info_decl = mod.declPtr(param_info_decl_index); const param_info_ty = param_info_decl.val.toType(); const func_ty_info = mod.typeToFunc(ty).?; const param_vals = try sema.arena.alloc(InternPool.Index, func_ty_info.param_types.len); for (param_vals, 0..) |*param_val, i| { const param_ty = func_ty_info.param_types.get(ip)[i]; const is_generic = param_ty == .generic_poison_type; const param_ty_val = try ip.get(gpa, .{ .opt = .{ .ty = try ip.get(gpa, .{ .opt_type = .type_type }), .val = if (is_generic) .none else param_ty, } }); const is_noalias = blk: { const index = std.math.cast(u5, i) orelse break :blk false; break :blk @as(u1, @truncate(func_ty_info.noalias_bits >> index)) != 0; }; const param_fields = .{ // is_generic: bool, Value.makeBool(is_generic).toIntern(), // is_noalias: bool, Value.makeBool(is_noalias).toIntern(), // type: ?type, param_ty_val, }; param_val.* = try mod.intern(.{ .aggregate = .{ .ty = param_info_ty.toIntern(), .storage = .{ .elems = ¶m_fields }, } }); } const args_val = v: { const new_decl_ty = try mod.arrayType(.{ .len = param_vals.len, .child = param_info_ty.toIntern(), }); const new_decl = try params_anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .elems = param_vals }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = (try mod.ptrType(.{ .child = param_info_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, })).toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, param_vals.len)).toIntern(), } }); }; const ret_ty_opt = try mod.intern(.{ .opt = .{ .ty = try ip.get(gpa, .{ .opt_type = .type_type }), .val = if (func_ty_info.return_type == .generic_poison_type) .none else func_ty_info.return_type, } }); const callconv_ty = try sema.getBuiltinType("CallingConvention"); const field_values = .{ // calling_convention: CallingConvention, (try mod.enumValueFieldIndex(callconv_ty, @intFromEnum(func_ty_info.cc))).toIntern(), // alignment: comptime_int, (try mod.intValue(Type.comptime_int, ty.abiAlignment(mod))).toIntern(), // is_generic: bool, Value.makeBool(func_ty_info.is_generic).toIntern(), // is_var_args: bool, Value.makeBool(func_ty_info.is_var_args).toIntern(), // return_type: ?type, ret_ty_opt, // args: []const Fn.Param, args_val, }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Fn))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = fn_info_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Int => { const int_info_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Int"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, int_info_decl_index); try sema.ensureDeclAnalyzed(int_info_decl_index); const int_info_decl = mod.declPtr(int_info_decl_index); const int_info_ty = int_info_decl.val.toType(); const signedness_ty = try sema.getBuiltinType("Signedness"); const info = ty.intInfo(mod); const field_values = .{ // signedness: Signedness, try (try mod.enumValueFieldIndex(signedness_ty, @intFromEnum(info.signedness))).intern(signedness_ty, mod), // bits: u16, (try mod.intValue(Type.u16, info.bits)).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Int))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = int_info_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Float => { const float_info_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Float"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, float_info_decl_index); try sema.ensureDeclAnalyzed(float_info_decl_index); const float_info_decl = mod.declPtr(float_info_decl_index); const float_info_ty = float_info_decl.val.toType(); const field_vals = .{ // bits: u16, (try mod.intValue(Type.u16, ty.bitSize(mod))).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Float))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = float_info_ty.toIntern(), .storage = .{ .elems = &field_vals }, } }), } }))); }, .Pointer => { const info = ty.ptrInfo(mod); const alignment = if (info.flags.alignment.toByteUnitsOptional()) |alignment| try mod.intValue(Type.comptime_int, alignment) else try info.child.toType().lazyAbiAlignment(mod); const addrspace_ty = try sema.getBuiltinType("AddressSpace"); const pointer_ty = t: { const decl_index = (try sema.namespaceLookup( block, src, (try sema.getBuiltinType("Type")).getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Pointer"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); try sema.ensureDeclAnalyzed(decl_index); const decl = mod.declPtr(decl_index); break :t decl.val.toType(); }; const ptr_size_ty = t: { const decl_index = (try sema.namespaceLookup( block, src, pointer_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Size"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); try sema.ensureDeclAnalyzed(decl_index); const decl = mod.declPtr(decl_index); break :t decl.val.toType(); }; const field_values = .{ // size: Size, try (try mod.enumValueFieldIndex(ptr_size_ty, @intFromEnum(info.flags.size))).intern(ptr_size_ty, mod), // is_const: bool, Value.makeBool(info.flags.is_const).toIntern(), // is_volatile: bool, Value.makeBool(info.flags.is_volatile).toIntern(), // alignment: comptime_int, alignment.toIntern(), // address_space: AddressSpace try (try mod.enumValueFieldIndex(addrspace_ty, @intFromEnum(info.flags.address_space))).intern(addrspace_ty, mod), // child: type, info.child, // is_allowzero: bool, Value.makeBool(info.flags.is_allowzero).toIntern(), // sentinel: ?*const anyopaque, (try sema.optRefValue(block, info.child.toType(), switch (info.sentinel) { .none => null, else => info.sentinel.toValue(), })).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Pointer))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = pointer_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Array => { const array_field_ty = t: { const array_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Array"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, array_field_ty_decl_index); try sema.ensureDeclAnalyzed(array_field_ty_decl_index); const array_field_ty_decl = mod.declPtr(array_field_ty_decl_index); break :t array_field_ty_decl.val.toType(); }; const info = ty.arrayInfo(mod); const field_values = .{ // len: comptime_int, (try mod.intValue(Type.comptime_int, info.len)).toIntern(), // child: type, info.elem_type.toIntern(), // sentinel: ?*const anyopaque, (try sema.optRefValue(block, info.elem_type, info.sentinel)).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Array))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = array_field_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Vector => { const vector_field_ty = t: { const vector_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Vector"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, vector_field_ty_decl_index); try sema.ensureDeclAnalyzed(vector_field_ty_decl_index); const vector_field_ty_decl = mod.declPtr(vector_field_ty_decl_index); break :t vector_field_ty_decl.val.toType(); }; const info = ty.arrayInfo(mod); const field_values = .{ // len: comptime_int, (try mod.intValue(Type.comptime_int, info.len)).toIntern(), // child: type, info.elem_type.toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Vector))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = vector_field_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Optional => { const optional_field_ty = t: { const optional_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Optional"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, optional_field_ty_decl_index); try sema.ensureDeclAnalyzed(optional_field_ty_decl_index); const optional_field_ty_decl = mod.declPtr(optional_field_ty_decl_index); break :t optional_field_ty_decl.val.toType(); }; const field_values = .{ // child: type, ty.optionalChild(mod).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Optional))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = optional_field_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .ErrorSet => { var fields_anon_decl = try block.startAnonDecl(); defer fields_anon_decl.deinit(); // Get the Error type const error_field_ty = t: { const set_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Error"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, set_field_ty_decl_index); try sema.ensureDeclAnalyzed(set_field_ty_decl_index); const set_field_ty_decl = mod.declPtr(set_field_ty_decl_index); break :t set_field_ty_decl.val.toType(); }; try sema.queueFullTypeResolution(error_field_ty); // Build our list of Error values // Optional value is only null if anyerror // Value can be zero-length slice otherwise const error_field_vals = switch (try sema.resolveInferredErrorSetTy(block, src, ty.toIntern())) { .anyerror_type => null, else => |err_set_ty_index| blk: { const names = ip.indexToKey(err_set_ty_index).error_set_type.names; const vals = try sema.arena.alloc(InternPool.Index, names.len); for (vals, 0..) |*field_val, i| { // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, ip.stringToSlice(names.get(ip)[i])); const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const error_field_fields = .{ // name: []const u8, name_val, }; field_val.* = try mod.intern(.{ .aggregate = .{ .ty = error_field_ty.toIntern(), .storage = .{ .elems = &error_field_fields }, } }); } break :blk vals; }, }; // Build our ?[]const Error value const slice_errors_ty = try mod.ptrType(.{ .child = error_field_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, }); const opt_slice_errors_ty = try mod.optionalType(slice_errors_ty.toIntern()); const errors_payload_val: InternPool.Index = if (error_field_vals) |vals| v: { const array_errors_ty = try mod.arrayType(.{ .len = vals.len, .child = error_field_ty.toIntern(), }); const new_decl = try fields_anon_decl.finish( array_errors_ty, (try mod.intern(.{ .aggregate = .{ .ty = array_errors_ty.toIntern(), .storage = .{ .elems = vals }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = slice_errors_ty.toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, vals.len)).toIntern(), } }); } else .none; const errors_val = try mod.intern(.{ .opt = .{ .ty = opt_slice_errors_ty.toIntern(), .val = errors_payload_val, } }); // Construct Type{ .ErrorSet = errors_val } return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.ErrorSet))).toIntern(), .val = errors_val, } }))); }, .ErrorUnion => { const error_union_field_ty = t: { const error_union_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "ErrorUnion"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, error_union_field_ty_decl_index); try sema.ensureDeclAnalyzed(error_union_field_ty_decl_index); const error_union_field_ty_decl = mod.declPtr(error_union_field_ty_decl_index); break :t error_union_field_ty_decl.val.toType(); }; const field_values = .{ // error_set: type, ty.errorUnionSet(mod).toIntern(), // payload: type, ty.errorUnionPayload(mod).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.ErrorUnion))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = error_union_field_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Enum => { // TODO: look into memoizing this result. const is_exhaustive = Value.makeBool(ip.indexToKey(ty.toIntern()).enum_type.tag_mode != .nonexhaustive); var fields_anon_decl = try block.startAnonDecl(); defer fields_anon_decl.deinit(); const enum_field_ty = t: { const enum_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "EnumField"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, enum_field_ty_decl_index); try sema.ensureDeclAnalyzed(enum_field_ty_decl_index); const enum_field_ty_decl = mod.declPtr(enum_field_ty_decl_index); break :t enum_field_ty_decl.val.toType(); }; const enum_field_vals = try sema.arena.alloc(InternPool.Index, ip.indexToKey(ty.toIntern()).enum_type.names.len); for (enum_field_vals, 0..) |*field_val, i| { const enum_type = ip.indexToKey(ty.toIntern()).enum_type; const value_val = if (enum_type.values.len > 0) try mod.intern_pool.getCoerced(gpa, enum_type.values.get(ip)[i], .comptime_int_type) else try mod.intern(.{ .int = .{ .ty = .comptime_int_type, .storage = .{ .u64 = @as(u64, @intCast(i)) }, } }); // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, ip.stringToSlice(enum_type.names.get(ip)[i])); const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const enum_field_fields = .{ // name: []const u8, name_val, // value: comptime_int, value_val, }; field_val.* = try mod.intern(.{ .aggregate = .{ .ty = enum_field_ty.toIntern(), .storage = .{ .elems = &enum_field_fields }, } }); } const fields_val = v: { const fields_array_ty = try mod.arrayType(.{ .len = enum_field_vals.len, .child = enum_field_ty.toIntern(), }); const new_decl = try fields_anon_decl.finish( fields_array_ty, (try mod.intern(.{ .aggregate = .{ .ty = fields_array_ty.toIntern(), .storage = .{ .elems = enum_field_vals }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = (try mod.ptrType(.{ .child = enum_field_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, })).toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, enum_field_vals.len)).toIntern(), } }); }; const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ip.indexToKey(ty.toIntern()).enum_type.namespace); const type_enum_ty = t: { const type_enum_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Enum"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, type_enum_ty_decl_index); try sema.ensureDeclAnalyzed(type_enum_ty_decl_index); const type_enum_ty_decl = mod.declPtr(type_enum_ty_decl_index); break :t type_enum_ty_decl.val.toType(); }; const field_values = .{ // tag_type: type, ip.indexToKey(ty.toIntern()).enum_type.tag_ty, // fields: []const EnumField, fields_val, // decls: []const Declaration, decls_val, // is_exhaustive: bool, is_exhaustive.toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Enum))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = type_enum_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Union => { // TODO: look into memoizing this result. var fields_anon_decl = try block.startAnonDecl(); defer fields_anon_decl.deinit(); const type_union_ty = t: { const type_union_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Union"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, type_union_ty_decl_index); try sema.ensureDeclAnalyzed(type_union_ty_decl_index); const type_union_ty_decl = mod.declPtr(type_union_ty_decl_index); break :t type_union_ty_decl.val.toType(); }; const union_field_ty = t: { const union_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "UnionField"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, union_field_ty_decl_index); try sema.ensureDeclAnalyzed(union_field_ty_decl_index); const union_field_ty_decl = mod.declPtr(union_field_ty_decl_index); break :t union_field_ty_decl.val.toType(); }; try sema.resolveTypeLayout(ty); // Getting alignment requires type layout const layout = ty.containerLayout(mod); const union_fields = ty.unionFields(mod); const union_field_vals = try gpa.alloc(InternPool.Index, union_fields.count()); defer gpa.free(union_field_vals); for (union_field_vals, 0..) |*field_val, i| { const field = union_fields.values()[i]; // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, ip.stringToSlice(union_fields.keys()[i])); const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const alignment = switch (layout) { .Auto, .Extern => try sema.unionFieldAlignment(field), .Packed => 0, }; const union_field_fields = .{ // name: []const u8, name_val, // type: type, field.ty.toIntern(), // alignment: comptime_int, (try mod.intValue(Type.comptime_int, alignment)).toIntern(), }; field_val.* = try mod.intern(.{ .aggregate = .{ .ty = union_field_ty.toIntern(), .storage = .{ .elems = &union_field_fields }, } }); } const fields_val = v: { const array_fields_ty = try mod.arrayType(.{ .len = union_field_vals.len, .child = union_field_ty.toIntern(), }); const new_decl = try fields_anon_decl.finish( array_fields_ty, (try mod.intern(.{ .aggregate = .{ .ty = array_fields_ty.toIntern(), .storage = .{ .elems = union_field_vals }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = (try mod.ptrType(.{ .child = union_field_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, })).toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, union_field_vals.len)).toIntern(), } }); }; const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod)); const enum_tag_ty_val = try mod.intern(.{ .opt = .{ .ty = (try mod.optionalType(.type_type)).toIntern(), .val = if (ty.unionTagType(mod)) |tag_ty| tag_ty.toIntern() else .none, } }); const container_layout_ty = t: { const decl_index = (try sema.namespaceLookup( block, src, (try sema.getBuiltinType("Type")).getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "ContainerLayout"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); try sema.ensureDeclAnalyzed(decl_index); const decl = mod.declPtr(decl_index); break :t decl.val.toType(); }; const field_values = .{ // layout: ContainerLayout, (try mod.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(), // tag_type: ?type, enum_tag_ty_val, // fields: []const UnionField, fields_val, // decls: []const Declaration, decls_val, }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Union))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = type_union_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Struct => { // TODO: look into memoizing this result. var fields_anon_decl = try block.startAnonDecl(); defer fields_anon_decl.deinit(); const type_struct_ty = t: { const type_struct_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Struct"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, type_struct_ty_decl_index); try sema.ensureDeclAnalyzed(type_struct_ty_decl_index); const type_struct_ty_decl = mod.declPtr(type_struct_ty_decl_index); break :t type_struct_ty_decl.val.toType(); }; const struct_field_ty = t: { const struct_field_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "StructField"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, struct_field_ty_decl_index); try sema.ensureDeclAnalyzed(struct_field_ty_decl_index); const struct_field_ty_decl = mod.declPtr(struct_field_ty_decl_index); break :t struct_field_ty_decl.val.toType(); }; try sema.resolveTypeLayout(ty); // Getting alignment requires type layout const layout = ty.containerLayout(mod); var struct_field_vals: []InternPool.Index = &.{}; defer gpa.free(struct_field_vals); fv: { const struct_type = switch (ip.indexToKey(ty.toIntern())) { .anon_struct_type => |tuple| { struct_field_vals = try gpa.alloc(InternPool.Index, tuple.types.len); for (struct_field_vals, 0..) |*struct_field_val, i| { const anon_struct_type = ip.indexToKey(ty.toIntern()).anon_struct_type; const field_ty = anon_struct_type.types[i]; const field_val = anon_struct_type.values[i]; const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); // TODO: write something like getCoercedInts to avoid needing to dupe const bytes = if (tuple.names.len != 0) // https://github.com/ziglang/zig/issues/15709 try sema.arena.dupe(u8, ip.stringToSlice(ip.indexToKey(ty.toIntern()).anon_struct_type.names[i])) else try std.fmt.allocPrint(sema.arena, "{d}", .{i}); const new_decl_ty = try mod.arrayType(.{ .len = bytes.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = bytes }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, bytes.len)).toIntern(), } }); }; try sema.resolveTypeLayout(field_ty.toType()); const is_comptime = field_val != .none; const opt_default_val = if (is_comptime) field_val.toValue() else null; const default_val_ptr = try sema.optRefValue(block, field_ty.toType(), opt_default_val); const struct_field_fields = .{ // name: []const u8, name_val, // type: type, field_ty, // default_value: ?*const anyopaque, default_val_ptr.toIntern(), // is_comptime: bool, Value.makeBool(is_comptime).toIntern(), // alignment: comptime_int, (try mod.intValue(Type.comptime_int, field_ty.toType().abiAlignment(mod))).toIntern(), }; struct_field_val.* = try mod.intern(.{ .aggregate = .{ .ty = struct_field_ty.toIntern(), .storage = .{ .elems = &struct_field_fields }, } }); } break :fv; }, .struct_type => |s| s, else => unreachable, }; const struct_obj = mod.structPtrUnwrap(struct_type.index) orelse break :fv; struct_field_vals = try gpa.alloc(InternPool.Index, struct_obj.fields.count()); for ( struct_field_vals, struct_obj.fields.keys(), struct_obj.fields.values(), ) |*field_val, name_nts, field| { // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, ip.stringToSlice(name_nts)); const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const opt_default_val = if (field.default_val == .none) null else field.default_val.toValue(); const default_val_ptr = try sema.optRefValue(block, field.ty, opt_default_val); const alignment = field.alignment(mod, layout); const struct_field_fields = .{ // name: []const u8, name_val, // type: type, field.ty.toIntern(), // default_value: ?*const anyopaque, default_val_ptr.toIntern(), // is_comptime: bool, Value.makeBool(field.is_comptime).toIntern(), // alignment: comptime_int, (try mod.intValue(Type.comptime_int, alignment)).toIntern(), }; field_val.* = try mod.intern(.{ .aggregate = .{ .ty = struct_field_ty.toIntern(), .storage = .{ .elems = &struct_field_fields }, } }); } } const fields_val = v: { const array_fields_ty = try mod.arrayType(.{ .len = struct_field_vals.len, .child = struct_field_ty.toIntern(), }); const new_decl = try fields_anon_decl.finish( array_fields_ty, (try mod.intern(.{ .aggregate = .{ .ty = array_fields_ty.toIntern(), .storage = .{ .elems = struct_field_vals }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = (try mod.ptrType(.{ .child = struct_field_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, })).toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, struct_field_vals.len)).toIntern(), } }); }; const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod)); const backing_integer_val = try mod.intern(.{ .opt = .{ .ty = (try mod.optionalType(.type_type)).toIntern(), .val = if (layout == .Packed) val: { const struct_obj = mod.typeToStruct(ty).?; assert(struct_obj.haveLayout()); assert(struct_obj.backing_int_ty.isInt(mod)); break :val struct_obj.backing_int_ty.toIntern(); } else .none, } }); const container_layout_ty = t: { const decl_index = (try sema.namespaceLookup( block, src, (try sema.getBuiltinType("Type")).getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "ContainerLayout"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); try sema.ensureDeclAnalyzed(decl_index); const decl = mod.declPtr(decl_index); break :t decl.val.toType(); }; const field_values = [_]InternPool.Index{ // layout: ContainerLayout, (try mod.enumValueFieldIndex(container_layout_ty, @intFromEnum(layout))).toIntern(), // backing_integer: ?type, backing_integer_val, // fields: []const StructField, fields_val, // decls: []const Declaration, decls_val, // is_tuple: bool, Value.makeBool(ty.isTuple(mod)).toIntern(), }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Struct))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = type_struct_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Opaque => { // TODO: look into memoizing this result. const type_opaque_ty = t: { const type_opaque_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, "Opaque"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, type_opaque_ty_decl_index); try sema.ensureDeclAnalyzed(type_opaque_ty_decl_index); const type_opaque_ty_decl = mod.declPtr(type_opaque_ty_decl_index); break :t type_opaque_ty_decl.val.toType(); }; try sema.resolveTypeFields(ty); const decls_val = try sema.typeInfoDecls(block, src, type_info_ty, ty.getNamespaceIndex(mod)); const field_values = .{ // decls: []const Declaration, decls_val, }; return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = type_info_ty.toIntern(), .tag = (try mod.enumValueFieldIndex(type_info_tag_ty, @intFromEnum(std.builtin.TypeId.Opaque))).toIntern(), .val = try mod.intern(.{ .aggregate = .{ .ty = type_opaque_ty.toIntern(), .storage = .{ .elems = &field_values }, } }), } }))); }, .Frame => return sema.failWithUseOfAsync(block, src), .AnyFrame => return sema.failWithUseOfAsync(block, src), } } fn typeInfoDecls( sema: *Sema, block: *Block, src: LazySrcLoc, type_info_ty: Type, opt_namespace: Module.Namespace.OptionalIndex, ) CompileError!InternPool.Index { const mod = sema.mod; const gpa = sema.gpa; var decls_anon_decl = try block.startAnonDecl(); defer decls_anon_decl.deinit(); const declaration_ty = t: { const declaration_ty_decl_index = (try sema.namespaceLookup( block, src, type_info_ty.getNamespaceIndex(mod).unwrap().?, try mod.intern_pool.getOrPutString(gpa, "Declaration"), )).?; try mod.declareDeclDependency(sema.owner_decl_index, declaration_ty_decl_index); try sema.ensureDeclAnalyzed(declaration_ty_decl_index); const declaration_ty_decl = mod.declPtr(declaration_ty_decl_index); break :t declaration_ty_decl.val.toType(); }; try sema.queueFullTypeResolution(declaration_ty); var decl_vals = std.ArrayList(InternPool.Index).init(gpa); defer decl_vals.deinit(); var seen_namespaces = std.AutoHashMap(*Namespace, void).init(gpa); defer seen_namespaces.deinit(); if (opt_namespace.unwrap()) |namespace_index| { const namespace = mod.namespacePtr(namespace_index); try sema.typeInfoNamespaceDecls(block, namespace, declaration_ty, &decl_vals, &seen_namespaces); } const array_decl_ty = try mod.arrayType(.{ .len = decl_vals.items.len, .child = declaration_ty.toIntern(), }); const new_decl = try decls_anon_decl.finish( array_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = array_decl_ty.toIntern(), .storage = .{ .elems = decl_vals.items }, } })).toValue(), .none, // default alignment ); return try mod.intern(.{ .ptr = .{ .ty = (try mod.ptrType(.{ .child = declaration_ty.toIntern(), .flags = .{ .size = .Slice, .is_const = true, }, })).toIntern(), .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, decl_vals.items.len)).toIntern(), } }); } fn typeInfoNamespaceDecls( sema: *Sema, block: *Block, namespace: *Namespace, declaration_ty: Type, decl_vals: *std.ArrayList(InternPool.Index), seen_namespaces: *std.AutoHashMap(*Namespace, void), ) !void { const mod = sema.mod; const ip = &mod.intern_pool; const gop = try seen_namespaces.getOrPut(namespace); if (gop.found_existing) return; const decls = namespace.decls.keys(); for (decls) |decl_index| { const decl = mod.declPtr(decl_index); if (decl.kind == .@"usingnamespace") { if (decl.analysis == .in_progress) continue; try mod.ensureDeclAnalyzed(decl_index); const new_ns = decl.val.toType().getNamespace(mod).?; try sema.typeInfoNamespaceDecls(block, new_ns, declaration_ty, decl_vals, seen_namespaces); continue; } if (decl.kind != .named or !decl.is_pub) continue; const name_val = v: { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); // TODO: write something like getCoercedInts to avoid needing to dupe const name = try sema.arena.dupe(u8, ip.stringToSlice(decl.name)); const new_decl_ty = try mod.arrayType(.{ .len = name.len, .child = .u8_type, }); const new_decl = try anon_decl.finish( new_decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = new_decl_ty.toIntern(), .storage = .{ .bytes = name }, } })).toValue(), .none, // default alignment ); break :v try mod.intern(.{ .ptr = .{ .ty = .slice_const_u8_type, .addr = .{ .decl = new_decl }, .len = (try mod.intValue(Type.usize, name.len)).toIntern(), } }); }; const fields = .{ //name: []const u8, name_val, }; try decl_vals.append(try mod.intern(.{ .aggregate = .{ .ty = declaration_ty.toIntern(), .storage = .{ .elems = &fields }, } })); } } fn zirTypeof(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { _ = block; const zir_datas = sema.code.instructions.items(.data); const inst_data = zir_datas[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); return Air.internedToRef(operand_ty.toIntern()); } fn zirTypeofBuiltin(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const pl_node = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Block, pl_node.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; var child_block: Block = .{ .parent = block, .sema = sema, .src_decl = block.src_decl, .namespace = block.namespace, .wip_capture_scope = block.wip_capture_scope, .instructions = .{}, .inlining = block.inlining, .is_comptime = false, .is_typeof = true, .want_safety = false, .error_return_trace_index = block.error_return_trace_index, }; defer child_block.instructions.deinit(sema.gpa); const operand = try sema.resolveBody(&child_block, body, inst); const operand_ty = sema.typeOf(operand); if (operand_ty.isGenericPoison()) return error.GenericPoison; return Air.internedToRef(operand_ty.toIntern()); } fn zirTypeofLog2IntType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const res_ty = try sema.log2IntType(block, operand_ty, src); return Air.internedToRef(res_ty.toIntern()); } fn log2IntType(sema: *Sema, block: *Block, operand: Type, src: LazySrcLoc) CompileError!Type { const mod = sema.mod; switch (operand.zigTypeTag(mod)) { .ComptimeInt => return Type.comptime_int, .Int => { const bits = operand.bitSize(mod); const count = if (bits == 0) 0 else blk: { var count: u16 = 0; var s = bits - 1; while (s != 0) : (s >>= 1) { count += 1; } break :blk count; }; return mod.intType(.unsigned, count); }, .Vector => { const elem_ty = operand.elemType2(mod); const log2_elem_ty = try sema.log2IntType(block, elem_ty, src); return mod.vectorType(.{ .len = operand.vectorLen(mod), .child = log2_elem_ty.toIntern(), }); }, else => {}, } return sema.fail( block, src, "bit shifting operation expected integer type, found '{}'", .{operand.fmt(mod)}, ); } fn zirTypeofPeer( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const extra = sema.code.extraData(Zir.Inst.TypeOfPeer, extended.operand); const src = LazySrcLoc.nodeOffset(extra.data.src_node); const body = sema.code.extra[extra.data.body_index..][0..extra.data.body_len]; var child_block: Block = .{ .parent = block, .sema = sema, .src_decl = block.src_decl, .namespace = block.namespace, .wip_capture_scope = block.wip_capture_scope, .instructions = .{}, .inlining = block.inlining, .is_comptime = false, .is_typeof = true, .runtime_cond = block.runtime_cond, .runtime_loop = block.runtime_loop, .runtime_index = block.runtime_index, }; defer child_block.instructions.deinit(sema.gpa); // Ignore the result, we only care about the instructions in `args`. _ = try sema.analyzeBodyBreak(&child_block, body); const args = sema.code.refSlice(extra.end, extended.small); const inst_list = try sema.gpa.alloc(Air.Inst.Ref, args.len); defer sema.gpa.free(inst_list); for (args, 0..) |arg_ref, i| { inst_list[i] = try sema.resolveInst(arg_ref); } const result_type = try sema.resolvePeerTypes(block, src, inst_list, .{ .typeof_builtin_call_node_offset = extra.data.src_node }); return Air.internedToRef(result_type.toIntern()); } fn zirBoolNot(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_un_op = inst_data.src_node }; const uncasted_operand = try sema.resolveInst(inst_data.operand); const operand = try sema.coerce(block, Type.bool, uncasted_operand, operand_src); if (try sema.resolveMaybeUndefVal(operand)) |val| { return if (val.isUndef(mod)) mod.undefRef(Type.bool) else if (val.toBool()) Air.Inst.Ref.bool_false else Air.Inst.Ref.bool_true; } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.not, Type.bool, operand); } fn zirBoolBr( sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index, is_bool_or: bool, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const datas = sema.code.instructions.items(.data); const inst_data = datas[inst].bool_br; const lhs = try sema.resolveInst(inst_data.lhs); const lhs_src = sema.src; const extra = sema.code.extraData(Zir.Inst.Block, inst_data.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const gpa = sema.gpa; if (try sema.resolveDefinedValue(parent_block, lhs_src, lhs)) |lhs_val| { if (is_bool_or and lhs_val.toBool()) { return Air.Inst.Ref.bool_true; } else if (!is_bool_or and !lhs_val.toBool()) { return Air.Inst.Ref.bool_false; } // comptime-known left-hand side. No need for a block here; the result // is simply the rhs expression. Here we rely on there only being 1 // break instruction (`break_inline`). return sema.resolveBody(parent_block, body, inst); } const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); try sema.air_instructions.append(gpa, .{ .tag = .block, .data = .{ .ty_pl = .{ .ty = .bool_type, .payload = undefined, } }, }); var child_block = parent_block.makeSubBlock(); child_block.runtime_loop = null; child_block.runtime_cond = lhs_src; child_block.runtime_index.increment(); defer child_block.instructions.deinit(gpa); var then_block = child_block.makeSubBlock(); defer then_block.instructions.deinit(gpa); var else_block = child_block.makeSubBlock(); defer else_block.instructions.deinit(gpa); const lhs_block = if (is_bool_or) &then_block else &else_block; const rhs_block = if (is_bool_or) &else_block else &then_block; const lhs_result: Air.Inst.Ref = if (is_bool_or) .bool_true else .bool_false; _ = try lhs_block.addBr(block_inst, lhs_result); const rhs_result = try sema.resolveBody(rhs_block, body, inst); if (!sema.typeOf(rhs_result).isNoReturn(mod)) { _ = try rhs_block.addBr(block_inst, rhs_result); } const result = sema.finishCondBr(parent_block, &child_block, &then_block, &else_block, lhs, block_inst); if (!sema.typeOf(rhs_result).isNoReturn(mod)) { if (try sema.resolveDefinedValue(rhs_block, sema.src, rhs_result)) |rhs_val| { if (is_bool_or and rhs_val.toBool()) { return Air.Inst.Ref.bool_true; } else if (!is_bool_or and !rhs_val.toBool()) { return Air.Inst.Ref.bool_false; } } } return result; } fn finishCondBr( sema: *Sema, parent_block: *Block, child_block: *Block, then_block: *Block, else_block: *Block, cond: Air.Inst.Ref, block_inst: Air.Inst.Index, ) !Air.Inst.Ref { const gpa = sema.gpa; try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len + then_block.instructions.items.len + else_block.instructions.items.len + @typeInfo(Air.Block).Struct.fields.len + child_block.instructions.items.len + 1); const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(then_block.instructions.items.len)), .else_body_len = @as(u32, @intCast(else_block.instructions.items.len)), }); sema.air_extra.appendSliceAssumeCapacity(then_block.instructions.items); sema.air_extra.appendSliceAssumeCapacity(else_block.instructions.items); _ = try child_block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = cond, .payload = cond_br_payload, } } }); sema.air_instructions.items(.data)[block_inst].ty_pl.payload = sema.addExtraAssumeCapacity( Air.Block{ .body_len = @as(u32, @intCast(child_block.instructions.items.len)) }, ); sema.air_extra.appendSliceAssumeCapacity(child_block.instructions.items); try parent_block.instructions.append(gpa, block_inst); return Air.indexToRef(block_inst); } fn checkNullableType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Optional, .Null, .Undefined => return, .Pointer => if (ty.isPtrLikeOptional(mod)) return, else => {}, } return sema.failWithExpectedOptionalType(block, src, ty); } fn zirIsNonNull( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); try sema.checkNullableType(block, src, sema.typeOf(operand)); return sema.analyzeIsNull(block, src, operand, true); } fn zirIsNonNullPtr( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ptr = try sema.resolveInst(inst_data.operand); try sema.checkNullableType(block, src, sema.typeOf(ptr).elemType2(mod)); if ((try sema.resolveMaybeUndefVal(ptr)) == null) { return block.addUnOp(.is_non_null_ptr, ptr); } const loaded = try sema.analyzeLoad(block, src, ptr, src); return sema.analyzeIsNull(block, src, loaded, true); } fn checkErrorType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .ErrorSet, .ErrorUnion, .Undefined => return, else => return sema.fail(block, src, "expected error union type, found '{}'", .{ ty.fmt(mod), }), } } fn zirIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); try sema.checkErrorType(block, src, sema.typeOf(operand)); return sema.analyzeIsNonErr(block, src, operand); } fn zirIsNonErrPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ptr = try sema.resolveInst(inst_data.operand); try sema.checkErrorType(block, src, sema.typeOf(ptr).elemType2(mod)); const loaded = try sema.analyzeLoad(block, src, ptr, src); return sema.analyzeIsNonErr(block, src, loaded); } fn zirRetIsNonErr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); return sema.analyzeIsNonErr(block, src, operand); } fn zirCondbr( sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index, ) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const cond_src: LazySrcLoc = .{ .node_offset_if_cond = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.CondBr, inst_data.payload_index); const then_body = sema.code.extra[extra.end..][0..extra.data.then_body_len]; const else_body = sema.code.extra[extra.end + then_body.len ..][0..extra.data.else_body_len]; const uncasted_cond = try sema.resolveInst(extra.data.condition); const cond = try sema.coerce(parent_block, Type.bool, uncasted_cond, cond_src); if (try sema.resolveDefinedValue(parent_block, cond_src, cond)) |cond_val| { const body = if (cond_val.toBool()) then_body else else_body; try sema.maybeErrorUnwrapCondbr(parent_block, body, extra.data.condition, cond_src); // We use `analyzeBodyInner` since we want to propagate any possible // `error.ComptimeBreak` to the caller. return sema.analyzeBodyInner(parent_block, body); } const gpa = sema.gpa; // We'll re-use the sub block to save on memory bandwidth, and yank out the // instructions array in between using it for the then block and else block. var sub_block = parent_block.makeSubBlock(); sub_block.runtime_loop = null; sub_block.runtime_cond = cond_src; sub_block.runtime_index.increment(); defer sub_block.instructions.deinit(gpa); try sema.analyzeBodyRuntimeBreak(&sub_block, then_body); const true_instructions = try sub_block.instructions.toOwnedSlice(gpa); defer gpa.free(true_instructions); const err_cond = blk: { const index = Zir.refToIndex(extra.data.condition) orelse break :blk null; if (sema.code.instructions.items(.tag)[index] != .is_non_err) break :blk null; const err_inst_data = sema.code.instructions.items(.data)[index].un_node; const err_operand = try sema.resolveInst(err_inst_data.operand); const operand_ty = sema.typeOf(err_operand); assert(operand_ty.zigTypeTag(mod) == .ErrorUnion); const result_ty = operand_ty.errorUnionSet(mod); break :blk try sub_block.addTyOp(.unwrap_errunion_err, result_ty, err_operand); }; if (err_cond != null and try sema.maybeErrorUnwrap(&sub_block, else_body, err_cond.?, cond_src)) { // nothing to do } else { try sema.analyzeBodyRuntimeBreak(&sub_block, else_body); } try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len + true_instructions.len + sub_block.instructions.items.len); _ = try parent_block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = cond, .payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(true_instructions.len)), .else_body_len = @as(u32, @intCast(sub_block.instructions.items.len)), }), } }, }); sema.air_extra.appendSliceAssumeCapacity(true_instructions); sema.air_extra.appendSliceAssumeCapacity(sub_block.instructions.items); return always_noreturn; } fn zirTry(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const err_union = try sema.resolveInst(extra.data.operand); const err_union_ty = sema.typeOf(err_union); const mod = sema.mod; if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) { return sema.fail(parent_block, operand_src, "expected error union type, found '{}'", .{ err_union_ty.fmt(mod), }); } const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union); if (is_non_err != .none) { const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?; if (is_non_err_val.toBool()) { return sema.analyzeErrUnionPayload(parent_block, src, err_union_ty, err_union, operand_src, false); } // We can analyze the body directly in the parent block because we know there are // no breaks from the body possible, and that the body is noreturn. return sema.resolveBody(parent_block, body, inst); } var sub_block = parent_block.makeSubBlock(); defer sub_block.instructions.deinit(sema.gpa); // This body is guaranteed to end with noreturn and has no breaks. _ = try sema.analyzeBodyInner(&sub_block, body); try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.Try).Struct.fields.len + sub_block.instructions.items.len); const try_inst = try parent_block.addInst(.{ .tag = .@"try", .data = .{ .pl_op = .{ .operand = err_union, .payload = sema.addExtraAssumeCapacity(Air.Try{ .body_len = @as(u32, @intCast(sub_block.instructions.items.len)), }), } }, }); sema.air_extra.appendSliceAssumeCapacity(sub_block.instructions.items); return try_inst; } fn zirTryPtr(sema: *Sema, parent_block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Try, inst_data.payload_index); const body = sema.code.extra[extra.end..][0..extra.data.body_len]; const operand = try sema.resolveInst(extra.data.operand); const err_union = try sema.analyzeLoad(parent_block, src, operand, operand_src); const err_union_ty = sema.typeOf(err_union); const mod = sema.mod; if (err_union_ty.zigTypeTag(mod) != .ErrorUnion) { return sema.fail(parent_block, operand_src, "expected error union type, found '{}'", .{ err_union_ty.fmt(mod), }); } const is_non_err = try sema.analyzeIsNonErrComptimeOnly(parent_block, operand_src, err_union); if (is_non_err != .none) { const is_non_err_val = (try sema.resolveDefinedValue(parent_block, operand_src, is_non_err)).?; if (is_non_err_val.toBool()) { return sema.analyzeErrUnionPayloadPtr(parent_block, src, operand, false, false); } // We can analyze the body directly in the parent block because we know there are // no breaks from the body possible, and that the body is noreturn. return sema.resolveBody(parent_block, body, inst); } var sub_block = parent_block.makeSubBlock(); defer sub_block.instructions.deinit(sema.gpa); // This body is guaranteed to end with noreturn and has no breaks. _ = try sema.analyzeBodyInner(&sub_block, body); const operand_ty = sema.typeOf(operand); const ptr_info = operand_ty.ptrInfo(mod); const res_ty = try mod.ptrType(.{ .child = err_union_ty.errorUnionPayload(mod).toIntern(), .flags = .{ .is_const = ptr_info.flags.is_const, .is_volatile = ptr_info.flags.is_volatile, .is_allowzero = ptr_info.flags.is_allowzero, .address_space = ptr_info.flags.address_space, }, }); const res_ty_ref = Air.internedToRef(res_ty.toIntern()); try sema.air_extra.ensureUnusedCapacity(sema.gpa, @typeInfo(Air.TryPtr).Struct.fields.len + sub_block.instructions.items.len); const try_inst = try parent_block.addInst(.{ .tag = .try_ptr, .data = .{ .ty_pl = .{ .ty = res_ty_ref, .payload = sema.addExtraAssumeCapacity(Air.TryPtr{ .ptr = operand, .body_len = @as(u32, @intCast(sub_block.instructions.items.len)), }), } }, }); sema.air_extra.appendSliceAssumeCapacity(sub_block.instructions.items); return try_inst; } // A `break` statement is inside a runtime condition, but trying to // break from an inline loop. In such case we must convert it to // a runtime break. fn addRuntimeBreak(sema: *Sema, child_block: *Block, break_data: BreakData) !void { const gop = sema.inst_map.getOrPutAssumeCapacity(break_data.block_inst); const labeled_block = if (!gop.found_existing) blk: { try sema.post_hoc_blocks.ensureUnusedCapacity(sema.gpa, 1); const new_block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); gop.value_ptr.* = Air.indexToRef(new_block_inst); try sema.air_instructions.append(sema.gpa, .{ .tag = .block, .data = undefined, }); const labeled_block = try sema.gpa.create(LabeledBlock); labeled_block.* = .{ .label = .{ .zir_block = break_data.block_inst, .merges = .{ .src_locs = .{}, .results = .{}, .br_list = .{}, .block_inst = new_block_inst, }, }, .block = .{ .parent = child_block, .sema = sema, .src_decl = child_block.src_decl, .namespace = child_block.namespace, .wip_capture_scope = child_block.wip_capture_scope, .instructions = .{}, .label = &labeled_block.label, .inlining = child_block.inlining, .is_comptime = child_block.is_comptime, }, }; sema.post_hoc_blocks.putAssumeCapacityNoClobber(new_block_inst, labeled_block); break :blk labeled_block; } else blk: { const new_block_inst = Air.refToIndex(gop.value_ptr.*).?; const labeled_block = sema.post_hoc_blocks.get(new_block_inst).?; break :blk labeled_block; }; const operand = try sema.resolveInst(break_data.operand); const br_ref = try child_block.addBr(labeled_block.label.merges.block_inst, operand); try labeled_block.label.merges.results.append(sema.gpa, operand); try labeled_block.label.merges.br_list.append(sema.gpa, Air.refToIndex(br_ref).?); labeled_block.block.runtime_index.increment(); if (labeled_block.block.runtime_cond == null and labeled_block.block.runtime_loop == null) { labeled_block.block.runtime_cond = child_block.runtime_cond orelse child_block.runtime_loop; labeled_block.block.runtime_loop = child_block.runtime_loop; } } fn zirUnreachable(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const inst_data = sema.code.instructions.items(.data)[inst].@"unreachable"; const src = inst_data.src(); if (block.is_comptime) { return sema.fail(block, src, "reached unreachable code", .{}); } // TODO Add compile error for @optimizeFor occurring too late in a scope. block.addUnreachable(src, true) catch |err| switch (err) { error.AnalysisFail => { const msg = sema.err orelse return err; if (!mem.eql(u8, msg.msg, "runtime safety check not allowed in naked function")) return err; try sema.errNote(block, src, msg, "the end of a naked function is implicitly unreachable", .{}); return err; }, else => |e| return e, }; return always_noreturn; } fn zirRetErrValue( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Zir.Inst.Index { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].str_tok; const err_name = try mod.intern_pool.getOrPutString(sema.gpa, inst_data.get(sema.code)); _ = try mod.getErrorValue(err_name); const src = inst_data.src(); // Return the error code from the function. const error_set_type = try mod.singleErrorSetType(err_name); const result_inst = Air.internedToRef((try mod.intern(.{ .err = .{ .ty = error_set_type.toIntern(), .name = err_name, } }))); return sema.analyzeRet(block, result_inst, src); } fn zirRetImplicit( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_tok; const r_brace_src = inst_data.src(); if (block.inlining == null and sema.func_is_naked) { assert(!block.is_comptime); if (block.wantSafety()) { // Calling a safety function from a naked function would not be legal. _ = try block.addNoOp(.trap); } else { try block.addUnreachable(r_brace_src, false); } return always_noreturn; } const operand = try sema.resolveInst(inst_data.operand); const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 }; const base_tag = sema.fn_ret_ty.baseZigTypeTag(mod); if (base_tag == .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, ret_ty_src, "function declared '{}' implicitly returns", .{ sema.fn_ret_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, r_brace_src, msg, "control flow reaches end of body here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (base_tag != .Void) { const msg = msg: { const msg = try sema.errMsg(block, ret_ty_src, "function with non-void return type '{}' implicitly returns", .{ sema.fn_ret_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, r_brace_src, msg, "control flow reaches end of body here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return sema.analyzeRet(block, operand, r_brace_src); } fn zirRetNode(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const src = inst_data.src(); return sema.analyzeRet(block, operand, src); } fn zirRetLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Zir.Inst.Index { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const ret_ptr = try sema.resolveInst(inst_data.operand); if (block.is_comptime or block.inlining != null or sema.func_is_naked) { const operand = try sema.analyzeLoad(block, src, ret_ptr, src); return sema.analyzeRet(block, operand, src); } if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) { const is_non_err = try sema.analyzePtrIsNonErr(block, src, ret_ptr); return sema.retWithErrTracing(block, src, is_non_err, .ret_load, ret_ptr); } _ = try block.addUnOp(.ret_load, ret_ptr); return always_noreturn; } fn retWithErrTracing( sema: *Sema, block: *Block, src: LazySrcLoc, is_non_err: Air.Inst.Ref, ret_tag: Air.Inst.Tag, operand: Air.Inst.Ref, ) CompileError!Zir.Inst.Index { const mod = sema.mod; const need_check = switch (is_non_err) { .bool_true => { _ = try block.addUnOp(ret_tag, operand); return always_noreturn; }, .bool_false => false, else => true, }; const gpa = sema.gpa; const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty); const err_return_trace = try block.addTy(.err_return_trace, ptr_stack_trace_ty); const return_err_fn = try sema.getBuiltin("returnError"); const args: [1]Air.Inst.Ref = .{err_return_trace}; if (!need_check) { try sema.callBuiltin(block, src, return_err_fn, .never_inline, &args, .@"error return"); _ = try block.addUnOp(ret_tag, operand); return always_noreturn; } var then_block = block.makeSubBlock(); defer then_block.instructions.deinit(gpa); _ = try then_block.addUnOp(ret_tag, operand); var else_block = block.makeSubBlock(); defer else_block.instructions.deinit(gpa); try sema.callBuiltin(&else_block, src, return_err_fn, .never_inline, &args, .@"error return"); _ = try else_block.addUnOp(ret_tag, operand); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.CondBr).Struct.fields.len + then_block.instructions.items.len + else_block.instructions.items.len + @typeInfo(Air.Block).Struct.fields.len + 1); const cond_br_payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = @as(u32, @intCast(then_block.instructions.items.len)), .else_body_len = @as(u32, @intCast(else_block.instructions.items.len)), }); sema.air_extra.appendSliceAssumeCapacity(then_block.instructions.items); sema.air_extra.appendSliceAssumeCapacity(else_block.instructions.items); _ = try block.addInst(.{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = is_non_err, .payload = cond_br_payload, } } }); return always_noreturn; } fn wantErrorReturnTracing(sema: *Sema, fn_ret_ty: Type) bool { const mod = sema.mod; if (!mod.backendSupportsFeature(.error_return_trace)) return false; return fn_ret_ty.isError(mod) and mod.comp.bin_file.options.error_return_tracing; } fn zirSaveErrRetIndex(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].save_err_ret_index; if (!mod.backendSupportsFeature(.error_return_trace)) return; if (!mod.comp.bin_file.options.error_return_tracing) return; // This is only relevant at runtime. if (block.is_comptime or block.is_typeof) return; const save_index = inst_data.operand == .none or b: { const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); break :b operand_ty.isError(mod); }; if (save_index) block.error_return_trace_index = try sema.analyzeSaveErrRetIndex(block); } fn zirRestoreErrRetIndex(sema: *Sema, start_block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].restore_err_ret_index; const src = sema.src; // TODO // This is only relevant at runtime. if (start_block.is_comptime or start_block.is_typeof) return; const mod = sema.mod; const ip = &mod.intern_pool; if (!mod.backendSupportsFeature(.error_return_trace)) return; if (!ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn) return; if (!mod.comp.bin_file.options.error_return_tracing) return; const tracy = trace(@src()); defer tracy.end(); const saved_index = if (Zir.refToIndexAllowNone(inst_data.block)) |zir_block| b: { var block = start_block; while (true) { if (block.label) |label| { if (label.zir_block == zir_block) { const target_trace_index = if (block.parent) |parent_block| tgt: { break :tgt parent_block.error_return_trace_index; } else sema.error_return_trace_index_on_fn_entry; if (start_block.error_return_trace_index != target_trace_index) break :b target_trace_index; return; // No need to restore } } block = block.parent.?; } } else b: { if (start_block.error_return_trace_index != sema.error_return_trace_index_on_fn_entry) break :b sema.error_return_trace_index_on_fn_entry; return; // No need to restore }; assert(saved_index != .none); // The .error_return_trace_index field was dropped somewhere const operand = try sema.resolveInstAllowNone(inst_data.operand); return sema.popErrorReturnTrace(start_block, src, operand, saved_index); } fn addToInferredErrorSet(sema: *Sema, uncasted_operand: Air.Inst.Ref) !void { const mod = sema.mod; const ip = &mod.intern_pool; assert(sema.fn_ret_ty.zigTypeTag(mod) == .ErrorUnion); const err_set_ty = sema.fn_ret_ty.errorUnionSet(mod).toIntern(); switch (err_set_ty) { .adhoc_inferred_error_set_type => { const ies = sema.fn_ret_ty_ies.?; assert(ies.func == .none); try addToInferredErrorSetPtr(mod, ies, sema.typeOf(uncasted_operand)); }, else => if (ip.isInferredErrorSetType(err_set_ty)) { const ies = sema.fn_ret_ty_ies.?; assert(ies.func == sema.func_index); try addToInferredErrorSetPtr(mod, ies, sema.typeOf(uncasted_operand)); }, } } fn addToInferredErrorSetPtr(mod: *Module, ies: *InferredErrorSet, op_ty: Type) !void { const gpa = mod.gpa; const ip = &mod.intern_pool; switch (op_ty.zigTypeTag(mod)) { .ErrorSet => try ies.addErrorSet(op_ty, ip, gpa), .ErrorUnion => try ies.addErrorSet(op_ty.errorUnionSet(mod), ip, gpa), else => {}, } } fn analyzeRet( sema: *Sema, block: *Block, uncasted_operand: Air.Inst.Ref, src: LazySrcLoc, ) CompileError!Zir.Inst.Index { // Special case for returning an error to an inferred error set; we need to // add the error tag to the inferred error set of the in-scope function, so // that the coercion below works correctly. const mod = sema.mod; if (sema.fn_ret_ty_ies != null and sema.fn_ret_ty.zigTypeTag(mod) == .ErrorUnion) { try sema.addToInferredErrorSet(uncasted_operand); } const operand = sema.coerceExtra(block, sema.fn_ret_ty, uncasted_operand, src, .{ .is_ret = true }) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; if (block.inlining) |inlining| { if (block.is_comptime) { _ = try sema.resolveConstMaybeUndefVal(block, src, operand, "value being returned at comptime must be comptime-known"); inlining.comptime_result = operand; return error.ComptimeReturn; } // We are inlining a function call; rewrite the `ret` as a `break`. try inlining.merges.results.append(sema.gpa, operand); _ = try block.addBr(inlining.merges.block_inst, operand); return always_noreturn; } else if (block.is_comptime) { return sema.fail(block, src, "function called at runtime cannot return value at comptime", .{}); } else if (sema.func_is_naked) { const msg = msg: { const msg = try sema.errMsg(block, src, "cannot return from naked function", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "can only return using assembly", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } try sema.resolveTypeLayout(sema.fn_ret_ty); if (sema.wantErrorReturnTracing(sema.fn_ret_ty)) { // Avoid adding a frame to the error return trace in case the value is comptime-known // to be not an error. const is_non_err = try sema.analyzeIsNonErr(block, src, operand); return sema.retWithErrTracing(block, src, is_non_err, .ret, operand); } _ = try block.addUnOp(.ret, operand); return always_noreturn; } fn floatOpAllowed(tag: Zir.Inst.Tag) bool { // extend this swich as additional operators are implemented return switch (tag) { .add, .sub, .mul, .div, .div_exact, .div_trunc, .div_floor, .mod, .rem, .mod_rem => true, else => false, }; } fn zirPtrType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].ptr_type; const extra = sema.code.extraData(Zir.Inst.PtrType, inst_data.payload_index); const elem_ty_src: LazySrcLoc = .{ .node_offset_ptr_elem = extra.data.src_node }; const sentinel_src: LazySrcLoc = .{ .node_offset_ptr_sentinel = extra.data.src_node }; const align_src: LazySrcLoc = .{ .node_offset_ptr_align = extra.data.src_node }; const addrspace_src: LazySrcLoc = .{ .node_offset_ptr_addrspace = extra.data.src_node }; const bitoffset_src: LazySrcLoc = .{ .node_offset_ptr_bitoffset = extra.data.src_node }; const hostsize_src: LazySrcLoc = .{ .node_offset_ptr_hostsize = extra.data.src_node }; const elem_ty = blk: { const air_inst = try sema.resolveInst(extra.data.elem_type); const ty = sema.analyzeAsType(block, elem_ty_src, air_inst) catch |err| { if (err == error.AnalysisFail and sema.err != null and sema.typeOf(air_inst).isSinglePointer(mod)) { try sema.errNote(block, elem_ty_src, sema.err.?, "use '.*' to dereference pointer", .{}); } return err; }; if (ty.isGenericPoison()) return error.GenericPoison; break :blk ty; }; if (elem_ty.zigTypeTag(mod) == .NoReturn) return sema.fail(block, elem_ty_src, "pointer to noreturn not allowed", .{}); const target = mod.getTarget(); var extra_i = extra.end; const sentinel = if (inst_data.flags.has_sentinel) blk: { const ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_i])); extra_i += 1; const coerced = try sema.coerce(block, elem_ty, try sema.resolveInst(ref), sentinel_src); const val = try sema.resolveConstValue(block, sentinel_src, coerced, "pointer sentinel value must be comptime-known"); break :blk val.toIntern(); } else .none; const abi_align: Alignment = if (inst_data.flags.has_align) blk: { const ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_i])); extra_i += 1; const coerced = try sema.coerce(block, Type.u32, try sema.resolveInst(ref), align_src); const val = try sema.resolveConstValue(block, align_src, coerced, "pointer alignment must be comptime-known"); // Check if this happens to be the lazy alignment of our element type, in // which case we can make this 0 without resolving it. switch (mod.intern_pool.indexToKey(val.toIntern())) { .int => |int| switch (int.storage) { .lazy_align => |lazy_ty| if (lazy_ty == elem_ty.toIntern()) break :blk .none, else => {}, }, else => {}, } const abi_align = @as(u32, @intCast((try val.getUnsignedIntAdvanced(mod, sema)).?)); try sema.validateAlign(block, align_src, abi_align); break :blk Alignment.fromByteUnits(abi_align); } else .none; const address_space: std.builtin.AddressSpace = if (inst_data.flags.has_addrspace) blk: { const ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_i])); extra_i += 1; break :blk try sema.analyzeAddressSpace(block, addrspace_src, ref, .pointer); } else if (elem_ty.zigTypeTag(mod) == .Fn and target.cpu.arch == .avr) .flash else .generic; const bit_offset = if (inst_data.flags.has_bit_range) blk: { const ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_i])); extra_i += 1; const bit_offset = try sema.resolveInt(block, bitoffset_src, ref, Type.u16, "pointer bit-offset must be comptime-known"); break :blk @as(u16, @intCast(bit_offset)); } else 0; const host_size: u16 = if (inst_data.flags.has_bit_range) blk: { const ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_i])); extra_i += 1; const host_size = try sema.resolveInt(block, hostsize_src, ref, Type.u16, "pointer host size must be comptime-known"); break :blk @as(u16, @intCast(host_size)); } else 0; if (host_size != 0 and bit_offset >= host_size * 8) { return sema.fail(block, bitoffset_src, "bit offset starts after end of host integer", .{}); } if (elem_ty.zigTypeTag(mod) == .Fn) { if (inst_data.size != .One) { return sema.fail(block, elem_ty_src, "function pointers must be single pointers", .{}); } const fn_align = mod.typeToFunc(elem_ty).?.alignment; if (inst_data.flags.has_align and abi_align != .none and fn_align != .none and abi_align != fn_align) { return sema.fail(block, align_src, "function pointer alignment disagrees with function alignment", .{}); } } else if (inst_data.size == .Many and elem_ty.zigTypeTag(mod) == .Opaque) { return sema.fail(block, elem_ty_src, "unknown-length pointer to opaque not allowed", .{}); } else if (inst_data.size == .C) { if (!try sema.validateExternType(elem_ty, .other)) { const msg = msg: { const msg = try sema.errMsg(block, elem_ty_src, "C pointers cannot point to non-C-ABI-compatible type '{}'", .{elem_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, elem_ty_src.toSrcLoc(src_decl, mod), elem_ty, .other); try sema.addDeclaredHereNote(msg, elem_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (elem_ty.zigTypeTag(mod) == .Opaque) { return sema.fail(block, elem_ty_src, "C pointers cannot point to opaque types", .{}); } } const ty = try mod.ptrType(.{ .child = elem_ty.toIntern(), .sentinel = sentinel, .flags = .{ .alignment = abi_align, .address_space = address_space, .is_const = !inst_data.flags.is_mutable, .is_allowzero = inst_data.flags.is_allowzero, .is_volatile = inst_data.flags.is_volatile, .size = inst_data.size, }, .packed_offset = .{ .bit_offset = bit_offset, .host_size = host_size, }, }); return Air.internedToRef(ty.toIntern()); } fn zirStructInitEmpty(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const obj_ty = try sema.resolveType(block, src, inst_data.operand); const mod = sema.mod; switch (obj_ty.zigTypeTag(mod)) { .Struct => return sema.structInitEmpty(block, obj_ty, src, src), .Array, .Vector => return sema.arrayInitEmpty(block, src, obj_ty), .Void => return Air.internedToRef(Value.void.toIntern()), .Union => return sema.fail(block, src, "union initializer must initialize one field", .{}), else => return sema.failWithArrayInitNotSupported(block, src, obj_ty), } } fn structInitEmpty( sema: *Sema, block: *Block, struct_ty: Type, dest_src: LazySrcLoc, init_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; // This logic must be synchronized with that in `zirStructInit`. try sema.resolveTypeFields(struct_ty); // The init values to use for the struct instance. const field_inits = try gpa.alloc(Air.Inst.Ref, struct_ty.structFieldCount(mod)); defer gpa.free(field_inits); @memset(field_inits, .none); return sema.finishStructInit(block, init_src, dest_src, field_inits, struct_ty, false); } fn arrayInitEmpty(sema: *Sema, block: *Block, src: LazySrcLoc, obj_ty: Type) CompileError!Air.Inst.Ref { const mod = sema.mod; const arr_len = obj_ty.arrayLen(mod); if (arr_len != 0) { if (obj_ty.zigTypeTag(mod) == .Array) { return sema.fail(block, src, "expected {d} array elements; found 0", .{arr_len}); } else { return sema.fail(block, src, "expected {d} vector elements; found 0", .{arr_len}); } } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = obj_ty.toIntern(), .storage = .{ .elems = &.{} }, } }))); } fn zirUnionInit(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const field_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const init_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.UnionInit, inst_data.payload_index).data; const union_ty = try sema.resolveType(block, ty_src, extra.union_type); if (union_ty.zigTypeTag(sema.mod) != .Union) { const msg = msg: { const msg = try sema.errMsg(block, ty_src, "expected union type, found '{}'", .{union_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, "name of field being initialized must be comptime-known"); const init = try sema.resolveInst(extra.init); return sema.unionInit(block, init, init_src, union_ty, ty_src, field_name, field_src); } fn unionInit( sema: *Sema, block: *Block, uncasted_init: Air.Inst.Ref, init_src: LazySrcLoc, union_ty: Type, union_ty_src: LazySrcLoc, field_name: InternPool.NullTerminatedString, field_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_src); const field = union_ty.unionFields(mod).values()[field_index]; const init = try sema.coerce(block, field.ty, uncasted_init, init_src); if (try sema.resolveMaybeUndefVal(init)) |init_val| { const tag_ty = union_ty.unionTagTypeHypothetical(mod); const enum_field_index = @as(u32, @intCast(tag_ty.enumFieldIndex(field_name, mod).?)); const tag_val = try mod.enumValueFieldIndex(tag_ty, enum_field_index); return Air.internedToRef((try mod.intern(.{ .un = .{ .ty = union_ty.toIntern(), .tag = try tag_val.intern(tag_ty, mod), .val = try init_val.intern(field.ty, mod), } }))); } try sema.requireRuntimeBlock(block, init_src, null); _ = union_ty_src; try sema.queueFullTypeResolution(union_ty); return block.addUnionInit(union_ty, field_index, init); } fn zirStructInit( sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_ref: bool, ) CompileError!Air.Inst.Ref { const gpa = sema.gpa; const zir_datas = sema.code.instructions.items(.data); const inst_data = zir_datas[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.StructInit, inst_data.payload_index); const src = inst_data.src(); const mod = sema.mod; const first_item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end).data; const first_field_type_data = zir_datas[first_item.field_type].pl_node; const first_field_type_extra = sema.code.extraData(Zir.Inst.FieldType, first_field_type_data.payload_index).data; const resolved_ty = sema.resolveType(block, src, first_field_type_extra.container_type) catch |err| switch (err) { error.GenericPoison => { // The type wasn't actually known, so treat this as an anon struct init. return sema.structInitAnon(block, src, .typed_init, extra.data, extra.end, is_ref); }, else => |e| return e, }; try sema.resolveTypeLayout(resolved_ty); if (resolved_ty.zigTypeTag(mod) == .Struct) { // This logic must be synchronized with that in `zirStructInitEmpty`. // Maps field index to field_type index of where it was already initialized. // For making sure all fields are accounted for and no fields are duplicated. const found_fields = try gpa.alloc(Zir.Inst.Index, resolved_ty.structFieldCount(mod)); defer gpa.free(found_fields); // The init values to use for the struct instance. const field_inits = try gpa.alloc(Air.Inst.Ref, resolved_ty.structFieldCount(mod)); defer gpa.free(field_inits); @memset(field_inits, .none); var field_i: u32 = 0; var extra_index = extra.end; const is_packed = resolved_ty.containerLayout(mod) == .Packed; while (field_i < extra.data.fields_len) : (field_i += 1) { const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra_index); extra_index = item.end; const field_type_data = zir_datas[item.data.field_type].pl_node; const field_src: LazySrcLoc = .{ .node_offset_initializer = field_type_data.src_node }; const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data; const field_name = try mod.intern_pool.getOrPutString(gpa, sema.code.nullTerminatedString(field_type_extra.name_start)); const field_index = if (resolved_ty.isTuple(mod)) try sema.tupleFieldIndex(block, resolved_ty, field_name, field_src) else try sema.structFieldIndex(block, resolved_ty, field_name, field_src); if (field_inits[field_index] != .none) { const other_field_type = found_fields[field_index]; const other_field_type_data = zir_datas[other_field_type].pl_node; const other_field_src: LazySrcLoc = .{ .node_offset_initializer = other_field_type_data.src_node }; const msg = msg: { const msg = try sema.errMsg(block, field_src, "duplicate field", .{}); errdefer msg.destroy(gpa); try sema.errNote(block, other_field_src, msg, "other field here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } found_fields[field_index] = item.data.field_type; field_inits[field_index] = try sema.resolveInst(item.data.init); if (!is_packed) if (try resolved_ty.structFieldValueComptime(mod, field_index)) |default_value| { const init_val = (try sema.resolveMaybeUndefVal(field_inits[field_index])) orelse { return sema.failWithNeededComptime(block, field_src, "value stored in comptime field must be comptime-known"); }; if (!init_val.eql(default_value, resolved_ty.structFieldType(field_index, mod), mod)) { return sema.failWithInvalidComptimeFieldStore(block, field_src, resolved_ty, field_index); } }; } return sema.finishStructInit(block, src, src, field_inits, resolved_ty, is_ref); } else if (resolved_ty.zigTypeTag(mod) == .Union) { if (extra.data.fields_len != 1) { return sema.fail(block, src, "union initialization expects exactly one field", .{}); } const item = sema.code.extraData(Zir.Inst.StructInit.Item, extra.end); const field_type_data = zir_datas[item.data.field_type].pl_node; const field_src: LazySrcLoc = .{ .node_offset_initializer = field_type_data.src_node }; const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index).data; const field_name = try mod.intern_pool.getOrPutString(gpa, sema.code.nullTerminatedString(field_type_extra.name_start)); const field_index = try sema.unionFieldIndex(block, resolved_ty, field_name, field_src); const tag_ty = resolved_ty.unionTagTypeHypothetical(mod); const enum_field_index = @as(u32, @intCast(tag_ty.enumFieldIndex(field_name, mod).?)); const tag_val = try mod.enumValueFieldIndex(tag_ty, enum_field_index); const init_inst = try sema.resolveInst(item.data.init); if (try sema.resolveMaybeUndefVal(init_inst)) |val| { const field = resolved_ty.unionFields(mod).values()[field_index]; return sema.addConstantMaybeRef(block, resolved_ty, (try mod.intern(.{ .un = .{ .ty = resolved_ty.toIntern(), .tag = try tag_val.intern(tag_ty, mod), .val = try val.intern(field.ty, mod), } })).toValue(), is_ref); } if (is_ref) { const target = mod.getTarget(); const alloc_ty = try mod.ptrType(.{ .child = resolved_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const alloc = try block.addTy(.alloc, alloc_ty); const field_ptr = try sema.unionFieldPtr(block, field_src, alloc, field_name, field_src, resolved_ty, true); try sema.storePtr(block, src, field_ptr, init_inst); const new_tag = Air.internedToRef(tag_val.toIntern()); _ = try block.addBinOp(.set_union_tag, alloc, new_tag); return sema.makePtrConst(block, alloc); } try sema.requireRuntimeBlock(block, src, null); try sema.queueFullTypeResolution(resolved_ty); return block.addUnionInit(resolved_ty, field_index, init_inst); } else if (resolved_ty.isAnonStruct(mod)) { return sema.fail(block, src, "TODO anon struct init validation", .{}); } unreachable; } fn finishStructInit( sema: *Sema, block: *Block, init_src: LazySrcLoc, dest_src: LazySrcLoc, field_inits: []Air.Inst.Ref, struct_ty: Type, is_ref: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; var root_msg: ?*Module.ErrorMsg = null; errdefer if (root_msg) |msg| msg.destroy(sema.gpa); switch (ip.indexToKey(struct_ty.toIntern())) { .anon_struct_type => |anon_struct| { for (anon_struct.values, 0..) |default_val, i| { if (field_inits[i] != .none) continue; if (default_val == .none) { if (anon_struct.names.len == 0) { const template = "missing tuple field with index {d}"; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, .{i}); } else { root_msg = try sema.errMsg(block, init_src, template, .{i}); } } else { const field_name = anon_struct.names[i]; const template = "missing struct field: {}"; const args = .{field_name.fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, args); } else { root_msg = try sema.errMsg(block, init_src, template, args); } } } else { field_inits[i] = Air.internedToRef(default_val); } } }, .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index).?; for (struct_obj.fields.values(), 0..) |field, i| { if (field_inits[i] != .none) continue; if (field.default_val == .none) { const field_name = struct_obj.fields.keys()[i]; const template = "missing struct field: {}"; const args = .{field_name.fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, init_src, msg, template, args); } else { root_msg = try sema.errMsg(block, init_src, template, args); } } else { field_inits[i] = Air.internedToRef(field.default_val); } } }, else => unreachable, } if (root_msg) |msg| { if (mod.typeToStruct(struct_ty)) |struct_obj| { const fqn = try struct_obj.getFullyQualifiedName(mod); try mod.errNoteNonLazy( struct_obj.srcLoc(mod), msg, "struct '{}' declared here", .{fqn.fmt(ip)}, ); } root_msg = null; return sema.failWithOwnedErrorMsg(msg); } // Find which field forces the expression to be runtime, if any. const opt_runtime_index = for (field_inits, 0..) |field_init, i| { if (!(try sema.isComptimeKnown(field_init))) { break i; } } else null; const runtime_index = opt_runtime_index orelse { const elems = try sema.arena.alloc(InternPool.Index, field_inits.len); for (elems, field_inits, 0..) |*elem, field_init, field_i| { elem.* = try (sema.resolveMaybeUndefVal(field_init) catch unreachable).? .intern(struct_ty.structFieldType(field_i, mod), mod); } const struct_val = try mod.intern(.{ .aggregate = .{ .ty = struct_ty.toIntern(), .storage = .{ .elems = elems }, } }); return sema.addConstantMaybeRef(block, struct_ty, struct_val.toValue(), is_ref); }; if (is_ref) { try sema.resolveStructLayout(struct_ty); const target = sema.mod.getTarget(); const alloc_ty = try mod.ptrType(.{ .child = struct_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const alloc = try block.addTy(.alloc, alloc_ty); for (field_inits, 0..) |field_init, i_usize| { const i = @as(u32, @intCast(i_usize)); const field_src = dest_src; const field_ptr = try sema.structFieldPtrByIndex(block, dest_src, alloc, i, field_src, struct_ty, true); try sema.storePtr(block, dest_src, field_ptr, field_init); } return sema.makePtrConst(block, alloc); } sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) { error.NeededSourceLocation => { const decl = mod.declPtr(block.src_decl); const field_src = mod.initSrc(dest_src.node_offset.x, decl, runtime_index); try sema.requireRuntimeBlock(block, dest_src, field_src); unreachable; }, else => |e| return e, }; try sema.queueFullTypeResolution(struct_ty); return block.addAggregateInit(struct_ty, field_inits); } fn zirStructInitAnon( sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_ref: bool, ) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.StructInitAnon, inst_data.payload_index); return sema.structInitAnon(block, src, .anon_init, extra.data, extra.end, is_ref); } fn structInitAnon( sema: *Sema, block: *Block, src: LazySrcLoc, /// It is possible for a typed struct_init to be downgraded to an anonymous init due to a /// generic poison type. In this case, we need to know to interpret the extra data differently. comptime kind: enum { anon_init, typed_init }, extra_data: switch (kind) { .anon_init => Zir.Inst.StructInitAnon, .typed_init => Zir.Inst.StructInit, }, extra_end: usize, is_ref: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const zir_datas = sema.code.instructions.items(.data); const types = try sema.arena.alloc(InternPool.Index, extra_data.fields_len); const values = try sema.arena.alloc(InternPool.Index, types.len); var fields = std.AutoArrayHashMap(InternPool.NullTerminatedString, u32).init(sema.arena); try fields.ensureUnusedCapacity(types.len); // Find which field forces the expression to be runtime, if any. const opt_runtime_index = rs: { var runtime_index: ?usize = null; var extra_index = extra_end; for (types, 0..) |*field_ty, i_usize| { const i: u32 = @intCast(i_usize); const item = switch (kind) { .anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index), .typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index), }; extra_index = item.end; const name = switch (kind) { .anon_init => sema.code.nullTerminatedString(item.data.field_name), .typed_init => name: { // `item.data.field_type` references a `field_type` instruction const field_type_data = zir_datas[item.data.field_type].pl_node; const field_type_extra = sema.code.extraData(Zir.Inst.FieldType, field_type_data.payload_index); break :name sema.code.nullTerminatedString(field_type_extra.data.name_start); }, }; const name_ip = try mod.intern_pool.getOrPutString(gpa, name); const gop = fields.getOrPutAssumeCapacity(name_ip); if (gop.found_existing) { const msg = msg: { const decl = mod.declPtr(block.src_decl); const field_src = mod.initSrc(src.node_offset.x, decl, i); const msg = try sema.errMsg(block, field_src, "duplicate field", .{}); errdefer msg.destroy(gpa); const prev_source = mod.initSrc(src.node_offset.x, decl, gop.value_ptr.*); try sema.errNote(block, prev_source, msg, "other field here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } gop.value_ptr.* = i; const init = try sema.resolveInst(item.data.init); field_ty.* = sema.typeOf(init).toIntern(); if (field_ty.toType().zigTypeTag(mod) == .Opaque) { const msg = msg: { const decl = mod.declPtr(block.src_decl); const field_src = mod.initSrc(src.node_offset.x, decl, i); const msg = try sema.errMsg(block, field_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, field_ty.toType()); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (try sema.resolveMaybeUndefVal(init)) |init_val| { values[i] = try init_val.intern(field_ty.toType(), mod); } else { values[i] = .none; runtime_index = i; } } break :rs runtime_index; }; const tuple_ty = try mod.intern(.{ .anon_struct_type = .{ .names = fields.keys(), .types = types, .values = values, } }); const runtime_index = opt_runtime_index orelse { const tuple_val = try mod.intern(.{ .aggregate = .{ .ty = tuple_ty, .storage = .{ .elems = values }, } }); return sema.addConstantMaybeRef(block, tuple_ty.toType(), tuple_val.toValue(), is_ref); }; sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) { error.NeededSourceLocation => { const decl = mod.declPtr(block.src_decl); const field_src = mod.initSrc(src.node_offset.x, decl, runtime_index); try sema.requireRuntimeBlock(block, src, field_src); unreachable; }, else => |e| return e, }; if (is_ref) { const target = mod.getTarget(); const alloc_ty = try mod.ptrType(.{ .child = tuple_ty, .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const alloc = try block.addTy(.alloc, alloc_ty); var extra_index = extra_end; for (types, 0..) |field_ty, i_usize| { const i = @as(u32, @intCast(i_usize)); const item = switch (kind) { .anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index), .typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index), }; extra_index = item.end; const field_ptr_ty = try mod.ptrType(.{ .child = field_ty, .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); if (values[i] == .none) { const init = try sema.resolveInst(item.data.init); const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty); _ = try block.addBinOp(.store, field_ptr, init); } } return sema.makePtrConst(block, alloc); } const element_refs = try sema.arena.alloc(Air.Inst.Ref, types.len); var extra_index = extra_end; for (types, 0..) |_, i| { const item = switch (kind) { .anon_init => sema.code.extraData(Zir.Inst.StructInitAnon.Item, extra_index), .typed_init => sema.code.extraData(Zir.Inst.StructInit.Item, extra_index), }; extra_index = item.end; element_refs[i] = try sema.resolveInst(item.data.init); } return block.addAggregateInit(tuple_ty.toType(), element_refs); } fn zirArrayInit( sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_ref: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index); const args = sema.code.refSlice(extra.end, extra.data.operands_len); assert(args.len >= 2); // array_ty + at least one element const array_ty = sema.resolveType(block, src, args[0]) catch |err| switch (err) { error.GenericPoison => { // The type wasn't actually known, so treat this as an anon array init. return sema.arrayInitAnon(block, src, args[1..], is_ref); }, else => |e| return e, }; const is_tuple = array_ty.zigTypeTag(mod) == .Struct; const sentinel_val = array_ty.sentinel(mod); const resolved_args = try gpa.alloc(Air.Inst.Ref, args.len - 1 + @intFromBool(sentinel_val != null)); defer gpa.free(resolved_args); for (args[1..], 0..) |arg, i| { const resolved_arg = try sema.resolveInst(arg); const elem_ty = if (is_tuple) array_ty.structFieldType(i, mod) else array_ty.elemType2(mod); resolved_args[i] = sema.coerce(block, elem_ty, resolved_arg, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const decl = mod.declPtr(block.src_decl); const elem_src = mod.initSrc(src.node_offset.x, decl, i); _ = try sema.coerce(block, elem_ty, resolved_arg, elem_src); unreachable; }, else => return err, }; if (is_tuple) if (try array_ty.structFieldValueComptime(mod, i)) |field_val| { const init_val = try sema.resolveMaybeUndefVal(resolved_args[i]) orelse { const decl = mod.declPtr(block.src_decl); const elem_src = mod.initSrc(src.node_offset.x, decl, i); return sema.failWithNeededComptime(block, elem_src, "value stored in comptime field must be comptime-known"); }; if (!field_val.eql(init_val, elem_ty, mod)) { const decl = mod.declPtr(block.src_decl); const elem_src = mod.initSrc(src.node_offset.x, decl, i); return sema.failWithInvalidComptimeFieldStore(block, elem_src, array_ty, i); } }; } if (sentinel_val) |some| { resolved_args[resolved_args.len - 1] = Air.internedToRef(some.toIntern()); } const opt_runtime_index: ?u32 = for (resolved_args, 0..) |arg, i| { const comptime_known = try sema.isComptimeKnown(arg); if (!comptime_known) break @as(u32, @intCast(i)); } else null; const runtime_index = opt_runtime_index orelse { const elem_vals = try sema.arena.alloc(InternPool.Index, resolved_args.len); for (elem_vals, resolved_args, 0..) |*val, arg, i| { const elem_ty = if (array_ty.zigTypeTag(mod) == .Struct) array_ty.structFieldType(i, mod) else array_ty.elemType2(mod); // We checked that all args are comptime above. val.* = try ((sema.resolveMaybeUndefVal(arg) catch unreachable).?).intern(elem_ty, mod); } return sema.addConstantMaybeRef(block, array_ty, (try mod.intern(.{ .aggregate = .{ .ty = array_ty.toIntern(), .storage = .{ .elems = elem_vals }, } })).toValue(), is_ref); }; sema.requireRuntimeBlock(block, .unneeded, null) catch |err| switch (err) { error.NeededSourceLocation => { const decl = mod.declPtr(block.src_decl); const elem_src = mod.initSrc(src.node_offset.x, decl, runtime_index); try sema.requireRuntimeBlock(block, src, elem_src); unreachable; }, else => return err, }; try sema.queueFullTypeResolution(array_ty); if (is_ref) { const target = mod.getTarget(); const alloc_ty = try mod.ptrType(.{ .child = array_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const alloc = try block.addTy(.alloc, alloc_ty); if (array_ty.isTuple(mod)) { for (resolved_args, 0..) |arg, i| { const elem_ptr_ty = try mod.ptrType(.{ .child = array_ty.structFieldType(i, mod).toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern()); const index = try mod.intRef(Type.usize, i); const elem_ptr = try block.addPtrElemPtrTypeRef(alloc, index, elem_ptr_ty_ref); _ = try block.addBinOp(.store, elem_ptr, arg); } return sema.makePtrConst(block, alloc); } const elem_ptr_ty = try mod.ptrType(.{ .child = array_ty.elemType2(mod).toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const elem_ptr_ty_ref = Air.internedToRef(elem_ptr_ty.toIntern()); for (resolved_args, 0..) |arg, i| { const index = try mod.intRef(Type.usize, i); const elem_ptr = try block.addPtrElemPtrTypeRef(alloc, index, elem_ptr_ty_ref); _ = try block.addBinOp(.store, elem_ptr, arg); } return sema.makePtrConst(block, alloc); } return block.addAggregateInit(array_ty, resolved_args); } fn zirArrayInitAnon( sema: *Sema, block: *Block, inst: Zir.Inst.Index, is_ref: bool, ) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.MultiOp, inst_data.payload_index); const operands = sema.code.refSlice(extra.end, extra.data.operands_len); return sema.arrayInitAnon(block, src, operands, is_ref); } fn arrayInitAnon( sema: *Sema, block: *Block, src: LazySrcLoc, operands: []const Zir.Inst.Ref, is_ref: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const types = try sema.arena.alloc(InternPool.Index, operands.len); const values = try sema.arena.alloc(InternPool.Index, operands.len); const opt_runtime_src = rs: { var runtime_src: ?LazySrcLoc = null; for (operands, 0..) |operand, i| { const operand_src = src; // TODO better source location const elem = try sema.resolveInst(operand); types[i] = sema.typeOf(elem).toIntern(); if (types[i].toType().zigTypeTag(mod) == .Opaque) { const msg = msg: { const msg = try sema.errMsg(block, operand_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, types[i].toType()); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (try sema.resolveMaybeUndefVal(elem)) |val| { values[i] = val.toIntern(); } else { values[i] = .none; runtime_src = operand_src; } } break :rs runtime_src; }; const tuple_ty = try mod.intern(.{ .anon_struct_type = .{ .types = types, .values = values, .names = &.{}, } }); const runtime_src = opt_runtime_src orelse { const tuple_val = try mod.intern(.{ .aggregate = .{ .ty = tuple_ty, .storage = .{ .elems = values }, } }); return sema.addConstantMaybeRef(block, tuple_ty.toType(), tuple_val.toValue(), is_ref); }; try sema.requireRuntimeBlock(block, src, runtime_src); if (is_ref) { const target = sema.mod.getTarget(); const alloc_ty = try mod.ptrType(.{ .child = tuple_ty, .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); const alloc = try block.addTy(.alloc, alloc_ty); for (operands, 0..) |operand, i_usize| { const i = @as(u32, @intCast(i_usize)); const field_ptr_ty = try mod.ptrType(.{ .child = types[i], .flags = .{ .address_space = target_util.defaultAddressSpace(target, .local) }, }); if (values[i] == .none) { const field_ptr = try block.addStructFieldPtr(alloc, i, field_ptr_ty); _ = try block.addBinOp(.store, field_ptr, try sema.resolveInst(operand)); } } return sema.makePtrConst(block, alloc); } const element_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len); for (operands, 0..) |operand, i| { element_refs[i] = try sema.resolveInst(operand); } return block.addAggregateInit(tuple_ty.toType(), element_refs); } fn addConstantMaybeRef( sema: *Sema, block: *Block, ty: Type, val: Value, is_ref: bool, ) !Air.Inst.Ref { if (!is_ref) return Air.internedToRef(val.toIntern()); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const decl = try anon_decl.finish( ty, val, .none, // default alignment ); return sema.analyzeDeclRef(decl); } fn zirFieldTypeRef(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.FieldTypeRef, inst_data.payload_index).data; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const field_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const aggregate_ty = try sema.resolveType(block, ty_src, extra.container_type); const field_name = try sema.resolveConstStringIntern(block, field_src, extra.field_name, "field name must be comptime-known"); return sema.fieldType(block, aggregate_ty, field_name, field_src, ty_src); } fn zirFieldType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.FieldType, inst_data.payload_index).data; const ty_src = inst_data.src(); const field_name_src: LazySrcLoc = .{ .node_offset_field_name = inst_data.src_node }; const aggregate_ty = sema.resolveType(block, ty_src, extra.container_type) catch |err| switch (err) { // Since this is a ZIR instruction that returns a type, encountering // generic poison should not result in a failed compilation, but the // generic poison type. This prevents unnecessary failures when // constructing types at compile-time. error.GenericPoison => return Air.Inst.Ref.generic_poison_type, else => |e| return e, }; const zir_field_name = sema.code.nullTerminatedString(extra.name_start); const field_name = try ip.getOrPutString(sema.gpa, zir_field_name); return sema.fieldType(block, aggregate_ty, field_name, field_name_src, ty_src); } fn fieldType( sema: *Sema, block: *Block, aggregate_ty: Type, field_name: InternPool.NullTerminatedString, field_src: LazySrcLoc, ty_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; var cur_ty = aggregate_ty; while (true) { try sema.resolveTypeFields(cur_ty); switch (cur_ty.zigTypeTag(mod)) { .Struct => switch (mod.intern_pool.indexToKey(cur_ty.toIntern())) { .anon_struct_type => |anon_struct| { const field_index = try sema.anonStructFieldIndex(block, cur_ty, field_name, field_src); return Air.internedToRef(anon_struct.types[field_index]); }, .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index).?; const field = struct_obj.fields.get(field_name) orelse return sema.failWithBadStructFieldAccess(block, struct_obj, field_src, field_name); return Air.internedToRef(field.ty.toIntern()); }, else => unreachable, }, .Union => { const union_obj = mod.typeToUnion(cur_ty).?; const field = union_obj.fields.get(field_name) orelse return sema.failWithBadUnionFieldAccess(block, union_obj, field_src, field_name); return Air.internedToRef(field.ty.toIntern()); }, .Optional => { // Struct/array init through optional requires the child type to not be a pointer. // If the child of .optional is a pointer it'll error on the next loop. cur_ty = mod.intern_pool.indexToKey(cur_ty.toIntern()).opt_type.toType(); continue; }, .ErrorUnion => { cur_ty = cur_ty.errorUnionPayload(mod); continue; }, else => {}, } return sema.fail(block, ty_src, "expected struct or union; found '{}'", .{ cur_ty.fmt(sema.mod), }); } } fn zirErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref { return sema.getErrorReturnTrace(block); } fn getErrorReturnTrace(sema: *Sema, block: *Block) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const ptr_stack_trace_ty = try mod.singleMutPtrType(stack_trace_ty); const opt_ptr_stack_trace_ty = try mod.optionalType(ptr_stack_trace_ty.toIntern()); if (sema.owner_func_index != .none and ip.funcAnalysis(sema.owner_func_index).calls_or_awaits_errorable_fn and mod.comp.bin_file.options.error_return_tracing and mod.backendSupportsFeature(.error_return_trace)) { return block.addTy(.err_return_trace, opt_ptr_stack_trace_ty); } return Air.internedToRef((try mod.intern(.{ .opt = .{ .ty = opt_ptr_stack_trace_ty.toIntern(), .val = .none, } }))); } fn zirFrame( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const src = LazySrcLoc.nodeOffset(@as(i32, @bitCast(extended.operand))); return sema.failWithUseOfAsync(block, src); } fn zirAlignOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ty = try sema.resolveType(block, operand_src, inst_data.operand); if (ty.isNoReturn(mod)) { return sema.fail(block, operand_src, "no align available for type '{}'", .{ty.fmt(sema.mod)}); } const val = try ty.lazyAbiAlignment(mod); if (val.isLazyAlign(mod)) { try sema.queueFullTypeResolution(ty); } return Air.internedToRef(val.toIntern()); } fn zirIntFromBool(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(Type.u1); if (val.toBool()) return Air.internedToRef((try mod.intValue(Type.u1, 1)).toIntern()); return Air.internedToRef((try mod.intValue(Type.u1, 0)).toIntern()); } return block.addUnOp(.int_from_bool, operand); } fn zirErrorName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; if (try sema.resolveDefinedValue(block, operand_src, operand)) |val| { const err_name = sema.mod.intern_pool.indexToKey(val.toIntern()).err.name; return sema.addStrLit(block, sema.mod.intern_pool.stringToSlice(err_name)); } // Similar to zirTagName, we have special AIR instruction for the error name in case an optimimzation pass // might be able to resolve the result at compile time. return block.addUnOp(.error_name, operand); } fn zirUnaryMath( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, comptime eval: fn (Value, Type, Allocator, *Module) Allocator.Error!Value, ) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand = try sema.resolveInst(inst_data.operand); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand_ty = sema.typeOf(operand); switch (operand_ty.zigTypeTag(mod)) { .ComptimeFloat, .Float => {}, .Vector => { const scalar_ty = operand_ty.scalarType(mod); switch (scalar_ty.zigTypeTag(mod)) { .ComptimeFloat, .Float => {}, else => return sema.fail(block, operand_src, "expected vector of floats or float type, found '{}'", .{scalar_ty.fmt(sema.mod)}), } }, else => return sema.fail(block, operand_src, "expected vector of floats or float type, found '{}'", .{operand_ty.fmt(sema.mod)}), } switch (operand_ty.zigTypeTag(mod)) { .Vector => { const scalar_ty = operand_ty.scalarType(mod); const vec_len = operand_ty.vectorLen(mod); const result_ty = try mod.vectorType(.{ .len = vec_len, .child = scalar_ty.toIntern(), }); if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(result_ty); const elems = try sema.arena.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(sema.mod, i); elem.* = try (try eval(elem_val, scalar_ty, sema.arena, sema.mod)).intern(scalar_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = result_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } try sema.requireRuntimeBlock(block, operand_src, null); return block.addUnOp(air_tag, operand); }, .ComptimeFloat, .Float => { if (try sema.resolveMaybeUndefVal(operand)) |operand_val| { if (operand_val.isUndef(mod)) return mod.undefRef(operand_ty); const result_val = try eval(operand_val, operand_ty, sema.arena, sema.mod); return Air.internedToRef(result_val.toIntern()); } try sema.requireRuntimeBlock(block, operand_src, null); return block.addUnOp(air_tag, operand); }, else => unreachable, } } fn zirTagName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const src = inst_data.src(); const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const mod = sema.mod; const ip = &mod.intern_pool; try sema.resolveTypeLayout(operand_ty); const enum_ty = switch (operand_ty.zigTypeTag(mod)) { .EnumLiteral => { const val = try sema.resolveConstValue(block, .unneeded, operand, ""); const tag_name = ip.indexToKey(val.toIntern()).enum_literal; return sema.addStrLit(block, ip.stringToSlice(tag_name)); }, .Enum => operand_ty, .Union => operand_ty.unionTagType(mod) orelse { const msg = msg: { const msg = try sema.errMsg(block, src, "union '{}' is untagged", .{ operand_ty.fmt(sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, operand_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, else => return sema.fail(block, operand_src, "expected enum or union; found '{}'", .{ operand_ty.fmt(mod), }), }; if (enum_ty.enumFieldCount(mod) == 0) { // TODO I don't think this is the correct way to handle this but // it prevents a crash. return sema.fail(block, operand_src, "cannot get @tagName of empty enum '{}'", .{ enum_ty.fmt(mod), }); } const enum_decl_index = enum_ty.getOwnerDecl(mod); const casted_operand = try sema.coerce(block, enum_ty, operand, operand_src); if (try sema.resolveDefinedValue(block, operand_src, casted_operand)) |val| { const field_index = enum_ty.enumTagFieldIndex(val, mod) orelse { const enum_decl = mod.declPtr(enum_decl_index); const msg = msg: { const msg = try sema.errMsg(block, src, "no field with value '{}' in enum '{}'", .{ val.fmtValue(enum_ty, sema.mod), enum_decl.name.fmt(ip), }); errdefer msg.destroy(sema.gpa); try mod.errNoteNonLazy(enum_decl.srcLoc(mod), msg, "declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; // TODO: write something like getCoercedInts to avoid needing to dupe const field_name = enum_ty.enumFieldName(field_index, mod); return sema.addStrLit(block, ip.stringToSlice(field_name)); } try sema.requireRuntimeBlock(block, src, operand_src); if (block.wantSafety() and sema.mod.backendSupportsFeature(.is_named_enum_value)) { const ok = try block.addUnOp(.is_named_enum_value, casted_operand); try sema.addSafetyCheck(block, src, ok, .invalid_enum_value); } // In case the value is runtime-known, we have an AIR instruction for this instead // of trying to lower it in Sema because an optimization pass may result in the operand // being comptime-known, which would let us elide the `tag_name` AIR instruction. return block.addUnOp(.tag_name, casted_operand); } fn zirReify( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const name_strategy = @as(Zir.Inst.NameStrategy, @enumFromInt(extended.small)); const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const type_info_ty = try sema.getBuiltinType("Type"); const uncasted_operand = try sema.resolveInst(extra.operand); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const type_info = try sema.coerce(block, type_info_ty, uncasted_operand, operand_src); const val = try sema.resolveConstValue(block, operand_src, type_info, "operand to @Type must be comptime-known"); const union_val = ip.indexToKey(val.toIntern()).un; const target = mod.getTarget(); if (try union_val.val.toValue().anyUndef(mod)) return sema.failWithUseOfUndef(block, src); const tag_index = type_info_ty.unionTagFieldIndex(union_val.tag.toValue(), mod).?; switch (@as(std.builtin.TypeId, @enumFromInt(tag_index))) { .Type => return Air.Inst.Ref.type_type, .Void => return Air.Inst.Ref.void_type, .Bool => return Air.Inst.Ref.bool_type, .NoReturn => return Air.Inst.Ref.noreturn_type, .ComptimeFloat => return Air.Inst.Ref.comptime_float_type, .ComptimeInt => return Air.Inst.Ref.comptime_int_type, .Undefined => return Air.Inst.Ref.undefined_type, .Null => return Air.Inst.Ref.null_type, .AnyFrame => return sema.failWithUseOfAsync(block, src), .EnumLiteral => return Air.Inst.Ref.enum_literal_type, .Int => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const signedness_val = try union_val.val.toValue().fieldValue( mod, fields.getIndex(try ip.getOrPutString(gpa, "signedness")).?, ); const bits_val = try union_val.val.toValue().fieldValue( mod, fields.getIndex(try ip.getOrPutString(gpa, "bits")).?, ); const signedness = mod.toEnum(std.builtin.Signedness, signedness_val); const bits = @as(u16, @intCast(bits_val.toUnsignedInt(mod))); const ty = try mod.intType(signedness, bits); return Air.internedToRef(ty.toIntern()); }, .Vector => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const len_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "len"), ).?); const child_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "child"), ).?); const len = @as(u32, @intCast(len_val.toUnsignedInt(mod))); const child_ty = child_val.toType(); try sema.checkVectorElemType(block, src, child_ty); const ty = try mod.vectorType(.{ .len = len, .child = child_ty.toIntern(), }); return Air.internedToRef(ty.toIntern()); }, .Float => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const bits_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "bits"), ).?); const bits = @as(u16, @intCast(bits_val.toUnsignedInt(mod))); const ty = switch (bits) { 16 => Type.f16, 32 => Type.f32, 64 => Type.f64, 80 => Type.f80, 128 => Type.f128, else => return sema.fail(block, src, "{}-bit float unsupported", .{bits}), }; return Air.internedToRef(ty.toIntern()); }, .Pointer => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const size_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "size"), ).?); const is_const_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_const"), ).?); const is_volatile_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_volatile"), ).?); const alignment_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "alignment"), ).?); const address_space_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "address_space"), ).?); const child_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "child"), ).?); const is_allowzero_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_allowzero"), ).?); const sentinel_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "sentinel"), ).?); if (!try sema.intFitsInType(alignment_val, Type.u32, null)) { return sema.fail(block, src, "alignment must fit in 'u32'", .{}); } const abi_align = Alignment.fromByteUnits( (try alignment_val.getUnsignedIntAdvanced(mod, sema)).?, ); const elem_ty = child_val.toType(); if (abi_align != .none) { try sema.resolveTypeLayout(elem_ty); } const ptr_size = mod.toEnum(std.builtin.Type.Pointer.Size, size_val); const actual_sentinel: InternPool.Index = s: { if (!sentinel_val.isNull(mod)) { if (ptr_size == .One or ptr_size == .C) { return sema.fail(block, src, "sentinels are only allowed on slices and unknown-length pointers", .{}); } const sentinel_ptr_val = sentinel_val.optionalValue(mod).?; const ptr_ty = try mod.singleMutPtrType(elem_ty); const sent_val = (try sema.pointerDeref(block, src, sentinel_ptr_val, ptr_ty)).?; break :s sent_val.toIntern(); } break :s .none; }; if (elem_ty.zigTypeTag(mod) == .NoReturn) { return sema.fail(block, src, "pointer to noreturn not allowed", .{}); } else if (elem_ty.zigTypeTag(mod) == .Fn) { if (ptr_size != .One) { return sema.fail(block, src, "function pointers must be single pointers", .{}); } const fn_align = mod.typeToFunc(elem_ty).?.alignment; if (abi_align != .none and fn_align != .none and abi_align != fn_align) { return sema.fail(block, src, "function pointer alignment disagrees with function alignment", .{}); } } else if (ptr_size == .Many and elem_ty.zigTypeTag(mod) == .Opaque) { return sema.fail(block, src, "unknown-length pointer to opaque not allowed", .{}); } else if (ptr_size == .C) { if (!try sema.validateExternType(elem_ty, .other)) { const msg = msg: { const msg = try sema.errMsg(block, src, "C pointers cannot point to non-C-ABI-compatible type '{}'", .{elem_ty.fmt(mod)}); errdefer msg.destroy(gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, src.toSrcLoc(src_decl, mod), elem_ty, .other); try sema.addDeclaredHereNote(msg, elem_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (elem_ty.zigTypeTag(mod) == .Opaque) { return sema.fail(block, src, "C pointers cannot point to opaque types", .{}); } } const ty = try mod.ptrType(.{ .child = elem_ty.toIntern(), .sentinel = actual_sentinel, .flags = .{ .size = ptr_size, .is_const = is_const_val.toBool(), .is_volatile = is_volatile_val.toBool(), .alignment = abi_align, .address_space = mod.toEnum(std.builtin.AddressSpace, address_space_val), .is_allowzero = is_allowzero_val.toBool(), }, }); return Air.internedToRef(ty.toIntern()); }, .Array => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const len_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "len"), ).?); const child_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "child"), ).?); const sentinel_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "sentinel"), ).?); const len = len_val.toUnsignedInt(mod); const child_ty = child_val.toType(); const sentinel = if (sentinel_val.optionalValue(mod)) |p| blk: { const ptr_ty = try mod.singleMutPtrType(child_ty); break :blk (try sema.pointerDeref(block, src, p, ptr_ty)).?; } else null; const ty = try mod.arrayType(.{ .len = len, .sentinel = if (sentinel) |s| s.toIntern() else .none, .child = child_ty.toIntern(), }); return Air.internedToRef(ty.toIntern()); }, .Optional => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const child_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "child"), ).?); const child_ty = child_val.toType(); const ty = try mod.optionalType(child_ty.toIntern()); return Air.internedToRef(ty.toIntern()); }, .ErrorUnion => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const error_set_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "error_set"), ).?); const payload_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "payload"), ).?); const error_set_ty = error_set_val.toType(); const payload_ty = payload_val.toType(); if (error_set_ty.zigTypeTag(mod) != .ErrorSet) { return sema.fail(block, src, "Type.ErrorUnion.error_set must be an error set type", .{}); } const ty = try mod.errorUnionType(error_set_ty, payload_ty); return Air.internedToRef(ty.toIntern()); }, .ErrorSet => { const payload_val = union_val.val.toValue().optionalValue(mod) orelse return Air.internedToRef(Type.anyerror.toIntern()); const len = try sema.usizeCast(block, src, payload_val.sliceLen(mod)); var names: InferredErrorSet.NameMap = .{}; try names.ensureUnusedCapacity(sema.arena, len); for (0..len) |i| { const elem_val = try payload_val.elemValue(mod, i); const elem_fields = ip.typeOf(elem_val.toIntern()).toType().structFields(mod); const name_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "name"), ).?); const name = try name_val.toIpString(Type.slice_const_u8, mod); _ = try mod.getErrorValue(name); const gop = names.getOrPutAssumeCapacity(name); if (gop.found_existing) { return sema.fail(block, src, "duplicate error '{}'", .{ name.fmt(ip), }); } } const ty = try mod.errorSetFromUnsortedNames(names.keys()); return Air.internedToRef(ty.toIntern()); }, .Struct => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const layout_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "layout"), ).?); const backing_integer_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "backing_integer"), ).?); const fields_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "fields"), ).?); const decls_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "decls"), ).?); const is_tuple_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_tuple"), ).?); const layout = mod.toEnum(std.builtin.Type.ContainerLayout, layout_val); // Decls if (decls_val.sliceLen(mod) > 0) { return sema.fail(block, src, "reified structs must have no decls", .{}); } if (layout != .Packed and !backing_integer_val.isNull(mod)) { return sema.fail(block, src, "non-packed struct does not support backing integer type", .{}); } return try sema.reifyStruct(block, inst, src, layout, backing_integer_val, fields_val, name_strategy, is_tuple_val.toBool()); }, .Enum => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const tag_type_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "tag_type"), ).?); const fields_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "fields"), ).?); const decls_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "decls"), ).?); const is_exhaustive_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_exhaustive"), ).?); // Decls if (decls_val.sliceLen(mod) > 0) { return sema.fail(block, src, "reified enums must have no decls", .{}); } const int_tag_ty = tag_type_val.toType(); if (int_tag_ty.zigTypeTag(mod) != .Int) { return sema.fail(block, src, "Type.Enum.tag_type must be an integer type", .{}); } // Because these things each reference each other, `undefined` // placeholders are used before being set after the enum type gains // an InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name_strategy, "enum", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer { new_decl.has_tv = false; // namespace and val were destroyed by later errdefers mod.abortAnonDecl(new_decl_index); } // Define our empty enum decl const fields_len = @as(u32, @intCast(try sema.usizeCast(block, src, fields_val.sliceLen(mod)))); const incomplete_enum = try ip.getIncompleteEnum(gpa, .{ .decl = new_decl_index, .namespace = .none, .fields_len = fields_len, .has_values = true, .tag_mode = if (!is_exhaustive_val.toBool()) .nonexhaustive else .explicit, .tag_ty = int_tag_ty.toIntern(), }); // TODO: figure out InternPool removals for incremental compilation //errdefer ip.remove(incomplete_enum.index); new_decl.ty = Type.type; new_decl.val = incomplete_enum.index.toValue(); for (0..fields_len) |field_i| { const elem_val = try fields_val.elemValue(mod, field_i); const elem_fields = ip.typeOf(elem_val.toIntern()).toType().structFields(mod); const name_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "name"), ).?); const value_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "value"), ).?); const field_name = try name_val.toIpString(Type.slice_const_u8, mod); if (!try sema.intFitsInType(value_val, int_tag_ty, null)) { // TODO: better source location return sema.fail(block, src, "field '{}' with enumeration value '{}' is too large for backing int type '{}'", .{ field_name.fmt(ip), value_val.fmtValue(Type.comptime_int, mod), int_tag_ty.fmt(mod), }); } if (try incomplete_enum.addFieldName(ip, gpa, field_name)) |other_index| { const msg = msg: { const msg = try sema.errMsg(block, src, "duplicate enum field '{}'", .{ field_name.fmt(ip), }); errdefer msg.destroy(gpa); _ = other_index; // TODO: this note is incorrect try sema.errNote(block, src, msg, "other field here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (try incomplete_enum.addFieldValue(ip, gpa, (try mod.getCoerced(value_val, int_tag_ty)).toIntern())) |other| { const msg = msg: { const msg = try sema.errMsg(block, src, "enum tag value {} already taken", .{value_val.fmtValue(Type.comptime_int, mod)}); errdefer msg.destroy(gpa); _ = other; // TODO: this note is incorrect try sema.errNote(block, src, msg, "other enum tag value here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; }, .Opaque => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const decls_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "decls"), ).?); // Decls if (decls_val.sliceLen(mod) > 0) { return sema.fail(block, src, "reified opaque must have no decls", .{}); } // Because these three things each reference each other, // `undefined` placeholders are used in two places before being set // after the opaque type gains an InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name_strategy, "opaque", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer { new_decl.has_tv = false; // namespace and val were destroyed by later errdefers mod.abortAnonDecl(new_decl_index); } const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const opaque_ty = try mod.intern(.{ .opaque_type = .{ .decl = new_decl_index, .namespace = new_namespace_index, } }); // TODO: figure out InternPool removals for incremental compilation //errdefer ip.remove(opaque_ty); new_decl.ty = Type.type; new_decl.val = opaque_ty.toValue(); new_namespace.ty = opaque_ty.toType(); const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; }, .Union => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const layout_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "layout"), ).?); const tag_type_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "tag_type"), ).?); const fields_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "fields"), ).?); const decls_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "decls"), ).?); // Decls if (decls_val.sliceLen(mod) > 0) { return sema.fail(block, src, "reified unions must have no decls", .{}); } const layout = mod.toEnum(std.builtin.Type.ContainerLayout, layout_val); // Because these three things each reference each other, `undefined` // placeholders are used before being set after the union type gains an // InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name_strategy, "union", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer { new_decl.has_tv = false; // namespace and val were destroyed by later errdefers mod.abortAnonDecl(new_decl_index); } const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const union_index = try mod.createUnion(.{ .owner_decl = new_decl_index, .tag_ty = Type.null, .fields = .{}, .zir_index = inst, .layout = layout, .status = .have_field_types, .namespace = new_namespace_index, }); const union_obj = mod.unionPtr(union_index); errdefer mod.destroyUnion(union_index); const union_ty = try ip.get(gpa, .{ .union_type = .{ .index = union_index, .runtime_tag = if (!tag_type_val.isNull(mod)) .tagged else if (layout != .Auto) .none else switch (mod.optimizeMode()) { .Debug, .ReleaseSafe => .safety, .ReleaseFast, .ReleaseSmall => .none, }, } }); // TODO: figure out InternPool removals for incremental compilation //errdefer ip.remove(union_ty); new_decl.ty = Type.type; new_decl.val = union_ty.toValue(); new_namespace.ty = union_ty.toType(); // Tag type const fields_len = try sema.usizeCast(block, src, fields_val.sliceLen(mod)); var explicit_tags_seen: []bool = &.{}; var enum_field_names: []InternPool.NullTerminatedString = &.{}; if (tag_type_val.optionalValue(mod)) |payload_val| { union_obj.tag_ty = payload_val.toType(); const enum_type = switch (ip.indexToKey(union_obj.tag_ty.toIntern())) { .enum_type => |x| x, else => return sema.fail(block, src, "Type.Union.tag_type must be an enum type", .{}), }; explicit_tags_seen = try sema.arena.alloc(bool, enum_type.names.len); @memset(explicit_tags_seen, false); } else { enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len); } // Fields try union_obj.fields.ensureTotalCapacity(mod.tmp_hack_arena.allocator(), fields_len); for (0..fields_len) |i| { const elem_val = try fields_val.elemValue(mod, i); const elem_fields = ip.typeOf(elem_val.toIntern()).toType().structFields(mod); const name_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "name"), ).?); const type_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "type"), ).?); const alignment_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "alignment"), ).?); const field_name = try name_val.toIpString(Type.slice_const_u8, mod); if (enum_field_names.len != 0) { enum_field_names[i] = field_name; } if (explicit_tags_seen.len > 0) { const tag_info = ip.indexToKey(union_obj.tag_ty.toIntern()).enum_type; const enum_index = tag_info.nameIndex(ip, field_name) orelse { const msg = msg: { const msg = try sema.errMsg(block, src, "no field named '{}' in enum '{}'", .{ field_name.fmt(ip), union_obj.tag_ty.fmt(mod), }); errdefer msg.destroy(gpa); try sema.addDeclaredHereNote(msg, union_obj.tag_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; // No check for duplicate because the check already happened in order // to create the enum type in the first place. assert(!explicit_tags_seen[enum_index]); explicit_tags_seen[enum_index] = true; } const gop = union_obj.fields.getOrPutAssumeCapacity(field_name); if (gop.found_existing) { // TODO: better source location return sema.fail(block, src, "duplicate union field {}", .{field_name.fmt(ip)}); } const field_ty = type_val.toType(); gop.value_ptr.* = .{ .ty = field_ty, .abi_align = Alignment.fromByteUnits((try alignment_val.getUnsignedIntAdvanced(mod, sema)).?), }; if (field_ty.zigTypeTag(mod) == .Opaque) { const msg = msg: { const msg = try sema.errMsg(block, src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{}); errdefer msg.destroy(gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (union_obj.layout == .Extern and !try sema.validateExternType(field_ty, .union_field)) { const msg = msg: { const msg = try sema.errMsg(block, src, "extern unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)}); errdefer msg.destroy(gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, src.toSrcLoc(src_decl, mod), field_ty, .union_field); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (union_obj.layout == .Packed and !(validatePackedType(field_ty, mod))) { const msg = msg: { const msg = try sema.errMsg(block, src, "packed unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)}); errdefer msg.destroy(gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotPacked(msg, src.toSrcLoc(src_decl, mod), field_ty); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } if (explicit_tags_seen.len > 0) { const tag_info = ip.indexToKey(union_obj.tag_ty.toIntern()).enum_type; if (tag_info.names.len > fields_len) { const msg = msg: { const msg = try sema.errMsg(block, src, "enum field(s) missing in union", .{}); errdefer msg.destroy(gpa); const enum_ty = union_obj.tag_ty; for (tag_info.names.get(ip), 0..) |field_name, field_index| { if (explicit_tags_seen[field_index]) continue; try sema.addFieldErrNote(enum_ty, field_index, msg, "field '{}' missing, declared here", .{ field_name.fmt(ip), }); } try sema.addDeclaredHereNote(msg, union_obj.tag_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } else { union_obj.tag_ty = try sema.generateUnionTagTypeSimple(block, enum_field_names, null); } const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; }, .Fn => { const fields = ip.typeOf(union_val.val).toType().structFields(mod); const calling_convention_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "calling_convention"), ).?); const alignment_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "alignment"), ).?); const is_generic_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_generic"), ).?); const is_var_args_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "is_var_args"), ).?); const return_type_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "return_type"), ).?); const params_val = try union_val.val.toValue().fieldValue(mod, fields.getIndex( try ip.getOrPutString(gpa, "params"), ).?); const is_generic = is_generic_val.toBool(); if (is_generic) { return sema.fail(block, src, "Type.Fn.is_generic must be false for @Type", .{}); } const is_var_args = is_var_args_val.toBool(); const cc = mod.toEnum(std.builtin.CallingConvention, calling_convention_val); if (is_var_args) { try sema.checkCallConvSupportsVarArgs(block, src, cc); } const alignment = alignment: { if (!try sema.intFitsInType(alignment_val, Type.u32, null)) { return sema.fail(block, src, "alignment must fit in 'u32'", .{}); } const alignment = @as(u29, @intCast(alignment_val.toUnsignedInt(mod))); if (alignment == target_util.defaultFunctionAlignment(target)) { break :alignment .none; } else { break :alignment Alignment.fromByteUnits(alignment); } }; const return_type = return_type_val.optionalValue(mod) orelse return sema.fail(block, src, "Type.Fn.return_type must be non-null for @Type", .{}); const args_len = try sema.usizeCast(block, src, params_val.sliceLen(mod)); const param_types = try sema.arena.alloc(InternPool.Index, args_len); var noalias_bits: u32 = 0; for (param_types, 0..) |*param_type, i| { const elem_val = try params_val.elemValue(mod, i); const elem_fields = ip.typeOf(elem_val.toIntern()).toType().structFields(mod); const param_is_generic_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "is_generic"), ).?); const param_is_noalias_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "is_noalias"), ).?); const opt_param_type_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "type"), ).?); if (param_is_generic_val.toBool()) { return sema.fail(block, src, "Type.Fn.Param.is_generic must be false for @Type", .{}); } const param_type_val = opt_param_type_val.optionalValue(mod) orelse return sema.fail(block, src, "Type.Fn.Param.arg_type must be non-null for @Type", .{}); param_type.* = param_type_val.toIntern(); if (param_is_noalias_val.toBool()) { if (!param_type.toType().isPtrAtRuntime(mod)) { return sema.fail(block, src, "non-pointer parameter declared noalias", .{}); } noalias_bits |= @as(u32, 1) << (std.math.cast(u5, i) orelse return sema.fail(block, src, "this compiler implementation only supports 'noalias' on the first 32 parameters", .{})); } } const ty = try mod.funcType(.{ .param_types = param_types, .comptime_bits = 0, .noalias_bits = noalias_bits, .return_type = return_type.toIntern(), .alignment = alignment, .cc = cc, .is_var_args = is_var_args, .is_generic = false, .is_noinline = false, .section_is_generic = false, .addrspace_is_generic = false, }); return Air.internedToRef(ty.toIntern()); }, .Frame => return sema.failWithUseOfAsync(block, src), } } fn reifyStruct( sema: *Sema, block: *Block, inst: Zir.Inst.Index, src: LazySrcLoc, layout: std.builtin.Type.ContainerLayout, backing_int_val: Value, fields_val: Value, name_strategy: Zir.Inst.NameStrategy, is_tuple: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; if (is_tuple) switch (layout) { .Extern => return sema.fail(block, src, "extern tuples are not supported", .{}), .Packed => return sema.fail(block, src, "packed tuples are not supported", .{}), .Auto => {}, }; // Because these three things each reference each other, `undefined` // placeholders are used before being set after the struct type gains an // InternPool index. const new_decl_index = try sema.createAnonymousDeclTypeNamed(block, src, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name_strategy, "struct", inst); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; errdefer { new_decl.has_tv = false; // namespace and val were destroyed by later errdefers mod.abortAnonDecl(new_decl_index); } const new_namespace_index = try mod.createNamespace(.{ .parent = block.namespace.toOptional(), .ty = undefined, .file_scope = block.getFileScope(mod), }); const new_namespace = mod.namespacePtr(new_namespace_index); errdefer mod.destroyNamespace(new_namespace_index); const struct_index = try mod.createStruct(.{ .owner_decl = new_decl_index, .fields = .{}, .zir_index = inst, .layout = layout, .status = .have_field_types, .known_non_opv = false, .is_tuple = is_tuple, .namespace = new_namespace_index, }); const struct_obj = mod.structPtr(struct_index); errdefer mod.destroyStruct(struct_index); const struct_ty = try ip.get(gpa, .{ .struct_type = .{ .index = struct_index.toOptional(), .namespace = new_namespace_index.toOptional(), } }); // TODO: figure out InternPool removals for incremental compilation //errdefer ip.remove(struct_ty); new_decl.ty = Type.type; new_decl.val = struct_ty.toValue(); new_namespace.ty = struct_ty.toType(); // Fields const fields_len = try sema.usizeCast(block, src, fields_val.sliceLen(mod)); try struct_obj.fields.ensureTotalCapacity(mod.tmp_hack_arena.allocator(), fields_len); var i: usize = 0; while (i < fields_len) : (i += 1) { const elem_val = try fields_val.elemValue(mod, i); const elem_fields = ip.typeOf(elem_val.toIntern()).toType().structFields(mod); const name_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "name"), ).?); const type_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "type"), ).?); const default_value_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "default_value"), ).?); const is_comptime_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "is_comptime"), ).?); const alignment_val = try elem_val.fieldValue(mod, elem_fields.getIndex( try ip.getOrPutString(gpa, "alignment"), ).?); if (!try sema.intFitsInType(alignment_val, Type.u32, null)) { return sema.fail(block, src, "alignment must fit in 'u32'", .{}); } const abi_align = (try alignment_val.getUnsignedIntAdvanced(mod, sema)).?; if (layout == .Packed) { if (abi_align != 0) return sema.fail(block, src, "alignment in a packed struct field must be set to 0", .{}); if (is_comptime_val.toBool()) return sema.fail(block, src, "packed struct fields cannot be marked comptime", .{}); } if (layout == .Extern and is_comptime_val.toBool()) { return sema.fail(block, src, "extern struct fields cannot be marked comptime", .{}); } const field_name = try name_val.toIpString(Type.slice_const_u8, mod); if (is_tuple) { const field_index = field_name.toUnsigned(ip) orelse return sema.fail( block, src, "tuple cannot have non-numeric field '{}'", .{field_name.fmt(ip)}, ); if (field_index >= fields_len) { return sema.fail( block, src, "tuple field {} exceeds tuple field count", .{field_index}, ); } } const gop = struct_obj.fields.getOrPutAssumeCapacity(field_name); if (gop.found_existing) { // TODO: better source location return sema.fail(block, src, "duplicate struct field {}", .{field_name.fmt(ip)}); } const field_ty = type_val.toType(); const default_val = if (default_value_val.optionalValue(mod)) |opt_val| (try sema.pointerDeref(block, src, opt_val, try mod.singleConstPtrType(field_ty)) orelse return sema.failWithNeededComptime(block, src, "struct field default value must be comptime-known")).toIntern() else .none; if (is_comptime_val.toBool() and default_val == .none) { return sema.fail(block, src, "comptime field without default initialization value", .{}); } gop.value_ptr.* = .{ .ty = field_ty, .abi_align = Alignment.fromByteUnits(abi_align), .default_val = default_val, .is_comptime = is_comptime_val.toBool(), .offset = undefined, }; if (field_ty.zigTypeTag(mod) == .Opaque) { const msg = msg: { const msg = try sema.errMsg(block, src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{}); errdefer msg.destroy(gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (field_ty.zigTypeTag(mod) == .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, src, "struct fields cannot be 'noreturn'", .{}); errdefer msg.destroy(gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (struct_obj.layout == .Extern and !try sema.validateExternType(field_ty, .struct_field)) { const msg = msg: { const msg = try sema.errMsg(block, src, "extern structs cannot contain fields of type '{}'", .{field_ty.fmt(sema.mod)}); errdefer msg.destroy(gpa); const src_decl = sema.mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, src.toSrcLoc(src_decl, mod), field_ty, .struct_field); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (struct_obj.layout == .Packed and !(validatePackedType(field_ty, mod))) { const msg = msg: { const msg = try sema.errMsg(block, src, "packed structs cannot contain fields of type '{}'", .{field_ty.fmt(sema.mod)}); errdefer msg.destroy(gpa); const src_decl = sema.mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotPacked(msg, src.toSrcLoc(src_decl, mod), field_ty); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } if (layout == .Packed) { struct_obj.status = .layout_wip; for (struct_obj.fields.values(), 0..) |field, index| { sema.resolveTypeLayout(field.ty) catch |err| switch (err) { error.AnalysisFail => { const msg = sema.err orelse return err; try sema.addFieldErrNote(struct_ty.toType(), index, msg, "while checking this field", .{}); return err; }, else => return err, }; } var fields_bit_sum: u64 = 0; for (struct_obj.fields.values()) |field| { fields_bit_sum += field.ty.bitSize(mod); } if (backing_int_val.optionalValue(mod)) |payload| { const backing_int_ty = payload.toType(); try sema.checkBackingIntType(block, src, backing_int_ty, fields_bit_sum); struct_obj.backing_int_ty = backing_int_ty; } else { struct_obj.backing_int_ty = try mod.intType(.unsigned, @as(u16, @intCast(fields_bit_sum))); } struct_obj.status = .have_layout; } const decl_val = sema.analyzeDeclVal(block, src, new_decl_index); try mod.finalizeAnonDecl(new_decl_index); return decl_val; } fn resolveVaListRef(sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref) CompileError!Air.Inst.Ref { const va_list_ty = try sema.getBuiltinType("VaList"); const va_list_ptr = try sema.mod.singleMutPtrType(va_list_ty); const inst = try sema.resolveInst(zir_ref); return sema.coerce(block, va_list_ptr, inst, src); } fn zirCVaArg(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.lhs); const arg_ty = try sema.resolveType(block, ty_src, extra.rhs); if (!try sema.validateExternType(arg_ty, .param_ty)) { const msg = msg: { const msg = try sema.errMsg(block, ty_src, "cannot get '{}' from variadic argument", .{arg_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); const src_decl = sema.mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, ty_src.toSrcLoc(src_decl, mod), arg_ty, .param_ty); try sema.addDeclaredHereNote(msg, arg_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.c_va_arg, arg_ty, va_list_ref); } fn zirCVaCopy(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand); const va_list_ty = try sema.getBuiltinType("VaList"); try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.c_va_copy, va_list_ty, va_list_ref); } fn zirCVaEnd(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const va_list_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const va_list_ref = try sema.resolveVaListRef(block, va_list_src, extra.operand); try sema.requireRuntimeBlock(block, src, null); return block.addUnOp(.c_va_end, va_list_ref); } fn zirCVaStart(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const src = LazySrcLoc.nodeOffset(@as(i32, @bitCast(extended.operand))); const va_list_ty = try sema.getBuiltinType("VaList"); try sema.requireRuntimeBlock(block, src, null); return block.addInst(.{ .tag = .c_va_start, .data = .{ .ty = va_list_ty }, }); } fn zirTypeName(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ty = try sema.resolveType(block, ty_src, inst_data.operand); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); var bytes = std.ArrayList(u8).init(sema.arena); defer bytes.deinit(); try ty.print(bytes.writer(), mod); const decl_ty = try mod.arrayType(.{ .len = bytes.items.len, .sentinel = .zero_u8, .child = .u8_type, }); const new_decl = try anon_decl.finish( decl_ty, (try mod.intern(.{ .aggregate = .{ .ty = decl_ty.toIntern(), .storage = .{ .bytes = bytes.items }, } })).toValue(), .none, // default alignment ); return sema.analyzeDeclRef(new_decl); } fn zirFrameType(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); return sema.failWithUseOfAsync(block, src); } fn zirFrameSize(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); return sema.failWithUseOfAsync(block, src); } fn zirIntFromFloat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@intFromFloat"); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); _ = try sema.checkIntType(block, src, dest_ty); try sema.checkFloatType(block, operand_src, operand_ty); if (try sema.resolveMaybeUndefVal(operand)) |val| { const result_val = try sema.intFromFloat(block, operand_src, val, operand_ty, dest_ty); return Air.internedToRef(result_val.toIntern()); } else if (dest_ty.zigTypeTag(mod) == .ComptimeInt) { return sema.failWithNeededComptime(block, operand_src, "value being casted to 'comptime_int' must be comptime-known"); } try sema.requireRuntimeBlock(block, inst_data.src(), operand_src); if (dest_ty.intInfo(mod).bits == 0) { if (block.wantSafety()) { const ok = try block.addBinOp(if (block.float_mode == .Optimized) .cmp_eq_optimized else .cmp_eq, operand, Air.internedToRef((try mod.floatValue(operand_ty, 0.0)).toIntern())); try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds); } return Air.internedToRef((try mod.intValue(dest_ty, 0)).toIntern()); } const result = try block.addTyOp(if (block.float_mode == .Optimized) .int_from_float_optimized else .int_from_float, dest_ty, operand); if (block.wantSafety()) { const back = try block.addTyOp(.float_from_int, operand_ty, result); const diff = try block.addBinOp(.sub, operand, back); const ok_pos = try block.addBinOp(if (block.float_mode == .Optimized) .cmp_lt_optimized else .cmp_lt, diff, Air.internedToRef((try mod.floatValue(operand_ty, 1.0)).toIntern())); const ok_neg = try block.addBinOp(if (block.float_mode == .Optimized) .cmp_gt_optimized else .cmp_gt, diff, Air.internedToRef((try mod.floatValue(operand_ty, -1.0)).toIntern())); const ok = try block.addBinOp(.bool_and, ok_pos, ok_neg); try sema.addSafetyCheck(block, src, ok, .integer_part_out_of_bounds); } return result; } fn zirFloatFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@floatFromInt"); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); try sema.checkFloatType(block, src, dest_ty); _ = try sema.checkIntType(block, operand_src, operand_ty); if (try sema.resolveMaybeUndefVal(operand)) |val| { const result_val = try val.floatFromIntAdvanced(sema.arena, operand_ty, dest_ty, sema.mod, sema); return Air.internedToRef(result_val.toIntern()); } else if (dest_ty.zigTypeTag(mod) == .ComptimeFloat) { return sema.failWithNeededComptime(block, operand_src, "value being casted to 'comptime_float' must be comptime-known"); } try sema.requireRuntimeBlock(block, inst_data.src(), operand_src); return block.addTyOp(.float_from_int, dest_ty, operand); } fn zirPtrFromInt(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand_res = try sema.resolveInst(extra.rhs); const operand_coerced = try sema.coerce(block, Type.usize, operand_res, operand_src); const ptr_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrFromInt"); try sema.checkPtrType(block, src, ptr_ty); const elem_ty = ptr_ty.elemType2(mod); const ptr_align = try ptr_ty.ptrAlignmentAdvanced(mod, sema); if (ptr_ty.isSlice(mod)) { const msg = msg: { const msg = try sema.errMsg(block, src, "integer cannot be converted to slice type '{}'", .{ptr_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "slice length cannot be inferred from address", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (try sema.resolveDefinedValue(block, operand_src, operand_coerced)) |val| { const addr = val.toUnsignedInt(mod); if (!ptr_ty.isAllowzeroPtr(mod) and addr == 0) return sema.fail(block, operand_src, "pointer type '{}' does not allow address zero", .{ptr_ty.fmt(sema.mod)}); if (addr != 0 and ptr_align != 0 and addr % ptr_align != 0) return sema.fail(block, operand_src, "pointer type '{}' requires aligned address", .{ptr_ty.fmt(sema.mod)}); const ptr_val = switch (ptr_ty.zigTypeTag(mod)) { .Optional => (try mod.intern(.{ .opt = .{ .ty = ptr_ty.toIntern(), .val = if (addr == 0) .none else (try mod.ptrIntValue(ptr_ty.childType(mod), addr)).toIntern(), } })).toValue(), .Pointer => try mod.ptrIntValue(ptr_ty, addr), else => unreachable, }; return Air.internedToRef(ptr_val.toIntern()); } try sema.requireRuntimeBlock(block, src, operand_src); if (block.wantSafety() and (try sema.typeHasRuntimeBits(elem_ty) or elem_ty.zigTypeTag(mod) == .Fn)) { if (!ptr_ty.isAllowzeroPtr(mod)) { const is_non_zero = try block.addBinOp(.cmp_neq, operand_coerced, .zero_usize); try sema.addSafetyCheck(block, src, is_non_zero, .cast_to_null); } if (ptr_align > 1) { const align_minus_1 = Air.internedToRef((try mod.intValue(Type.usize, ptr_align - 1)).toIntern()); const remainder = try block.addBinOp(.bit_and, operand_coerced, align_minus_1); const is_aligned = try block.addBinOp(.cmp_eq, remainder, .zero_usize); try sema.addSafetyCheck(block, src, is_aligned, .incorrect_alignment); } } return block.addBitCast(ptr_ty, operand_coerced); } fn zirErrSetCast(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@errSetCast"); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); try sema.checkErrorSetType(block, src, dest_ty); try sema.checkErrorSetType(block, operand_src, operand_ty); // operand must be defined since it can be an invalid error value const maybe_operand_val = try sema.resolveDefinedValue(block, operand_src, operand); if (disjoint: { // Try avoiding resolving inferred error sets if we can if (!dest_ty.isAnyError(mod) and dest_ty.errorSetNames(mod).len == 0) break :disjoint true; if (!operand_ty.isAnyError(mod) and operand_ty.errorSetNames(mod).len == 0) break :disjoint true; if (dest_ty.isAnyError(mod)) break :disjoint false; if (operand_ty.isAnyError(mod)) break :disjoint false; for (dest_ty.errorSetNames(mod)) |dest_err_name| { if (Type.errorSetHasFieldIp(ip, operand_ty.toIntern(), dest_err_name)) break :disjoint false; } if (!ip.isInferredErrorSetType(dest_ty.toIntern()) and !ip.isInferredErrorSetType(operand_ty.toIntern())) { break :disjoint true; } _ = try sema.resolveInferredErrorSetTy(block, src, dest_ty.toIntern()); _ = try sema.resolveInferredErrorSetTy(block, operand_src, operand_ty.toIntern()); for (dest_ty.errorSetNames(mod)) |dest_err_name| { if (Type.errorSetHasFieldIp(ip, operand_ty.toIntern(), dest_err_name)) break :disjoint false; } break :disjoint true; }) { const msg = msg: { const msg = try sema.errMsg( block, src, "error sets '{}' and '{}' have no common errors", .{ operand_ty.fmt(sema.mod), dest_ty.fmt(sema.mod) }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, operand_ty); try sema.addDeclaredHereNote(msg, dest_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (maybe_operand_val) |val| { if (!dest_ty.isAnyError(mod)) { const error_name = mod.intern_pool.indexToKey(val.toIntern()).err.name; if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), error_name)) { const msg = msg: { const msg = try sema.errMsg( block, src, "'error.{}' not a member of error set '{}'", .{ error_name.fmt(ip), dest_ty.fmt(sema.mod) }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, dest_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } return Air.internedToRef((try mod.getCoerced(val, dest_ty)).toIntern()); } try sema.requireRuntimeBlock(block, src, operand_src); if (block.wantSafety() and !dest_ty.isAnyError(mod) and sema.mod.backendSupportsFeature(.error_set_has_value)) { const err_int_inst = try block.addBitCast(Type.err_int, operand); const ok = try block.addTyOp(.error_set_has_value, dest_ty, err_int_inst); try sema.addSafetyCheck(block, src, ok, .invalid_error_code); } return block.addBitCast(dest_ty, operand); } fn zirPtrCastFull(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const flags: Zir.Inst.FullPtrCastFlags = @bitCast(@as(u5, @truncate(extended.small))); const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const operand_src: LazySrcLoc = .{ .node_offset_ptrcast_operand = extra.node }; const operand = try sema.resolveInst(extra.rhs); const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, flags.needResultTypeBuiltinName()); return sema.ptrCastFull( block, flags, src, operand, operand_src, dest_ty, ); } fn zirPtrCast(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu, "@ptrCast"); const operand = try sema.resolveInst(extra.rhs); return sema.ptrCastFull( block, .{ .ptr_cast = true }, src, operand, operand_src, dest_ty, ); } fn ptrCastFull( sema: *Sema, block: *Block, flags: Zir.Inst.FullPtrCastFlags, src: LazySrcLoc, operand: Air.Inst.Ref, operand_src: LazySrcLoc, dest_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); try sema.checkPtrType(block, src, dest_ty); try sema.checkPtrOperand(block, operand_src, operand_ty); const src_info = operand_ty.ptrInfo(mod); const dest_info = dest_ty.ptrInfo(mod); try sema.resolveTypeLayout(src_info.child.toType()); try sema.resolveTypeLayout(dest_info.child.toType()); const src_slice_like = src_info.flags.size == .Slice or (src_info.flags.size == .One and src_info.child.toType().zigTypeTag(mod) == .Array); const dest_slice_like = dest_info.flags.size == .Slice or (dest_info.flags.size == .One and dest_info.child.toType().zigTypeTag(mod) == .Array); if (dest_info.flags.size == .Slice and !src_slice_like) { return sema.fail(block, src, "illegal pointer cast to slice", .{}); } if (dest_info.flags.size == .Slice) { const src_elem_size = switch (src_info.flags.size) { .Slice => src_info.child.toType().abiSize(mod), // pointer to array .One => src_info.child.toType().childType(mod).abiSize(mod), else => unreachable, }; const dest_elem_size = dest_info.child.toType().abiSize(mod); if (src_elem_size != dest_elem_size) { return sema.fail(block, src, "TODO: implement @ptrCast between slices changing the length", .{}); } } // The checking logic in this function must stay in sync with Sema.coerceInMemoryAllowedPtrs if (!flags.ptr_cast) { check_size: { if (src_info.flags.size == dest_info.flags.size) break :check_size; if (src_slice_like and dest_slice_like) break :check_size; if (src_info.flags.size == .C) break :check_size; if (dest_info.flags.size == .C) break :check_size; return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "cannot implicitly convert {s} pointer to {s} pointer", .{ pointerSizeString(src_info.flags.size), pointerSizeString(dest_info.flags.size), }); errdefer msg.destroy(sema.gpa); if (dest_info.flags.size == .Many and (src_info.flags.size == .Slice or (src_info.flags.size == .One and src_info.child.toType().zigTypeTag(mod) == .Array))) { try sema.errNote(block, src, msg, "use 'ptr' field to convert slice to many pointer", .{}); } else { try sema.errNote(block, src, msg, "use @ptrCast to change pointer size", .{}); } break :msg msg; }); } check_child: { const src_child = if (dest_info.flags.size == .Slice and src_info.flags.size == .One) blk: { // *[n]T -> []T break :blk src_info.child.toType().childType(mod); } else src_info.child.toType(); const dest_child = dest_info.child.toType(); const imc_res = try sema.coerceInMemoryAllowed( block, dest_child, src_child, !dest_info.flags.is_const, mod.getTarget(), src, operand_src, ); if (imc_res == .ok) break :check_child; return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "pointer element type '{}' cannot coerce into element type '{}'", .{ src_child.fmt(mod), dest_child.fmt(mod), }); errdefer msg.destroy(sema.gpa); try imc_res.report(sema, block, src, msg); try sema.errNote(block, src, msg, "use @ptrCast to cast pointer element type", .{}); break :msg msg; }); } check_sent: { if (dest_info.sentinel == .none) break :check_sent; if (src_info.flags.size == .C) break :check_sent; if (src_info.sentinel != .none) { const coerced_sent = try mod.intern_pool.getCoerced(sema.gpa, src_info.sentinel, dest_info.child); if (dest_info.sentinel == coerced_sent) break :check_sent; } if (src_slice_like and src_info.flags.size == .One and dest_info.flags.size == .Slice) { // [*]nT -> []T const arr_ty = src_info.child.toType(); if (arr_ty.sentinel(mod)) |src_sentinel| { const coerced_sent = try mod.intern_pool.getCoerced(sema.gpa, src_sentinel.toIntern(), dest_info.child); if (dest_info.sentinel == coerced_sent) break :check_sent; } } return sema.failWithOwnedErrorMsg(msg: { const msg = if (src_info.sentinel == .none) blk: { break :blk try sema.errMsg(block, src, "destination pointer requires '{}' sentinel", .{ dest_info.sentinel.toValue().fmtValue(dest_info.child.toType(), mod), }); } else blk: { break :blk try sema.errMsg(block, src, "pointer sentinel '{}' cannot coerce into pointer sentinel '{}'", .{ src_info.sentinel.toValue().fmtValue(src_info.child.toType(), mod), dest_info.sentinel.toValue().fmtValue(dest_info.child.toType(), mod), }); }; errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @ptrCast to cast pointer sentinel", .{}); break :msg msg; }); } if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "pointer host size '{}' cannot coerce into pointer host size '{}'", .{ src_info.packed_offset.host_size, dest_info.packed_offset.host_size, }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @ptrCast to cast pointer host size", .{}); break :msg msg; }); } if (src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "pointer bit offset '{}' cannot coerce into pointer bit offset '{}'", .{ src_info.packed_offset.bit_offset, dest_info.packed_offset.bit_offset, }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @ptrCast to cast pointer bit offset", .{}); break :msg msg; }); } check_allowzero: { const src_allows_zero = operand_ty.ptrAllowsZero(mod); const dest_allows_zero = dest_ty.ptrAllowsZero(mod); if (!src_allows_zero) break :check_allowzero; if (dest_allows_zero) break :check_allowzero; return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "'{}' could have null values which are illegal in type '{}'", .{ operand_ty.fmt(mod), dest_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @ptrCast to assert the pointer is not null", .{}); break :msg msg; }); } // TODO: vector index? } const src_align = src_info.flags.alignment.toByteUnitsOptional() orelse src_info.child.toType().abiAlignment(mod); const dest_align = dest_info.flags.alignment.toByteUnitsOptional() orelse dest_info.child.toType().abiAlignment(mod); if (!flags.align_cast) { if (dest_align > src_align) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "cast increases pointer alignment", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, operand_src, msg, "'{}' has alignment '{d}'", .{ operand_ty.fmt(mod), src_align, }); try sema.errNote(block, src, msg, "'{}' has alignment '{d}'", .{ dest_ty.fmt(mod), dest_align, }); try sema.errNote(block, src, msg, "use @alignCast to assert pointer alignment", .{}); break :msg msg; }); } } if (!flags.addrspace_cast) { if (src_info.flags.address_space != dest_info.flags.address_space) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "cast changes pointer address space", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, operand_src, msg, "'{}' has address space '{s}'", .{ operand_ty.fmt(mod), @tagName(src_info.flags.address_space), }); try sema.errNote(block, src, msg, "'{}' has address space '{s}'", .{ dest_ty.fmt(mod), @tagName(dest_info.flags.address_space), }); try sema.errNote(block, src, msg, "use @addrSpaceCast to cast pointer address space", .{}); break :msg msg; }); } } else { // Some address space casts are always disallowed if (!target_util.addrSpaceCastIsValid(mod.getTarget(), src_info.flags.address_space, dest_info.flags.address_space)) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "invalid address space cast", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, operand_src, msg, "address space '{s}' is not compatible with address space '{s}'", .{ @tagName(src_info.flags.address_space), @tagName(dest_info.flags.address_space), }); break :msg msg; }); } } if (!flags.const_cast) { if (src_info.flags.is_const and !dest_info.flags.is_const) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "cast discards const qualifier", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @constCast to discard const qualifier", .{}); break :msg msg; }); } } if (!flags.volatile_cast) { if (src_info.flags.is_volatile and !dest_info.flags.is_volatile) { return sema.failWithOwnedErrorMsg(msg: { const msg = try sema.errMsg(block, src, "cast discards volatile qualifier", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "use @volatileCast to discard volatile qualifier", .{}); break :msg msg; }); } } const ptr = if (src_info.flags.size == .Slice and dest_info.flags.size != .Slice) ptr: { break :ptr try sema.analyzeSlicePtr(block, operand_src, operand, operand_ty); } else operand; const dest_ptr_ty = if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) blk: { // Only convert to a many-pointer at first var info = dest_info; info.flags.size = .Many; const ty = try mod.ptrType(info); if (dest_ty.zigTypeTag(mod) == .Optional) { break :blk try mod.optionalType(ty.toIntern()); } else { break :blk ty; } } else dest_ty; // Cannot do @addrSpaceCast at comptime if (!flags.addrspace_cast) { if (try sema.resolveMaybeUndefVal(ptr)) |ptr_val| { if (!dest_ty.ptrAllowsZero(mod) and ptr_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, operand_src); } if (!dest_ty.ptrAllowsZero(mod) and ptr_val.isNull(mod)) { return sema.fail(block, operand_src, "null pointer casted to type '{}'", .{dest_ty.fmt(mod)}); } if (dest_align > src_align) { if (try ptr_val.getUnsignedIntAdvanced(mod, null)) |addr| { if (addr % dest_align != 0) { return sema.fail(block, operand_src, "pointer address 0x{X} is not aligned to {d} bytes", .{ addr, dest_align }); } } } if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) { if (ptr_val.isUndef(mod)) return mod.undefRef(dest_ty); const arr_len = try mod.intValue(Type.usize, src_info.child.toType().arrayLen(mod)); return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = dest_ty.toIntern(), .addr = mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr.addr, .len = arr_len.toIntern(), } }))); } else { assert(dest_ptr_ty.eql(dest_ty, mod)); return Air.internedToRef((try mod.getCoerced(ptr_val, dest_ty)).toIntern()); } } } try sema.requireRuntimeBlock(block, src, null); if (block.wantSafety() and operand_ty.ptrAllowsZero(mod) and !dest_ty.ptrAllowsZero(mod) and (try sema.typeHasRuntimeBits(dest_info.child.toType()) or dest_info.child.toType().zigTypeTag(mod) == .Fn)) { const ptr_int = try block.addUnOp(.int_from_ptr, ptr); const is_non_zero = try block.addBinOp(.cmp_neq, ptr_int, .zero_usize); const ok = if (src_info.flags.size == .Slice and dest_info.flags.size == .Slice) ok: { const len = try sema.analyzeSliceLen(block, operand_src, ptr); const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize); break :ok try block.addBinOp(.bit_or, len_zero, is_non_zero); } else is_non_zero; try sema.addSafetyCheck(block, src, ok, .cast_to_null); } if (block.wantSafety() and dest_align > src_align and try sema.typeHasRuntimeBits(dest_info.child.toType())) { const align_minus_1 = Air.internedToRef((try mod.intValue(Type.usize, dest_align - 1)).toIntern()); const ptr_int = try block.addUnOp(.int_from_ptr, ptr); const remainder = try block.addBinOp(.bit_and, ptr_int, align_minus_1); const is_aligned = try block.addBinOp(.cmp_eq, remainder, .zero_usize); const ok = if (src_info.flags.size == .Slice and dest_info.flags.size == .Slice) ok: { const len = try sema.analyzeSliceLen(block, operand_src, ptr); const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize); break :ok try block.addBinOp(.bit_or, len_zero, is_aligned); } else is_aligned; try sema.addSafetyCheck(block, src, ok, .incorrect_alignment); } // If we're going from an array pointer to a slice, this will only be the pointer part! const result_ptr = if (flags.addrspace_cast) ptr: { // We can't change address spaces with a bitcast, so this requires two instructions var intermediate_info = src_info; intermediate_info.flags.address_space = dest_info.flags.address_space; const intermediate_ptr_ty = try mod.ptrType(intermediate_info); const intermediate_ty = if (dest_ptr_ty.zigTypeTag(mod) == .Optional) blk: { break :blk try mod.optionalType(intermediate_ptr_ty.toIntern()); } else intermediate_ptr_ty; const intermediate = try block.addInst(.{ .tag = .addrspace_cast, .data = .{ .ty_op = .{ .ty = Air.internedToRef(intermediate_ty.toIntern()), .operand = ptr, } }, }); if (intermediate_ty.eql(dest_ptr_ty, mod)) { // We only changed the address space, so no need for a bitcast break :ptr intermediate; } break :ptr try block.addBitCast(dest_ptr_ty, intermediate); } else ptr: { break :ptr try block.addBitCast(dest_ptr_ty, ptr); }; if (dest_info.flags.size == .Slice and src_info.flags.size != .Slice) { // We have to construct a slice using the operand's child's array length // Note that we know from the check at the start of the function that operand_ty is slice-like const arr_len = Air.internedToRef((try mod.intValue(Type.usize, src_info.child.toType().arrayLen(mod))).toIntern()); return block.addInst(.{ .tag = .slice, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(dest_ty.toIntern()), .payload = try sema.addExtra(Air.Bin{ .lhs = result_ptr, .rhs = arr_len, }), } }, }); } else { assert(dest_ptr_ty.eql(dest_ty, mod)); return result_ptr; } } fn zirPtrCastNoDest(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const mod = sema.mod; const flags = @as(Zir.Inst.FullPtrCastFlags, @bitCast(@as(u5, @truncate(extended.small)))); const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const operand_src: LazySrcLoc = .{ .node_offset_ptrcast_operand = extra.node }; const operand = try sema.resolveInst(extra.operand); const operand_ty = sema.typeOf(operand); try sema.checkPtrOperand(block, operand_src, operand_ty); var ptr_info = operand_ty.ptrInfo(mod); if (flags.const_cast) ptr_info.flags.is_const = false; if (flags.volatile_cast) ptr_info.flags.is_volatile = false; const dest_ty = try mod.ptrType(ptr_info); if (try sema.resolveMaybeUndefVal(operand)) |operand_val| { return Air.internedToRef((try mod.getCoerced(operand_val, dest_ty)).toIntern()); } try sema.requireRuntimeBlock(block, src, null); return block.addBitCast(dest_ty, operand); } fn zirTruncate(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@truncate"); const dest_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, dest_ty, src); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); const operand_scalar_ty = try sema.checkIntOrVectorAllowComptime(block, operand_ty, operand_src); const operand_is_vector = operand_ty.zigTypeTag(mod) == .Vector; const dest_is_vector = dest_ty.zigTypeTag(mod) == .Vector; if (operand_is_vector != dest_is_vector) { return sema.fail(block, operand_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(mod), operand_ty.fmt(mod) }); } if (dest_scalar_ty.zigTypeTag(mod) == .ComptimeInt) { return sema.coerce(block, dest_ty, operand, operand_src); } const dest_info = dest_scalar_ty.intInfo(mod); if (try sema.typeHasOnePossibleValue(dest_ty)) |val| { return Air.internedToRef(val.toIntern()); } if (operand_scalar_ty.zigTypeTag(mod) != .ComptimeInt) { const operand_info = operand_ty.intInfo(mod); if (try sema.typeHasOnePossibleValue(operand_ty)) |val| { return Air.internedToRef(val.toIntern()); } if (operand_info.signedness != dest_info.signedness) { return sema.fail(block, operand_src, "expected {s} integer type, found '{}'", .{ @tagName(dest_info.signedness), operand_ty.fmt(mod), }); } if (operand_info.bits < dest_info.bits) { const msg = msg: { const msg = try sema.errMsg( block, src, "destination type '{}' has more bits than source type '{}'", .{ dest_ty.fmt(mod), operand_ty.fmt(mod) }, ); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "destination type has {d} bits", .{ dest_info.bits, }); try sema.errNote(block, operand_src, msg, "operand type has {d} bits", .{ operand_info.bits, }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } if (try sema.resolveMaybeUndefValIntable(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(dest_ty); if (!dest_is_vector) { return Air.internedToRef((try mod.getCoerced( try val.intTrunc(operand_ty, sema.arena, dest_info.signedness, dest_info.bits, mod), dest_ty, )).toIntern()); } const elems = try sema.arena.alloc(InternPool.Index, operand_ty.vectorLen(mod)); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(mod, i); elem.* = try (try elem_val.intTrunc(operand_scalar_ty, sema.arena, dest_info.signedness, dest_info.bits, mod)).intern(dest_scalar_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = dest_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } try sema.requireRuntimeBlock(block, src, operand_src); return block.addTyOp(.trunc, dest_ty, operand); } fn zirBitCount( sema: *Sema, block: *Block, inst: Zir.Inst.Index, air_tag: Air.Inst.Tag, comptime comptimeOp: fn (val: Value, ty: Type, mod: *Module) u64, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); _ = try sema.checkIntOrVector(block, operand, operand_src); const bits = operand_ty.intInfo(mod).bits; if (try sema.typeHasOnePossibleValue(operand_ty)) |val| { return Air.internedToRef(val.toIntern()); } const result_scalar_ty = try mod.smallestUnsignedInt(bits); switch (operand_ty.zigTypeTag(mod)) { .Vector => { const vec_len = operand_ty.vectorLen(mod); const result_ty = try mod.vectorType(.{ .len = vec_len, .child = result_scalar_ty.toIntern(), }); if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(result_ty); const elems = try sema.arena.alloc(InternPool.Index, vec_len); const scalar_ty = operand_ty.scalarType(mod); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(mod, i); const count = comptimeOp(elem_val, scalar_ty, mod); elem.* = (try mod.intValue(result_scalar_ty, count)).toIntern(); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = result_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } else { try sema.requireRuntimeBlock(block, src, operand_src); return block.addTyOp(air_tag, result_ty, operand); } }, .Int => { if (try sema.resolveMaybeUndefLazyVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(result_scalar_ty); return mod.intRef(result_scalar_ty, comptimeOp(val, operand_ty, mod)); } else { try sema.requireRuntimeBlock(block, src, operand_src); return block.addTyOp(air_tag, result_scalar_ty, operand); } }, else => unreachable, } } fn zirByteSwap(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const scalar_ty = try sema.checkIntOrVector(block, operand, operand_src); const bits = scalar_ty.intInfo(mod).bits; if (bits % 8 != 0) { return sema.fail( block, operand_src, "@byteSwap requires the number of bits to be evenly divisible by 8, but {} has {} bits", .{ scalar_ty.fmt(mod), bits }, ); } if (try sema.typeHasOnePossibleValue(operand_ty)) |val| { return Air.internedToRef(val.toIntern()); } switch (operand_ty.zigTypeTag(mod)) { .Int => { const runtime_src = if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(operand_ty); const result_val = try val.byteSwap(operand_ty, mod, sema.arena); return Air.internedToRef(result_val.toIntern()); } else operand_src; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addTyOp(.byte_swap, operand_ty, operand); }, .Vector => { const runtime_src = if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(operand_ty); const vec_len = operand_ty.vectorLen(mod); const elems = try sema.arena.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(mod, i); elem.* = try (try elem_val.byteSwap(scalar_ty, mod, sema.arena)).intern(scalar_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = operand_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } else operand_src; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addTyOp(.byte_swap, operand_ty, operand); }, else => unreachable, } } fn zirBitReverse(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand = try sema.resolveInst(inst_data.operand); const operand_ty = sema.typeOf(operand); const scalar_ty = try sema.checkIntOrVector(block, operand, operand_src); if (try sema.typeHasOnePossibleValue(operand_ty)) |val| { return Air.internedToRef(val.toIntern()); } const mod = sema.mod; switch (operand_ty.zigTypeTag(mod)) { .Int => { const runtime_src = if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(operand_ty); const result_val = try val.bitReverse(operand_ty, mod, sema.arena); return Air.internedToRef(result_val.toIntern()); } else operand_src; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addTyOp(.bit_reverse, operand_ty, operand); }, .Vector => { const runtime_src = if (try sema.resolveMaybeUndefVal(operand)) |val| { if (val.isUndef(mod)) return mod.undefRef(operand_ty); const vec_len = operand_ty.vectorLen(mod); const elems = try sema.arena.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const elem_val = try val.elemValue(mod, i); elem.* = try (try elem_val.bitReverse(scalar_ty, mod, sema.arena)).intern(scalar_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = operand_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } else operand_src; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addTyOp(.bit_reverse, operand_ty, operand); }, else => unreachable, } } fn zirBitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const offset = try sema.bitOffsetOf(block, inst); return sema.mod.intRef(Type.comptime_int, offset); } fn zirOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const offset = try sema.bitOffsetOf(block, inst); // TODO reminder to make this a compile error for packed structs return sema.mod.intRef(Type.comptime_int, offset / 8); } fn bitOffsetOf(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!u64 { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const src: LazySrcLoc = .{ .node_offset_bin_op = inst_data.src_node }; sema.src = src; const lhs_src: LazySrcLoc = .{ .node_offset_bin_lhs = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_bin_rhs = inst_data.src_node }; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const ty = try sema.resolveType(block, lhs_src, extra.lhs); const field_name = try sema.resolveConstStringIntern(block, rhs_src, extra.rhs, "name of field must be comptime-known"); const mod = sema.mod; try sema.resolveTypeLayout(ty); switch (ty.zigTypeTag(mod)) { .Struct => {}, else => { const msg = msg: { const msg = try sema.errMsg(block, lhs_src, "expected struct type, found '{}'", .{ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, } const field_index = if (ty.isTuple(mod)) blk: { if (mod.intern_pool.stringEqlSlice(field_name, "len")) { return sema.fail(block, src, "no offset available for 'len' field of tuple", .{}); } break :blk try sema.tupleFieldIndex(block, ty, field_name, rhs_src); } else try sema.structFieldIndex(block, ty, field_name, rhs_src); if (ty.structFieldIsComptime(field_index, mod)) { return sema.fail(block, src, "no offset available for comptime field", .{}); } switch (ty.containerLayout(mod)) { .Packed => { var bit_sum: u64 = 0; const fields = ty.structFields(mod); for (fields.values(), 0..) |field, i| { if (i == field_index) { return bit_sum; } bit_sum += field.ty.bitSize(mod); } else unreachable; }, else => return ty.structFieldOffset(field_index, mod) * 8, } } fn checkNamespaceType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Struct, .Enum, .Union, .Opaque => return, else => return sema.fail(block, src, "expected struct, enum, union, or opaque; found '{}'", .{ty.fmt(mod)}), } } /// Returns `true` if the type was a comptime_int. fn checkIntType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!bool { const mod = sema.mod; switch (try ty.zigTypeTagOrPoison(mod)) { .ComptimeInt => return true, .Int => return false, else => return sema.fail(block, src, "expected integer type, found '{}'", .{ty.fmt(mod)}), } } fn checkInvalidPtrArithmetic( sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (try ty.zigTypeTagOrPoison(mod)) { .Pointer => switch (ty.ptrSize(mod)) { .One, .Slice => return, .Many, .C => return sema.fail( block, src, "invalid pointer arithmetic operator", .{}, ), }, else => return, } } fn checkArithmeticOp( sema: *Sema, block: *Block, src: LazySrcLoc, scalar_tag: std.builtin.TypeId, lhs_zig_ty_tag: std.builtin.TypeId, rhs_zig_ty_tag: std.builtin.TypeId, zir_tag: Zir.Inst.Tag, ) CompileError!void { const is_int = scalar_tag == .Int or scalar_tag == .ComptimeInt; const is_float = scalar_tag == .Float or scalar_tag == .ComptimeFloat; if (!is_int and !(is_float and floatOpAllowed(zir_tag))) { return sema.fail(block, src, "invalid operands to binary expression: '{s}' and '{s}'", .{ @tagName(lhs_zig_ty_tag), @tagName(rhs_zig_ty_tag), }); } } fn checkPtrOperand( sema: *Sema, block: *Block, ty_src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Pointer => return, .Fn => { const msg = msg: { const msg = try sema.errMsg( block, ty_src, "expected pointer, found '{}'", .{ty.fmt(mod)}, ); errdefer msg.destroy(sema.gpa); try sema.errNote(block, ty_src, msg, "use '&' to obtain a function pointer", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Optional => if (ty.childType(mod).zigTypeTag(mod) == .Pointer) return, else => {}, } return sema.fail(block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(mod)}); } fn checkPtrType( sema: *Sema, block: *Block, ty_src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Pointer => return, .Fn => { const msg = msg: { const msg = try sema.errMsg( block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(mod)}, ); errdefer msg.destroy(sema.gpa); try sema.errNote(block, ty_src, msg, "use '*const ' to make a function pointer type", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .Optional => if (ty.childType(mod).zigTypeTag(mod) == .Pointer) return, else => {}, } return sema.fail(block, ty_src, "expected pointer type, found '{}'", .{ty.fmt(mod)}); } fn checkVectorElemType( sema: *Sema, block: *Block, ty_src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Int, .Float, .Bool => return, else => if (ty.isPtrAtRuntime(mod)) return, } return sema.fail(block, ty_src, "expected integer, float, bool, or pointer for the vector element type; found '{}'", .{ty.fmt(mod)}); } fn checkFloatType( sema: *Sema, block: *Block, ty_src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .ComptimeInt, .ComptimeFloat, .Float => {}, else => return sema.fail(block, ty_src, "expected float type, found '{}'", .{ty.fmt(mod)}), } } fn checkNumericType( sema: *Sema, block: *Block, ty_src: LazySrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .ComptimeFloat, .Float, .ComptimeInt, .Int => {}, .Vector => switch (ty.childType(mod).zigTypeTag(mod)) { .ComptimeFloat, .Float, .ComptimeInt, .Int => {}, else => |t| return sema.fail(block, ty_src, "expected number, found '{}'", .{t}), }, else => return sema.fail(block, ty_src, "expected number, found '{}'", .{ty.fmt(mod)}), } } /// Returns the casted pointer. fn checkAtomicPtrOperand( sema: *Sema, block: *Block, elem_ty: Type, elem_ty_src: LazySrcLoc, ptr: Air.Inst.Ref, ptr_src: LazySrcLoc, ptr_const: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; var diag: Module.AtomicPtrAlignmentDiagnostics = .{}; const alignment = mod.atomicPtrAlignment(elem_ty, &diag) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.FloatTooBig => return sema.fail( block, elem_ty_src, "expected {d}-bit float type or smaller; found {d}-bit float type", .{ diag.max_bits, diag.bits }, ), error.IntTooBig => return sema.fail( block, elem_ty_src, "expected {d}-bit integer type or smaller; found {d}-bit integer type", .{ diag.max_bits, diag.bits }, ), error.BadType => return sema.fail( block, elem_ty_src, "expected bool, integer, float, enum, or pointer type; found '{}'", .{elem_ty.fmt(mod)}, ), }; var wanted_ptr_data: InternPool.Key.PtrType = .{ .child = elem_ty.toIntern(), .flags = .{ .alignment = alignment, .is_const = ptr_const, }, }; const ptr_ty = sema.typeOf(ptr); const ptr_data = switch (try ptr_ty.zigTypeTagOrPoison(mod)) { .Pointer => ptr_ty.ptrInfo(mod), else => { const wanted_ptr_ty = try mod.ptrType(wanted_ptr_data); _ = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src); unreachable; }, }; wanted_ptr_data.flags.address_space = ptr_data.flags.address_space; wanted_ptr_data.flags.is_allowzero = ptr_data.flags.is_allowzero; wanted_ptr_data.flags.is_volatile = ptr_data.flags.is_volatile; const wanted_ptr_ty = try mod.ptrType(wanted_ptr_data); const casted_ptr = try sema.coerce(block, wanted_ptr_ty, ptr, ptr_src); return casted_ptr; } fn checkPtrIsNotComptimeMutable( sema: *Sema, block: *Block, ptr_val: Value, ptr_src: LazySrcLoc, operand_src: LazySrcLoc, ) CompileError!void { _ = operand_src; if (ptr_val.isComptimeMutablePtr(sema.mod)) { return sema.fail(block, ptr_src, "cannot store runtime value in compile time variable", .{}); } } fn checkComptimeVarStore( sema: *Sema, block: *Block, src: LazySrcLoc, decl_ref_mut: InternPool.Key.Ptr.Addr.MutDecl, ) CompileError!void { if (@intFromEnum(decl_ref_mut.runtime_index) < @intFromEnum(block.runtime_index)) { if (block.runtime_cond) |cond_src| { const msg = msg: { const msg = try sema.errMsg(block, src, "store to comptime variable depends on runtime condition", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, cond_src, msg, "runtime condition here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (block.runtime_loop) |loop_src| { const msg = msg: { const msg = try sema.errMsg(block, src, "cannot store to comptime variable in non-inline loop", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, loop_src, msg, "non-inline loop here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } unreachable; } } fn checkIntOrVector( sema: *Sema, block: *Block, operand: Air.Inst.Ref, operand_src: LazySrcLoc, ) CompileError!Type { const mod = sema.mod; const operand_ty = sema.typeOf(operand); switch (try operand_ty.zigTypeTagOrPoison(mod)) { .Int => return operand_ty, .Vector => { const elem_ty = operand_ty.childType(mod); switch (try elem_ty.zigTypeTagOrPoison(mod)) { .Int => return elem_ty, else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{}'", .{ elem_ty.fmt(mod), }), } }, else => return sema.fail(block, operand_src, "expected integer or vector, found '{}'", .{ operand_ty.fmt(mod), }), } } fn checkIntOrVectorAllowComptime( sema: *Sema, block: *Block, operand_ty: Type, operand_src: LazySrcLoc, ) CompileError!Type { const mod = sema.mod; switch (try operand_ty.zigTypeTagOrPoison(mod)) { .Int, .ComptimeInt => return operand_ty, .Vector => { const elem_ty = operand_ty.childType(mod); switch (try elem_ty.zigTypeTagOrPoison(mod)) { .Int, .ComptimeInt => return elem_ty, else => return sema.fail(block, operand_src, "expected vector of integers; found vector of '{}'", .{ elem_ty.fmt(mod), }), } }, else => return sema.fail(block, operand_src, "expected integer or vector, found '{}'", .{ operand_ty.fmt(mod), }), } } fn checkErrorSetType(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .ErrorSet => return, else => return sema.fail(block, src, "expected error set type, found '{}'", .{ty.fmt(mod)}), } } const SimdBinOp = struct { len: ?usize, /// Coerced to `result_ty`. lhs: Air.Inst.Ref, /// Coerced to `result_ty`. rhs: Air.Inst.Ref, lhs_val: ?Value, rhs_val: ?Value, /// Only different than `scalar_ty` when it is a vector operation. result_ty: Type, scalar_ty: Type, }; fn checkSimdBinOp( sema: *Sema, block: *Block, src: LazySrcLoc, uncasted_lhs: Air.Inst.Ref, uncasted_rhs: Air.Inst.Ref, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, ) CompileError!SimdBinOp { const mod = sema.mod; const lhs_ty = sema.typeOf(uncasted_lhs); const rhs_ty = sema.typeOf(uncasted_rhs); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); var vec_len: ?usize = if (lhs_ty.zigTypeTag(mod) == .Vector) lhs_ty.vectorLen(mod) else null; const result_ty = try sema.resolvePeerTypes(block, src, &.{ uncasted_lhs, uncasted_rhs }, .{ .override = &[_]?LazySrcLoc{ lhs_src, rhs_src }, }); const lhs = try sema.coerce(block, result_ty, uncasted_lhs, lhs_src); const rhs = try sema.coerce(block, result_ty, uncasted_rhs, rhs_src); return SimdBinOp{ .len = vec_len, .lhs = lhs, .rhs = rhs, .lhs_val = try sema.resolveMaybeUndefVal(lhs), .rhs_val = try sema.resolveMaybeUndefVal(rhs), .result_ty = result_ty, .scalar_ty = result_ty.scalarType(mod), }; } fn checkVectorizableBinaryOperands( sema: *Sema, block: *Block, src: LazySrcLoc, lhs_ty: Type, rhs_ty: Type, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, ) CompileError!void { const mod = sema.mod; const lhs_zig_ty_tag = try lhs_ty.zigTypeTagOrPoison(mod); const rhs_zig_ty_tag = try rhs_ty.zigTypeTagOrPoison(mod); if (lhs_zig_ty_tag != .Vector and rhs_zig_ty_tag != .Vector) return; const lhs_is_vector = switch (lhs_zig_ty_tag) { .Vector, .Array => true, else => false, }; const rhs_is_vector = switch (rhs_zig_ty_tag) { .Vector, .Array => true, else => false, }; if (lhs_is_vector and rhs_is_vector) { const lhs_len = lhs_ty.arrayLen(mod); const rhs_len = rhs_ty.arrayLen(mod); if (lhs_len != rhs_len) { const msg = msg: { const msg = try sema.errMsg(block, src, "vector length mismatch", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, lhs_src, msg, "length {d} here", .{lhs_len}); try sema.errNote(block, rhs_src, msg, "length {d} here", .{rhs_len}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } else { const msg = msg: { const msg = try sema.errMsg(block, src, "mixed scalar and vector operands: '{}' and '{}'", .{ lhs_ty.fmt(mod), rhs_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); if (lhs_is_vector) { try sema.errNote(block, lhs_src, msg, "vector here", .{}); try sema.errNote(block, rhs_src, msg, "scalar here", .{}); } else { try sema.errNote(block, lhs_src, msg, "scalar here", .{}); try sema.errNote(block, rhs_src, msg, "vector here", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } fn maybeOptionsSrc(sema: *Sema, block: *Block, base_src: LazySrcLoc, wanted: []const u8) LazySrcLoc { if (base_src == .unneeded) return .unneeded; const mod = sema.mod; return mod.optionsSrc(mod.declPtr(block.src_decl), base_src, wanted); } fn resolveExportOptions( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ) CompileError!Module.Export.Options { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const export_options_ty = try sema.getBuiltinType("ExportOptions"); const air_ref = try sema.resolveInst(zir_ref); const options = try sema.coerce(block, export_options_ty, air_ref, src); const name_src = sema.maybeOptionsSrc(block, src, "name"); const linkage_src = sema.maybeOptionsSrc(block, src, "linkage"); const section_src = sema.maybeOptionsSrc(block, src, "section"); const visibility_src = sema.maybeOptionsSrc(block, src, "visibility"); const name_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "name"), name_src); const name_val = try sema.resolveConstValue(block, name_src, name_operand, "name of exported value must be comptime-known"); const name_ty = Type.slice_const_u8; const name = try name_val.toAllocatedBytes(name_ty, sema.arena, mod); const linkage_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "linkage"), linkage_src); const linkage_val = try sema.resolveConstValue(block, linkage_src, linkage_operand, "linkage of exported value must be comptime-known"); const linkage = mod.toEnum(std.builtin.GlobalLinkage, linkage_val); const section_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "section"), section_src); const section_opt_val = try sema.resolveConstValue(block, section_src, section_operand, "linksection of exported value must be comptime-known"); const section_ty = Type.slice_const_u8; const section = if (section_opt_val.optionalValue(mod)) |section_val| try section_val.toAllocatedBytes(section_ty, sema.arena, mod) else null; const visibility_operand = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "visibility"), visibility_src); const visibility_val = try sema.resolveConstValue(block, visibility_src, visibility_operand, "visibility of exported value must be comptime-known"); const visibility = mod.toEnum(std.builtin.SymbolVisibility, visibility_val); if (name.len < 1) { return sema.fail(block, name_src, "exported symbol name cannot be empty", .{}); } if (visibility != .default and linkage == .Internal) { return sema.fail(block, visibility_src, "symbol '{s}' exported with internal linkage has non-default visibility {s}", .{ name, @tagName(visibility), }); } return .{ .name = try ip.getOrPutString(gpa, name), .linkage = linkage, .section = try ip.getOrPutStringOpt(gpa, section), .visibility = visibility, }; } fn resolveBuiltinEnum( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, comptime name: []const u8, reason: []const u8, ) CompileError!@field(std.builtin, name) { const mod = sema.mod; const ty = try sema.getBuiltinType(name); const air_ref = try sema.resolveInst(zir_ref); const coerced = try sema.coerce(block, ty, air_ref, src); const val = try sema.resolveConstValue(block, src, coerced, reason); return mod.toEnum(@field(std.builtin, name), val); } fn resolveAtomicOrder( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, reason: []const u8, ) CompileError!std.builtin.AtomicOrder { return sema.resolveBuiltinEnum(block, src, zir_ref, "AtomicOrder", reason); } fn resolveAtomicRmwOp( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ) CompileError!std.builtin.AtomicRmwOp { return sema.resolveBuiltinEnum(block, src, zir_ref, "AtomicRmwOp", "@atomicRmW operation must be comptime-known"); } fn zirCmpxchg( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.Cmpxchg, extended.operand).data; const air_tag: Air.Inst.Tag = switch (extended.small) { 0 => .cmpxchg_weak, 1 => .cmpxchg_strong, else => unreachable, }; const src = LazySrcLoc.nodeOffset(extra.node); // zig fmt: off const elem_ty_src : LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const expected_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = extra.node }; const new_value_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = extra.node }; const success_order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg4 = extra.node }; const failure_order_src: LazySrcLoc = .{ .node_offset_builtin_call_arg5 = extra.node }; // zig fmt: on const expected_value = try sema.resolveInst(extra.expected_value); const elem_ty = sema.typeOf(expected_value); if (elem_ty.zigTypeTag(mod) == .Float) { return sema.fail( block, elem_ty_src, "expected bool, integer, enum, or pointer type; found '{}'", .{elem_ty.fmt(mod)}, ); } const uncasted_ptr = try sema.resolveInst(extra.ptr); const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false); const new_value = try sema.coerce(block, elem_ty, try sema.resolveInst(extra.new_value), new_value_src); const success_order = try sema.resolveAtomicOrder(block, success_order_src, extra.success_order, "atomic order of cmpxchg success must be comptime-known"); const failure_order = try sema.resolveAtomicOrder(block, failure_order_src, extra.failure_order, "atomic order of cmpxchg failure must be comptime-known"); if (@intFromEnum(success_order) < @intFromEnum(std.builtin.AtomicOrder.Monotonic)) { return sema.fail(block, success_order_src, "success atomic ordering must be Monotonic or stricter", .{}); } if (@intFromEnum(failure_order) < @intFromEnum(std.builtin.AtomicOrder.Monotonic)) { return sema.fail(block, failure_order_src, "failure atomic ordering must be Monotonic or stricter", .{}); } if (@intFromEnum(failure_order) > @intFromEnum(success_order)) { return sema.fail(block, failure_order_src, "failure atomic ordering must be no stricter than success", .{}); } if (failure_order == .Release or failure_order == .AcqRel) { return sema.fail(block, failure_order_src, "failure atomic ordering must not be Release or AcqRel", .{}); } const result_ty = try mod.optionalType(elem_ty.toIntern()); // special case zero bit types if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) { return Air.internedToRef((try mod.intern(.{ .opt = .{ .ty = result_ty.toIntern(), .val = .none, } }))); } const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: { if (try sema.resolveMaybeUndefVal(expected_value)) |expected_val| { if (try sema.resolveMaybeUndefVal(new_value)) |new_val| { if (expected_val.isUndef(mod) or new_val.isUndef(mod)) { // TODO: this should probably cause the memory stored at the pointer // to become undef as well return mod.undefRef(result_ty); } const ptr_ty = sema.typeOf(ptr); const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src; const result_val = try mod.intern(.{ .opt = .{ .ty = result_ty.toIntern(), .val = if (stored_val.eql(expected_val, elem_ty, mod)) blk: { try sema.storePtr(block, src, ptr, new_value); break :blk .none; } else stored_val.toIntern(), } }); return Air.internedToRef(result_val); } else break :rs new_value_src; } else break :rs expected_src; } else ptr_src; const flags: u32 = @as(u32, @intFromEnum(success_order)) | (@as(u32, @intFromEnum(failure_order)) << 3); try sema.requireRuntimeBlock(block, src, runtime_src); return block.addInst(.{ .tag = air_tag, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(result_ty.toIntern()), .payload = try sema.addExtra(Air.Cmpxchg{ .ptr = ptr, .expected_value = expected_value, .new_value = new_value, .flags = flags, }), } }, }); } fn zirSplat(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const scalar_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const dest_ty = try sema.resolveDestType(block, src, extra.lhs, .remove_eu_opt, "@splat"); if (!dest_ty.isVector(mod)) return sema.fail(block, src, "expected vector type, found '{}'", .{dest_ty.fmt(mod)}); const operand = try sema.resolveInst(extra.rhs); const scalar_ty = dest_ty.childType(mod); const scalar = try sema.coerce(block, scalar_ty, operand, scalar_src); if (try sema.resolveMaybeUndefVal(scalar)) |scalar_val| { if (scalar_val.isUndef(mod)) return mod.undefRef(dest_ty); return Air.internedToRef((try sema.splat(dest_ty, scalar_val)).toIntern()); } try sema.requireRuntimeBlock(block, inst_data.src(), scalar_src); return block.addTyOp(.splat, dest_ty, scalar); } fn zirReduce(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const op_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const operand_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const operation = try sema.resolveBuiltinEnum(block, op_src, extra.lhs, "ReduceOp", "@reduce operation must be comptime-known"); const operand = try sema.resolveInst(extra.rhs); const operand_ty = sema.typeOf(operand); const mod = sema.mod; if (operand_ty.zigTypeTag(mod) != .Vector) { return sema.fail(block, operand_src, "expected vector, found '{}'", .{operand_ty.fmt(mod)}); } const scalar_ty = operand_ty.childType(mod); // Type-check depending on operation. switch (operation) { .And, .Or, .Xor => switch (scalar_ty.zigTypeTag(mod)) { .Int, .Bool => {}, else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or boolean operand; found '{}'", .{ @tagName(operation), operand_ty.fmt(mod), }), }, .Min, .Max, .Add, .Mul => switch (scalar_ty.zigTypeTag(mod)) { .Int, .Float => {}, else => return sema.fail(block, operand_src, "@reduce operation '{s}' requires integer or float operand; found '{}'", .{ @tagName(operation), operand_ty.fmt(mod), }), }, } const vec_len = operand_ty.vectorLen(mod); if (vec_len == 0) { // TODO re-evaluate if we should introduce a "neutral value" for some operations, // e.g. zero for add and one for mul. return sema.fail(block, operand_src, "@reduce operation requires a vector with nonzero length", .{}); } if (try sema.resolveMaybeUndefVal(operand)) |operand_val| { if (operand_val.isUndef(mod)) return mod.undefRef(scalar_ty); var accum: Value = try operand_val.elemValue(mod, 0); var i: u32 = 1; while (i < vec_len) : (i += 1) { const elem_val = try operand_val.elemValue(mod, i); switch (operation) { .And => accum = try accum.bitwiseAnd(elem_val, scalar_ty, sema.arena, mod), .Or => accum = try accum.bitwiseOr(elem_val, scalar_ty, sema.arena, mod), .Xor => accum = try accum.bitwiseXor(elem_val, scalar_ty, sema.arena, mod), .Min => accum = accum.numberMin(elem_val, mod), .Max => accum = accum.numberMax(elem_val, mod), .Add => accum = try sema.numberAddWrapScalar(accum, elem_val, scalar_ty), .Mul => accum = try accum.numberMulWrap(elem_val, scalar_ty, sema.arena, mod), } } return Air.internedToRef(accum.toIntern()); } try sema.requireRuntimeBlock(block, inst_data.src(), operand_src); return block.addInst(.{ .tag = if (block.float_mode == .Optimized) .reduce_optimized else .reduce, .data = .{ .reduce = .{ .operand = operand, .operation = operation, } }, }); } fn zirShuffle(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Shuffle, inst_data.payload_index).data; const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const mask_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node }; const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type); try sema.checkVectorElemType(block, elem_ty_src, elem_ty); var a = try sema.resolveInst(extra.a); var b = try sema.resolveInst(extra.b); var mask = try sema.resolveInst(extra.mask); var mask_ty = sema.typeOf(mask); const mask_len = switch (sema.typeOf(mask).zigTypeTag(mod)) { .Array, .Vector => sema.typeOf(mask).arrayLen(mod), else => return sema.fail(block, mask_src, "expected vector or array, found '{}'", .{sema.typeOf(mask).fmt(sema.mod)}), }; mask_ty = try mod.vectorType(.{ .len = @as(u32, @intCast(mask_len)), .child = .i32_type, }); mask = try sema.coerce(block, mask_ty, mask, mask_src); const mask_val = try sema.resolveConstMaybeUndefVal(block, mask_src, mask, "shuffle mask must be comptime-known"); return sema.analyzeShuffle(block, inst_data.src_node, elem_ty, a, b, mask_val, @as(u32, @intCast(mask_len))); } fn analyzeShuffle( sema: *Sema, block: *Block, src_node: i32, elem_ty: Type, a_arg: Air.Inst.Ref, b_arg: Air.Inst.Ref, mask: Value, mask_len: u32, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const a_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = src_node }; const b_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = src_node }; const mask_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = src_node }; var a = a_arg; var b = b_arg; const res_ty = try mod.vectorType(.{ .len = mask_len, .child = elem_ty.toIntern(), }); var maybe_a_len = switch (sema.typeOf(a).zigTypeTag(mod)) { .Array, .Vector => sema.typeOf(a).arrayLen(mod), .Undefined => null, else => return sema.fail(block, a_src, "expected vector or array with element type '{}', found '{}'", .{ elem_ty.fmt(sema.mod), sema.typeOf(a).fmt(sema.mod), }), }; var maybe_b_len = switch (sema.typeOf(b).zigTypeTag(mod)) { .Array, .Vector => sema.typeOf(b).arrayLen(mod), .Undefined => null, else => return sema.fail(block, b_src, "expected vector or array with element type '{}', found '{}'", .{ elem_ty.fmt(sema.mod), sema.typeOf(b).fmt(sema.mod), }), }; if (maybe_a_len == null and maybe_b_len == null) { return mod.undefRef(res_ty); } const a_len = @as(u32, @intCast(maybe_a_len orelse maybe_b_len.?)); const b_len = @as(u32, @intCast(maybe_b_len orelse a_len)); const a_ty = try mod.vectorType(.{ .len = a_len, .child = elem_ty.toIntern(), }); const b_ty = try mod.vectorType(.{ .len = b_len, .child = elem_ty.toIntern(), }); if (maybe_a_len == null) a = try mod.undefRef(a_ty) else a = try sema.coerce(block, a_ty, a, a_src); if (maybe_b_len == null) b = try mod.undefRef(b_ty) else b = try sema.coerce(block, b_ty, b, b_src); const operand_info = [2]std.meta.Tuple(&.{ u64, LazySrcLoc, Type }){ .{ a_len, a_src, a_ty }, .{ b_len, b_src, b_ty }, }; for (0..@as(usize, @intCast(mask_len))) |i| { const elem = try mask.elemValue(sema.mod, i); if (elem.isUndef(mod)) continue; const int = elem.toSignedInt(mod); var unsigned: u32 = undefined; var chosen: u32 = undefined; if (int >= 0) { unsigned = @as(u32, @intCast(int)); chosen = 0; } else { unsigned = @as(u32, @intCast(~int)); chosen = 1; } if (unsigned >= operand_info[chosen][0]) { const msg = msg: { const msg = try sema.errMsg(block, mask_src, "mask index '{d}' has out-of-bounds selection", .{i}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, operand_info[chosen][1], msg, "selected index '{d}' out of bounds of '{}'", .{ unsigned, operand_info[chosen][2].fmt(sema.mod), }); if (chosen == 0) { try sema.errNote(block, b_src, msg, "selections from the second vector are specified with negative numbers", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } if (try sema.resolveMaybeUndefVal(a)) |a_val| { if (try sema.resolveMaybeUndefVal(b)) |b_val| { const values = try sema.arena.alloc(InternPool.Index, mask_len); for (values, 0..) |*value, i| { const mask_elem_val = try mask.elemValue(sema.mod, i); if (mask_elem_val.isUndef(mod)) { value.* = try mod.intern(.{ .undef = elem_ty.toIntern() }); continue; } const int = mask_elem_val.toSignedInt(mod); const unsigned = if (int >= 0) @as(u32, @intCast(int)) else @as(u32, @intCast(~int)); values[i] = try (try (if (int >= 0) a_val else b_val).elemValue(mod, unsigned)).intern(elem_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = res_ty.toIntern(), .storage = .{ .elems = values }, } }))); } } // All static analysis passed, and not comptime. // For runtime codegen, vectors a and b must be the same length. Here we // recursively @shuffle the smaller vector to append undefined elements // to it up to the length of the longer vector. This recursion terminates // in 1 call because these calls to analyzeShuffle guarantee a_len == b_len. if (a_len != b_len) { const min_len = @min(a_len, b_len); const max_src = if (a_len > b_len) a_src else b_src; const max_len = try sema.usizeCast(block, max_src, @max(a_len, b_len)); const expand_mask_values = try sema.arena.alloc(InternPool.Index, max_len); for (@as(usize, @intCast(0))..@as(usize, @intCast(min_len))) |i| { expand_mask_values[i] = (try mod.intValue(Type.comptime_int, i)).toIntern(); } for (@as(usize, @intCast(min_len))..@as(usize, @intCast(max_len))) |i| { expand_mask_values[i] = (try mod.intValue(Type.comptime_int, -1)).toIntern(); } const expand_mask = try mod.intern(.{ .aggregate = .{ .ty = (try mod.vectorType(.{ .len = @as(u32, @intCast(max_len)), .child = .comptime_int_type })).toIntern(), .storage = .{ .elems = expand_mask_values }, } }); if (a_len < b_len) { const undef = try mod.undefRef(a_ty); a = try sema.analyzeShuffle(block, src_node, elem_ty, a, undef, expand_mask.toValue(), @as(u32, @intCast(max_len))); } else { const undef = try mod.undefRef(b_ty); b = try sema.analyzeShuffle(block, src_node, elem_ty, b, undef, expand_mask.toValue(), @as(u32, @intCast(max_len))); } } return block.addInst(.{ .tag = .shuffle, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(res_ty.toIntern()), .payload = try block.sema.addExtra(Air.Shuffle{ .a = a, .b = b, .mask = mask.toIntern(), .mask_len = mask_len, }), } }, }); } fn zirSelect(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.Select, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const pred_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const a_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = extra.node }; const b_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = extra.node }; const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type); try sema.checkVectorElemType(block, elem_ty_src, elem_ty); const pred_uncoerced = try sema.resolveInst(extra.pred); const pred_ty = sema.typeOf(pred_uncoerced); const vec_len_u64 = switch (try pred_ty.zigTypeTagOrPoison(mod)) { .Vector, .Array => pred_ty.arrayLen(mod), else => return sema.fail(block, pred_src, "expected vector or array, found '{}'", .{pred_ty.fmt(mod)}), }; const vec_len = @as(u32, @intCast(try sema.usizeCast(block, pred_src, vec_len_u64))); const bool_vec_ty = try mod.vectorType(.{ .len = vec_len, .child = .bool_type, }); const pred = try sema.coerce(block, bool_vec_ty, pred_uncoerced, pred_src); const vec_ty = try mod.vectorType(.{ .len = vec_len, .child = elem_ty.toIntern(), }); const a = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.a), a_src); const b = try sema.coerce(block, vec_ty, try sema.resolveInst(extra.b), b_src); const maybe_pred = try sema.resolveMaybeUndefVal(pred); const maybe_a = try sema.resolveMaybeUndefVal(a); const maybe_b = try sema.resolveMaybeUndefVal(b); const runtime_src = if (maybe_pred) |pred_val| rs: { if (pred_val.isUndef(mod)) return mod.undefRef(vec_ty); if (maybe_a) |a_val| { if (a_val.isUndef(mod)) return mod.undefRef(vec_ty); if (maybe_b) |b_val| { if (b_val.isUndef(mod)) return mod.undefRef(vec_ty); const elems = try sema.gpa.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const pred_elem_val = try pred_val.elemValue(mod, i); const should_choose_a = pred_elem_val.toBool(); elem.* = try (try (if (should_choose_a) a_val else b_val).elemValue(mod, i)).intern(elem_ty, mod); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = vec_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } else { break :rs b_src; } } else { if (maybe_b) |b_val| { if (b_val.isUndef(mod)) return mod.undefRef(vec_ty); } break :rs a_src; } } else rs: { if (maybe_a) |a_val| { if (a_val.isUndef(mod)) return mod.undefRef(vec_ty); } if (maybe_b) |b_val| { if (b_val.isUndef(mod)) return mod.undefRef(vec_ty); } break :rs pred_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addInst(.{ .tag = .select, .data = .{ .pl_op = .{ .operand = pred, .payload = try block.sema.addExtra(Air.Bin{ .lhs = a, .rhs = b, }), } }, }); } fn zirAtomicLoad(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.AtomicLoad, inst_data.payload_index).data; // zig fmt: off const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; // zig fmt: on const elem_ty = try sema.resolveType(block, elem_ty_src, extra.elem_type); const uncasted_ptr = try sema.resolveInst(extra.ptr); const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, true); const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, "atomic order of @atomicLoad must be comptime-known"); switch (order) { .Release, .AcqRel => { return sema.fail( block, order_src, "@atomicLoad atomic ordering must not be Release or AcqRel", .{}, ); }, else => {}, } if (try sema.typeHasOnePossibleValue(elem_ty)) |val| { return Air.internedToRef(val.toIntern()); } if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| { if (try sema.pointerDeref(block, ptr_src, ptr_val, sema.typeOf(ptr))) |elem_val| { return Air.internedToRef(elem_val.toIntern()); } } try sema.requireRuntimeBlock(block, inst_data.src(), ptr_src); return block.addInst(.{ .tag = .atomic_load, .data = .{ .atomic_load = .{ .ptr = ptr, .order = order, } }, }); } fn zirAtomicRmw(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.AtomicRmw, inst_data.payload_index).data; const src = inst_data.src(); // zig fmt: off const elem_ty_src : LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const op_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const operand_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node }; const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg4 = inst_data.src_node }; // zig fmt: on const operand = try sema.resolveInst(extra.operand); const elem_ty = sema.typeOf(operand); const uncasted_ptr = try sema.resolveInst(extra.ptr); const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false); const op = try sema.resolveAtomicRmwOp(block, op_src, extra.operation); switch (elem_ty.zigTypeTag(mod)) { .Enum => if (op != .Xchg) { return sema.fail(block, op_src, "@atomicRmw with enum only allowed with .Xchg", .{}); }, .Bool => if (op != .Xchg) { return sema.fail(block, op_src, "@atomicRmw with bool only allowed with .Xchg", .{}); }, .Float => switch (op) { .Xchg, .Add, .Sub, .Max, .Min => {}, else => return sema.fail(block, op_src, "@atomicRmw with float only allowed with .Xchg, .Add, .Sub, .Max, and .Min", .{}), }, else => {}, } const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, "atomic order of @atomicRmW must be comptime-known"); if (order == .Unordered) { return sema.fail(block, order_src, "@atomicRmw atomic ordering must not be Unordered", .{}); } // special case zero bit types if (try sema.typeHasOnePossibleValue(elem_ty)) |val| { return Air.internedToRef(val.toIntern()); } const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: { const maybe_operand_val = try sema.resolveMaybeUndefVal(operand); const operand_val = maybe_operand_val orelse { try sema.checkPtrIsNotComptimeMutable(block, ptr_val, ptr_src, operand_src); break :rs operand_src; }; if (ptr_val.isComptimeMutablePtr(mod)) { const ptr_ty = sema.typeOf(ptr); const stored_val = (try sema.pointerDeref(block, ptr_src, ptr_val, ptr_ty)) orelse break :rs ptr_src; const new_val = switch (op) { // zig fmt: off .Xchg => operand_val, .Add => try sema.numberAddWrapScalar(stored_val, operand_val, elem_ty), .Sub => try sema.numberSubWrapScalar(stored_val, operand_val, elem_ty), .And => try stored_val.bitwiseAnd (operand_val, elem_ty, sema.arena, mod), .Nand => try stored_val.bitwiseNand (operand_val, elem_ty, sema.arena, mod), .Or => try stored_val.bitwiseOr (operand_val, elem_ty, sema.arena, mod), .Xor => try stored_val.bitwiseXor (operand_val, elem_ty, sema.arena, mod), .Max => stored_val.numberMax (operand_val, mod), .Min => stored_val.numberMin (operand_val, mod), // zig fmt: on }; try sema.storePtrVal(block, src, ptr_val, new_val, elem_ty); return Air.internedToRef(stored_val.toIntern()); } else break :rs ptr_src; } else ptr_src; const flags: u32 = @as(u32, @intFromEnum(order)) | (@as(u32, @intFromEnum(op)) << 3); try sema.requireRuntimeBlock(block, src, runtime_src); return block.addInst(.{ .tag = .atomic_rmw, .data = .{ .pl_op = .{ .operand = ptr, .payload = try sema.addExtra(Air.AtomicRmw{ .operand = operand, .flags = flags, }), } }, }); } fn zirAtomicStore(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.AtomicStore, inst_data.payload_index).data; const src = inst_data.src(); // zig fmt: off const elem_ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const ptr_src : LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const operand_src : LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const order_src : LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node }; // zig fmt: on const operand = try sema.resolveInst(extra.operand); const elem_ty = sema.typeOf(operand); const uncasted_ptr = try sema.resolveInst(extra.ptr); const ptr = try sema.checkAtomicPtrOperand(block, elem_ty, elem_ty_src, uncasted_ptr, ptr_src, false); const order = try sema.resolveAtomicOrder(block, order_src, extra.ordering, "atomic order of @atomicStore must be comptime-known"); const air_tag: Air.Inst.Tag = switch (order) { .Acquire, .AcqRel => { return sema.fail( block, order_src, "@atomicStore atomic ordering must not be Acquire or AcqRel", .{}, ); }, .Unordered => .atomic_store_unordered, .Monotonic => .atomic_store_monotonic, .Release => .atomic_store_release, .SeqCst => .atomic_store_seq_cst, }; return sema.storePtr2(block, src, ptr, ptr_src, operand, operand_src, air_tag); } fn zirMulAdd(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.MulAdd, inst_data.payload_index).data; const src = inst_data.src(); const mulend1_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const mulend2_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const addend_src: LazySrcLoc = .{ .node_offset_builtin_call_arg3 = inst_data.src_node }; const addend = try sema.resolveInst(extra.addend); const ty = sema.typeOf(addend); const mulend1 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend1), mulend1_src); const mulend2 = try sema.coerce(block, ty, try sema.resolveInst(extra.mulend2), mulend2_src); const maybe_mulend1 = try sema.resolveMaybeUndefVal(mulend1); const maybe_mulend2 = try sema.resolveMaybeUndefVal(mulend2); const maybe_addend = try sema.resolveMaybeUndefVal(addend); const mod = sema.mod; switch (ty.scalarType(mod).zigTypeTag(mod)) { .ComptimeFloat, .Float => {}, else => return sema.fail(block, src, "expected vector of floats or float type, found '{}'", .{ty.fmt(sema.mod)}), } const runtime_src = if (maybe_mulend1) |mulend1_val| rs: { if (maybe_mulend2) |mulend2_val| { if (mulend2_val.isUndef(mod)) return mod.undefRef(ty); if (maybe_addend) |addend_val| { if (addend_val.isUndef(mod)) return mod.undefRef(ty); const result_val = try Value.mulAdd(ty, mulend1_val, mulend2_val, addend_val, sema.arena, sema.mod); return Air.internedToRef(result_val.toIntern()); } else { break :rs addend_src; } } else { if (maybe_addend) |addend_val| { if (addend_val.isUndef(mod)) return mod.undefRef(ty); } break :rs mulend2_src; } } else rs: { if (maybe_mulend2) |mulend2_val| { if (mulend2_val.isUndef(mod)) return mod.undefRef(ty); } if (maybe_addend) |addend_val| { if (addend_val.isUndef(mod)) return mod.undefRef(ty); } break :rs mulend1_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addInst(.{ .tag = .mul_add, .data = .{ .pl_op = .{ .operand = addend, .payload = try sema.addExtra(Air.Bin{ .lhs = mulend1, .rhs = mulend2, }), } }, }); } fn zirBuiltinCall(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const modifier_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const func_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const args_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const call_src = inst_data.src(); const extra = sema.code.extraData(Zir.Inst.BuiltinCall, inst_data.payload_index).data; var func = try sema.resolveInst(extra.callee); const modifier_ty = try sema.getBuiltinType("CallModifier"); const air_ref = try sema.resolveInst(extra.modifier); const modifier_ref = try sema.coerce(block, modifier_ty, air_ref, modifier_src); const modifier_val = try sema.resolveConstValue(block, modifier_src, modifier_ref, "call modifier must be comptime-known"); var modifier = mod.toEnum(std.builtin.CallModifier, modifier_val); switch (modifier) { // These can be upgraded to comptime or nosuspend calls. .auto, .never_tail, .no_async => { if (block.is_comptime) { if (modifier == .never_tail) { return sema.fail(block, modifier_src, "unable to perform 'never_tail' call at compile-time", .{}); } modifier = .compile_time; } else if (extra.flags.is_nosuspend) { modifier = .no_async; } }, // These can be upgraded to comptime. nosuspend bit can be safely ignored. .always_inline, .compile_time => { _ = (try sema.resolveDefinedValue(block, func_src, func)) orelse { return sema.fail(block, func_src, "modifier '{s}' requires a comptime-known function", .{@tagName(modifier)}); }; if (block.is_comptime) { modifier = .compile_time; } }, .always_tail => { if (block.is_comptime) { modifier = .compile_time; } }, .async_kw => { if (extra.flags.is_nosuspend) { return sema.fail(block, modifier_src, "modifier 'async_kw' cannot be used inside nosuspend block", .{}); } if (block.is_comptime) { return sema.fail(block, modifier_src, "modifier 'async_kw' cannot be used in combination with comptime function call", .{}); } }, .never_inline => { if (block.is_comptime) { return sema.fail(block, modifier_src, "unable to perform 'never_inline' call at compile-time", .{}); } }, } const args = try sema.resolveInst(extra.args); const args_ty = sema.typeOf(args); if (!args_ty.isTuple(mod) and args_ty.toIntern() != .empty_struct_type) { return sema.fail(block, args_src, "expected a tuple, found '{}'", .{args_ty.fmt(sema.mod)}); } var resolved_args: []Air.Inst.Ref = try sema.arena.alloc(Air.Inst.Ref, args_ty.structFieldCount(mod)); for (resolved_args, 0..) |*resolved, i| { resolved.* = try sema.tupleFieldValByIndex(block, args_src, args, @as(u32, @intCast(i)), args_ty); } const callee_ty = sema.typeOf(func); const func_ty = try sema.checkCallArgumentCount(block, func, func_src, callee_ty, resolved_args.len, false); const ensure_result_used = extra.flags.ensure_result_used; return sema.analyzeCall( block, func, func_ty, func_src, call_src, modifier, ensure_result_used, .{ .call_builtin = .{ .call_node_offset = inst_data.src_node, .args = resolved_args, } }, null, .@"@call", ); } fn zirFieldParentPtr(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.FieldParentPtr, inst_data.payload_index).data; const src = inst_data.src(); const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg2 = inst_data.src_node }; const parent_ty = try sema.resolveType(block, ty_src, extra.parent_type); const field_name = try sema.resolveConstStringIntern(block, name_src, extra.field_name, "field name must be comptime-known"); const field_ptr = try sema.resolveInst(extra.field_ptr); const field_ptr_ty = sema.typeOf(field_ptr); const mod = sema.mod; const ip = &mod.intern_pool; if (parent_ty.zigTypeTag(mod) != .Struct and parent_ty.zigTypeTag(mod) != .Union) { return sema.fail(block, ty_src, "expected struct or union type, found '{}'", .{parent_ty.fmt(sema.mod)}); } try sema.resolveTypeLayout(parent_ty); const field_index = switch (parent_ty.zigTypeTag(mod)) { .Struct => blk: { if (parent_ty.isTuple(mod)) { if (ip.stringEqlSlice(field_name, "len")) { return sema.fail(block, src, "cannot get @fieldParentPtr of 'len' field of tuple", .{}); } break :blk try sema.tupleFieldIndex(block, parent_ty, field_name, name_src); } else { break :blk try sema.structFieldIndex(block, parent_ty, field_name, name_src); } }, .Union => try sema.unionFieldIndex(block, parent_ty, field_name, name_src), else => unreachable, }; if (parent_ty.zigTypeTag(mod) == .Struct and parent_ty.structFieldIsComptime(field_index, mod)) { return sema.fail(block, src, "cannot get @fieldParentPtr of a comptime field", .{}); } try sema.checkPtrOperand(block, ptr_src, field_ptr_ty); const field_ptr_ty_info = field_ptr_ty.ptrInfo(mod); var ptr_ty_data: InternPool.Key.PtrType = .{ .child = parent_ty.structFieldType(field_index, mod).toIntern(), .flags = .{ .address_space = field_ptr_ty_info.flags.address_space, .is_const = field_ptr_ty_info.flags.is_const, }, }; if (parent_ty.containerLayout(mod) == .Packed) { return sema.fail(block, src, "TODO handle packed structs/unions with @fieldParentPtr", .{}); } else { ptr_ty_data.flags.alignment = blk: { if (mod.typeToStruct(parent_ty)) |struct_obj| { break :blk struct_obj.fields.values()[field_index].abi_align; } else if (mod.typeToUnion(parent_ty)) |union_obj| { break :blk union_obj.fields.values()[field_index].abi_align; } else { break :blk .none; } }; } const actual_field_ptr_ty = try mod.ptrType(ptr_ty_data); const casted_field_ptr = try sema.coerce(block, actual_field_ptr_ty, field_ptr, ptr_src); ptr_ty_data.child = parent_ty.toIntern(); const result_ptr = try mod.ptrType(ptr_ty_data); if (try sema.resolveDefinedValue(block, src, casted_field_ptr)) |field_ptr_val| { const field = switch (ip.indexToKey(field_ptr_val.toIntern())) { .ptr => |ptr| switch (ptr.addr) { .field => |field| field, else => null, }, else => null, } orelse return sema.fail(block, ptr_src, "pointer value not based on parent struct", .{}); if (field.index != field_index) { const msg = msg: { const msg = try sema.errMsg( block, src, "field '{}' has index '{d}' but pointer value is index '{d}' of struct '{}'", .{ field_name.fmt(ip), field_index, field.index, parent_ty.fmt(sema.mod), }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, parent_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return Air.internedToRef(field.base); } try sema.requireRuntimeBlock(block, src, ptr_src); try sema.queueFullTypeResolution(result_ptr); return block.addInst(.{ .tag = .field_parent_ptr, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(result_ptr.toIntern()), .payload = try block.sema.addExtra(Air.FieldParentPtr{ .field_ptr = casted_field_ptr, .field_index = @as(u32, @intCast(field_index)), }), } }, }); } fn zirMinMax( sema: *Sema, block: *Block, inst: Zir.Inst.Index, comptime air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const lhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const rhs_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const lhs = try sema.resolveInst(extra.lhs); const rhs = try sema.resolveInst(extra.rhs); try sema.checkNumericType(block, lhs_src, sema.typeOf(lhs)); try sema.checkNumericType(block, rhs_src, sema.typeOf(rhs)); return sema.analyzeMinMax(block, src, air_tag, &.{ lhs, rhs }, &.{ lhs_src, rhs_src }); } fn zirMinMaxMulti( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, comptime air_tag: Air.Inst.Tag, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.NodeMultiOp, extended.operand); const src_node = extra.data.src_node; const src = LazySrcLoc.nodeOffset(src_node); const operands = sema.code.refSlice(extra.end, extended.small); const air_refs = try sema.arena.alloc(Air.Inst.Ref, operands.len); const operand_srcs = try sema.arena.alloc(LazySrcLoc, operands.len); for (operands, air_refs, operand_srcs, 0..) |zir_ref, *air_ref, *op_src, i| { op_src.* = switch (i) { 0 => .{ .node_offset_builtin_call_arg0 = src_node }, 1 => .{ .node_offset_builtin_call_arg1 = src_node }, 2 => .{ .node_offset_builtin_call_arg2 = src_node }, 3 => .{ .node_offset_builtin_call_arg3 = src_node }, 4 => .{ .node_offset_builtin_call_arg4 = src_node }, 5 => .{ .node_offset_builtin_call_arg5 = src_node }, else => src, // TODO: better source location }; air_ref.* = try sema.resolveInst(zir_ref); try sema.checkNumericType(block, op_src.*, sema.typeOf(air_ref.*)); } return sema.analyzeMinMax(block, src, air_tag, air_refs, operand_srcs); } fn analyzeMinMax( sema: *Sema, block: *Block, src: LazySrcLoc, comptime air_tag: Air.Inst.Tag, operands: []const Air.Inst.Ref, operand_srcs: []const LazySrcLoc, ) CompileError!Air.Inst.Ref { assert(operands.len == operand_srcs.len); assert(operands.len > 0); const mod = sema.mod; if (operands.len == 1) return operands[0]; const opFunc = switch (air_tag) { .min => Value.numberMin, .max => Value.numberMax, else => @compileError("unreachable"), }; // The set of runtime-known operands. Set up in the loop below. var runtime_known = try std.DynamicBitSet.initFull(sema.arena, operands.len); // The current minmax value - initially this will always be comptime-known, then we'll add // runtime values into the mix later. var cur_minmax: ?Air.Inst.Ref = null; var cur_minmax_src: LazySrcLoc = undefined; // defined if cur_minmax not null // The current known scalar bounds of the value. var bounds_status: enum { unknown, // We've only seen undef comptime_ints so far, so do not know the bounds. defined, // We've seen only integers, so the bounds are defined. non_integral, // There are floats in the mix, so the bounds aren't defined. } = .unknown; var cur_min_scalar: Value = undefined; var cur_max_scalar: Value = undefined; // First, find all comptime-known arguments, and get their min/max for (operands, operand_srcs, 0..) |operand, operand_src, operand_idx| { // Resolve the value now to avoid redundant calls to `checkSimdBinOp` - we'll have to call // it in the runtime path anyway since the result type may have been refined const unresolved_uncoerced_val = try sema.resolveMaybeUndefVal(operand) orelse continue; const uncoerced_val = try sema.resolveLazyValue(unresolved_uncoerced_val); runtime_known.unset(operand_idx); switch (bounds_status) { .unknown, .defined => refine_bounds: { const ty = sema.typeOf(operand); if (!ty.scalarType(mod).isInt(mod) and !ty.scalarType(mod).eql(Type.comptime_int, mod)) { bounds_status = .non_integral; break :refine_bounds; } const scalar_bounds: ?[2]Value = bounds: { if (!ty.isVector(mod)) break :bounds try uncoerced_val.intValueBounds(mod); var cur_bounds: [2]Value = try Value.intValueBounds(try uncoerced_val.elemValue(mod, 0), mod) orelse break :bounds null; const len = try sema.usizeCast(block, src, ty.vectorLen(mod)); for (1..len) |i| { const elem = try uncoerced_val.elemValue(mod, i); const elem_bounds = try elem.intValueBounds(mod) orelse break :bounds null; cur_bounds = .{ Value.numberMin(elem_bounds[0], cur_bounds[0], mod), Value.numberMax(elem_bounds[1], cur_bounds[1], mod), }; } break :bounds cur_bounds; }; if (scalar_bounds) |bounds| { if (bounds_status == .unknown) { cur_min_scalar = bounds[0]; cur_max_scalar = bounds[1]; bounds_status = .defined; } else { cur_min_scalar = opFunc(cur_min_scalar, bounds[0], mod); cur_max_scalar = opFunc(cur_max_scalar, bounds[1], mod); } } }, .non_integral => {}, } const cur = cur_minmax orelse { cur_minmax = operand; cur_minmax_src = operand_src; continue; }; const simd_op = try sema.checkSimdBinOp(block, src, cur, operand, cur_minmax_src, operand_src); const cur_val = try sema.resolveLazyValue(simd_op.lhs_val.?); // cur_minmax is comptime-known const operand_val = try sema.resolveLazyValue(simd_op.rhs_val.?); // we checked the operand was resolvable above const vec_len = simd_op.len orelse { const result_val = opFunc(cur_val, operand_val, mod); cur_minmax = Air.internedToRef(result_val.toIntern()); continue; }; const elems = try sema.arena.alloc(InternPool.Index, vec_len); for (elems, 0..) |*elem, i| { const lhs_elem_val = try cur_val.elemValue(mod, i); const rhs_elem_val = try operand_val.elemValue(mod, i); const uncoerced_elem = opFunc(lhs_elem_val, rhs_elem_val, mod); elem.* = (try mod.getCoerced(uncoerced_elem, simd_op.scalar_ty)).toIntern(); } cur_minmax = Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = simd_op.result_ty.toIntern(), .storage = .{ .elems = elems }, } }))); } const opt_runtime_idx = runtime_known.findFirstSet(); if (cur_minmax) |ct_minmax_ref| refine: { // Refine the comptime-known result type based on the bounds. This isn't strictly necessary // in the runtime case, since we'll refine the type again later, but keeping things as small // as possible will allow us to emit more optimal AIR (if all the runtime operands have // smaller types than the non-refined comptime type). const val = (try sema.resolveMaybeUndefVal(ct_minmax_ref)).?; const orig_ty = sema.typeOf(ct_minmax_ref); if (opt_runtime_idx == null and orig_ty.scalarType(mod).eql(Type.comptime_int, mod)) { // If all arguments were `comptime_int`, and there are no runtime args, we'll preserve that type break :refine; } // We can't refine float types if (orig_ty.scalarType(mod).isAnyFloat()) break :refine; assert(bounds_status == .defined); // there was a non-comptime-int integral comptime-known arg const refined_scalar_ty = try mod.intFittingRange(cur_min_scalar, cur_max_scalar); const refined_ty = if (orig_ty.isVector(mod)) try mod.vectorType(.{ .len = orig_ty.vectorLen(mod), .child = refined_scalar_ty.toIntern(), }) else refined_scalar_ty; // Apply the refined type to the current value if (std.debug.runtime_safety) { assert(try sema.intFitsInType(val, refined_ty, null)); } cur_minmax = try sema.coerceInMemory(val, refined_ty); } const runtime_idx = opt_runtime_idx orelse return cur_minmax.?; const runtime_src = operand_srcs[runtime_idx]; try sema.requireRuntimeBlock(block, src, runtime_src); // Now, iterate over runtime operands, emitting a min/max instruction for each. We'll refine the // type again at the end, based on the comptime-known bound. // If the comptime-known part is undef we can avoid emitting actual instructions later const known_undef = if (cur_minmax) |operand| blk: { const val = (try sema.resolveMaybeUndefVal(operand)).?; break :blk val.isUndef(mod); } else false; if (cur_minmax == null) { // No comptime operands - use the first operand as the starting value assert(bounds_status == .unknown); assert(runtime_idx == 0); cur_minmax = operands[0]; cur_minmax_src = runtime_src; runtime_known.unset(0); // don't look at this operand in the loop below const scalar_ty = sema.typeOf(cur_minmax.?).scalarType(mod); if (scalar_ty.isInt(mod)) { cur_min_scalar = try scalar_ty.minInt(mod, scalar_ty); cur_max_scalar = try scalar_ty.maxInt(mod, scalar_ty); bounds_status = .defined; } else { bounds_status = .non_integral; } } var it = runtime_known.iterator(.{}); while (it.next()) |idx| { const lhs = cur_minmax.?; const lhs_src = cur_minmax_src; const rhs = operands[idx]; const rhs_src = operand_srcs[idx]; const simd_op = try sema.checkSimdBinOp(block, src, lhs, rhs, lhs_src, rhs_src); if (known_undef) { cur_minmax = try mod.undefRef(simd_op.result_ty); } else { cur_minmax = try block.addBinOp(air_tag, simd_op.lhs, simd_op.rhs); } // Compute the bounds of this type switch (bounds_status) { .unknown, .defined => refine_bounds: { const scalar_ty = sema.typeOf(rhs).scalarType(mod); if (scalar_ty.isAnyFloat()) { bounds_status = .non_integral; break :refine_bounds; } const scalar_min = try scalar_ty.minInt(mod, scalar_ty); const scalar_max = try scalar_ty.maxInt(mod, scalar_ty); if (bounds_status == .unknown) { cur_min_scalar = scalar_min; cur_max_scalar = scalar_max; bounds_status = .defined; } else { cur_min_scalar = opFunc(cur_min_scalar, scalar_min, mod); cur_max_scalar = opFunc(cur_max_scalar, scalar_max, mod); } }, .non_integral => {}, } } // Finally, refine the type based on the known bounds. const unrefined_ty = sema.typeOf(cur_minmax.?); if (unrefined_ty.scalarType(mod).isAnyFloat()) { // We can't refine floats, so we're done. return cur_minmax.?; } assert(bounds_status == .defined); // there were integral runtime operands const refined_scalar_ty = try mod.intFittingRange(cur_min_scalar, cur_max_scalar); const refined_ty = if (unrefined_ty.isVector(mod)) try mod.vectorType(.{ .len = unrefined_ty.vectorLen(mod), .child = refined_scalar_ty.toIntern(), }) else refined_scalar_ty; if (!refined_ty.eql(unrefined_ty, mod)) { // We've reduced the type - cast the result down return block.addTyOp(.intcast, refined_ty, cur_minmax.?); } return cur_minmax.?; } fn upgradeToArrayPtr(sema: *Sema, block: *Block, ptr: Air.Inst.Ref, len: u64) !Air.Inst.Ref { const mod = sema.mod; const info = sema.typeOf(ptr).ptrInfo(mod); if (info.flags.size == .One) { // Already an array pointer. return ptr; } const new_ty = try mod.ptrType(.{ .child = (try mod.arrayType(.{ .len = len, .sentinel = info.sentinel, .child = info.child, })).toIntern(), .flags = .{ .alignment = info.flags.alignment, .is_const = info.flags.is_const, .is_volatile = info.flags.is_volatile, .is_allowzero = info.flags.is_allowzero, .address_space = info.flags.address_space, }, }); if (info.flags.size == .Slice) { return block.addTyOp(.slice_ptr, new_ty, ptr); } return block.addBitCast(new_ty, ptr); } fn zirMemcpy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const src_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const dest_ptr = try sema.resolveInst(extra.lhs); const src_ptr = try sema.resolveInst(extra.rhs); const dest_ty = sema.typeOf(dest_ptr); const src_ty = sema.typeOf(src_ptr); const dest_len = try indexablePtrLenOrNone(sema, block, dest_src, dest_ptr); const src_len = try indexablePtrLenOrNone(sema, block, src_src, src_ptr); const target = sema.mod.getTarget(); const mod = sema.mod; if (dest_ty.isConstPtr(mod)) { return sema.fail(block, dest_src, "cannot memcpy to constant pointer", .{}); } if (dest_len == .none and src_len == .none) { const msg = msg: { const msg = try sema.errMsg(block, src, "unknown @memcpy length", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, dest_src, msg, "destination type '{}' provides no length", .{ dest_ty.fmt(sema.mod), }); try sema.errNote(block, src_src, msg, "source type '{}' provides no length", .{ src_ty.fmt(sema.mod), }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } var len_val: ?Value = null; if (dest_len != .none and src_len != .none) check: { // If we can check at compile-time, no need for runtime safety. if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| { len_val = dest_len_val; if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| { if (!(try sema.valuesEqual(dest_len_val, src_len_val, Type.usize))) { const msg = msg: { const msg = try sema.errMsg(block, src, "non-matching @memcpy lengths", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, dest_src, msg, "length {} here", .{ dest_len_val.fmtValue(Type.usize, sema.mod), }); try sema.errNote(block, src_src, msg, "length {} here", .{ src_len_val.fmtValue(Type.usize, sema.mod), }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } break :check; } } else if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| { len_val = src_len_val; } if (block.wantSafety()) { const ok = try block.addBinOp(.cmp_eq, dest_len, src_len); try sema.addSafetyCheck(block, src, ok, .memcpy_len_mismatch); } } else if (dest_len != .none) { if (try sema.resolveDefinedValue(block, dest_src, dest_len)) |dest_len_val| { len_val = dest_len_val; } } else if (src_len != .none) { if (try sema.resolveDefinedValue(block, src_src, src_len)) |src_len_val| { len_val = src_len_val; } } const runtime_src = if (try sema.resolveDefinedValue(block, dest_src, dest_ptr)) |dest_ptr_val| rs: { if (!dest_ptr_val.isComptimeMutablePtr(mod)) break :rs dest_src; if (try sema.resolveDefinedValue(block, src_src, src_ptr)) |_| { const len_u64 = (try len_val.?.getUnsignedIntAdvanced(mod, sema)).?; const len = try sema.usizeCast(block, dest_src, len_u64); for (0..len) |i| { const elem_index = try mod.intRef(Type.usize, i); const dest_elem_ptr = try sema.elemPtrOneLayerOnly( block, src, dest_ptr, elem_index, src, true, // init false, // oob_safety ); const src_elem_ptr = try sema.elemPtrOneLayerOnly( block, src, src_ptr, elem_index, src, false, // init false, // oob_safety ); const uncoerced_elem = try sema.analyzeLoad(block, src, src_elem_ptr, src_src); try sema.storePtr2( block, src, dest_elem_ptr, dest_src, uncoerced_elem, src_src, .store, ); } return; } else break :rs src_src; } else dest_src; // If in-memory coercion is not allowed, explode this memcpy call into a // for loop that copies element-wise. // Likewise if this is an iterable rather than a pointer, do the same // lowering. The AIR instruction requires pointers with element types of // equal ABI size. if (dest_ty.zigTypeTag(mod) != .Pointer or src_ty.zigTypeTag(mod) != .Pointer) { return sema.fail(block, src, "TODO: lower @memcpy to a for loop because the source or destination iterable is a tuple", .{}); } const dest_elem_ty = dest_ty.elemType2(mod); const src_elem_ty = src_ty.elemType2(mod); if (.ok != try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, true, target, dest_src, src_src)) { return sema.fail(block, src, "TODO: lower @memcpy to a for loop because the element types have different ABI sizes", .{}); } // If the length is comptime-known, then upgrade src and destination types // into pointer-to-array. At this point we know they are both pointers // already. var new_dest_ptr = dest_ptr; var new_src_ptr = src_ptr; if (len_val) |val| { const len = val.toUnsignedInt(mod); if (len == 0) { // This AIR instruction guarantees length > 0 if it is comptime-known. return; } new_dest_ptr = try upgradeToArrayPtr(sema, block, dest_ptr, len); new_src_ptr = try upgradeToArrayPtr(sema, block, src_ptr, len); } if (dest_len != .none) { // Change the src from slice to a many pointer, to avoid multiple ptr // slice extractions in AIR instructions. const new_src_ptr_ty = sema.typeOf(new_src_ptr); if (new_src_ptr_ty.isSlice(mod)) { new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty); } } else if (dest_len == .none and len_val == null) { // Change the dest to a slice, since its type must have the length. const dest_ptr_ptr = try sema.analyzeRef(block, dest_src, new_dest_ptr); new_dest_ptr = try sema.analyzeSlice(block, dest_src, dest_ptr_ptr, .zero, src_len, .none, .unneeded, dest_src, dest_src, dest_src, false); const new_src_ptr_ty = sema.typeOf(new_src_ptr); if (new_src_ptr_ty.isSlice(mod)) { new_src_ptr = try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty); } } try sema.requireRuntimeBlock(block, src, runtime_src); // Aliasing safety check. if (block.wantSafety()) { const len = if (len_val) |v| Air.internedToRef(v.toIntern()) else if (dest_len != .none) dest_len else src_len; // Extract raw pointer from dest slice. The AIR instructions could support them, but // it would cause redundant machine code instructions. const new_dest_ptr_ty = sema.typeOf(new_dest_ptr); const raw_dest_ptr = if (new_dest_ptr_ty.isSlice(mod)) try sema.analyzeSlicePtr(block, dest_src, new_dest_ptr, new_dest_ptr_ty) else if (new_dest_ptr_ty.ptrSize(mod) == .One) ptr: { var dest_manyptr_ty_key = mod.intern_pool.indexToKey(new_dest_ptr_ty.toIntern()).ptr_type; assert(dest_manyptr_ty_key.flags.size == .One); dest_manyptr_ty_key.child = dest_elem_ty.toIntern(); dest_manyptr_ty_key.flags.size = .Many; break :ptr try sema.coerceCompatiblePtrs(block, try mod.ptrType(dest_manyptr_ty_key), new_dest_ptr, dest_src); } else new_dest_ptr; const new_src_ptr_ty = sema.typeOf(new_src_ptr); const raw_src_ptr = if (new_src_ptr_ty.isSlice(mod)) try sema.analyzeSlicePtr(block, src_src, new_src_ptr, new_src_ptr_ty) else if (new_src_ptr_ty.ptrSize(mod) == .One) ptr: { var src_manyptr_ty_key = mod.intern_pool.indexToKey(new_src_ptr_ty.toIntern()).ptr_type; assert(src_manyptr_ty_key.flags.size == .One); src_manyptr_ty_key.child = src_elem_ty.toIntern(); src_manyptr_ty_key.flags.size = .Many; break :ptr try sema.coerceCompatiblePtrs(block, try mod.ptrType(src_manyptr_ty_key), new_src_ptr, src_src); } else new_src_ptr; // ok1: dest >= src + len // ok2: src >= dest + len const src_plus_len = try sema.analyzePtrArithmetic(block, src, raw_src_ptr, len, .ptr_add, src_src, src); const dest_plus_len = try sema.analyzePtrArithmetic(block, src, raw_dest_ptr, len, .ptr_add, dest_src, src); const ok1 = try block.addBinOp(.cmp_gte, raw_dest_ptr, src_plus_len); const ok2 = try block.addBinOp(.cmp_gte, new_src_ptr, dest_plus_len); const ok = try block.addBinOp(.bit_or, ok1, ok2); try sema.addSafetyCheck(block, src, ok, .memcpy_alias); } _ = try block.addInst(.{ .tag = .memcpy, .data = .{ .bin_op = .{ .lhs = new_dest_ptr, .rhs = new_src_ptr, } }, }); } fn zirMemset(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!void { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.Bin, inst_data.payload_index).data; const src = inst_data.src(); const dest_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = inst_data.src_node }; const value_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = inst_data.src_node }; const dest_ptr = try sema.resolveInst(extra.lhs); const uncoerced_elem = try sema.resolveInst(extra.rhs); const dest_ptr_ty = sema.typeOf(dest_ptr); try checkMemOperand(sema, block, dest_src, dest_ptr_ty); if (dest_ptr_ty.isConstPtr(mod)) { return sema.fail(block, dest_src, "cannot memset constant pointer", .{}); } const dest_elem_ty = dest_ptr_ty.elemType2(mod); const runtime_src = if (try sema.resolveDefinedValue(block, dest_src, dest_ptr)) |ptr_val| rs: { const len_air_ref = try sema.fieldVal(block, src, dest_ptr, try ip.getOrPutString(gpa, "len"), dest_src); const len_val = (try sema.resolveDefinedValue(block, dest_src, len_air_ref)) orelse break :rs dest_src; const len_u64 = (try len_val.getUnsignedIntAdvanced(mod, sema)).?; const len = try sema.usizeCast(block, dest_src, len_u64); if (len == 0) { // This AIR instruction guarantees length > 0 if it is comptime-known. return; } if (!ptr_val.isComptimeMutablePtr(mod)) break :rs dest_src; if (try sema.resolveMaybeUndefVal(uncoerced_elem)) |_| { for (0..len) |i| { const elem_index = try mod.intRef(Type.usize, i); const elem_ptr = try sema.elemPtrOneLayerOnly( block, src, dest_ptr, elem_index, src, true, // init false, // oob_safety ); try sema.storePtr2( block, src, elem_ptr, dest_src, uncoerced_elem, value_src, .store, ); } return; } else break :rs value_src; } else dest_src; const elem = try sema.coerce(block, dest_elem_ty, uncoerced_elem, value_src); try sema.requireRuntimeBlock(block, src, runtime_src); _ = try block.addInst(.{ .tag = if (block.wantSafety()) .memset_safe else .memset, .data = .{ .bin_op = .{ .lhs = dest_ptr, .rhs = elem, } }, }); } fn zirBuiltinAsyncCall(sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); return sema.failWithUseOfAsync(block, src); } fn zirResume(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); return sema.failWithUseOfAsync(block, src); } fn zirAwait( sema: *Sema, block: *Block, inst: Zir.Inst.Index, ) CompileError!Air.Inst.Ref { const inst_data = sema.code.instructions.items(.data)[inst].un_node; const src = inst_data.src(); return sema.failWithUseOfAsync(block, src); } fn zirAwaitNosuspend( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src = LazySrcLoc.nodeOffset(extra.node); return sema.failWithUseOfAsync(block, src); } fn zirVarExtended( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.ExtendedVar, extended.operand); const ty_src: LazySrcLoc = .{ .node_offset_var_decl_ty = 0 }; const init_src: LazySrcLoc = .{ .node_offset_var_decl_init = 0 }; const small = @as(Zir.Inst.ExtendedVar.Small, @bitCast(extended.small)); var extra_index: usize = extra.end; const lib_name: ?[]const u8 = if (small.has_lib_name) blk: { const lib_name = sema.code.nullTerminatedString(sema.code.extra[extra_index]); extra_index += 1; break :blk lib_name; } else null; // ZIR supports encoding this information but it is not used; the information // is encoded via the Decl entry. assert(!small.has_align); const uncasted_init: Air.Inst.Ref = if (small.has_init) blk: { const init_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; break :blk try sema.resolveInst(init_ref); } else .none; const have_ty = extra.data.var_type != .none; const var_ty = if (have_ty) try sema.resolveType(block, ty_src, extra.data.var_type) else sema.typeOf(uncasted_init); const init_val = if (uncasted_init != .none) blk: { const init = if (have_ty) try sema.coerce(block, var_ty, uncasted_init, init_src) else uncasted_init; break :blk ((try sema.resolveMaybeUndefVal(init)) orelse return sema.failWithNeededComptime(block, init_src, "container level variable initializers must be comptime-known")).toIntern(); } else .none; try sema.validateVarType(block, ty_src, var_ty, small.is_extern); return Air.internedToRef((try mod.intern(.{ .variable = .{ .ty = var_ty.toIntern(), .init = init_val, .decl = sema.owner_decl_index, .lib_name = if (lib_name) |lname| (try mod.intern_pool.getOrPutString( sema.gpa, try sema.handleExternLibName(block, ty_src, lname), )).toOptional() else .none, .is_extern = small.is_extern, .is_threadlocal = small.is_threadlocal, } }))); } fn zirFuncFancy(sema: *Sema, block: *Block, inst: Zir.Inst.Index) CompileError!Air.Inst.Ref { const tracy = trace(@src()); defer tracy.end(); const mod = sema.mod; const inst_data = sema.code.instructions.items(.data)[inst].pl_node; const extra = sema.code.extraData(Zir.Inst.FuncFancy, inst_data.payload_index); const target = mod.getTarget(); const align_src: LazySrcLoc = .{ .node_offset_fn_type_align = inst_data.src_node }; const addrspace_src: LazySrcLoc = .{ .node_offset_fn_type_addrspace = inst_data.src_node }; const section_src: LazySrcLoc = .{ .node_offset_fn_type_section = inst_data.src_node }; const cc_src: LazySrcLoc = .{ .node_offset_fn_type_cc = inst_data.src_node }; const ret_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = inst_data.src_node }; const has_body = extra.data.body_len != 0; var extra_index: usize = extra.end; const lib_name: ?[]const u8 = if (extra.data.bits.has_lib_name) blk: { const lib_name = sema.code.nullTerminatedString(sema.code.extra[extra_index]); extra_index += 1; break :blk lib_name; } else null; if (has_body and (extra.data.bits.has_align_body or extra.data.bits.has_align_ref) and !target_util.supportsFunctionAlignment(target)) { return sema.fail(block, align_src, "target does not support function alignment", .{}); } const @"align": ?Alignment = if (extra.data.bits.has_align_body) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const val = try sema.resolveGenericBody(block, align_src, body, inst, Type.u29, "alignment must be comptime-known"); if (val.isGenericPoison()) { break :blk null; } const alignment = @as(u32, @intCast(val.toUnsignedInt(mod))); try sema.validateAlign(block, align_src, alignment); if (alignment == target_util.defaultFunctionAlignment(target)) { break :blk .none; } else { break :blk Alignment.fromNonzeroByteUnits(alignment); } } else if (extra.data.bits.has_align_ref) blk: { const align_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const align_tv = sema.resolveInstConst(block, align_src, align_ref, "alignment must be comptime-known") catch |err| switch (err) { error.GenericPoison => { break :blk null; }, else => |e| return e, }; const alignment = @as(u32, @intCast(align_tv.val.toUnsignedInt(mod))); try sema.validateAlign(block, align_src, alignment); if (alignment == target_util.defaultFunctionAlignment(target)) { break :blk .none; } else { break :blk Alignment.fromNonzeroByteUnits(alignment); } } else .none; const @"addrspace": ?std.builtin.AddressSpace = if (extra.data.bits.has_addrspace_body) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const addrspace_ty = try sema.getBuiltinType("AddressSpace"); const val = try sema.resolveGenericBody(block, addrspace_src, body, inst, addrspace_ty, "addrespace must be comptime-known"); if (val.isGenericPoison()) { break :blk null; } break :blk mod.toEnum(std.builtin.AddressSpace, val); } else if (extra.data.bits.has_addrspace_ref) blk: { const addrspace_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const addrspace_tv = sema.resolveInstConst(block, addrspace_src, addrspace_ref, "addrespace must be comptime-known") catch |err| switch (err) { error.GenericPoison => { break :blk null; }, else => |e| return e, }; break :blk mod.toEnum(std.builtin.AddressSpace, addrspace_tv.val); } else target_util.defaultAddressSpace(target, .function); const section: Section = if (extra.data.bits.has_section_body) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const ty = Type.slice_const_u8; const val = try sema.resolveGenericBody(block, section_src, body, inst, ty, "linksection must be comptime-known"); if (val.isGenericPoison()) { break :blk .generic; } break :blk .{ .explicit = try val.toIpString(ty, mod) }; } else if (extra.data.bits.has_section_ref) blk: { const section_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const section_name = sema.resolveConstStringIntern(block, section_src, section_ref, "linksection must be comptime-known") catch |err| switch (err) { error.GenericPoison => { break :blk .generic; }, else => |e| return e, }; break :blk .{ .explicit = section_name }; } else .default; const cc: ?std.builtin.CallingConvention = if (extra.data.bits.has_cc_body) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const cc_ty = try sema.getBuiltinType("CallingConvention"); const val = try sema.resolveGenericBody(block, cc_src, body, inst, cc_ty, "calling convention must be comptime-known"); if (val.isGenericPoison()) { break :blk null; } break :blk mod.toEnum(std.builtin.CallingConvention, val); } else if (extra.data.bits.has_cc_ref) blk: { const cc_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const cc_tv = sema.resolveInstConst(block, cc_src, cc_ref, "calling convention must be comptime-known") catch |err| switch (err) { error.GenericPoison => { break :blk null; }, else => |e| return e, }; break :blk mod.toEnum(std.builtin.CallingConvention, cc_tv.val); } else if (sema.owner_decl.is_exported and has_body) .C else .Unspecified; const ret_ty: Type = if (extra.data.bits.has_ret_ty_body) blk: { const body_len = sema.code.extra[extra_index]; extra_index += 1; const body = sema.code.extra[extra_index..][0..body_len]; extra_index += body.len; const val = try sema.resolveGenericBody(block, ret_src, body, inst, Type.type, "return type must be comptime-known"); const ty = val.toType(); break :blk ty; } else if (extra.data.bits.has_ret_ty_ref) blk: { const ret_ty_ref = @as(Zir.Inst.Ref, @enumFromInt(sema.code.extra[extra_index])); extra_index += 1; const ret_ty_tv = sema.resolveInstConst(block, ret_src, ret_ty_ref, "return type must be comptime-known") catch |err| switch (err) { error.GenericPoison => { break :blk Type.generic_poison; }, else => |e| return e, }; const ty = ret_ty_tv.val.toType(); break :blk ty; } else Type.void; const noalias_bits: u32 = if (extra.data.bits.has_any_noalias) blk: { const x = sema.code.extra[extra_index]; extra_index += 1; break :blk x; } else 0; var src_locs: Zir.Inst.Func.SrcLocs = undefined; if (has_body) { extra_index += extra.data.body_len; src_locs = sema.code.extraData(Zir.Inst.Func.SrcLocs, extra_index).data; } const is_var_args = extra.data.bits.is_var_args; const is_inferred_error = extra.data.bits.is_inferred_error; const is_extern = extra.data.bits.is_extern; const is_noinline = extra.data.bits.is_noinline; return sema.funcCommon( block, inst_data.src_node, inst, @"align", @"addrspace", section, cc, ret_ty, is_var_args, is_inferred_error, is_extern, has_body, src_locs, lib_name, noalias_bits, is_noinline, ); } fn zirCUndef( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const name = try sema.resolveConstString(block, src, extra.operand, "name of macro being undefined must be comptime-known"); try block.c_import_buf.?.writer().print("#undef {s}\n", .{name}); return Air.Inst.Ref.void_value; } fn zirCInclude( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const name = try sema.resolveConstString(block, src, extra.operand, "path being included must be comptime-known"); try block.c_import_buf.?.writer().print("#include <{s}>\n", .{name}); return Air.Inst.Ref.void_value; } fn zirCDefine( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const name_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const val_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const name = try sema.resolveConstString(block, name_src, extra.lhs, "name of macro being undefined must be comptime-known"); const rhs = try sema.resolveInst(extra.rhs); if (sema.typeOf(rhs).zigTypeTag(mod) != .Void) { const value = try sema.resolveConstString(block, val_src, extra.rhs, "value of macro being undefined must be comptime-known"); try block.c_import_buf.?.writer().print("#define {s} {s}\n", .{ name, value }); } else { try block.c_import_buf.?.writer().print("#define {s}\n", .{name}); } return Air.Inst.Ref.void_value; } fn zirWasmMemorySize( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const index_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const builtin_src = LazySrcLoc.nodeOffset(extra.node); const target = sema.mod.getTarget(); if (!target.isWasm()) { return sema.fail(block, builtin_src, "builtin @wasmMemorySize is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)}); } const index = @as(u32, @intCast(try sema.resolveInt(block, index_src, extra.operand, Type.u32, "wasm memory size index must be comptime-known"))); try sema.requireRuntimeBlock(block, builtin_src, null); return block.addInst(.{ .tag = .wasm_memory_size, .data = .{ .pl_op = .{ .operand = .none, .payload = index, } }, }); } fn zirWasmMemoryGrow( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const builtin_src = LazySrcLoc.nodeOffset(extra.node); const index_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const delta_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const target = sema.mod.getTarget(); if (!target.isWasm()) { return sema.fail(block, builtin_src, "builtin @wasmMemoryGrow is available when targeting WebAssembly; targeted CPU architecture is {s}", .{@tagName(target.cpu.arch)}); } const index = @as(u32, @intCast(try sema.resolveInt(block, index_src, extra.lhs, Type.u32, "wasm memory size index must be comptime-known"))); const delta = try sema.coerce(block, Type.u32, try sema.resolveInst(extra.rhs), delta_src); try sema.requireRuntimeBlock(block, builtin_src, null); return block.addInst(.{ .tag = .wasm_memory_grow, .data = .{ .pl_op = .{ .operand = delta, .payload = index, } }, }); } fn resolvePrefetchOptions( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ) CompileError!std.builtin.PrefetchOptions { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const options_ty = try sema.getBuiltinType("PrefetchOptions"); const options = try sema.coerce(block, options_ty, try sema.resolveInst(zir_ref), src); const rw_src = sema.maybeOptionsSrc(block, src, "rw"); const locality_src = sema.maybeOptionsSrc(block, src, "locality"); const cache_src = sema.maybeOptionsSrc(block, src, "cache"); const rw = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "rw"), rw_src); const rw_val = try sema.resolveConstValue(block, rw_src, rw, "prefetch read/write must be comptime-known"); const locality = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "locality"), locality_src); const locality_val = try sema.resolveConstValue(block, locality_src, locality, "prefetch locality must be comptime-known"); const cache = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "cache"), cache_src); const cache_val = try sema.resolveConstValue(block, cache_src, cache, "prefetch cache must be comptime-known"); return std.builtin.PrefetchOptions{ .rw = mod.toEnum(std.builtin.PrefetchOptions.Rw, rw_val), .locality = @as(u2, @intCast(locality_val.toUnsignedInt(mod))), .cache = mod.toEnum(std.builtin.PrefetchOptions.Cache, cache_val), }; } fn zirPrefetch( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const ptr_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const opts_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; const ptr = try sema.resolveInst(extra.lhs); try sema.checkPtrOperand(block, ptr_src, sema.typeOf(ptr)); const options = sema.resolvePrefetchOptions(block, .unneeded, extra.rhs) catch |err| switch (err) { error.NeededSourceLocation => { _ = try sema.resolvePrefetchOptions(block, opts_src, extra.rhs); unreachable; }, else => |e| return e, }; if (!block.is_comptime) { _ = try block.addInst(.{ .tag = .prefetch, .data = .{ .prefetch = .{ .ptr = ptr, .rw = options.rw, .locality = options.locality, .cache = options.cache, } }, }); } return Air.Inst.Ref.void_value; } fn resolveExternOptions( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ) CompileError!struct { name: InternPool.NullTerminatedString, library_name: InternPool.OptionalNullTerminatedString = .none, linkage: std.builtin.GlobalLinkage = .Strong, is_thread_local: bool = false, } { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const options_inst = try sema.resolveInst(zir_ref); const extern_options_ty = try sema.getBuiltinType("ExternOptions"); const options = try sema.coerce(block, extern_options_ty, options_inst, src); const name_src = sema.maybeOptionsSrc(block, src, "name"); const library_src = sema.maybeOptionsSrc(block, src, "library"); const linkage_src = sema.maybeOptionsSrc(block, src, "linkage"); const thread_local_src = sema.maybeOptionsSrc(block, src, "thread_local"); const name_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "name"), name_src); const name_val = try sema.resolveConstValue(block, name_src, name_ref, "name of the extern symbol must be comptime-known"); const name = try name_val.toAllocatedBytes(Type.slice_const_u8, sema.arena, mod); const library_name_inst = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "library_name"), library_src); const library_name_val = try sema.resolveConstValue(block, library_src, library_name_inst, "library in which extern symbol is must be comptime-known"); const linkage_ref = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "linkage"), linkage_src); const linkage_val = try sema.resolveConstValue(block, linkage_src, linkage_ref, "linkage of the extern symbol must be comptime-known"); const linkage = mod.toEnum(std.builtin.GlobalLinkage, linkage_val); const is_thread_local = try sema.fieldVal(block, src, options, try ip.getOrPutString(gpa, "is_thread_local"), thread_local_src); const is_thread_local_val = try sema.resolveConstValue(block, thread_local_src, is_thread_local, "threadlocality of the extern symbol must be comptime-known"); const library_name = if (library_name_val.optionalValue(mod)) |payload| blk: { const library_name = try payload.toAllocatedBytes(Type.slice_const_u8, sema.arena, mod); if (library_name.len == 0) { return sema.fail(block, library_src, "library name cannot be empty", .{}); } break :blk try sema.handleExternLibName(block, library_src, library_name); } else null; if (name.len == 0) { return sema.fail(block, name_src, "extern symbol name cannot be empty", .{}); } if (linkage != .Weak and linkage != .Strong) { return sema.fail(block, linkage_src, "extern symbol must use strong or weak linkage", .{}); } return .{ .name = try ip.getOrPutString(gpa, name), .library_name = try ip.getOrPutStringOpt(gpa, library_name), .linkage = linkage, .is_thread_local = is_thread_local_val.toBool(), }; } fn zirBuiltinExtern( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const extra = sema.code.extraData(Zir.Inst.BinNode, extended.operand).data; const ty_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const options_src: LazySrcLoc = .{ .node_offset_builtin_call_arg1 = extra.node }; var ty = try sema.resolveType(block, ty_src, extra.lhs); if (!ty.isPtrAtRuntime(mod)) { return sema.fail(block, ty_src, "expected (optional) pointer", .{}); } if (!try sema.validateExternType(ty.childType(mod), .other)) { const msg = msg: { const msg = try sema.errMsg(block, ty_src, "extern symbol cannot have type '{}'", .{ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const src_decl = sema.mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, ty_src.toSrcLoc(src_decl, mod), ty, .other); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const options = sema.resolveExternOptions(block, .unneeded, extra.rhs) catch |err| switch (err) { error.NeededSourceLocation => { _ = try sema.resolveExternOptions(block, options_src, extra.rhs); unreachable; }, else => |e| return e, }; if (options.linkage == .Weak and !ty.ptrAllowsZero(mod)) { ty = try mod.optionalType(ty.toIntern()); } // TODO check duplicate extern const new_decl_index = try mod.allocateNewDecl(sema.owner_decl.src_namespace, sema.owner_decl.src_node, null); errdefer mod.destroyDecl(new_decl_index); const new_decl = mod.declPtr(new_decl_index); new_decl.name = options.name; { const new_var = try mod.intern(.{ .variable = .{ .ty = ty.toIntern(), .init = .none, .decl = sema.owner_decl_index, .is_extern = true, .is_const = true, .is_threadlocal = options.is_thread_local, .is_weak_linkage = options.linkage == .Weak, } }); new_decl.src_line = sema.owner_decl.src_line; // We only access this decl through the decl_ref with the correct type created // below, so this type doesn't matter new_decl.ty = ty; new_decl.val = new_var.toValue(); new_decl.alignment = .none; new_decl.@"linksection" = .none; new_decl.has_tv = true; new_decl.analysis = .complete; new_decl.generation = mod.generation; } try mod.declareDeclDependency(sema.owner_decl_index, new_decl_index); try sema.ensureDeclAnalyzed(new_decl_index); return Air.internedToRef((try mod.getCoerced((try mod.intern(.{ .ptr = .{ .ty = switch (mod.intern_pool.indexToKey(ty.toIntern())) { .ptr_type => ty.toIntern(), .opt_type => |child_type| child_type, else => unreachable, }, .addr = .{ .decl = new_decl_index }, } })).toValue(), ty)).toIntern()); } fn zirWorkItem( sema: *Sema, block: *Block, extended: Zir.Inst.Extended.InstData, zir_tag: Zir.Inst.Extended, ) CompileError!Air.Inst.Ref { const extra = sema.code.extraData(Zir.Inst.UnNode, extended.operand).data; const dimension_src: LazySrcLoc = .{ .node_offset_builtin_call_arg0 = extra.node }; const builtin_src = LazySrcLoc.nodeOffset(extra.node); const target = sema.mod.getTarget(); switch (target.cpu.arch) { // TODO: Allow for other GPU targets. .amdgcn => {}, else => { return sema.fail(block, builtin_src, "builtin only available on GPU targets; targeted architecture is {s}", .{@tagName(target.cpu.arch)}); }, } const dimension = @as(u32, @intCast(try sema.resolveInt(block, dimension_src, extra.operand, Type.u32, "dimension must be comptime-known"))); try sema.requireRuntimeBlock(block, builtin_src, null); return block.addInst(.{ .tag = switch (zir_tag) { .work_item_id => .work_item_id, .work_group_size => .work_group_size, .work_group_id => .work_group_id, else => unreachable, }, .data = .{ .pl_op = .{ .operand = .none, .payload = dimension, } }, }); } fn zirInComptime( sema: *Sema, block: *Block, ) CompileError!Air.Inst.Ref { _ = sema; if (block.is_comptime) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } fn requireRuntimeBlock(sema: *Sema, block: *Block, src: LazySrcLoc, runtime_src: ?LazySrcLoc) !void { if (block.is_comptime) { const msg = msg: { const msg = try sema.errMsg(block, src, "unable to evaluate comptime expression", .{}); errdefer msg.destroy(sema.gpa); if (runtime_src) |some| { try sema.errNote(block, some, msg, "operation is runtime due to this operand", .{}); } if (block.comptime_reason) |some| { try some.explain(sema, msg); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } /// Emit a compile error if type cannot be used for a runtime variable. fn validateVarType( sema: *Sema, block: *Block, src: LazySrcLoc, var_ty: Type, is_extern: bool, ) CompileError!void { const mod = sema.mod; if (is_extern and !try sema.validateExternType(var_ty, .other)) { const msg = msg: { const msg = try sema.errMsg(block, src, "extern variable cannot have type '{}'", .{var_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, src.toSrcLoc(src_decl, mod), var_ty, .other); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (is_extern and var_ty.zigTypeTag(mod) == .Opaque) return; if (!try sema.typeRequiresComptime(var_ty)) return; const msg = msg: { const msg = try sema.errMsg(block, src, "variable of type '{}' must be const or comptime", .{var_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsComptime(msg, src.toSrcLoc(src_decl, mod), var_ty); if (var_ty.zigTypeTag(mod) == .ComptimeInt or var_ty.zigTypeTag(mod) == .ComptimeFloat) { try sema.errNote(block, src, msg, "to modify this variable at runtime, it must be given an explicit fixed-size number type", .{}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const TypeSet = std.AutoHashMapUnmanaged(InternPool.Index, void); fn explainWhyTypeIsComptime( sema: *Sema, msg: *Module.ErrorMsg, src_loc: Module.SrcLoc, ty: Type, ) CompileError!void { var type_set = TypeSet{}; defer type_set.deinit(sema.gpa); try sema.resolveTypeFully(ty); return sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty, &type_set); } fn explainWhyTypeIsComptimeInner( sema: *Sema, msg: *Module.ErrorMsg, src_loc: Module.SrcLoc, ty: Type, type_set: *TypeSet, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Bool, .Int, .Float, .ErrorSet, .Enum, .Frame, .AnyFrame, .Void, => return, .Fn => { try mod.errNoteNonLazy(src_loc, msg, "use '*const {}' for a function pointer type", .{ ty.fmt(sema.mod), }); }, .Type => { try mod.errNoteNonLazy(src_loc, msg, "types are not available at runtime", .{}); }, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .NoReturn, .Undefined, .Null, => return, .Opaque => { try mod.errNoteNonLazy(src_loc, msg, "opaque type '{}' has undefined size", .{ty.fmt(sema.mod)}); }, .Array, .Vector => { try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(mod), type_set); }, .Pointer => { const elem_ty = ty.elemType2(mod); if (elem_ty.zigTypeTag(mod) == .Fn) { const fn_info = mod.typeToFunc(elem_ty).?; if (fn_info.is_generic) { try mod.errNoteNonLazy(src_loc, msg, "function is generic", .{}); } switch (fn_info.cc) { .Inline => try mod.errNoteNonLazy(src_loc, msg, "function has inline calling convention", .{}), else => {}, } if (fn_info.return_type.toType().comptimeOnly(mod)) { try mod.errNoteNonLazy(src_loc, msg, "function has a comptime-only return type", .{}); } return; } try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.childType(mod), type_set); }, .Optional => { try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.optionalChild(mod), type_set); }, .ErrorUnion => { try sema.explainWhyTypeIsComptimeInner(msg, src_loc, ty.errorUnionPayload(mod), type_set); }, .Struct => { if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return; if (mod.typeToStruct(ty)) |struct_obj| { for (struct_obj.fields.values(), 0..) |field, i| { const field_src_loc = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = i, .range = .type, }); if (try sema.typeRequiresComptime(field.ty)) { try mod.errNoteNonLazy(field_src_loc, msg, "struct requires comptime because of this field", .{}); try sema.explainWhyTypeIsComptimeInner(msg, field_src_loc, field.ty, type_set); } } } // TODO tuples }, .Union => { if ((try type_set.getOrPut(sema.gpa, ty.toIntern())).found_existing) return; if (mod.typeToUnion(ty)) |union_obj| { for (union_obj.fields.values(), 0..) |field, i| { const field_src_loc = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = i, .range = .type, }); if (try sema.typeRequiresComptime(field.ty)) { try mod.errNoteNonLazy(field_src_loc, msg, "union requires comptime because of this field", .{}); try sema.explainWhyTypeIsComptimeInner(msg, field_src_loc, field.ty, type_set); } } } }, } } const ExternPosition = enum { ret_ty, param_ty, union_field, struct_field, element, other, }; /// Returns true if `ty` is allowed in extern types. /// Does *NOT* require `ty` to be resolved in any way. /// Calls `resolveTypeLayout` for packed containers. fn validateExternType( sema: *Sema, ty: Type, position: ExternPosition, ) !bool { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Type, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Undefined, .Null, .ErrorUnion, .ErrorSet, .Frame, => return false, .Void => return position == .union_field or position == .ret_ty or position == .struct_field or position == .element, .NoReturn => return position == .ret_ty, .Opaque, .Bool, .Float, .AnyFrame, => return true, .Pointer => return !(ty.isSlice(mod) or try sema.typeRequiresComptime(ty)), .Int => switch (ty.intInfo(mod).bits) { 0, 8, 16, 32, 64, 128 => return true, else => return false, }, .Fn => { if (position != .other) return false; const target = sema.mod.getTarget(); // For now we want to authorize PTX kernel to use zig objects, even if we end up exposing the ABI. // The goal is to experiment with more integrated CPU/GPU code. if (ty.fnCallingConvention(mod) == .Kernel and (target.cpu.arch == .nvptx or target.cpu.arch == .nvptx64)) { return true; } return !target_util.fnCallConvAllowsZigTypes(target, ty.fnCallingConvention(mod)); }, .Enum => { return sema.validateExternType(ty.intTagType(mod), position); }, .Struct, .Union => switch (ty.containerLayout(mod)) { .Extern => return true, .Packed => { const bit_size = try ty.bitSizeAdvanced(mod, sema); switch (bit_size) { 0, 8, 16, 32, 64, 128 => return true, else => return false, } }, .Auto => return !(try sema.typeHasRuntimeBits(ty)), }, .Array => { if (position == .ret_ty or position == .param_ty) return false; return sema.validateExternType(ty.elemType2(mod), .element); }, .Vector => return sema.validateExternType(ty.elemType2(mod), .element), .Optional => return ty.isPtrLikeOptional(mod), } } fn explainWhyTypeIsNotExtern( sema: *Sema, msg: *Module.ErrorMsg, src_loc: Module.SrcLoc, ty: Type, position: ExternPosition, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Opaque, .Bool, .Float, .AnyFrame, => return, .Type, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Undefined, .Null, .ErrorUnion, .ErrorSet, .Frame, => return, .Pointer => { if (ty.isSlice(mod)) { try mod.errNoteNonLazy(src_loc, msg, "slices have no guaranteed in-memory representation", .{}); } else { const pointee_ty = ty.childType(mod); try mod.errNoteNonLazy(src_loc, msg, "pointer to comptime-only type '{}'", .{pointee_ty.fmt(sema.mod)}); try sema.explainWhyTypeIsComptime(msg, src_loc, pointee_ty); } }, .Void => try mod.errNoteNonLazy(src_loc, msg, "'void' is a zero bit type; for C 'void' use 'anyopaque'", .{}), .NoReturn => try mod.errNoteNonLazy(src_loc, msg, "'noreturn' is only allowed as a return type", .{}), .Int => if (!std.math.isPowerOfTwo(ty.intInfo(mod).bits)) { try mod.errNoteNonLazy(src_loc, msg, "only integers with 0 or power of two bits are extern compatible", .{}); } else { try mod.errNoteNonLazy(src_loc, msg, "only integers with 0, 8, 16, 32, 64 and 128 bits are extern compatible", .{}); }, .Fn => { if (position != .other) { try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{}); try mod.errNoteNonLazy(src_loc, msg, "use '*const ' to make a function pointer type", .{}); return; } switch (ty.fnCallingConvention(mod)) { .Unspecified => try mod.errNoteNonLazy(src_loc, msg, "extern function must specify calling convention", .{}), .Async => try mod.errNoteNonLazy(src_loc, msg, "async function cannot be extern", .{}), .Inline => try mod.errNoteNonLazy(src_loc, msg, "inline function cannot be extern", .{}), else => return, } }, .Enum => { const tag_ty = ty.intTagType(mod); try mod.errNoteNonLazy(src_loc, msg, "enum tag type '{}' is not extern compatible", .{tag_ty.fmt(sema.mod)}); try sema.explainWhyTypeIsNotExtern(msg, src_loc, tag_ty, position); }, .Struct => try mod.errNoteNonLazy(src_loc, msg, "only extern structs and ABI sized packed structs are extern compatible", .{}), .Union => try mod.errNoteNonLazy(src_loc, msg, "only extern unions and ABI sized packed unions are extern compatible", .{}), .Array => { if (position == .ret_ty) { return mod.errNoteNonLazy(src_loc, msg, "arrays are not allowed as a return type", .{}); } else if (position == .param_ty) { return mod.errNoteNonLazy(src_loc, msg, "arrays are not allowed as a parameter type", .{}); } try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(mod), .element); }, .Vector => try sema.explainWhyTypeIsNotExtern(msg, src_loc, ty.elemType2(mod), .element), .Optional => try mod.errNoteNonLazy(src_loc, msg, "only pointer like optionals are extern compatible", .{}), } } /// Returns true if `ty` is allowed in packed types. /// Does *NOT* require `ty` to be resolved in any way. fn validatePackedType(ty: Type, mod: *Module) bool { switch (ty.zigTypeTag(mod)) { .Type, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Undefined, .Null, .ErrorUnion, .ErrorSet, .Frame, .NoReturn, .Opaque, .AnyFrame, .Fn, .Array, => return false, .Optional => return ty.isPtrLikeOptional(mod), .Void, .Bool, .Float, .Int, .Vector, .Enum, => return true, .Pointer => return !ty.isSlice(mod), .Struct, .Union => return ty.containerLayout(mod) == .Packed, } } fn explainWhyTypeIsNotPacked( sema: *Sema, msg: *Module.ErrorMsg, src_loc: Module.SrcLoc, ty: Type, ) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Void, .Bool, .Float, .Int, .Vector, .Enum, => return, .Type, .ComptimeFloat, .ComptimeInt, .EnumLiteral, .Undefined, .Null, .Frame, .NoReturn, .Opaque, .ErrorUnion, .ErrorSet, .AnyFrame, .Optional, .Array, => try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{}), .Pointer => try mod.errNoteNonLazy(src_loc, msg, "slices have no guaranteed in-memory representation", .{}), .Fn => { try mod.errNoteNonLazy(src_loc, msg, "type has no guaranteed in-memory representation", .{}); try mod.errNoteNonLazy(src_loc, msg, "use '*const ' to make a function pointer type", .{}); }, .Struct => try mod.errNoteNonLazy(src_loc, msg, "only packed structs layout are allowed in packed types", .{}), .Union => try mod.errNoteNonLazy(src_loc, msg, "only packed unions layout are allowed in packed types", .{}), } } fn prepareSimplePanic(sema: *Sema, block: *Block) !void { const mod = sema.mod; if (mod.panic_func_index == .none) { const decl_index = (try sema.getBuiltinDecl(block, "panic")); // decl_index may be an alias; we must find the decl that actually // owns the function. try sema.ensureDeclAnalyzed(decl_index); const tv = try mod.declPtr(decl_index).typedValue(); assert(tv.ty.zigTypeTag(mod) == .Fn); assert(try sema.fnHasRuntimeBits(tv.ty)); const func_index = tv.val.toIntern(); try mod.ensureFuncBodyAnalysisQueued(func_index); mod.panic_func_index = func_index; } if (mod.null_stack_trace == .none) { const stack_trace_ty = try sema.getBuiltinType("StackTrace"); try sema.resolveTypeFields(stack_trace_ty); const target = mod.getTarget(); const ptr_stack_trace_ty = try mod.ptrType(.{ .child = stack_trace_ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .global_constant), }, }); const opt_ptr_stack_trace_ty = try mod.optionalType(ptr_stack_trace_ty.toIntern()); mod.null_stack_trace = try mod.intern(.{ .opt = .{ .ty = opt_ptr_stack_trace_ty.toIntern(), .val = .none, } }); } } /// Backends depend on panic decls being available when lowering safety-checked /// instructions. This function ensures the panic function will be available to /// be called during that time. fn preparePanicId(sema: *Sema, block: *Block, panic_id: Module.PanicId) !Module.Decl.Index { const mod = sema.mod; const gpa = sema.gpa; if (mod.panic_messages[@intFromEnum(panic_id)].unwrap()) |x| return x; try sema.prepareSimplePanic(block); const panic_messages_ty = try sema.getBuiltinType("panic_messages"); const msg_decl_index = (try sema.namespaceLookup( block, sema.src, panic_messages_ty.getNamespaceIndex(mod).unwrap().?, try mod.intern_pool.getOrPutString(gpa, @tagName(panic_id)), )).?; try sema.ensureDeclAnalyzed(msg_decl_index); mod.panic_messages[@intFromEnum(panic_id)] = msg_decl_index.toOptional(); return msg_decl_index; } fn addSafetyCheck( sema: *Sema, parent_block: *Block, src: LazySrcLoc, ok: Air.Inst.Ref, panic_id: Module.PanicId, ) !void { const gpa = sema.gpa; assert(!parent_block.is_comptime); var fail_block: Block = .{ .parent = parent_block, .sema = sema, .src_decl = parent_block.src_decl, .namespace = parent_block.namespace, .wip_capture_scope = parent_block.wip_capture_scope, .instructions = .{}, .inlining = parent_block.inlining, .is_comptime = false, }; defer fail_block.instructions.deinit(gpa); try sema.safetyPanic(&fail_block, src, panic_id); try sema.addSafetyCheckExtra(parent_block, ok, &fail_block); } fn addSafetyCheckExtra( sema: *Sema, parent_block: *Block, ok: Air.Inst.Ref, fail_block: *Block, ) !void { const gpa = sema.gpa; try parent_block.instructions.ensureUnusedCapacity(gpa, 1); try sema.air_extra.ensureUnusedCapacity(gpa, @typeInfo(Air.Block).Struct.fields.len + 1 + // The main block only needs space for the cond_br. @typeInfo(Air.CondBr).Struct.fields.len + 1 + // The ok branch of the cond_br only needs space for the br. fail_block.instructions.items.len); try sema.air_instructions.ensureUnusedCapacity(gpa, 3); const block_inst = @as(Air.Inst.Index, @intCast(sema.air_instructions.len)); const cond_br_inst = block_inst + 1; const br_inst = cond_br_inst + 1; sema.air_instructions.appendAssumeCapacity(.{ .tag = .block, .data = .{ .ty_pl = .{ .ty = .void_type, .payload = sema.addExtraAssumeCapacity(Air.Block{ .body_len = 1, }), } }, }); sema.air_extra.appendAssumeCapacity(cond_br_inst); sema.air_instructions.appendAssumeCapacity(.{ .tag = .cond_br, .data = .{ .pl_op = .{ .operand = ok, .payload = sema.addExtraAssumeCapacity(Air.CondBr{ .then_body_len = 1, .else_body_len = @as(u32, @intCast(fail_block.instructions.items.len)), }), } }, }); sema.air_extra.appendAssumeCapacity(br_inst); sema.air_extra.appendSliceAssumeCapacity(fail_block.instructions.items); sema.air_instructions.appendAssumeCapacity(.{ .tag = .br, .data = .{ .br = .{ .block_inst = block_inst, .operand = .void_value, } }, }); parent_block.instructions.appendAssumeCapacity(block_inst); } fn panicWithMsg(sema: *Sema, block: *Block, src: LazySrcLoc, msg_inst: Air.Inst.Ref, operation: CallOperation) !void { const mod = sema.mod; if (!mod.backendSupportsFeature(.panic_fn)) { _ = try block.addNoOp(.trap); return; } try sema.prepareSimplePanic(block); const panic_func = mod.funcInfo(mod.panic_func_index); const panic_fn = try sema.analyzeDeclVal(block, src, panic_func.owner_decl); const null_stack_trace = Air.internedToRef(mod.null_stack_trace); const opt_usize_ty = try mod.optionalType(.usize_type); const null_ret_addr = Air.internedToRef((try mod.intern(.{ .opt = .{ .ty = opt_usize_ty.toIntern(), .val = .none, } }))); try sema.callBuiltin(block, src, panic_fn, .auto, &.{ msg_inst, null_stack_trace, null_ret_addr }, operation); } fn panicUnwrapError( sema: *Sema, parent_block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, unwrap_err_tag: Air.Inst.Tag, is_non_err_tag: Air.Inst.Tag, ) !void { assert(!parent_block.is_comptime); const ok = try parent_block.addUnOp(is_non_err_tag, operand); if (!sema.mod.comp.formatted_panics) { return sema.addSafetyCheck(parent_block, src, ok, .unwrap_error); } const gpa = sema.gpa; var fail_block: Block = .{ .parent = parent_block, .sema = sema, .src_decl = parent_block.src_decl, .namespace = parent_block.namespace, .wip_capture_scope = parent_block.wip_capture_scope, .instructions = .{}, .inlining = parent_block.inlining, .is_comptime = false, }; defer fail_block.instructions.deinit(gpa); { if (!sema.mod.backendSupportsFeature(.panic_unwrap_error)) { _ = try fail_block.addNoOp(.trap); } else { const panic_fn = try sema.getBuiltin("panicUnwrapError"); const err = try fail_block.addTyOp(unwrap_err_tag, Type.anyerror, operand); const err_return_trace = try sema.getErrorReturnTrace(&fail_block); const args: [2]Air.Inst.Ref = .{ err_return_trace, err }; try sema.callBuiltin(&fail_block, src, panic_fn, .auto, &args, .@"safety check"); } } try sema.addSafetyCheckExtra(parent_block, ok, &fail_block); } fn panicIndexOutOfBounds( sema: *Sema, parent_block: *Block, src: LazySrcLoc, index: Air.Inst.Ref, len: Air.Inst.Ref, cmp_op: Air.Inst.Tag, ) !void { assert(!parent_block.is_comptime); const ok = try parent_block.addBinOp(cmp_op, index, len); if (!sema.mod.comp.formatted_panics) { return sema.addSafetyCheck(parent_block, src, ok, .index_out_of_bounds); } try sema.safetyCheckFormatted(parent_block, src, ok, "panicOutOfBounds", &.{ index, len }); } fn panicInactiveUnionField( sema: *Sema, parent_block: *Block, src: LazySrcLoc, active_tag: Air.Inst.Ref, wanted_tag: Air.Inst.Ref, ) !void { assert(!parent_block.is_comptime); const ok = try parent_block.addBinOp(.cmp_eq, active_tag, wanted_tag); if (!sema.mod.comp.formatted_panics) { return sema.addSafetyCheck(parent_block, src, ok, .inactive_union_field); } try sema.safetyCheckFormatted(parent_block, src, ok, "panicInactiveUnionField", &.{ active_tag, wanted_tag }); } fn panicSentinelMismatch( sema: *Sema, parent_block: *Block, src: LazySrcLoc, maybe_sentinel: ?Value, sentinel_ty: Type, ptr: Air.Inst.Ref, sentinel_index: Air.Inst.Ref, ) !void { assert(!parent_block.is_comptime); const mod = sema.mod; const expected_sentinel_val = maybe_sentinel orelse return; const expected_sentinel = Air.internedToRef(expected_sentinel_val.toIntern()); const ptr_ty = sema.typeOf(ptr); const actual_sentinel = if (ptr_ty.isSlice(mod)) try parent_block.addBinOp(.slice_elem_val, ptr, sentinel_index) else blk: { const elem_ptr_ty = try sema.elemPtrType(ptr_ty, null); const sentinel_ptr = try parent_block.addPtrElemPtr(ptr, sentinel_index, elem_ptr_ty); break :blk try parent_block.addTyOp(.load, sentinel_ty, sentinel_ptr); }; const ok = if (sentinel_ty.zigTypeTag(mod) == .Vector) ok: { const eql = try parent_block.addCmpVector(expected_sentinel, actual_sentinel, .eq); break :ok try parent_block.addInst(.{ .tag = .reduce, .data = .{ .reduce = .{ .operand = eql, .operation = .And, } }, }); } else if (sentinel_ty.isSelfComparable(mod, true)) try parent_block.addBinOp(.cmp_eq, expected_sentinel, actual_sentinel) else { const panic_fn = try sema.getBuiltin("checkNonScalarSentinel"); const args: [2]Air.Inst.Ref = .{ expected_sentinel, actual_sentinel }; try sema.callBuiltin(parent_block, src, panic_fn, .auto, &args, .@"safety check"); return; }; if (!sema.mod.comp.formatted_panics) { return sema.addSafetyCheck(parent_block, src, ok, .sentinel_mismatch); } try sema.safetyCheckFormatted(parent_block, src, ok, "panicSentinelMismatch", &.{ expected_sentinel, actual_sentinel }); } fn safetyCheckFormatted( sema: *Sema, parent_block: *Block, src: LazySrcLoc, ok: Air.Inst.Ref, func: []const u8, args: []const Air.Inst.Ref, ) CompileError!void { assert(sema.mod.comp.formatted_panics); const gpa = sema.gpa; var fail_block: Block = .{ .parent = parent_block, .sema = sema, .src_decl = parent_block.src_decl, .namespace = parent_block.namespace, .wip_capture_scope = parent_block.wip_capture_scope, .instructions = .{}, .inlining = parent_block.inlining, .is_comptime = false, }; defer fail_block.instructions.deinit(gpa); if (!sema.mod.backendSupportsFeature(.safety_check_formatted)) { _ = try fail_block.addNoOp(.trap); } else { const panic_fn = try sema.getBuiltin(func); try sema.callBuiltin(&fail_block, src, panic_fn, .auto, args, .@"safety check"); } try sema.addSafetyCheckExtra(parent_block, ok, &fail_block); } fn safetyPanic(sema: *Sema, block: *Block, src: LazySrcLoc, panic_id: Module.PanicId) CompileError!void { const msg_decl_index = try sema.preparePanicId(block, panic_id); const msg_inst = try sema.analyzeDeclVal(block, src, msg_decl_index); try sema.panicWithMsg(block, src, msg_inst, .@"safety check"); } fn emitBackwardBranch(sema: *Sema, block: *Block, src: LazySrcLoc) !void { sema.branch_count += 1; if (sema.branch_count > sema.branch_quota) { const msg = try sema.errMsg( block, src, "evaluation exceeded {d} backwards branches", .{sema.branch_quota}, ); try sema.errNote( block, src, msg, "use @setEvalBranchQuota() to raise the branch limit from {d}", .{sema.branch_quota}, ); return sema.failWithOwnedErrorMsg(msg); } } fn fieldVal( sema: *Sema, block: *Block, src: LazySrcLoc, object: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { // When editing this function, note that there is corresponding logic to be edited // in `fieldPtr`. This function takes a value and returns a value. const mod = sema.mod; const ip = &mod.intern_pool; const object_src = src; // TODO better source location const object_ty = sema.typeOf(object); // Zig allows dereferencing a single pointer during field lookup. Note that // we don't actually need to generate the dereference some field lookups, like the // length of arrays and other comptime operations. const is_pointer_to = object_ty.isSinglePointer(mod); const inner_ty = if (is_pointer_to) object_ty.childType(mod) else object_ty; switch (inner_ty.zigTypeTag(mod)) { .Array => { if (ip.stringEqlSlice(field_name, "len")) { return Air.internedToRef((try mod.intValue(Type.usize, inner_ty.arrayLen(mod))).toIntern()); } else if (ip.stringEqlSlice(field_name, "ptr") and is_pointer_to) { const ptr_info = object_ty.ptrInfo(mod); const result_ty = try mod.ptrType(.{ .child = ptr_info.child.toType().childType(mod).toIntern(), .sentinel = ptr_info.sentinel, .flags = .{ .size = .Many, .alignment = ptr_info.flags.alignment, .is_const = ptr_info.flags.is_const, .is_volatile = ptr_info.flags.is_volatile, .is_allowzero = ptr_info.flags.is_allowzero, .address_space = ptr_info.flags.address_space, .vector_index = ptr_info.flags.vector_index, }, .packed_offset = ptr_info.packed_offset, }); return sema.coerce(block, result_ty, object, src); } else { return sema.fail( block, field_name_src, "no member named '{}' in '{}'", .{ field_name.fmt(ip), object_ty.fmt(mod) }, ); } }, .Pointer => { const ptr_info = inner_ty.ptrInfo(mod); if (ptr_info.flags.size == .Slice) { if (ip.stringEqlSlice(field_name, "ptr")) { const slice = if (is_pointer_to) try sema.analyzeLoad(block, src, object, object_src) else object; return sema.analyzeSlicePtr(block, object_src, slice, inner_ty); } else if (ip.stringEqlSlice(field_name, "len")) { const slice = if (is_pointer_to) try sema.analyzeLoad(block, src, object, object_src) else object; return sema.analyzeSliceLen(block, src, slice); } else { return sema.fail( block, field_name_src, "no member named '{}' in '{}'", .{ field_name.fmt(ip), object_ty.fmt(mod) }, ); } } }, .Type => { const dereffed_type = if (is_pointer_to) try sema.analyzeLoad(block, src, object, object_src) else object; const val = (try sema.resolveDefinedValue(block, object_src, dereffed_type)).?; const child_type = val.toType(); switch (try child_type.zigTypeTagOrPoison(mod)) { .ErrorSet => { switch (ip.indexToKey(child_type.toIntern())) { .error_set_type => |error_set_type| blk: { if (error_set_type.nameIndex(ip, field_name) != null) break :blk; const msg = msg: { const msg = try sema.errMsg(block, src, "no error named '{}' in '{}'", .{ field_name.fmt(ip), child_type.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, child_type); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, .inferred_error_set_type => { return sema.fail(block, src, "TODO handle inferred error sets here", .{}); }, .simple_type => |t| { assert(t == .anyerror); _ = try mod.getErrorValue(field_name); }, else => unreachable, } const error_set_type = if (!child_type.isAnyError(mod)) child_type else try mod.singleErrorSetType(field_name); return Air.internedToRef((try mod.intern(.{ .err = .{ .ty = error_set_type.toIntern(), .name = field_name, } }))); }, .Union => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupVal(block, src, namespace, field_name)) |inst| { return inst; } } try sema.resolveTypeFields(child_type); if (child_type.unionTagType(mod)) |enum_ty| { if (enum_ty.enumFieldIndex(field_name, mod)) |field_index_usize| { const field_index = @as(u32, @intCast(field_index_usize)); return Air.internedToRef((try mod.enumValueFieldIndex(enum_ty, field_index)).toIntern()); } } return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name); }, .Enum => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupVal(block, src, namespace, field_name)) |inst| { return inst; } } const field_index_usize = child_type.enumFieldIndex(field_name, mod) orelse return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name); const field_index = @as(u32, @intCast(field_index_usize)); const enum_val = try mod.enumValueFieldIndex(child_type, field_index); return Air.internedToRef(enum_val.toIntern()); }, .Struct, .Opaque => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupVal(block, src, namespace, field_name)) |inst| { return inst; } } return sema.failWithBadMemberAccess(block, child_type, src, field_name); }, else => { const msg = msg: { const msg = try sema.errMsg(block, src, "type '{}' has no members", .{child_type.fmt(mod)}); errdefer msg.destroy(sema.gpa); if (child_type.isSlice(mod)) try sema.errNote(block, src, msg, "slice values have 'len' and 'ptr' members", .{}); if (child_type.zigTypeTag(mod) == .Array) try sema.errNote(block, src, msg, "array values have 'len' member", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, } }, .Struct => if (is_pointer_to) { // Avoid loading the entire struct by fetching a pointer and loading that const field_ptr = try sema.structFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false); return sema.analyzeLoad(block, src, field_ptr, object_src); } else { return sema.structFieldVal(block, src, object, field_name, field_name_src, inner_ty); }, .Union => if (is_pointer_to) { // Avoid loading the entire union by fetching a pointer and loading that const field_ptr = try sema.unionFieldPtr(block, src, object, field_name, field_name_src, inner_ty, false); return sema.analyzeLoad(block, src, field_ptr, object_src); } else { return sema.unionFieldVal(block, src, object, field_name, field_name_src, inner_ty); }, else => {}, } return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name); } fn fieldPtr( sema: *Sema, block: *Block, src: LazySrcLoc, object_ptr: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, initializing: bool, ) CompileError!Air.Inst.Ref { // When editing this function, note that there is corresponding logic to be edited // in `fieldVal`. This function takes a pointer and returns a pointer. const mod = sema.mod; const ip = &mod.intern_pool; const object_ptr_src = src; // TODO better source location const object_ptr_ty = sema.typeOf(object_ptr); const object_ty = switch (object_ptr_ty.zigTypeTag(mod)) { .Pointer => object_ptr_ty.childType(mod), else => return sema.fail(block, object_ptr_src, "expected pointer, found '{}'", .{object_ptr_ty.fmt(mod)}), }; // Zig allows dereferencing a single pointer during field lookup. Note that // we don't actually need to generate the dereference some field lookups, like the // length of arrays and other comptime operations. const is_pointer_to = object_ty.isSinglePointer(mod); const inner_ty = if (is_pointer_to) object_ty.childType(mod) else object_ty; switch (inner_ty.zigTypeTag(mod)) { .Array => { if (ip.stringEqlSlice(field_name, "len")) { var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); return sema.analyzeDeclRef(try anon_decl.finish( Type.usize, try mod.intValue(Type.usize, inner_ty.arrayLen(mod)), .none, // default alignment )); } else { return sema.fail( block, field_name_src, "no member named '{}' in '{}'", .{ field_name.fmt(ip), object_ty.fmt(mod) }, ); } }, .Pointer => if (inner_ty.isSlice(mod)) { const inner_ptr = if (is_pointer_to) try sema.analyzeLoad(block, src, object_ptr, object_ptr_src) else object_ptr; const attr_ptr_ty = if (is_pointer_to) object_ty else object_ptr_ty; if (ip.stringEqlSlice(field_name, "ptr")) { const slice_ptr_ty = inner_ty.slicePtrFieldType(mod); const result_ty = try mod.ptrType(.{ .child = slice_ptr_ty.toIntern(), .flags = .{ .is_const = !attr_ptr_ty.ptrIsMutable(mod), .is_volatile = attr_ptr_ty.isVolatilePtr(mod), .address_space = attr_ptr_ty.ptrAddressSpace(mod), }, }); if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| { return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = result_ty.toIntern(), .addr = .{ .field = .{ .base = val.toIntern(), .index = Value.slice_ptr_index, } }, } }))); } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.ptr_slice_ptr_ptr, result_ty, inner_ptr); } else if (ip.stringEqlSlice(field_name, "len")) { const result_ty = try mod.ptrType(.{ .child = .usize_type, .flags = .{ .is_const = !attr_ptr_ty.ptrIsMutable(mod), .is_volatile = attr_ptr_ty.isVolatilePtr(mod), .address_space = attr_ptr_ty.ptrAddressSpace(mod), }, }); if (try sema.resolveDefinedValue(block, object_ptr_src, inner_ptr)) |val| { return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = result_ty.toIntern(), .addr = .{ .field = .{ .base = val.toIntern(), .index = Value.slice_len_index, } }, } }))); } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.ptr_slice_len_ptr, result_ty, inner_ptr); } else { return sema.fail( block, field_name_src, "no member named '{}' in '{}'", .{ field_name.fmt(ip), object_ty.fmt(mod) }, ); } }, .Type => { _ = try sema.resolveConstValue(block, .unneeded, object_ptr, ""); const result = try sema.analyzeLoad(block, src, object_ptr, object_ptr_src); const inner = if (is_pointer_to) try sema.analyzeLoad(block, src, result, object_ptr_src) else result; const val = (sema.resolveDefinedValue(block, src, inner) catch unreachable).?; const child_type = val.toType(); switch (child_type.zigTypeTag(mod)) { .ErrorSet => { switch (ip.indexToKey(child_type.toIntern())) { .error_set_type => |error_set_type| blk: { if (error_set_type.nameIndex(ip, field_name) != null) { break :blk; } return sema.fail(block, src, "no error named '{}' in '{}'", .{ field_name.fmt(ip), child_type.fmt(mod), }); }, .inferred_error_set_type => { return sema.fail(block, src, "TODO handle inferred error sets here", .{}); }, .simple_type => |t| { assert(t == .anyerror); _ = try mod.getErrorValue(field_name); }, else => unreachable, } var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const error_set_type = if (!child_type.isAnyError(mod)) child_type else try mod.singleErrorSetType(field_name); return sema.analyzeDeclRef(try anon_decl.finish( error_set_type, (try mod.intern(.{ .err = .{ .ty = error_set_type.toIntern(), .name = field_name, } })).toValue(), .none, // default alignment )); }, .Union => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupRef(block, src, namespace, field_name)) |inst| { return inst; } } try sema.resolveTypeFields(child_type); if (child_type.unionTagType(mod)) |enum_ty| { if (enum_ty.enumFieldIndex(field_name, mod)) |field_index| { const field_index_u32 = @as(u32, @intCast(field_index)); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); return sema.analyzeDeclRef(try anon_decl.finish( enum_ty, try mod.enumValueFieldIndex(enum_ty, field_index_u32), .none, // default alignment )); } } return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name); }, .Enum => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupRef(block, src, namespace, field_name)) |inst| { return inst; } } const field_index = child_type.enumFieldIndex(field_name, mod) orelse { return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name); }; const field_index_u32 = @as(u32, @intCast(field_index)); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); return sema.analyzeDeclRef(try anon_decl.finish( child_type, try mod.enumValueFieldIndex(child_type, field_index_u32), .none, // default alignment )); }, .Struct, .Opaque => { if (child_type.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookupRef(block, src, namespace, field_name)) |inst| { return inst; } } return sema.failWithBadMemberAccess(block, child_type, field_name_src, field_name); }, else => return sema.fail(block, src, "type '{}' has no members", .{child_type.fmt(mod)}), } }, .Struct => { const inner_ptr = if (is_pointer_to) try sema.analyzeLoad(block, src, object_ptr, object_ptr_src) else object_ptr; return sema.structFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing); }, .Union => { const inner_ptr = if (is_pointer_to) try sema.analyzeLoad(block, src, object_ptr, object_ptr_src) else object_ptr; return sema.unionFieldPtr(block, src, inner_ptr, field_name, field_name_src, inner_ty, initializing); }, else => {}, } return sema.failWithInvalidFieldAccess(block, src, object_ty, field_name); } const ResolvedFieldCallee = union(enum) { /// The LHS of the call was an actual field with this value. direct: Air.Inst.Ref, /// This is a method call, with the function and first argument given. method: struct { func_inst: Air.Inst.Ref, arg0_inst: Air.Inst.Ref, }, }; fn fieldCallBind( sema: *Sema, block: *Block, src: LazySrcLoc, raw_ptr: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, ) CompileError!ResolvedFieldCallee { // When editing this function, note that there is corresponding logic to be edited // in `fieldVal`. This function takes a pointer and returns a pointer. const mod = sema.mod; const ip = &mod.intern_pool; const raw_ptr_src = src; // TODO better source location const raw_ptr_ty = sema.typeOf(raw_ptr); const inner_ty = if (raw_ptr_ty.zigTypeTag(mod) == .Pointer and (raw_ptr_ty.ptrSize(mod) == .One or raw_ptr_ty.ptrSize(mod) == .C)) raw_ptr_ty.childType(mod) else return sema.fail(block, raw_ptr_src, "expected single pointer, found '{}'", .{raw_ptr_ty.fmt(mod)}); // Optionally dereference a second pointer to get the concrete type. const is_double_ptr = inner_ty.zigTypeTag(mod) == .Pointer and inner_ty.ptrSize(mod) == .One; const concrete_ty = if (is_double_ptr) inner_ty.childType(mod) else inner_ty; const ptr_ty = if (is_double_ptr) inner_ty else raw_ptr_ty; const object_ptr = if (is_double_ptr) try sema.analyzeLoad(block, src, raw_ptr, src) else raw_ptr; find_field: { switch (concrete_ty.zigTypeTag(mod)) { .Struct => { try sema.resolveTypeFields(concrete_ty); if (mod.typeToStruct(concrete_ty)) |struct_obj| { const field_index_usize = struct_obj.fields.getIndex(field_name) orelse break :find_field; const field_index = @as(u32, @intCast(field_index_usize)); const field = struct_obj.fields.values()[field_index]; return sema.finishFieldCallBind(block, src, ptr_ty, field.ty, field_index, object_ptr); } else if (concrete_ty.isTuple(mod)) { if (ip.stringEqlSlice(field_name, "len")) { return .{ .direct = try mod.intRef(Type.usize, concrete_ty.structFieldCount(mod)) }; } if (field_name.toUnsigned(ip)) |field_index| { if (field_index >= concrete_ty.structFieldCount(mod)) break :find_field; return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.structFieldType(field_index, mod), field_index, object_ptr); } } else { const max = concrete_ty.structFieldCount(mod); for (0..max) |i_usize| { const i = @as(u32, @intCast(i_usize)); if (field_name == concrete_ty.structFieldName(i, mod)) { return sema.finishFieldCallBind(block, src, ptr_ty, concrete_ty.structFieldType(i, mod), i, object_ptr); } } } }, .Union => { try sema.resolveTypeFields(concrete_ty); const fields = concrete_ty.unionFields(mod); const field_index_usize = fields.getIndex(field_name) orelse break :find_field; const field_index = @as(u32, @intCast(field_index_usize)); const field = fields.values()[field_index]; return sema.finishFieldCallBind(block, src, ptr_ty, field.ty, field_index, object_ptr); }, .Type => { const namespace = try sema.analyzeLoad(block, src, object_ptr, src); return .{ .direct = try sema.fieldVal(block, src, namespace, field_name, field_name_src) }; }, else => {}, } } // If we get here, we need to look for a decl in the struct type instead. const found_decl = switch (concrete_ty.zigTypeTag(mod)) { .Struct, .Opaque, .Union, .Enum => found_decl: { if (concrete_ty.getNamespaceIndex(mod).unwrap()) |namespace| { if (try sema.namespaceLookup(block, src, namespace, field_name)) |decl_idx| { try sema.addReferencedBy(block, src, decl_idx); const decl_val = try sema.analyzeDeclVal(block, src, decl_idx); const decl_type = sema.typeOf(decl_val); if (mod.typeToFunc(decl_type)) |func_type| f: { if (func_type.param_types.len == 0) break :f; const first_param_type = func_type.param_types.get(ip)[0].toType(); // zig fmt: off if (first_param_type.isGenericPoison() or ( first_param_type.zigTypeTag(mod) == .Pointer and (first_param_type.ptrSize(mod) == .One or first_param_type.ptrSize(mod) == .C) and first_param_type.childType(mod).eql(concrete_ty, mod))) { // zig fmt: on // Note that if the param type is generic poison, we know that it must // specifically be `anytype` since it's the first parameter, meaning we // can safely assume it can be a pointer. // TODO: bound fn calls on rvalues should probably // generate a by-value argument somehow. return .{ .method = .{ .func_inst = decl_val, .arg0_inst = object_ptr, } }; } else if (first_param_type.eql(concrete_ty, mod)) { const deref = try sema.analyzeLoad(block, src, object_ptr, src); return .{ .method = .{ .func_inst = decl_val, .arg0_inst = deref, } }; } else if (first_param_type.zigTypeTag(mod) == .Optional) { const child = first_param_type.optionalChild(mod); if (child.eql(concrete_ty, mod)) { const deref = try sema.analyzeLoad(block, src, object_ptr, src); return .{ .method = .{ .func_inst = decl_val, .arg0_inst = deref, } }; } else if (child.zigTypeTag(mod) == .Pointer and child.ptrSize(mod) == .One and child.childType(mod).eql(concrete_ty, mod)) { return .{ .method = .{ .func_inst = decl_val, .arg0_inst = object_ptr, } }; } } else if (first_param_type.zigTypeTag(mod) == .ErrorUnion and first_param_type.errorUnionPayload(mod).eql(concrete_ty, mod)) { const deref = try sema.analyzeLoad(block, src, object_ptr, src); return .{ .method = .{ .func_inst = decl_val, .arg0_inst = deref, } }; } } break :found_decl decl_idx; } } break :found_decl null; }, else => null, }; const msg = msg: { const msg = try sema.errMsg(block, src, "no field or member function named '{}' in '{}'", .{ field_name.fmt(ip), concrete_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, concrete_ty); if (found_decl) |decl_idx| { const decl = mod.declPtr(decl_idx); try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "'{}' is not a member function", .{field_name.fmt(ip)}); } break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn finishFieldCallBind( sema: *Sema, block: *Block, src: LazySrcLoc, ptr_ty: Type, field_ty: Type, field_index: u32, object_ptr: Air.Inst.Ref, ) CompileError!ResolvedFieldCallee { const mod = sema.mod; const ptr_field_ty = try mod.ptrType(.{ .child = field_ty.toIntern(), .flags = .{ .is_const = !ptr_ty.ptrIsMutable(mod), .address_space = ptr_ty.ptrAddressSpace(mod), }, }); const container_ty = ptr_ty.childType(mod); if (container_ty.zigTypeTag(mod) == .Struct) { if (try container_ty.structFieldValueComptime(mod, field_index)) |default_val| { return .{ .direct = Air.internedToRef(default_val.toIntern()) }; } } if (try sema.resolveDefinedValue(block, src, object_ptr)) |struct_ptr_val| { const pointer = Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .field = .{ .base = struct_ptr_val.toIntern(), .index = field_index, } }, } }))); return .{ .direct = try sema.analyzeLoad(block, src, pointer, src) }; } try sema.requireRuntimeBlock(block, src, null); const ptr_inst = try block.addStructFieldPtr(object_ptr, field_index, ptr_field_ty); return .{ .direct = try sema.analyzeLoad(block, src, ptr_inst, src) }; } fn namespaceLookup( sema: *Sema, block: *Block, src: LazySrcLoc, namespace: Namespace.Index, decl_name: InternPool.NullTerminatedString, ) CompileError!?Decl.Index { const mod = sema.mod; const gpa = sema.gpa; if (try sema.lookupInNamespace(block, src, namespace, decl_name, true)) |decl_index| { const decl = mod.declPtr(decl_index); if (!decl.is_pub and decl.getFileScope(mod) != block.getFileScope(mod)) { const msg = msg: { const msg = try sema.errMsg(block, src, "'{}' is not marked 'pub'", .{ decl_name.fmt(&mod.intern_pool), }); errdefer msg.destroy(gpa); try mod.errNoteNonLazy(decl.srcLoc(mod), msg, "declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return decl_index; } return null; } fn namespaceLookupRef( sema: *Sema, block: *Block, src: LazySrcLoc, namespace: Namespace.Index, decl_name: InternPool.NullTerminatedString, ) CompileError!?Air.Inst.Ref { const decl = (try sema.namespaceLookup(block, src, namespace, decl_name)) orelse return null; try sema.addReferencedBy(block, src, decl); return try sema.analyzeDeclRef(decl); } fn namespaceLookupVal( sema: *Sema, block: *Block, src: LazySrcLoc, namespace: Namespace.Index, decl_name: InternPool.NullTerminatedString, ) CompileError!?Air.Inst.Ref { const decl = (try sema.namespaceLookup(block, src, namespace, decl_name)) orelse return null; return try sema.analyzeDeclVal(block, src, decl); } fn structFieldPtr( sema: *Sema, block: *Block, src: LazySrcLoc, struct_ptr: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, struct_ty: Type, initializing: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; assert(struct_ty.zigTypeTag(mod) == .Struct); try sema.resolveTypeFields(struct_ty); try sema.resolveStructLayout(struct_ty); if (struct_ty.isTuple(mod)) { if (mod.intern_pool.stringEqlSlice(field_name, "len")) { const len_inst = try mod.intRef(Type.usize, struct_ty.structFieldCount(mod)); return sema.analyzeRef(block, src, len_inst); } const field_index = try sema.tupleFieldIndex(block, struct_ty, field_name, field_name_src); return sema.tupleFieldPtr(block, src, struct_ptr, field_name_src, field_index, initializing); } else if (struct_ty.isAnonStruct(mod)) { const field_index = try sema.anonStructFieldIndex(block, struct_ty, field_name, field_name_src); return sema.tupleFieldPtr(block, src, struct_ptr, field_name_src, field_index, initializing); } const struct_obj = mod.typeToStruct(struct_ty).?; const field_index_big = struct_obj.fields.getIndex(field_name) orelse return sema.failWithBadStructFieldAccess(block, struct_obj, field_name_src, field_name); const field_index = @as(u32, @intCast(field_index_big)); return sema.structFieldPtrByIndex(block, src, struct_ptr, field_index, field_name_src, struct_ty, initializing); } fn structFieldPtrByIndex( sema: *Sema, block: *Block, src: LazySrcLoc, struct_ptr: Air.Inst.Ref, field_index: u32, field_src: LazySrcLoc, struct_ty: Type, initializing: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; if (struct_ty.isAnonStruct(mod)) { return sema.tupleFieldPtr(block, src, struct_ptr, field_src, field_index, initializing); } const struct_obj = mod.typeToStruct(struct_ty).?; const field = struct_obj.fields.values()[field_index]; const struct_ptr_ty = sema.typeOf(struct_ptr); const struct_ptr_ty_info = struct_ptr_ty.ptrInfo(mod); var ptr_ty_data: InternPool.Key.PtrType = .{ .child = field.ty.toIntern(), .flags = .{ .is_const = struct_ptr_ty_info.flags.is_const, .is_volatile = struct_ptr_ty_info.flags.is_volatile, .address_space = struct_ptr_ty_info.flags.address_space, }, }; const target = mod.getTarget(); const parent_align = struct_ptr_ty_info.flags.alignment.toByteUnitsOptional() orelse try sema.typeAbiAlignment(struct_ptr_ty_info.child.toType()); if (struct_obj.layout == .Packed) { comptime assert(Type.packed_struct_layout_version == 2); var running_bits: u16 = 0; for (struct_obj.fields.values(), 0..) |f, i| { if (!(try sema.typeHasRuntimeBits(f.ty))) continue; if (i == field_index) { ptr_ty_data.packed_offset.bit_offset = running_bits; } running_bits += @as(u16, @intCast(f.ty.bitSize(mod))); } ptr_ty_data.packed_offset.host_size = (running_bits + 7) / 8; // If this is a packed struct embedded in another one, we need to offset // the bits against each other. if (struct_ptr_ty_info.packed_offset.host_size != 0) { ptr_ty_data.packed_offset.host_size = struct_ptr_ty_info.packed_offset.host_size; ptr_ty_data.packed_offset.bit_offset += struct_ptr_ty_info.packed_offset.bit_offset; } ptr_ty_data.flags.alignment = Alignment.fromByteUnits(parent_align); // If the field happens to be byte-aligned, simplify the pointer type. // The pointee type bit size must match its ABI byte size so that loads and stores // do not interfere with the surrounding packed bits. // We do not attempt this with big-endian targets yet because of nested // structs and floats. I need to double-check the desired behavior for big endian // targets before adding the necessary complications to this code. This will not // cause miscompilations; it only means the field pointer uses bit masking when it // might not be strictly necessary. if (parent_align != 0 and ptr_ty_data.packed_offset.bit_offset % 8 == 0 and target.cpu.arch.endian() == .Little) { const elem_size_bytes = ptr_ty_data.child.toType().abiSize(mod); const elem_size_bits = ptr_ty_data.child.toType().bitSize(mod); if (elem_size_bytes * 8 == elem_size_bits) { const byte_offset = ptr_ty_data.packed_offset.bit_offset / 8; const new_align = @as(Alignment, @enumFromInt(@ctz(byte_offset | parent_align))); assert(new_align != .none); ptr_ty_data.flags.alignment = new_align; ptr_ty_data.packed_offset = .{ .host_size = 0, .bit_offset = 0 }; } } } else if (struct_obj.layout == .Extern) { // For extern structs, field aligment might be bigger than type's natural alignment. Eg, in // `extern struct { x: u32, y: u16 }` the second field is aligned as u32. const field_offset = struct_ty.structFieldOffset(field_index, mod); ptr_ty_data.flags.alignment = Alignment.fromByteUnits( if (parent_align == 0) 0 else std.math.gcd(field_offset, parent_align), ); } else { // Our alignment is capped at the field alignment const field_align = try sema.structFieldAlignment(field, struct_obj.layout); ptr_ty_data.flags.alignment = Alignment.fromByteUnits(@min(field_align, parent_align)); } const ptr_field_ty = try mod.ptrType(ptr_ty_data); if (field.is_comptime) { const val = try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .comptime_field = field.default_val }, } }); return Air.internedToRef(val); } if (try sema.resolveDefinedValue(block, src, struct_ptr)) |struct_ptr_val| { const val = try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .field = .{ .base = try struct_ptr_val.intern(struct_ptr_ty, mod), .index = field_index, } }, } }); return Air.internedToRef(val); } try sema.requireRuntimeBlock(block, src, null); return block.addStructFieldPtr(struct_ptr, field_index, ptr_field_ty); } fn structFieldVal( sema: *Sema, block: *Block, src: LazySrcLoc, struct_byval: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, struct_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; assert(struct_ty.zigTypeTag(mod) == .Struct); try sema.resolveTypeFields(struct_ty); switch (mod.intern_pool.indexToKey(struct_ty.toIntern())) { .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index).?; if (struct_obj.is_tuple) return sema.tupleFieldVal(block, src, struct_byval, field_name, field_name_src, struct_ty); const field_index_usize = struct_obj.fields.getIndex(field_name) orelse return sema.failWithBadStructFieldAccess(block, struct_obj, field_name_src, field_name); const field_index = @as(u32, @intCast(field_index_usize)); const field = struct_obj.fields.values()[field_index]; if (field.is_comptime) { return Air.internedToRef(field.default_val); } if (try sema.resolveMaybeUndefVal(struct_byval)) |struct_val| { if (struct_val.isUndef(mod)) return mod.undefRef(field.ty); if ((try sema.typeHasOnePossibleValue(field.ty))) |opv| { return Air.internedToRef(opv.toIntern()); } return Air.internedToRef((try struct_val.fieldValue(mod, field_index)).toIntern()); } try sema.requireRuntimeBlock(block, src, null); return block.addStructFieldVal(struct_byval, field_index, field.ty); }, .anon_struct_type => |anon_struct| { if (anon_struct.names.len == 0) { return sema.tupleFieldVal(block, src, struct_byval, field_name, field_name_src, struct_ty); } else { const field_index = try sema.anonStructFieldIndex(block, struct_ty, field_name, field_name_src); return sema.tupleFieldValByIndex(block, src, struct_byval, field_index, struct_ty); } }, else => unreachable, } } fn tupleFieldVal( sema: *Sema, block: *Block, src: LazySrcLoc, tuple_byval: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, tuple_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; if (mod.intern_pool.stringEqlSlice(field_name, "len")) { return mod.intRef(Type.usize, tuple_ty.structFieldCount(mod)); } const field_index = try sema.tupleFieldIndex(block, tuple_ty, field_name, field_name_src); return sema.tupleFieldValByIndex(block, src, tuple_byval, field_index, tuple_ty); } /// Asserts that `field_name` is not "len". fn tupleFieldIndex( sema: *Sema, block: *Block, tuple_ty: Type, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, ) CompileError!u32 { const mod = sema.mod; assert(!mod.intern_pool.stringEqlSlice(field_name, "len")); if (field_name.toUnsigned(&mod.intern_pool)) |field_index| { if (field_index < tuple_ty.structFieldCount(mod)) return field_index; return sema.fail(block, field_name_src, "index '{}' out of bounds of tuple '{}'", .{ field_name.fmt(&mod.intern_pool), tuple_ty.fmt(mod), }); } return sema.fail(block, field_name_src, "no field named '{}' in tuple '{}'", .{ field_name.fmt(&mod.intern_pool), tuple_ty.fmt(mod), }); } fn tupleFieldValByIndex( sema: *Sema, block: *Block, src: LazySrcLoc, tuple_byval: Air.Inst.Ref, field_index: u32, tuple_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const field_ty = tuple_ty.structFieldType(field_index, mod); if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_value| { return Air.internedToRef(default_value.toIntern()); } if (try sema.resolveMaybeUndefVal(tuple_byval)) |tuple_val| { if ((try sema.typeHasOnePossibleValue(field_ty))) |opv| { return Air.internedToRef(opv.toIntern()); } return switch (mod.intern_pool.indexToKey(tuple_val.toIntern())) { .undef => mod.undefRef(field_ty), .aggregate => |aggregate| Air.internedToRef(switch (aggregate.storage) { .bytes => |bytes| try mod.intValue(Type.u8, bytes[0]), .elems => |elems| elems[field_index].toValue(), .repeated_elem => |elem| elem.toValue(), }.toIntern()), else => unreachable, }; } if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_val| { return Air.internedToRef(default_val.toIntern()); } try sema.requireRuntimeBlock(block, src, null); return block.addStructFieldVal(tuple_byval, field_index, field_ty); } fn unionFieldPtr( sema: *Sema, block: *Block, src: LazySrcLoc, union_ptr: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, union_ty: Type, initializing: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; assert(union_ty.zigTypeTag(mod) == .Union); const union_ptr_ty = sema.typeOf(union_ptr); const union_ptr_info = union_ptr_ty.ptrInfo(mod); try sema.resolveTypeFields(union_ty); const union_obj = mod.typeToUnion(union_ty).?; const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src); const field = union_obj.fields.values()[field_index]; const ptr_field_ty = try mod.ptrType(.{ .child = field.ty.toIntern(), .flags = .{ .is_const = union_ptr_info.flags.is_const, .is_volatile = union_ptr_info.flags.is_volatile, .address_space = union_ptr_info.flags.address_space, .alignment = if (union_obj.layout == .Auto) blk: { const union_align = union_ptr_info.flags.alignment.toByteUnitsOptional() orelse try sema.typeAbiAlignment(union_ty); const field_align = try sema.unionFieldAlignment(field); break :blk InternPool.Alignment.fromByteUnits(@min(union_align, field_align)); } else union_ptr_info.flags.alignment, }, .packed_offset = union_ptr_info.packed_offset, }); const enum_field_index = @as(u32, @intCast(union_obj.tag_ty.enumFieldIndex(field_name, mod).?)); if (initializing and field.ty.zigTypeTag(mod) == .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, src, "cannot initialize 'noreturn' field of union", .{}); errdefer msg.destroy(sema.gpa); try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{ field_name.fmt(ip), }); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (try sema.resolveDefinedValue(block, src, union_ptr)) |union_ptr_val| ct: { switch (union_obj.layout) { .Auto => if (!initializing) { const union_val = (try sema.pointerDeref(block, src, union_ptr_val, union_ptr_ty)) orelse break :ct; if (union_val.isUndef(mod)) { return sema.failWithUseOfUndef(block, src); } const un = ip.indexToKey(union_val.toIntern()).un; const field_tag = try mod.enumValueFieldIndex(union_obj.tag_ty, enum_field_index); const tag_matches = un.tag == field_tag.toIntern(); if (!tag_matches) { const msg = msg: { const active_index = union_obj.tag_ty.enumTagFieldIndex(un.tag.toValue(), mod).?; const active_field_name = union_obj.tag_ty.enumFieldName(active_index, mod); const msg = try sema.errMsg(block, src, "access of union field '{}' while field '{}' is active", .{ field_name.fmt(ip), active_field_name.fmt(ip), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } }, .Packed, .Extern => {}, } return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .field = .{ .base = union_ptr_val.toIntern(), .index = field_index, } }, } }))); } try sema.requireRuntimeBlock(block, src, null); if (!initializing and union_obj.layout == .Auto and block.wantSafety() and union_ty.unionTagTypeSafety(mod) != null and union_obj.fields.count() > 1) { const wanted_tag_val = try mod.enumValueFieldIndex(union_obj.tag_ty, enum_field_index); const wanted_tag = Air.internedToRef(wanted_tag_val.toIntern()); // TODO would it be better if get_union_tag supported pointers to unions? const union_val = try block.addTyOp(.load, union_ty, union_ptr); const active_tag = try block.addTyOp(.get_union_tag, union_obj.tag_ty, union_val); try sema.panicInactiveUnionField(block, src, active_tag, wanted_tag); } if (field.ty.zigTypeTag(mod) == .NoReturn) { _ = try block.addNoOp(.unreach); return Air.Inst.Ref.unreachable_value; } return block.addStructFieldPtr(union_ptr, field_index, ptr_field_ty); } fn unionFieldVal( sema: *Sema, block: *Block, src: LazySrcLoc, union_byval: Air.Inst.Ref, field_name: InternPool.NullTerminatedString, field_name_src: LazySrcLoc, union_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; assert(union_ty.zigTypeTag(mod) == .Union); try sema.resolveTypeFields(union_ty); const union_obj = mod.typeToUnion(union_ty).?; const field_index = try sema.unionFieldIndex(block, union_ty, field_name, field_name_src); const field = union_obj.fields.values()[field_index]; const enum_field_index = @as(u32, @intCast(union_obj.tag_ty.enumFieldIndex(field_name, mod).?)); if (try sema.resolveMaybeUndefVal(union_byval)) |union_val| { if (union_val.isUndef(mod)) return mod.undefRef(field.ty); const un = ip.indexToKey(union_val.toIntern()).un; const field_tag = try mod.enumValueFieldIndex(union_obj.tag_ty, enum_field_index); const tag_matches = un.tag == field_tag.toIntern(); switch (union_obj.layout) { .Auto => { if (tag_matches) { return Air.internedToRef(un.val); } else { const msg = msg: { const active_index = union_obj.tag_ty.enumTagFieldIndex(un.tag.toValue(), mod).?; const active_field_name = union_obj.tag_ty.enumFieldName(active_index, mod); const msg = try sema.errMsg(block, src, "access of union field '{}' while field '{}' is active", .{ field_name.fmt(ip), active_field_name.fmt(ip), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } }, .Packed, .Extern => { if (tag_matches) { return Air.internedToRef(un.val); } else { const old_ty = union_ty.unionFieldType(un.tag.toValue(), mod); if (try sema.bitCastVal(block, src, un.val.toValue(), old_ty, field.ty, 0)) |new_val| { return Air.internedToRef(new_val.toIntern()); } } }, } } try sema.requireRuntimeBlock(block, src, null); if (union_obj.layout == .Auto and block.wantSafety() and union_ty.unionTagTypeSafety(mod) != null and union_obj.fields.count() > 1) { const wanted_tag_val = try mod.enumValueFieldIndex(union_obj.tag_ty, enum_field_index); const wanted_tag = Air.internedToRef(wanted_tag_val.toIntern()); const active_tag = try block.addTyOp(.get_union_tag, union_obj.tag_ty, union_byval); try sema.panicInactiveUnionField(block, src, active_tag, wanted_tag); } if (field.ty.zigTypeTag(mod) == .NoReturn) { _ = try block.addNoOp(.unreach); return Air.Inst.Ref.unreachable_value; } return block.addStructFieldVal(union_byval, field_index, field.ty); } fn elemPtr( sema: *Sema, block: *Block, src: LazySrcLoc, indexable_ptr: Air.Inst.Ref, elem_index: Air.Inst.Ref, elem_index_src: LazySrcLoc, init: bool, oob_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const indexable_ptr_src = src; // TODO better source location const indexable_ptr_ty = sema.typeOf(indexable_ptr); const indexable_ty = switch (indexable_ptr_ty.zigTypeTag(mod)) { .Pointer => indexable_ptr_ty.childType(mod), else => return sema.fail(block, indexable_ptr_src, "expected pointer, found '{}'", .{indexable_ptr_ty.fmt(mod)}), }; try checkIndexable(sema, block, src, indexable_ty); switch (indexable_ty.zigTypeTag(mod)) { .Array, .Vector => return sema.elemPtrArray(block, src, indexable_ptr_src, indexable_ptr, elem_index_src, elem_index, init, oob_safety), .Struct => { // Tuple field access. const index_val = try sema.resolveConstValue(block, elem_index_src, elem_index, "tuple field access index must be comptime-known"); const index = @as(u32, @intCast(index_val.toUnsignedInt(mod))); return sema.tupleFieldPtr(block, src, indexable_ptr, elem_index_src, index, init); }, else => { const indexable = try sema.analyzeLoad(block, indexable_ptr_src, indexable_ptr, indexable_ptr_src); return elemPtrOneLayerOnly(sema, block, src, indexable, elem_index, elem_index_src, init, oob_safety); }, } } /// Asserts that the type of indexable is pointer. fn elemPtrOneLayerOnly( sema: *Sema, block: *Block, src: LazySrcLoc, indexable: Air.Inst.Ref, elem_index: Air.Inst.Ref, elem_index_src: LazySrcLoc, init: bool, oob_safety: bool, ) CompileError!Air.Inst.Ref { const indexable_src = src; // TODO better source location const indexable_ty = sema.typeOf(indexable); const mod = sema.mod; try checkIndexable(sema, block, src, indexable_ty); switch (indexable_ty.ptrSize(mod)) { .Slice => return sema.elemPtrSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety), .Many, .C => { const maybe_ptr_val = try sema.resolveDefinedValue(block, indexable_src, indexable); const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index); const runtime_src = rs: { const ptr_val = maybe_ptr_val orelse break :rs indexable_src; const index_val = maybe_index_val orelse break :rs elem_index_src; const index = @as(usize, @intCast(index_val.toUnsignedInt(mod))); const result_ty = try sema.elemPtrType(indexable_ty, index); const elem_ptr = try ptr_val.elemPtr(result_ty, index, mod); return Air.internedToRef(elem_ptr.toIntern()); }; const result_ty = try sema.elemPtrType(indexable_ty, null); try sema.requireRuntimeBlock(block, src, runtime_src); return block.addPtrElemPtr(indexable, elem_index, result_ty); }, .One => { const child_ty = indexable_ty.childType(mod); switch (child_ty.zigTypeTag(mod)) { .Array, .Vector => { return sema.elemPtrArray(block, src, indexable_src, indexable, elem_index_src, elem_index, init, oob_safety); }, .Struct => { assert(child_ty.isTuple(mod)); const index_val = try sema.resolveConstValue(block, elem_index_src, elem_index, "tuple field access index must be comptime-known"); const index = @as(u32, @intCast(index_val.toUnsignedInt(mod))); return sema.tupleFieldPtr(block, indexable_src, indexable, elem_index_src, index, false); }, else => unreachable, // Guaranteed by checkIndexable } }, } } fn elemVal( sema: *Sema, block: *Block, src: LazySrcLoc, indexable: Air.Inst.Ref, elem_index_uncasted: Air.Inst.Ref, elem_index_src: LazySrcLoc, oob_safety: bool, ) CompileError!Air.Inst.Ref { const indexable_src = src; // TODO better source location const indexable_ty = sema.typeOf(indexable); const mod = sema.mod; try checkIndexable(sema, block, src, indexable_ty); // TODO in case of a vector of pointers, we need to detect whether the element // index is a scalar or vector instead of unconditionally casting to usize. const elem_index = try sema.coerce(block, Type.usize, elem_index_uncasted, elem_index_src); switch (indexable_ty.zigTypeTag(mod)) { .Pointer => switch (indexable_ty.ptrSize(mod)) { .Slice => return sema.elemValSlice(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety), .Many, .C => { const maybe_indexable_val = try sema.resolveDefinedValue(block, indexable_src, indexable); const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index); const runtime_src = rs: { const indexable_val = maybe_indexable_val orelse break :rs indexable_src; const index_val = maybe_index_val orelse break :rs elem_index_src; const index = @as(usize, @intCast(index_val.toUnsignedInt(mod))); const elem_ty = indexable_ty.elemType2(mod); const many_ptr_ty = try mod.manyConstPtrType(elem_ty); const many_ptr_val = try mod.getCoerced(indexable_val, many_ptr_ty); const elem_ptr_ty = try mod.singleConstPtrType(elem_ty); const elem_ptr_val = try many_ptr_val.elemPtr(elem_ptr_ty, index, mod); if (try sema.pointerDeref(block, indexable_src, elem_ptr_val, elem_ptr_ty)) |elem_val| { return Air.internedToRef((try mod.getCoerced(elem_val, elem_ty)).toIntern()); } break :rs indexable_src; }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addBinOp(.ptr_elem_val, indexable, elem_index); }, .One => { arr_sent: { const inner_ty = indexable_ty.childType(mod); if (inner_ty.zigTypeTag(mod) != .Array) break :arr_sent; const sentinel = inner_ty.sentinel(mod) orelse break :arr_sent; const index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index) orelse break :arr_sent; const index = try sema.usizeCast(block, src, index_val.toUnsignedInt(mod)); if (index != inner_ty.arrayLen(mod)) break :arr_sent; return Air.internedToRef(sentinel.toIntern()); } const elem_ptr = try sema.elemPtr(block, indexable_src, indexable, elem_index, elem_index_src, false, oob_safety); return sema.analyzeLoad(block, indexable_src, elem_ptr, elem_index_src); }, }, .Array => return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety), .Vector => { // TODO: If the index is a vector, the result should be a vector. return sema.elemValArray(block, src, indexable_src, indexable, elem_index_src, elem_index, oob_safety); }, .Struct => { // Tuple field access. const index_val = try sema.resolveConstValue(block, elem_index_src, elem_index, "tuple field access index must be comptime-known"); const index = @as(u32, @intCast(index_val.toUnsignedInt(mod))); return sema.tupleField(block, indexable_src, indexable, elem_index_src, index); }, else => unreachable, } } fn validateRuntimeElemAccess( sema: *Sema, block: *Block, elem_index_src: LazySrcLoc, elem_ty: Type, parent_ty: Type, parent_src: LazySrcLoc, ) CompileError!void { const mod = sema.mod; if (try sema.typeRequiresComptime(elem_ty)) { const msg = msg: { const msg = try sema.errMsg( block, elem_index_src, "values of type '{}' must be comptime-known, but index value is runtime-known", .{parent_ty.fmt(mod)}, ); errdefer msg.destroy(sema.gpa); const src_decl = mod.declPtr(block.src_decl); try sema.explainWhyTypeIsComptime(msg, parent_src.toSrcLoc(src_decl, mod), parent_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } fn tupleFieldPtr( sema: *Sema, block: *Block, tuple_ptr_src: LazySrcLoc, tuple_ptr: Air.Inst.Ref, field_index_src: LazySrcLoc, field_index: u32, init: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const tuple_ptr_ty = sema.typeOf(tuple_ptr); const tuple_ty = tuple_ptr_ty.childType(mod); try sema.resolveTypeFields(tuple_ty); const field_count = tuple_ty.structFieldCount(mod); if (field_count == 0) { return sema.fail(block, tuple_ptr_src, "indexing into empty tuple is not allowed", .{}); } if (field_index >= field_count) { return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{ field_index, field_count, }); } const field_ty = tuple_ty.structFieldType(field_index, mod); const ptr_field_ty = try mod.ptrType(.{ .child = field_ty.toIntern(), .flags = .{ .is_const = !tuple_ptr_ty.ptrIsMutable(mod), .is_volatile = tuple_ptr_ty.isVolatilePtr(mod), .address_space = tuple_ptr_ty.ptrAddressSpace(mod), }, }); if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_val| { return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .comptime_field = default_val.toIntern() }, } }))); } if (try sema.resolveMaybeUndefVal(tuple_ptr)) |tuple_ptr_val| { return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_field_ty.toIntern(), .addr = .{ .field = .{ .base = tuple_ptr_val.toIntern(), .index = field_index, } }, } }))); } if (!init) { try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_ptr_src); } try sema.requireRuntimeBlock(block, tuple_ptr_src, null); return block.addStructFieldPtr(tuple_ptr, field_index, ptr_field_ty); } fn tupleField( sema: *Sema, block: *Block, tuple_src: LazySrcLoc, tuple: Air.Inst.Ref, field_index_src: LazySrcLoc, field_index: u32, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const tuple_ty = sema.typeOf(tuple); try sema.resolveTypeFields(tuple_ty); const field_count = tuple_ty.structFieldCount(mod); if (field_count == 0) { return sema.fail(block, tuple_src, "indexing into empty tuple is not allowed", .{}); } if (field_index >= field_count) { return sema.fail(block, field_index_src, "index {d} outside tuple of length {d}", .{ field_index, field_count, }); } const field_ty = tuple_ty.structFieldType(field_index, mod); if (try tuple_ty.structFieldValueComptime(mod, field_index)) |default_value| { return Air.internedToRef(default_value.toIntern()); // comptime field } if (try sema.resolveMaybeUndefVal(tuple)) |tuple_val| { if (tuple_val.isUndef(mod)) return mod.undefRef(field_ty); return Air.internedToRef((try tuple_val.fieldValue(mod, field_index)).toIntern()); } try sema.validateRuntimeElemAccess(block, field_index_src, field_ty, tuple_ty, tuple_src); try sema.requireRuntimeBlock(block, tuple_src, null); return block.addStructFieldVal(tuple, field_index, field_ty); } fn elemValArray( sema: *Sema, block: *Block, src: LazySrcLoc, array_src: LazySrcLoc, array: Air.Inst.Ref, elem_index_src: LazySrcLoc, elem_index: Air.Inst.Ref, oob_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const array_ty = sema.typeOf(array); const array_sent = array_ty.sentinel(mod); const array_len = array_ty.arrayLen(mod); const array_len_s = array_len + @intFromBool(array_sent != null); const elem_ty = array_ty.childType(mod); if (array_len_s == 0) { return sema.fail(block, array_src, "indexing into empty array is not allowed", .{}); } const maybe_undef_array_val = try sema.resolveMaybeUndefVal(array); // index must be defined since it can access out of bounds const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index); if (maybe_index_val) |index_val| { const index = @as(usize, @intCast(index_val.toUnsignedInt(mod))); if (array_sent) |s| { if (index == array_len) { return Air.internedToRef(s.toIntern()); } } if (index >= array_len_s) { const sentinel_label: []const u8 = if (array_sent != null) " +1 (sentinel)" else ""; return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label }); } } if (maybe_undef_array_val) |array_val| { if (array_val.isUndef(mod)) { return mod.undefRef(elem_ty); } if (maybe_index_val) |index_val| { const index = @as(usize, @intCast(index_val.toUnsignedInt(mod))); const elem_val = try array_val.elemValue(mod, index); return Air.internedToRef(elem_val.toIntern()); } } try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, array_ty, array_src); const runtime_src = if (maybe_undef_array_val != null) elem_index_src else array_src; try sema.requireRuntimeBlock(block, src, runtime_src); try sema.queueFullTypeResolution(array_ty); if (oob_safety and block.wantSafety()) { // Runtime check is only needed if unable to comptime check if (maybe_index_val == null) { const len_inst = try mod.intRef(Type.usize, array_len); const cmp_op: Air.Inst.Tag = if (array_sent != null) .cmp_lte else .cmp_lt; try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op); } } return block.addBinOp(.array_elem_val, array, elem_index); } fn elemPtrArray( sema: *Sema, block: *Block, src: LazySrcLoc, array_ptr_src: LazySrcLoc, array_ptr: Air.Inst.Ref, elem_index_src: LazySrcLoc, elem_index: Air.Inst.Ref, init: bool, oob_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const array_ptr_ty = sema.typeOf(array_ptr); const array_ty = array_ptr_ty.childType(mod); const array_sent = array_ty.sentinel(mod) != null; const array_len = array_ty.arrayLen(mod); const array_len_s = array_len + @intFromBool(array_sent); if (array_len_s == 0) { return sema.fail(block, array_ptr_src, "indexing into empty array is not allowed", .{}); } const maybe_undef_array_ptr_val = try sema.resolveMaybeUndefVal(array_ptr); // The index must not be undefined since it can be out of bounds. const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: { const index = try sema.usizeCast(block, elem_index_src, index_val.toUnsignedInt(mod)); if (index >= array_len_s) { const sentinel_label: []const u8 = if (array_sent) " +1 (sentinel)" else ""; return sema.fail(block, elem_index_src, "index {d} outside array of length {d}{s}", .{ index, array_len, sentinel_label }); } break :o index; } else null; const elem_ptr_ty = try sema.elemPtrType(array_ptr_ty, offset); if (maybe_undef_array_ptr_val) |array_ptr_val| { if (array_ptr_val.isUndef(mod)) { return mod.undefRef(elem_ptr_ty); } if (offset) |index| { const elem_ptr = try array_ptr_val.elemPtr(elem_ptr_ty, index, mod); return Air.internedToRef(elem_ptr.toIntern()); } } if (!init) { try sema.validateRuntimeElemAccess(block, elem_index_src, array_ty.elemType2(mod), array_ty, array_ptr_src); } const runtime_src = if (maybe_undef_array_ptr_val != null) elem_index_src else array_ptr_src; try sema.requireRuntimeBlock(block, src, runtime_src); // Runtime check is only needed if unable to comptime check. if (oob_safety and block.wantSafety() and offset == null) { const len_inst = try mod.intRef(Type.usize, array_len); const cmp_op: Air.Inst.Tag = if (array_sent) .cmp_lte else .cmp_lt; try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op); } return block.addPtrElemPtr(array_ptr, elem_index, elem_ptr_ty); } fn elemValSlice( sema: *Sema, block: *Block, src: LazySrcLoc, slice_src: LazySrcLoc, slice: Air.Inst.Ref, elem_index_src: LazySrcLoc, elem_index: Air.Inst.Ref, oob_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const slice_ty = sema.typeOf(slice); const slice_sent = slice_ty.sentinel(mod) != null; const elem_ty = slice_ty.elemType2(mod); var runtime_src = slice_src; // slice must be defined since it can dereferenced as null const maybe_slice_val = try sema.resolveDefinedValue(block, slice_src, slice); // index must be defined since it can index out of bounds const maybe_index_val = try sema.resolveDefinedValue(block, elem_index_src, elem_index); if (maybe_slice_val) |slice_val| { runtime_src = elem_index_src; const slice_len = slice_val.sliceLen(mod); const slice_len_s = slice_len + @intFromBool(slice_sent); if (slice_len_s == 0) { return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{}); } if (maybe_index_val) |index_val| { const index = @as(usize, @intCast(index_val.toUnsignedInt(mod))); if (index >= slice_len_s) { const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else ""; return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label }); } const elem_ptr_ty = try sema.elemPtrType(slice_ty, index); const elem_ptr_val = try slice_val.elemPtr(elem_ptr_ty, index, mod); if (try sema.pointerDeref(block, slice_src, elem_ptr_val, elem_ptr_ty)) |elem_val| { return Air.internedToRef(elem_val.toIntern()); } runtime_src = slice_src; } } try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ty, slice_ty, slice_src); try sema.requireRuntimeBlock(block, src, runtime_src); if (oob_safety and block.wantSafety()) { const len_inst = if (maybe_slice_val) |slice_val| try mod.intRef(Type.usize, slice_val.sliceLen(mod)) else try block.addTyOp(.slice_len, Type.usize, slice); const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt; try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op); } try sema.queueFullTypeResolution(sema.typeOf(slice)); return block.addBinOp(.slice_elem_val, slice, elem_index); } fn elemPtrSlice( sema: *Sema, block: *Block, src: LazySrcLoc, slice_src: LazySrcLoc, slice: Air.Inst.Ref, elem_index_src: LazySrcLoc, elem_index: Air.Inst.Ref, oob_safety: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const slice_ty = sema.typeOf(slice); const slice_sent = slice_ty.sentinel(mod) != null; const maybe_undef_slice_val = try sema.resolveMaybeUndefVal(slice); // The index must not be undefined since it can be out of bounds. const offset: ?usize = if (try sema.resolveDefinedValue(block, elem_index_src, elem_index)) |index_val| o: { const index = try sema.usizeCast(block, elem_index_src, index_val.toUnsignedInt(mod)); break :o index; } else null; const elem_ptr_ty = try sema.elemPtrType(slice_ty, offset); if (maybe_undef_slice_val) |slice_val| { if (slice_val.isUndef(mod)) { return mod.undefRef(elem_ptr_ty); } const slice_len = slice_val.sliceLen(mod); const slice_len_s = slice_len + @intFromBool(slice_sent); if (slice_len_s == 0) { return sema.fail(block, slice_src, "indexing into empty slice is not allowed", .{}); } if (offset) |index| { if (index >= slice_len_s) { const sentinel_label: []const u8 = if (slice_sent) " +1 (sentinel)" else ""; return sema.fail(block, elem_index_src, "index {d} outside slice of length {d}{s}", .{ index, slice_len, sentinel_label }); } const elem_ptr_val = try slice_val.elemPtr(elem_ptr_ty, index, mod); return Air.internedToRef(elem_ptr_val.toIntern()); } } try sema.validateRuntimeElemAccess(block, elem_index_src, elem_ptr_ty, slice_ty, slice_src); const runtime_src = if (maybe_undef_slice_val != null) elem_index_src else slice_src; try sema.requireRuntimeBlock(block, src, runtime_src); if (oob_safety and block.wantSafety()) { const len_inst = len: { if (maybe_undef_slice_val) |slice_val| if (!slice_val.isUndef(mod)) break :len try mod.intRef(Type.usize, slice_val.sliceLen(mod)); break :len try block.addTyOp(.slice_len, Type.usize, slice); }; const cmp_op: Air.Inst.Tag = if (slice_sent) .cmp_lte else .cmp_lt; try sema.panicIndexOutOfBounds(block, src, elem_index, len_inst, cmp_op); } return block.addSliceElemPtr(slice, elem_index, elem_ptr_ty); } fn coerce( sema: *Sema, block: *Block, dest_ty_unresolved: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { return sema.coerceExtra(block, dest_ty_unresolved, inst, inst_src, .{}) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; } const CoersionError = CompileError || error{ /// When coerce is called recursively, this error should be returned instead of using `fail` /// to ensure correct types in compile errors. NotCoercible, }; const CoerceOpts = struct { /// Should coerceExtra emit error messages. report_err: bool = true, /// Ignored if `report_err == false`. is_ret: bool = false, /// Should coercion to comptime_int ermit an error message. no_cast_to_comptime_int: bool = false, param_src: struct { func_inst: Air.Inst.Ref = .none, param_i: u32 = undefined, fn get(info: @This(), sema: *Sema) !?Module.SrcLoc { if (info.func_inst == .none) return null; const mod = sema.mod; const fn_decl = (try sema.funcDeclSrc(info.func_inst)) orelse return null; const param_src = Module.paramSrc(0, mod, fn_decl, info.param_i); if (param_src == .node_offset_param) { return Module.SrcLoc{ .file_scope = fn_decl.getFileScope(mod), .parent_decl_node = fn_decl.src_node, .lazy = LazySrcLoc.nodeOffset(param_src.node_offset_param), }; } return param_src.toSrcLoc(fn_decl, mod); } } = .{}, }; fn coerceExtra( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, opts: CoerceOpts, ) CoersionError!Air.Inst.Ref { if (dest_ty.isGenericPoison()) return inst; const mod = sema.mod; const dest_ty_src = inst_src; // TODO better source location try sema.resolveTypeFields(dest_ty); const inst_ty = sema.typeOf(inst); try sema.resolveTypeFields(inst_ty); const target = mod.getTarget(); // If the types are the same, we can return the operand. if (dest_ty.eql(inst_ty, mod)) return inst; const maybe_inst_val = try sema.resolveMaybeUndefVal(inst); var in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src); if (in_memory_result == .ok) { if (maybe_inst_val) |val| { return sema.coerceInMemory(val, dest_ty); } try sema.requireRuntimeBlock(block, inst_src, null); return block.addBitCast(dest_ty, inst); } const is_undef = inst_ty.zigTypeTag(mod) == .Undefined; switch (dest_ty.zigTypeTag(mod)) { .Optional => optional: { // undefined sets the optional bit also to undefined. if (is_undef) { return mod.undefRef(dest_ty); } // null to ?T if (inst_ty.zigTypeTag(mod) == .Null) { return Air.internedToRef((try mod.intern(.{ .opt = .{ .ty = dest_ty.toIntern(), .val = .none, } }))); } // cast from ?*T and ?[*]T to ?*anyopaque // but don't do it if the source type is a double pointer if (dest_ty.isPtrLikeOptional(mod) and dest_ty.elemType2(mod).toIntern() == .anyopaque_type and inst_ty.isPtrAtRuntime(mod)) anyopaque_check: { if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :optional; const elem_ty = inst_ty.elemType2(mod); if (elem_ty.zigTypeTag(mod) == .Pointer or elem_ty.isPtrLikeOptional(mod)) { in_memory_result = .{ .double_ptr_to_anyopaque = .{ .actual = inst_ty, .wanted = dest_ty, } }; break :optional; } // Let the logic below handle wrapping the optional now that // it has been checked to correctly coerce. if (!inst_ty.isPtrLikeOptional(mod)) break :anyopaque_check; return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); } // T to ?T const child_type = dest_ty.optionalChild(mod); const intermediate = sema.coerceExtra(block, child_type, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) { error.NotCoercible => { if (in_memory_result == .no_match) { // Try to give more useful notes in_memory_result = try sema.coerceInMemoryAllowed(block, child_type, inst_ty, false, target, dest_ty_src, inst_src); } break :optional; }, else => |e| return e, }; return try sema.wrapOptional(block, dest_ty, intermediate, inst_src); }, .Pointer => pointer: { const dest_info = dest_ty.ptrInfo(mod); // Function body to function pointer. if (inst_ty.zigTypeTag(mod) == .Fn) { const fn_val = try sema.resolveConstValue(block, .unneeded, inst, ""); const fn_decl = fn_val.pointerDecl(mod).?; const inst_as_ptr = try sema.analyzeDeclRef(fn_decl); return sema.coerce(block, dest_ty, inst_as_ptr, inst_src); } // *T to *[1]T single_item: { if (dest_info.flags.size != .One) break :single_item; if (!inst_ty.isSinglePointer(mod)) break :single_item; if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer; const ptr_elem_ty = inst_ty.childType(mod); const array_ty = dest_info.child.toType(); if (array_ty.zigTypeTag(mod) != .Array) break :single_item; const array_elem_ty = array_ty.childType(mod); if (array_ty.arrayLen(mod) != 1) break :single_item; const dest_is_mut = !dest_info.flags.is_const; switch (try sema.coerceInMemoryAllowed(block, array_elem_ty, ptr_elem_ty, dest_is_mut, target, dest_ty_src, inst_src)) { .ok => {}, else => break :single_item, } return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); } // Coercions where the source is a single pointer to an array. src_array_ptr: { if (!inst_ty.isSinglePointer(mod)) break :src_array_ptr; if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer; const array_ty = inst_ty.childType(mod); if (array_ty.zigTypeTag(mod) != .Array) break :src_array_ptr; const array_elem_type = array_ty.childType(mod); const dest_is_mut = !dest_info.flags.is_const; const dst_elem_type = dest_info.child.toType(); const elem_res = try sema.coerceInMemoryAllowed(block, dst_elem_type, array_elem_type, dest_is_mut, target, dest_ty_src, inst_src); switch (elem_res) { .ok => {}, else => { in_memory_result = .{ .ptr_child = .{ .child = try elem_res.dupe(sema.arena), .actual = array_elem_type, .wanted = dst_elem_type, } }; break :src_array_ptr; }, } if (dest_info.sentinel != .none) { if (array_ty.sentinel(mod)) |inst_sent| { if (dest_info.sentinel != (try mod.getCoerced(inst_sent, dst_elem_type)).toIntern()) { in_memory_result = .{ .ptr_sentinel = .{ .actual = inst_sent, .wanted = dest_info.sentinel.toValue(), .ty = dst_elem_type, } }; break :src_array_ptr; } } else { in_memory_result = .{ .ptr_sentinel = .{ .actual = Value.@"unreachable", .wanted = dest_info.sentinel.toValue(), .ty = dst_elem_type, } }; break :src_array_ptr; } } switch (dest_info.flags.size) { .Slice => { // *[N]T to []T return sema.coerceArrayPtrToSlice(block, dest_ty, inst, inst_src); }, .C => { // *[N]T to [*c]T return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); }, .Many => { // *[N]T to [*]T return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); }, .One => {}, } } // coercion from C pointer if (inst_ty.isCPtr(mod)) src_c_ptr: { if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :src_c_ptr; // In this case we must add a safety check because the C pointer // could be null. const src_elem_ty = inst_ty.childType(mod); const dest_is_mut = !dest_info.flags.is_const; const dst_elem_type = dest_info.child.toType(); switch (try sema.coerceInMemoryAllowed(block, dst_elem_type, src_elem_ty, dest_is_mut, target, dest_ty_src, inst_src)) { .ok => {}, else => break :src_c_ptr, } return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); } // cast from *T and [*]T to *anyopaque // but don't do it if the source type is a double pointer if (dest_info.child == .anyopaque_type and inst_ty.zigTypeTag(mod) == .Pointer) to_anyopaque: { if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :pointer; const elem_ty = inst_ty.elemType2(mod); if (elem_ty.zigTypeTag(mod) == .Pointer or elem_ty.isPtrLikeOptional(mod)) { in_memory_result = .{ .double_ptr_to_anyopaque = .{ .actual = inst_ty, .wanted = dest_ty, } }; break :pointer; } if (dest_ty.isSlice(mod)) break :to_anyopaque; if (inst_ty.isSlice(mod)) { in_memory_result = .{ .slice_to_anyopaque = .{ .actual = inst_ty, .wanted = dest_ty, } }; break :pointer; } return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); } switch (dest_info.flags.size) { // coercion to C pointer .C => switch (inst_ty.zigTypeTag(mod)) { .Null => { return Air.internedToRef((try mod.getCoerced(Value.null, dest_ty)).toIntern()); }, .ComptimeInt => { const addr = sema.coerceExtra(block, Type.usize, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) { error.NotCoercible => break :pointer, else => |e| return e, }; return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src); }, .Int => { const ptr_size_ty = switch (inst_ty.intInfo(mod).signedness) { .signed => Type.isize, .unsigned => Type.usize, }; const addr = sema.coerceExtra(block, ptr_size_ty, inst, inst_src, .{ .report_err = false }) catch |err| switch (err) { error.NotCoercible => { // Try to give more useful notes in_memory_result = try sema.coerceInMemoryAllowed(block, ptr_size_ty, inst_ty, false, target, dest_ty_src, inst_src); break :pointer; }, else => |e| return e, }; return try sema.coerceCompatiblePtrs(block, dest_ty, addr, inst_src); }, .Pointer => p: { if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p; const inst_info = inst_ty.ptrInfo(mod); switch (try sema.coerceInMemoryAllowed( block, dest_info.child.toType(), inst_info.child.toType(), !dest_info.flags.is_const, target, dest_ty_src, inst_src, )) { .ok => {}, else => break :p, } if (inst_info.flags.size == .Slice) { assert(dest_info.sentinel == .none); if (inst_info.sentinel == .none or inst_info.sentinel != (try mod.intValue(inst_info.child.toType(), 0)).toIntern()) break :p; const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty); return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src); } return sema.coerceCompatiblePtrs(block, dest_ty, inst, inst_src); }, else => {}, }, .One => switch (dest_info.child.toType().zigTypeTag(mod)) { .Union => { // pointer to anonymous struct to pointer to union if (inst_ty.isSinglePointer(mod) and inst_ty.childType(mod).isAnonStruct(mod) and sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) { return sema.coerceAnonStructToUnionPtrs(block, dest_ty, dest_ty_src, inst, inst_src); } }, .Struct => { // pointer to anonymous struct to pointer to struct if (inst_ty.isSinglePointer(mod) and inst_ty.childType(mod).isAnonStruct(mod) and sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) { return sema.coerceAnonStructToStructPtrs(block, dest_ty, dest_ty_src, inst, inst_src) catch |err| switch (err) { error.NotCoercible => break :pointer, else => |e| return e, }; } }, .Array => { // pointer to tuple to pointer to array if (inst_ty.isSinglePointer(mod) and inst_ty.childType(mod).isTuple(mod) and sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) { return sema.coerceTupleToArrayPtrs(block, dest_ty, dest_ty_src, inst, inst_src); } }, else => {}, }, .Slice => to_slice: { if (inst_ty.zigTypeTag(mod) == .Array) { return sema.fail( block, inst_src, "array literal requires address-of operator (&) to coerce to slice type '{}'", .{dest_ty.fmt(mod)}, ); } if (!inst_ty.isSinglePointer(mod)) break :to_slice; const inst_child_ty = inst_ty.childType(mod); if (!inst_child_ty.isTuple(mod)) break :to_slice; // empty tuple to zero-length slice // note that this allows coercing to a mutable slice. if (inst_child_ty.structFieldCount(mod) == 0) { // Optional slice is represented with a null pointer so // we use a dummy pointer value with the required alignment. return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = dest_ty.toIntern(), .addr = .{ .int = (if (dest_info.flags.alignment != .none) try mod.intValue(Type.usize, dest_info.flags.alignment.toByteUnitsOptional().?) else try mod.getCoerced(try dest_info.child.toType().lazyAbiAlignment(mod), Type.usize)).toIntern() }, .len = (try mod.intValue(Type.usize, 0)).toIntern(), } }))); } // pointer to tuple to slice if (!dest_info.flags.is_const) { const err_msg = err_msg: { const err_msg = try sema.errMsg(block, inst_src, "cannot cast pointer to tuple to '{}'", .{dest_ty.fmt(mod)}); errdefer err_msg.deinit(sema.gpa); try sema.errNote(block, dest_ty_src, err_msg, "pointers to tuples can only coerce to constant pointers", .{}); break :err_msg err_msg; }; return sema.failWithOwnedErrorMsg(err_msg); } return sema.coerceTupleToSlicePtrs(block, dest_ty, dest_ty_src, inst, inst_src); }, .Many => p: { if (!inst_ty.isSlice(mod)) break :p; if (!sema.checkPtrAttributes(dest_ty, inst_ty, &in_memory_result)) break :p; const inst_info = inst_ty.ptrInfo(mod); switch (try sema.coerceInMemoryAllowed( block, dest_info.child.toType(), inst_info.child.toType(), !dest_info.flags.is_const, target, dest_ty_src, inst_src, )) { .ok => {}, else => break :p, } if (dest_info.sentinel == .none or inst_info.sentinel == .none or dest_info.sentinel != try mod.intern_pool.getCoerced(sema.gpa, inst_info.sentinel, dest_info.child)) break :p; const slice_ptr = try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty); return sema.coerceCompatiblePtrs(block, dest_ty, slice_ptr, inst_src); }, } }, .Int, .ComptimeInt => switch (inst_ty.zigTypeTag(mod)) { .Float, .ComptimeFloat => float: { if (is_undef) { return mod.undefRef(dest_ty); } const val = (try sema.resolveMaybeUndefVal(inst)) orelse { if (dest_ty.zigTypeTag(mod) == .ComptimeInt) { if (!opts.report_err) return error.NotCoercible; return sema.failWithNeededComptime(block, inst_src, "value being casted to 'comptime_int' must be comptime-known"); } break :float; }; if (val.floatHasFraction(mod)) { return sema.fail( block, inst_src, "fractional component prevents float value '{}' from coercion to type '{}'", .{ val.fmtValue(inst_ty, mod), dest_ty.fmt(mod) }, ); } const result_val = try sema.intFromFloat(block, inst_src, val, inst_ty, dest_ty); return Air.internedToRef(result_val.toIntern()); }, .Int, .ComptimeInt => { if (is_undef) { return mod.undefRef(dest_ty); } if (try sema.resolveMaybeUndefVal(inst)) |val| { // comptime-known integer to other number if (!(try sema.intFitsInType(val, dest_ty, null))) { if (!opts.report_err) return error.NotCoercible; return sema.fail(block, inst_src, "type '{}' cannot represent integer value '{}'", .{ dest_ty.fmt(mod), val.fmtValue(inst_ty, mod) }); } return Air.internedToRef((try mod.getCoerced(val, dest_ty)).toIntern()); } if (dest_ty.zigTypeTag(mod) == .ComptimeInt) { if (!opts.report_err) return error.NotCoercible; if (opts.no_cast_to_comptime_int) return inst; return sema.failWithNeededComptime(block, inst_src, "value being casted to 'comptime_int' must be comptime-known"); } // integer widening const dst_info = dest_ty.intInfo(mod); const src_info = inst_ty.intInfo(mod); if ((src_info.signedness == dst_info.signedness and dst_info.bits >= src_info.bits) or // small enough unsigned ints can get casted to large enough signed ints (dst_info.signedness == .signed and dst_info.bits > src_info.bits)) { try sema.requireRuntimeBlock(block, inst_src, null); return block.addTyOp(.intcast, dest_ty, inst); } }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .Float, .ComptimeFloat => switch (inst_ty.zigTypeTag(mod)) { .ComptimeFloat => { const val = try sema.resolveConstValue(block, .unneeded, inst, ""); const result_val = try val.floatCast(dest_ty, mod); return Air.internedToRef(result_val.toIntern()); }, .Float => { if (is_undef) { return mod.undefRef(dest_ty); } if (try sema.resolveMaybeUndefVal(inst)) |val| { const result_val = try val.floatCast(dest_ty, mod); if (!val.eql(try result_val.floatCast(inst_ty, mod), inst_ty, mod)) { return sema.fail( block, inst_src, "type '{}' cannot represent float value '{}'", .{ dest_ty.fmt(mod), val.fmtValue(inst_ty, mod) }, ); } return Air.internedToRef(result_val.toIntern()); } else if (dest_ty.zigTypeTag(mod) == .ComptimeFloat) { if (!opts.report_err) return error.NotCoercible; return sema.failWithNeededComptime(block, inst_src, "value being casted to 'comptime_float' must be comptime-known"); } // float widening const src_bits = inst_ty.floatBits(target); const dst_bits = dest_ty.floatBits(target); if (dst_bits >= src_bits) { try sema.requireRuntimeBlock(block, inst_src, null); return block.addTyOp(.fpext, dest_ty, inst); } }, .Int, .ComptimeInt => int: { if (is_undef) { return mod.undefRef(dest_ty); } const val = (try sema.resolveMaybeUndefVal(inst)) orelse { if (dest_ty.zigTypeTag(mod) == .ComptimeFloat) { if (!opts.report_err) return error.NotCoercible; return sema.failWithNeededComptime(block, inst_src, "value being casted to 'comptime_float' must be comptime-known"); } break :int; }; const result_val = try val.floatFromIntAdvanced(sema.arena, inst_ty, dest_ty, mod, sema); // TODO implement this compile error //const int_again_val = try result_val.intFromFloat(sema.arena, inst_ty); //if (!int_again_val.eql(val, inst_ty, mod)) { // return sema.fail( // block, // inst_src, // "type '{}' cannot represent integer value '{}'", // .{ dest_ty.fmt(mod), val }, // ); //} return Air.internedToRef(result_val.toIntern()); }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .Enum => switch (inst_ty.zigTypeTag(mod)) { .EnumLiteral => { // enum literal to enum const val = try sema.resolveConstValue(block, .unneeded, inst, ""); const string = mod.intern_pool.indexToKey(val.toIntern()).enum_literal; const field_index = dest_ty.enumFieldIndex(string, mod) orelse { const msg = msg: { const msg = try sema.errMsg( block, inst_src, "no field named '{}' in enum '{}'", .{ string.fmt(&mod.intern_pool), dest_ty.fmt(mod) }, ); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, dest_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; return Air.internedToRef((try mod.enumValueFieldIndex(dest_ty, @as(u32, @intCast(field_index)))).toIntern()); }, .Union => blk: { // union to its own tag type const union_tag_ty = inst_ty.unionTagType(mod) orelse break :blk; if (union_tag_ty.eql(dest_ty, mod)) { return sema.unionToTag(block, dest_ty, inst, inst_src); } }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .ErrorUnion => switch (inst_ty.zigTypeTag(mod)) { .ErrorUnion => eu: { if (maybe_inst_val) |inst_val| { switch (inst_val.toIntern()) { .undef => return mod.undefRef(dest_ty), else => switch (mod.intern_pool.indexToKey(inst_val.toIntern())) { .error_union => |error_union| switch (error_union.val) { .err_name => |err_name| { const error_set_ty = inst_ty.errorUnionSet(mod); const error_set_val = Air.internedToRef((try mod.intern(.{ .err = .{ .ty = error_set_ty.toIntern(), .name = err_name, } }))); return sema.wrapErrorUnionSet(block, dest_ty, error_set_val, inst_src); }, .payload => |payload| { const payload_val = Air.internedToRef(payload); return sema.wrapErrorUnionPayload(block, dest_ty, payload_val, inst_src) catch |err| switch (err) { error.NotCoercible => break :eu, else => |e| return e, }; }, }, else => unreachable, }, } } }, .ErrorSet => { // E to E!T return sema.wrapErrorUnionSet(block, dest_ty, inst, inst_src); }, .Undefined => { return mod.undefRef(dest_ty); }, else => eu: { // T to E!T return sema.wrapErrorUnionPayload(block, dest_ty, inst, inst_src) catch |err| switch (err) { error.NotCoercible => break :eu, else => |e| return e, }; }, }, .Union => switch (inst_ty.zigTypeTag(mod)) { .Enum, .EnumLiteral => return sema.coerceEnumToUnion(block, dest_ty, dest_ty_src, inst, inst_src), .Struct => { if (inst_ty.isAnonStruct(mod)) { return sema.coerceAnonStructToUnion(block, dest_ty, dest_ty_src, inst, inst_src); } }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .Array => switch (inst_ty.zigTypeTag(mod)) { .Vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src), .Struct => { if (inst == .empty_struct) { return sema.arrayInitEmpty(block, inst_src, dest_ty); } if (inst_ty.isTuple(mod)) { return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src); } }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .Vector => switch (inst_ty.zigTypeTag(mod)) { .Array, .Vector => return sema.coerceArrayLike(block, dest_ty, dest_ty_src, inst, inst_src), .Struct => { if (inst_ty.isTuple(mod)) { return sema.coerceTupleToArray(block, dest_ty, dest_ty_src, inst, inst_src); } }, .Undefined => { return mod.undefRef(dest_ty); }, else => {}, }, .Struct => blk: { if (inst == .empty_struct) { return sema.structInitEmpty(block, dest_ty, dest_ty_src, inst_src); } if (inst_ty.isTupleOrAnonStruct(mod)) { return sema.coerceTupleToStruct(block, dest_ty, inst, inst_src) catch |err| switch (err) { error.NotCoercible => break :blk, else => |e| return e, }; } }, else => {}, } // undefined to anything. We do this after the big switch above so that // special logic has a chance to run first, such as `*[N]T` to `[]T` which // should initialize the length field of the slice. if (is_undef) { return mod.undefRef(dest_ty); } if (!opts.report_err) return error.NotCoercible; if (opts.is_ret and dest_ty.zigTypeTag(mod) == .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "function declared 'noreturn' returns", .{}); errdefer msg.destroy(sema.gpa); const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 }; const src_decl = mod.funcOwnerDeclPtr(sema.func_index); try mod.errNoteNonLazy(ret_ty_src.toSrcLoc(src_decl, mod), msg, "'noreturn' declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const msg = msg: { const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(mod), inst_ty.fmt(mod) }); errdefer msg.destroy(sema.gpa); // E!T to T if (inst_ty.zigTypeTag(mod) == .ErrorUnion and (try sema.coerceInMemoryAllowed(block, inst_ty.errorUnionPayload(mod), dest_ty, false, target, dest_ty_src, inst_src)) == .ok) { try sema.errNote(block, inst_src, msg, "cannot convert error union to payload type", .{}); try sema.errNote(block, inst_src, msg, "consider using 'try', 'catch', or 'if'", .{}); } // ?T to T if (inst_ty.zigTypeTag(mod) == .Optional and (try sema.coerceInMemoryAllowed(block, inst_ty.optionalChild(mod), dest_ty, false, target, dest_ty_src, inst_src)) == .ok) { try sema.errNote(block, inst_src, msg, "cannot convert optional to payload type", .{}); try sema.errNote(block, inst_src, msg, "consider using '.?', 'orelse', or 'if'", .{}); } try in_memory_result.report(sema, block, inst_src, msg); // Add notes about function return type if (opts.is_ret and mod.test_functions.get(mod.funcOwnerDeclIndex(sema.func_index)) == null) { const ret_ty_src: LazySrcLoc = .{ .node_offset_fn_type_ret_ty = 0 }; const src_decl = mod.funcOwnerDeclPtr(sema.func_index); if (inst_ty.isError(mod) and !dest_ty.isError(mod)) { try mod.errNoteNonLazy(ret_ty_src.toSrcLoc(src_decl, mod), msg, "function cannot return an error", .{}); } else { try mod.errNoteNonLazy(ret_ty_src.toSrcLoc(src_decl, mod), msg, "function return type declared here", .{}); } } if (try opts.param_src.get(sema)) |param_src| { try mod.errNoteNonLazy(param_src, msg, "parameter type declared here", .{}); } // TODO maybe add "cannot store an error in type '{}'" note break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn coerceInMemory( sema: *Sema, val: Value, dst_ty: Type, ) CompileError!Air.Inst.Ref { return Air.internedToRef((try sema.mod.getCoerced(val, dst_ty)).toIntern()); } const InMemoryCoercionResult = union(enum) { ok, no_match: Pair, int_not_coercible: Int, error_union_payload: PairAndChild, array_len: IntPair, array_sentinel: Sentinel, array_elem: PairAndChild, vector_len: IntPair, vector_elem: PairAndChild, optional_shape: Pair, optional_child: PairAndChild, from_anyerror, missing_error: []const InternPool.NullTerminatedString, /// true if wanted is var args fn_var_args: bool, /// true if wanted is generic fn_generic: bool, fn_param_count: IntPair, fn_param_noalias: IntPair, fn_param_comptime: ComptimeParam, fn_param: Param, fn_cc: CC, fn_return_type: PairAndChild, ptr_child: PairAndChild, ptr_addrspace: AddressSpace, ptr_sentinel: Sentinel, ptr_size: Size, ptr_qualifiers: Qualifiers, ptr_allowzero: Pair, ptr_bit_range: BitRange, ptr_alignment: IntPair, double_ptr_to_anyopaque: Pair, slice_to_anyopaque: Pair, const Pair = struct { actual: Type, wanted: Type, }; const PairAndChild = struct { child: *InMemoryCoercionResult, actual: Type, wanted: Type, }; const Param = struct { child: *InMemoryCoercionResult, actual: Type, wanted: Type, index: u64, }; const ComptimeParam = struct { index: u64, wanted: bool, }; const Sentinel = struct { // unreachable_value indicates no sentinel actual: Value, wanted: Value, ty: Type, }; const Int = struct { actual_signedness: std.builtin.Signedness, wanted_signedness: std.builtin.Signedness, actual_bits: u16, wanted_bits: u16, }; const IntPair = struct { actual: u64, wanted: u64, }; const Size = struct { actual: std.builtin.Type.Pointer.Size, wanted: std.builtin.Type.Pointer.Size, }; const Qualifiers = struct { actual_const: bool, wanted_const: bool, actual_volatile: bool, wanted_volatile: bool, }; const AddressSpace = struct { actual: std.builtin.AddressSpace, wanted: std.builtin.AddressSpace, }; const CC = struct { actual: std.builtin.CallingConvention, wanted: std.builtin.CallingConvention, }; const BitRange = struct { actual_host: u16, wanted_host: u16, actual_offset: u16, wanted_offset: u16, }; fn dupe(child: *const InMemoryCoercionResult, arena: Allocator) !*InMemoryCoercionResult { const res = try arena.create(InMemoryCoercionResult); res.* = child.*; return res; } fn report(res: *const InMemoryCoercionResult, sema: *Sema, block: *Block, src: LazySrcLoc, msg: *Module.ErrorMsg) !void { const mod = sema.mod; var cur = res; while (true) switch (cur.*) { .ok => unreachable, .no_match => |types| { try sema.addDeclaredHereNote(msg, types.wanted); try sema.addDeclaredHereNote(msg, types.actual); break; }, .int_not_coercible => |int| { try sema.errNote(block, src, msg, "{s} {d}-bit int cannot represent all possible {s} {d}-bit values", .{ @tagName(int.wanted_signedness), int.wanted_bits, @tagName(int.actual_signedness), int.actual_bits, }); break; }, .error_union_payload => |pair| { try sema.errNote(block, src, msg, "error union payload '{}' cannot cast into error union payload '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .array_len => |lens| { try sema.errNote(block, src, msg, "array of length {d} cannot cast into an array of length {d}", .{ lens.actual, lens.wanted, }); break; }, .array_sentinel => |sentinel| { if (sentinel.actual.toIntern() != .unreachable_value) { try sema.errNote(block, src, msg, "array sentinel '{}' cannot cast into array sentinel '{}'", .{ sentinel.actual.fmtValue(sentinel.ty, mod), sentinel.wanted.fmtValue(sentinel.ty, mod), }); } else { try sema.errNote(block, src, msg, "destination array requires '{}' sentinel", .{ sentinel.wanted.fmtValue(sentinel.ty, mod), }); } break; }, .array_elem => |pair| { try sema.errNote(block, src, msg, "array element type '{}' cannot cast into array element type '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .vector_len => |lens| { try sema.errNote(block, src, msg, "vector of length {d} cannot cast into a vector of length {d}", .{ lens.actual, lens.wanted, }); break; }, .vector_elem => |pair| { try sema.errNote(block, src, msg, "vector element type '{}' cannot cast into vector element type '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .optional_shape => |pair| { try sema.errNote(block, src, msg, "optional type child '{}' cannot cast into optional type child '{}'", .{ pair.actual.optionalChild(mod).fmt(mod), pair.wanted.optionalChild(mod).fmt(mod), }); break; }, .optional_child => |pair| { try sema.errNote(block, src, msg, "optional type child '{}' cannot cast into optional type child '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .from_anyerror => { try sema.errNote(block, src, msg, "global error set cannot cast into a smaller set", .{}); break; }, .missing_error => |missing_errors| { for (missing_errors) |err| { try sema.errNote(block, src, msg, "'error.{}' not a member of destination error set", .{err.fmt(&mod.intern_pool)}); } break; }, .fn_var_args => |wanted_var_args| { if (wanted_var_args) { try sema.errNote(block, src, msg, "non-variadic function cannot cast into a variadic function", .{}); } else { try sema.errNote(block, src, msg, "variadic function cannot cast into a non-variadic function", .{}); } break; }, .fn_generic => |wanted_generic| { if (wanted_generic) { try sema.errNote(block, src, msg, "non-generic function cannot cast into a generic function", .{}); } else { try sema.errNote(block, src, msg, "generic function cannot cast into a non-generic function", .{}); } break; }, .fn_param_count => |lens| { try sema.errNote(block, src, msg, "function with {d} parameters cannot cast into a function with {d} parameters", .{ lens.actual, lens.wanted, }); break; }, .fn_param_noalias => |param| { var index: u6 = 0; var actual_noalias = false; while (true) : (index += 1) { const actual = @as(u1, @truncate(param.actual >> index)); const wanted = @as(u1, @truncate(param.wanted >> index)); if (actual != wanted) { actual_noalias = actual == 1; break; } } if (!actual_noalias) { try sema.errNote(block, src, msg, "regular parameter {d} cannot cast into a noalias parameter", .{index}); } else { try sema.errNote(block, src, msg, "noalias parameter {d} cannot cast into a regular parameter", .{index}); } break; }, .fn_param_comptime => |param| { if (param.wanted) { try sema.errNote(block, src, msg, "non-comptime parameter {d} cannot cast into a comptime parameter", .{param.index}); } else { try sema.errNote(block, src, msg, "comptime parameter {d} cannot cast into a non-comptime parameter", .{param.index}); } break; }, .fn_param => |param| { try sema.errNote(block, src, msg, "parameter {d} '{}' cannot cast into '{}'", .{ param.index, param.actual.fmt(mod), param.wanted.fmt(mod), }); cur = param.child; }, .fn_cc => |cc| { try sema.errNote(block, src, msg, "calling convention '{s}' cannot cast into calling convention '{s}'", .{ @tagName(cc.actual), @tagName(cc.wanted) }); break; }, .fn_return_type => |pair| { try sema.errNote(block, src, msg, "return type '{}' cannot cast into return type '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .ptr_child => |pair| { try sema.errNote(block, src, msg, "pointer type child '{}' cannot cast into pointer type child '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); cur = pair.child; }, .ptr_addrspace => |@"addrspace"| { try sema.errNote(block, src, msg, "address space '{s}' cannot cast into address space '{s}'", .{ @tagName(@"addrspace".actual), @tagName(@"addrspace".wanted) }); break; }, .ptr_sentinel => |sentinel| { if (sentinel.actual.toIntern() != .unreachable_value) { try sema.errNote(block, src, msg, "pointer sentinel '{}' cannot cast into pointer sentinel '{}'", .{ sentinel.actual.fmtValue(sentinel.ty, mod), sentinel.wanted.fmtValue(sentinel.ty, mod), }); } else { try sema.errNote(block, src, msg, "destination pointer requires '{}' sentinel", .{ sentinel.wanted.fmtValue(sentinel.ty, mod), }); } break; }, .ptr_size => |size| { try sema.errNote(block, src, msg, "a {s} pointer cannot cast into a {s} pointer", .{ pointerSizeString(size.actual), pointerSizeString(size.wanted) }); break; }, .ptr_qualifiers => |qualifiers| { const ok_const = !qualifiers.actual_const or qualifiers.wanted_const; const ok_volatile = !qualifiers.actual_volatile or qualifiers.wanted_volatile; if (!ok_const) { try sema.errNote(block, src, msg, "cast discards const qualifier", .{}); } else if (!ok_volatile) { try sema.errNote(block, src, msg, "cast discards volatile qualifier", .{}); } break; }, .ptr_allowzero => |pair| { const wanted_allow_zero = pair.wanted.ptrAllowsZero(mod); const actual_allow_zero = pair.actual.ptrAllowsZero(mod); if (actual_allow_zero and !wanted_allow_zero) { try sema.errNote(block, src, msg, "'{}' could have null values which are illegal in type '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); } else { try sema.errNote(block, src, msg, "mutable '{}' allows illegal null values stored to type '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); } break; }, .ptr_bit_range => |bit_range| { if (bit_range.actual_host != bit_range.wanted_host) { try sema.errNote(block, src, msg, "pointer host size '{}' cannot cast into pointer host size '{}'", .{ bit_range.actual_host, bit_range.wanted_host, }); } if (bit_range.actual_offset != bit_range.wanted_offset) { try sema.errNote(block, src, msg, "pointer bit offset '{}' cannot cast into pointer bit offset '{}'", .{ bit_range.actual_offset, bit_range.wanted_offset, }); } break; }, .ptr_alignment => |pair| { try sema.errNote(block, src, msg, "pointer alignment '{}' cannot cast into pointer alignment '{}'", .{ pair.actual, pair.wanted, }); break; }, .double_ptr_to_anyopaque => |pair| { try sema.errNote(block, src, msg, "cannot implicitly cast double pointer '{}' to anyopaque pointer '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); break; }, .slice_to_anyopaque => |pair| { try sema.errNote(block, src, msg, "cannot implicitly cast slice '{}' to anyopaque pointer '{}'", .{ pair.actual.fmt(mod), pair.wanted.fmt(mod), }); try sema.errNote(block, src, msg, "consider using '.ptr'", .{}); break; }, }; } }; fn pointerSizeString(size: std.builtin.Type.Pointer.Size) []const u8 { return switch (size) { .One => "single", .Many => "many", .C => "C", .Slice => unreachable, }; } /// If pointers have the same representation in runtime memory, a bitcast AIR instruction /// may be used for the coercion. /// * `const` attribute can be gained /// * `volatile` attribute can be gained /// * `allowzero` attribute can be gained (whether from explicit attribute, C pointer, or optional pointer) but only if !dest_is_mut /// * alignment can be decreased /// * bit offset attributes must match exactly /// * `*`/`[*]` must match exactly, but `[*c]` matches either one /// * sentinel-terminated pointers can coerce into `[*]` fn coerceInMemoryAllowed( sema: *Sema, block: *Block, dest_ty: Type, src_ty: Type, dest_is_mut: bool, target: std.Target, dest_src: LazySrcLoc, src_src: LazySrcLoc, ) CompileError!InMemoryCoercionResult { const mod = sema.mod; if (dest_ty.eql(src_ty, mod)) return .ok; const dest_tag = dest_ty.zigTypeTag(mod); const src_tag = src_ty.zigTypeTag(mod); // Differently-named integers with the same number of bits. if (dest_tag == .Int and src_tag == .Int) { const dest_info = dest_ty.intInfo(mod); const src_info = src_ty.intInfo(mod); if (dest_info.signedness == src_info.signedness and dest_info.bits == src_info.bits) { return .ok; } if ((src_info.signedness == dest_info.signedness and dest_info.bits < src_info.bits) or // small enough unsigned ints can get casted to large enough signed ints (dest_info.signedness == .signed and (src_info.signedness == .unsigned or dest_info.bits <= src_info.bits)) or (dest_info.signedness == .unsigned and src_info.signedness == .signed)) { return InMemoryCoercionResult{ .int_not_coercible = .{ .actual_signedness = src_info.signedness, .wanted_signedness = dest_info.signedness, .actual_bits = src_info.bits, .wanted_bits = dest_info.bits, } }; } } // Differently-named floats with the same number of bits. if (dest_tag == .Float and src_tag == .Float) { const dest_bits = dest_ty.floatBits(target); const src_bits = src_ty.floatBits(target); if (dest_bits == src_bits) { return .ok; } } // Pointers / Pointer-like Optionals const maybe_dest_ptr_ty = try sema.typePtrOrOptionalPtrTy(dest_ty); const maybe_src_ptr_ty = try sema.typePtrOrOptionalPtrTy(src_ty); if (maybe_dest_ptr_ty) |dest_ptr_ty| { if (maybe_src_ptr_ty) |src_ptr_ty| { return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ptr_ty, src_ptr_ty, dest_is_mut, target, dest_src, src_src); } } // Slices if (dest_ty.isSlice(mod) and src_ty.isSlice(mod)) { return try sema.coerceInMemoryAllowedPtrs(block, dest_ty, src_ty, dest_ty, src_ty, dest_is_mut, target, dest_src, src_src); } // Functions if (dest_tag == .Fn and src_tag == .Fn) { return try sema.coerceInMemoryAllowedFns(block, dest_ty, src_ty, target, dest_src, src_src); } // Error Unions if (dest_tag == .ErrorUnion and src_tag == .ErrorUnion) { const dest_payload = dest_ty.errorUnionPayload(mod); const src_payload = src_ty.errorUnionPayload(mod); const child = try sema.coerceInMemoryAllowed(block, dest_payload, src_payload, dest_is_mut, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .error_union_payload = .{ .child = try child.dupe(sema.arena), .actual = src_payload, .wanted = dest_payload, } }; } return try sema.coerceInMemoryAllowed(block, dest_ty.errorUnionSet(mod), src_ty.errorUnionSet(mod), dest_is_mut, target, dest_src, src_src); } // Error Sets if (dest_tag == .ErrorSet and src_tag == .ErrorSet) { return try sema.coerceInMemoryAllowedErrorSets(block, dest_ty, src_ty, dest_src, src_src); } // Arrays if (dest_tag == .Array and src_tag == .Array) { const dest_info = dest_ty.arrayInfo(mod); const src_info = src_ty.arrayInfo(mod); if (dest_info.len != src_info.len) { return InMemoryCoercionResult{ .array_len = .{ .actual = src_info.len, .wanted = dest_info.len, } }; } const child = try sema.coerceInMemoryAllowed(block, dest_info.elem_type, src_info.elem_type, dest_is_mut, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .array_elem = .{ .child = try child.dupe(sema.arena), .actual = src_info.elem_type, .wanted = dest_info.elem_type, } }; } const ok_sent = dest_info.sentinel == null or (src_info.sentinel != null and dest_info.sentinel.?.eql( try mod.getCoerced(src_info.sentinel.?, dest_info.elem_type), dest_info.elem_type, mod, )); if (!ok_sent) { return InMemoryCoercionResult{ .array_sentinel = .{ .actual = src_info.sentinel orelse Value.@"unreachable", .wanted = dest_info.sentinel orelse Value.@"unreachable", .ty = dest_info.elem_type, } }; } return .ok; } // Vectors if (dest_tag == .Vector and src_tag == .Vector) { const dest_len = dest_ty.vectorLen(mod); const src_len = src_ty.vectorLen(mod); if (dest_len != src_len) { return InMemoryCoercionResult{ .vector_len = .{ .actual = src_len, .wanted = dest_len, } }; } const dest_elem_ty = dest_ty.scalarType(mod); const src_elem_ty = src_ty.scalarType(mod); const child = try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, dest_is_mut, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .vector_elem = .{ .child = try child.dupe(sema.arena), .actual = src_elem_ty, .wanted = dest_elem_ty, } }; } return .ok; } // Arrays <-> Vectors if ((dest_tag == .Vector and src_tag == .Array) or (dest_tag == .Array and src_tag == .Vector)) { const dest_len = dest_ty.arrayLen(mod); const src_len = src_ty.arrayLen(mod); if (dest_len != src_len) { return InMemoryCoercionResult{ .array_len = .{ .actual = src_len, .wanted = dest_len, } }; } const dest_elem_ty = dest_ty.childType(mod); const src_elem_ty = src_ty.childType(mod); const child = try sema.coerceInMemoryAllowed(block, dest_elem_ty, src_elem_ty, dest_is_mut, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .array_elem = .{ .child = try child.dupe(sema.arena), .actual = src_elem_ty, .wanted = dest_elem_ty, } }; } if (dest_tag == .Array) { const dest_info = dest_ty.arrayInfo(mod); if (dest_info.sentinel != null) { return InMemoryCoercionResult{ .array_sentinel = .{ .actual = Value.@"unreachable", .wanted = dest_info.sentinel.?, .ty = dest_info.elem_type, } }; } } // The memory layout of @Vector(N, iM) is the same as the integer type i(N*M), // that is to say, the padding bits are not in the same place as the array [N]iM. // If there's no padding, the bitcast is possible. const elem_bit_size = dest_elem_ty.bitSize(mod); const elem_abi_byte_size = dest_elem_ty.abiSize(mod); if (elem_abi_byte_size * 8 == elem_bit_size) return .ok; } // Optionals if (dest_tag == .Optional and src_tag == .Optional) { if ((maybe_dest_ptr_ty != null) != (maybe_src_ptr_ty != null)) { return InMemoryCoercionResult{ .optional_shape = .{ .actual = src_ty, .wanted = dest_ty, } }; } const dest_child_type = dest_ty.optionalChild(mod); const src_child_type = src_ty.optionalChild(mod); const child = try sema.coerceInMemoryAllowed(block, dest_child_type, src_child_type, dest_is_mut, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .optional_child = .{ .child = try child.dupe(sema.arena), .actual = src_child_type, .wanted = dest_child_type, } }; } return .ok; } // Tuples (with in-memory-coercible fields) if (dest_ty.isTuple(mod) and src_ty.isTuple(mod)) tuple: { if (dest_ty.containerLayout(mod) != src_ty.containerLayout(mod)) break :tuple; if (dest_ty.structFieldCount(mod) != src_ty.structFieldCount(mod)) break :tuple; const field_count = dest_ty.structFieldCount(mod); for (0..field_count) |field_idx| { if (dest_ty.structFieldIsComptime(field_idx, mod) != src_ty.structFieldIsComptime(field_idx, mod)) break :tuple; if (dest_ty.structFieldAlign(field_idx, mod) != src_ty.structFieldAlign(field_idx, mod)) break :tuple; const dest_field_ty = dest_ty.structFieldType(field_idx, mod); const src_field_ty = src_ty.structFieldType(field_idx, mod); const field = try sema.coerceInMemoryAllowed(block, dest_field_ty, src_field_ty, dest_is_mut, target, dest_src, src_src); if (field != .ok) break :tuple; } return .ok; } return InMemoryCoercionResult{ .no_match = .{ .actual = dest_ty, .wanted = src_ty, } }; } fn coerceInMemoryAllowedErrorSets( sema: *Sema, block: *Block, dest_ty: Type, src_ty: Type, dest_src: LazySrcLoc, src_src: LazySrcLoc, ) !InMemoryCoercionResult { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; // Coercion to `anyerror`. Note that this check can return false negatives // in case the error sets did not get resolved. if (dest_ty.isAnyError(mod)) { return .ok; } if (dest_ty.toIntern() == .adhoc_inferred_error_set_type) { // We are trying to coerce an error set to the current function's // inferred error set. const dst_ies = sema.fn_ret_ty_ies.?; try dst_ies.addErrorSet(src_ty, ip, gpa); return .ok; } if (ip.isInferredErrorSetType(dest_ty.toIntern())) { const dst_ies_func_index = ip.iesFuncIndex(dest_ty.toIntern()); if (sema.fn_ret_ty_ies) |dst_ies| { if (dst_ies.func == dst_ies_func_index) { // We are trying to coerce an error set to the current function's // inferred error set. try dst_ies.addErrorSet(src_ty, ip, gpa); return .ok; } } switch (try sema.resolveInferredErrorSet(block, dest_src, dest_ty.toIntern())) { // isAnyError might have changed from a false negative to a true // positive after resolution. .anyerror_type => return .ok, else => {}, } } var missing_error_buf = std.ArrayList(InternPool.NullTerminatedString).init(gpa); defer missing_error_buf.deinit(); switch (src_ty.toIntern()) { .anyerror_type => switch (ip.indexToKey(dest_ty.toIntern())) { .simple_type => unreachable, // filtered out above .error_set_type, .inferred_error_set_type => return .from_anyerror, else => unreachable, }, else => switch (ip.indexToKey(src_ty.toIntern())) { .inferred_error_set_type => { const resolved_src_ty = try sema.resolveInferredErrorSet(block, src_src, src_ty.toIntern()); // src anyerror status might have changed after the resolution. if (resolved_src_ty == .anyerror_type) { // dest_ty.isAnyError(mod) == true is already checked for at this point. return .from_anyerror; } for (ip.indexToKey(resolved_src_ty).error_set_type.names.get(ip)) |key| { if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), key)) { try missing_error_buf.append(key); } } if (missing_error_buf.items.len != 0) { return InMemoryCoercionResult{ .missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items), }; } return .ok; }, .error_set_type => |error_set_type| { for (error_set_type.names.get(ip)) |name| { if (!Type.errorSetHasFieldIp(ip, dest_ty.toIntern(), name)) { try missing_error_buf.append(name); } } if (missing_error_buf.items.len != 0) { return InMemoryCoercionResult{ .missing_error = try sema.arena.dupe(InternPool.NullTerminatedString, missing_error_buf.items), }; } return .ok; }, else => unreachable, }, } } fn coerceInMemoryAllowedFns( sema: *Sema, block: *Block, dest_ty: Type, src_ty: Type, target: std.Target, dest_src: LazySrcLoc, src_src: LazySrcLoc, ) !InMemoryCoercionResult { const mod = sema.mod; const ip = &mod.intern_pool; const dest_info = mod.typeToFunc(dest_ty).?; const src_info = mod.typeToFunc(src_ty).?; { if (dest_info.is_var_args != src_info.is_var_args) { return InMemoryCoercionResult{ .fn_var_args = dest_info.is_var_args }; } if (dest_info.is_generic != src_info.is_generic) { return InMemoryCoercionResult{ .fn_generic = dest_info.is_generic }; } if (dest_info.cc != src_info.cc) { return InMemoryCoercionResult{ .fn_cc = .{ .actual = src_info.cc, .wanted = dest_info.cc, } }; } switch (src_info.return_type) { .noreturn_type, .generic_poison_type => {}, else => { const dest_return_type = dest_info.return_type.toType(); const src_return_type = src_info.return_type.toType(); const rt = try sema.coerceInMemoryAllowed(block, dest_return_type, src_return_type, false, target, dest_src, src_src); if (rt != .ok) { return InMemoryCoercionResult{ .fn_return_type = .{ .child = try rt.dupe(sema.arena), .actual = src_return_type, .wanted = dest_return_type, } }; } }, } } const params_len = params_len: { if (dest_info.param_types.len != src_info.param_types.len) { return InMemoryCoercionResult{ .fn_param_count = .{ .actual = src_info.param_types.len, .wanted = dest_info.param_types.len, } }; } if (dest_info.noalias_bits != src_info.noalias_bits) { return InMemoryCoercionResult{ .fn_param_noalias = .{ .actual = src_info.noalias_bits, .wanted = dest_info.noalias_bits, } }; } break :params_len dest_info.param_types.len; }; for (0..params_len) |param_i| { const dest_param_ty = dest_info.param_types.get(ip)[param_i].toType(); const src_param_ty = src_info.param_types.get(ip)[param_i].toType(); const param_i_small: u5 = @intCast(param_i); if (dest_info.paramIsComptime(param_i_small) != src_info.paramIsComptime(param_i_small)) { return InMemoryCoercionResult{ .fn_param_comptime = .{ .index = param_i, .wanted = dest_info.paramIsComptime(param_i_small), } }; } switch (src_param_ty.toIntern()) { .generic_poison_type => {}, else => { // Note: Cast direction is reversed here. const param = try sema.coerceInMemoryAllowed(block, src_param_ty, dest_param_ty, false, target, dest_src, src_src); if (param != .ok) { return InMemoryCoercionResult{ .fn_param = .{ .child = try param.dupe(sema.arena), .actual = src_param_ty, .wanted = dest_param_ty, .index = param_i, } }; } }, } } return .ok; } fn coerceInMemoryAllowedPtrs( sema: *Sema, block: *Block, dest_ty: Type, src_ty: Type, dest_ptr_ty: Type, src_ptr_ty: Type, dest_is_mut: bool, target: std.Target, dest_src: LazySrcLoc, src_src: LazySrcLoc, ) !InMemoryCoercionResult { const mod = sema.mod; const dest_info = dest_ptr_ty.ptrInfo(mod); const src_info = src_ptr_ty.ptrInfo(mod); const ok_ptr_size = src_info.flags.size == dest_info.flags.size or src_info.flags.size == .C or dest_info.flags.size == .C; if (!ok_ptr_size) { return InMemoryCoercionResult{ .ptr_size = .{ .actual = src_info.flags.size, .wanted = dest_info.flags.size, } }; } const ok_cv_qualifiers = (!src_info.flags.is_const or dest_info.flags.is_const) and (!src_info.flags.is_volatile or dest_info.flags.is_volatile); if (!ok_cv_qualifiers) { return InMemoryCoercionResult{ .ptr_qualifiers = .{ .actual_const = src_info.flags.is_const, .wanted_const = dest_info.flags.is_const, .actual_volatile = src_info.flags.is_volatile, .wanted_volatile = dest_info.flags.is_volatile, } }; } if (dest_info.flags.address_space != src_info.flags.address_space) { return InMemoryCoercionResult{ .ptr_addrspace = .{ .actual = src_info.flags.address_space, .wanted = dest_info.flags.address_space, } }; } const child = try sema.coerceInMemoryAllowed(block, dest_info.child.toType(), src_info.child.toType(), !dest_info.flags.is_const, target, dest_src, src_src); if (child != .ok) { return InMemoryCoercionResult{ .ptr_child = .{ .child = try child.dupe(sema.arena), .actual = src_info.child.toType(), .wanted = dest_info.child.toType(), } }; } const dest_allow_zero = dest_ty.ptrAllowsZero(mod); const src_allow_zero = src_ty.ptrAllowsZero(mod); const ok_allows_zero = (dest_allow_zero and (src_allow_zero or !dest_is_mut)) or (!dest_allow_zero and !src_allow_zero); if (!ok_allows_zero) { return InMemoryCoercionResult{ .ptr_allowzero = .{ .actual = src_ty, .wanted = dest_ty, } }; } if (src_info.packed_offset.host_size != dest_info.packed_offset.host_size or src_info.packed_offset.bit_offset != dest_info.packed_offset.bit_offset) { return InMemoryCoercionResult{ .ptr_bit_range = .{ .actual_host = src_info.packed_offset.host_size, .wanted_host = dest_info.packed_offset.host_size, .actual_offset = src_info.packed_offset.bit_offset, .wanted_offset = dest_info.packed_offset.bit_offset, } }; } const ok_sent = dest_info.sentinel == .none or src_info.flags.size == .C or (src_info.sentinel != .none and dest_info.sentinel == try mod.intern_pool.getCoerced(sema.gpa, src_info.sentinel, dest_info.child)); if (!ok_sent) { return InMemoryCoercionResult{ .ptr_sentinel = .{ .actual = switch (src_info.sentinel) { .none => Value.@"unreachable", else => src_info.sentinel.toValue(), }, .wanted = switch (dest_info.sentinel) { .none => Value.@"unreachable", else => dest_info.sentinel.toValue(), }, .ty = dest_info.child.toType(), } }; } // If both pointers have alignment 0, it means they both want ABI alignment. // In this case, if they share the same child type, no need to resolve // pointee type alignment. Otherwise both pointee types must have their alignment // resolved and we compare the alignment numerically. if (src_info.flags.alignment != .none or dest_info.flags.alignment != .none or dest_info.child != src_info.child) { const src_align = src_info.flags.alignment.toByteUnitsOptional() orelse src_info.child.toType().abiAlignment(mod); const dest_align = dest_info.flags.alignment.toByteUnitsOptional() orelse dest_info.child.toType().abiAlignment(mod); if (dest_align > src_align) { return InMemoryCoercionResult{ .ptr_alignment = .{ .actual = src_align, .wanted = dest_align, } }; } } return .ok; } fn coerceVarArgParam( sema: *Sema, block: *Block, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { if (block.is_typeof) return inst; const mod = sema.mod; const uncasted_ty = sema.typeOf(inst); const coerced = switch (uncasted_ty.zigTypeTag(mod)) { // TODO consider casting to c_int/f64 if they fit .ComptimeInt, .ComptimeFloat => return sema.fail( block, inst_src, "integer and float literals passed to variadic function must be casted to a fixed-size number type", .{}, ), .Fn => blk: { const fn_val = try sema.resolveConstValue(block, .unneeded, inst, ""); const fn_decl = fn_val.pointerDecl(mod).?; break :blk try sema.analyzeDeclRef(fn_decl); }, .Array => return sema.fail(block, inst_src, "arrays must be passed by reference to variadic function", .{}), .Float => float: { const target = sema.mod.getTarget(); const double_bits = target.c_type_bit_size(.double); const inst_bits = uncasted_ty.floatBits(sema.mod.getTarget()); if (inst_bits >= double_bits) break :float inst; switch (double_bits) { 32 => break :float try sema.coerce(block, Type.f32, inst, inst_src), 64 => break :float try sema.coerce(block, Type.f64, inst, inst_src), else => unreachable, } }, else => inst, }; const coerced_ty = sema.typeOf(coerced); if (!try sema.validateExternType(coerced_ty, .param_ty)) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "cannot pass '{}' to variadic function", .{coerced_ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); const src_decl = sema.mod.declPtr(block.src_decl); try sema.explainWhyTypeIsNotExtern(msg, inst_src.toSrcLoc(src_decl, mod), coerced_ty, .param_ty); try sema.addDeclaredHereNote(msg, coerced_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } return coerced; } // TODO migrate callsites to use storePtr2 instead. fn storePtr( sema: *Sema, block: *Block, src: LazySrcLoc, ptr: Air.Inst.Ref, uncasted_operand: Air.Inst.Ref, ) CompileError!void { const air_tag: Air.Inst.Tag = if (block.wantSafety()) .store_safe else .store; return sema.storePtr2(block, src, ptr, src, uncasted_operand, src, air_tag); } fn storePtr2( sema: *Sema, block: *Block, src: LazySrcLoc, ptr: Air.Inst.Ref, ptr_src: LazySrcLoc, uncasted_operand: Air.Inst.Ref, operand_src: LazySrcLoc, air_tag: Air.Inst.Tag, ) CompileError!void { const mod = sema.mod; const ptr_ty = sema.typeOf(ptr); if (ptr_ty.isConstPtr(mod)) return sema.fail(block, ptr_src, "cannot assign to constant", .{}); const elem_ty = ptr_ty.childType(mod); // To generate better code for tuples, we detect a tuple operand here, and // analyze field loads and stores directly. This avoids an extra allocation + memcpy // which would occur if we used `coerce`. // However, we avoid this mechanism if the destination element type is a tuple, // because the regular store will be better for this case. // If the destination type is a struct we don't want this mechanism to trigger, because // this code does not handle tuple-to-struct coercion which requires dealing with missing // fields. const operand_ty = sema.typeOf(uncasted_operand); if (operand_ty.isTuple(mod) and elem_ty.zigTypeTag(mod) == .Array) { const field_count = operand_ty.structFieldCount(mod); var i: u32 = 0; while (i < field_count) : (i += 1) { const elem_src = operand_src; // TODO better source location const elem = try sema.tupleField(block, operand_src, uncasted_operand, elem_src, i); const elem_index = try mod.intRef(Type.usize, i); const elem_ptr = try sema.elemPtr(block, ptr_src, ptr, elem_index, elem_src, false, true); try sema.storePtr2(block, src, elem_ptr, elem_src, elem, elem_src, .store); } return; } // TODO do the same thing for anon structs as for tuples above. // However, beware of the need to handle missing/extra fields. const is_ret = air_tag == .ret_ptr; // Detect if we are storing an array operand to a bitcasted vector pointer. // If so, we instead reach through the bitcasted pointer to the vector pointer, // bitcast the array operand to a vector, and then lower this as a store of // a vector value to a vector pointer. This generally results in better code, // as well as working around an LLVM bug: // https://github.com/ziglang/zig/issues/11154 if (sema.obtainBitCastedVectorPtr(ptr)) |vector_ptr| { const vector_ty = sema.typeOf(vector_ptr).childType(mod); const vector = sema.coerceExtra(block, vector_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; try sema.storePtr2(block, src, vector_ptr, ptr_src, vector, operand_src, .store); return; } const operand = sema.coerceExtra(block, elem_ty, uncasted_operand, operand_src, .{ .is_ret = is_ret }) catch |err| switch (err) { error.NotCoercible => unreachable, else => |e| return e, }; const maybe_operand_val = try sema.resolveMaybeUndefVal(operand); const runtime_src = if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| rs: { const operand_val = maybe_operand_val orelse { try sema.checkPtrIsNotComptimeMutable(block, ptr_val, ptr_src, operand_src); break :rs operand_src; }; if (ptr_val.isComptimeMutablePtr(mod)) { try sema.storePtrVal(block, src, ptr_val, operand_val, elem_ty); return; } else break :rs ptr_src; } else ptr_src; // We do this after the possible comptime store above, for the case of field_ptr stores // to unions because we want the comptime tag to be set, even if the field type is void. if ((try sema.typeHasOnePossibleValue(elem_ty)) != null) return; if (air_tag == .bitcast) { // `air_tag == .bitcast` is used as a special case for `zirCoerceResultPtr` // to avoid calling `requireRuntimeBlock` for the dummy block. _ = try block.addBinOp(.store, ptr, operand); return; } try sema.requireRuntimeBlock(block, src, runtime_src); try sema.queueFullTypeResolution(elem_ty); if (ptr_ty.ptrInfo(mod).flags.vector_index == .runtime) { const ptr_inst = Air.refToIndex(ptr).?; const air_tags = sema.air_instructions.items(.tag); if (air_tags[ptr_inst] == .ptr_elem_ptr) { const ty_pl = sema.air_instructions.items(.data)[ptr_inst].ty_pl; const bin_op = sema.getTmpAir().extraData(Air.Bin, ty_pl.payload).data; _ = try block.addInst(.{ .tag = .vector_store_elem, .data = .{ .vector_store_elem = .{ .vector_ptr = bin_op.lhs, .payload = try block.sema.addExtra(Air.Bin{ .lhs = bin_op.rhs, .rhs = operand, }), } }, }); return; } return sema.fail(block, ptr_src, "unable to determine vector element index of type '{}'", .{ ptr_ty.fmt(sema.mod), }); } if (is_ret) { _ = try block.addBinOp(.store, ptr, operand); } else { _ = try block.addBinOp(air_tag, ptr, operand); } } /// Traverse an arbitrary number of bitcasted pointers and return the underyling vector /// pointer. Only if the final element type matches the vector element type, and the /// lengths match. fn obtainBitCastedVectorPtr(sema: *Sema, ptr: Air.Inst.Ref) ?Air.Inst.Ref { const mod = sema.mod; const array_ty = sema.typeOf(ptr).childType(mod); if (array_ty.zigTypeTag(mod) != .Array) return null; var ptr_ref = ptr; var ptr_inst = Air.refToIndex(ptr_ref) orelse return null; const air_datas = sema.air_instructions.items(.data); const air_tags = sema.air_instructions.items(.tag); const vector_ty = while (air_tags[ptr_inst] == .bitcast) { ptr_ref = air_datas[ptr_inst].ty_op.operand; if (!sema.isKnownZigType(ptr_ref, .Pointer)) return null; const child_ty = sema.typeOf(ptr_ref).childType(mod); if (child_ty.zigTypeTag(mod) == .Vector) break child_ty; ptr_inst = Air.refToIndex(ptr_ref) orelse return null; } else return null; // We have a pointer-to-array and a pointer-to-vector. If the elements and // lengths match, return the result. if (array_ty.childType(mod).eql(vector_ty.childType(mod), sema.mod) and array_ty.arrayLen(mod) == vector_ty.vectorLen(mod)) { return ptr_ref; } else { return null; } } /// Call when you have Value objects rather than Air instructions, and you want to /// assert the store must be done at comptime. fn storePtrVal( sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, operand_val: Value, operand_ty: Type, ) !void { const mod = sema.mod; var mut_kit = try sema.beginComptimePtrMutation(block, src, ptr_val, operand_ty); try sema.checkComptimeVarStore(block, src, mut_kit.mut_decl); switch (mut_kit.pointee) { .direct => |val_ptr| { if (mut_kit.mut_decl.runtime_index == .comptime_field_ptr) { if (!operand_val.eql(val_ptr.*, operand_ty, mod)) { // TODO use failWithInvalidComptimeFieldStore return sema.fail(block, src, "value stored in comptime field does not match the default value of the field", .{}); } return; } val_ptr.* = (try operand_val.intern(operand_ty, mod)).toValue(); }, .reinterpret => |reinterpret| { const abi_size = try sema.usizeCast(block, src, mut_kit.ty.abiSize(mod)); const buffer = try sema.gpa.alloc(u8, abi_size); defer sema.gpa.free(buffer); reinterpret.val_ptr.*.writeToMemory(mut_kit.ty, mod, buffer) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.ReinterpretDeclRef => unreachable, error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{mut_kit.ty.fmt(mod)}), }; operand_val.writeToMemory(operand_ty, mod, buffer[reinterpret.byte_offset..]) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.ReinterpretDeclRef => unreachable, error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{mut_kit.ty.fmt(mod)}), }; reinterpret.val_ptr.* = (try (try Value.readFromMemory(mut_kit.ty, mod, buffer, sema.arena)).intern(mut_kit.ty, mod)).toValue(); }, .bad_decl_ty, .bad_ptr_ty => { // TODO show the decl declaration site in a note and explain whether the decl // or the pointer is the problematic type return sema.fail( block, src, "comptime mutation of a reinterpreted pointer requires type '{}' to have a well-defined memory layout", .{mut_kit.ty.fmt(mod)}, ); }, } } const ComptimePtrMutationKit = struct { mut_decl: InternPool.Key.Ptr.Addr.MutDecl, pointee: union(enum) { /// The pointer type matches the actual comptime Value so a direct /// modification is possible. direct: *Value, /// The largest parent Value containing pointee and having a well-defined memory layout. /// This is used for bitcasting, if direct dereferencing failed. reinterpret: struct { val_ptr: *Value, byte_offset: usize, }, /// If the root decl could not be used as parent, this means `ty` is the type that /// caused that by not having a well-defined layout. /// This one means the Decl that owns the value trying to be modified does not /// have a well defined memory layout. bad_decl_ty, /// If the root decl could not be used as parent, this means `ty` is the type that /// caused that by not having a well-defined layout. /// This one means the pointer type that is being stored through does not /// have a well defined memory layout. bad_ptr_ty, }, ty: Type, }; fn beginComptimePtrMutation( sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, ptr_elem_ty: Type, ) CompileError!ComptimePtrMutationKit { const mod = sema.mod; const ptr = mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr; switch (ptr.addr) { .decl, .int => unreachable, // isComptimeMutablePtr has been checked already .mut_decl => |mut_decl| { const decl = mod.declPtr(mut_decl.decl); return sema.beginComptimePtrMutationInner(block, src, decl.ty, &decl.val, ptr_elem_ty, mut_decl); }, .comptime_field => |comptime_field| { const duped = try sema.arena.create(Value); duped.* = comptime_field.toValue(); return sema.beginComptimePtrMutationInner(block, src, mod.intern_pool.typeOf(comptime_field).toType(), duped, ptr_elem_ty, .{ .decl = undefined, .runtime_index = .comptime_field_ptr, }); }, .eu_payload => |eu_ptr| { const eu_ty = mod.intern_pool.typeOf(eu_ptr).toType().childType(mod); var parent = try sema.beginComptimePtrMutation(block, src, eu_ptr.toValue(), eu_ty); switch (parent.pointee) { .direct => |val_ptr| { const payload_ty = parent.ty.errorUnionPayload(mod); if (val_ptr.ip_index == .none and val_ptr.tag() == .eu_payload) { return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .direct = &val_ptr.castTag(.eu_payload).?.data }, .ty = payload_ty, }; } else { // An error union has been initialized to undefined at comptime and now we // are for the first time setting the payload. We must change the // representation of the error union from `undef` to `opt_payload`. const payload = try sema.arena.create(Value.Payload.SubValue); payload.* = .{ .base = .{ .tag = .eu_payload }, .data = (try mod.intern(.{ .undef = payload_ty.toIntern() })).toValue(), }; val_ptr.* = Value.initPayload(&payload.base); return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .direct = &payload.data }, .ty = payload_ty, }; } }, .bad_decl_ty, .bad_ptr_ty => return parent, // Even though the parent value type has well-defined memory layout, our // pointer type does not. .reinterpret => return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .bad_ptr_ty, .ty = eu_ty, }, } }, .opt_payload => |opt_ptr| { const opt_ty = mod.intern_pool.typeOf(opt_ptr).toType().childType(mod); var parent = try sema.beginComptimePtrMutation(block, src, opt_ptr.toValue(), opt_ty); switch (parent.pointee) { .direct => |val_ptr| { const payload_ty = parent.ty.optionalChild(mod); switch (val_ptr.ip_index) { .none => return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .direct = &val_ptr.castTag(.opt_payload).?.data }, .ty = payload_ty, }, else => { const payload_val = switch (mod.intern_pool.indexToKey(val_ptr.ip_index)) { .undef => try mod.intern(.{ .undef = payload_ty.toIntern() }), .opt => |opt| switch (opt.val) { .none => try mod.intern(.{ .undef = payload_ty.toIntern() }), else => |payload| payload, }, else => unreachable, }; // An optional has been initialized to undefined at comptime and now we // are for the first time setting the payload. We must change the // representation of the optional from `undef` to `opt_payload`. const payload = try sema.arena.create(Value.Payload.SubValue); payload.* = .{ .base = .{ .tag = .opt_payload }, .data = payload_val.toValue(), }; val_ptr.* = Value.initPayload(&payload.base); return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .direct = &payload.data }, .ty = payload_ty, }; }, } }, .bad_decl_ty, .bad_ptr_ty => return parent, // Even though the parent value type has well-defined memory layout, our // pointer type does not. .reinterpret => return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .bad_ptr_ty, .ty = opt_ty, }, } }, .elem => |elem_ptr| { const base_elem_ty = mod.intern_pool.typeOf(elem_ptr.base).toType().elemType2(mod); var parent = try sema.beginComptimePtrMutation(block, src, elem_ptr.base.toValue(), base_elem_ty); switch (parent.pointee) { .direct => |val_ptr| switch (parent.ty.zigTypeTag(mod)) { .Array, .Vector => { const check_len = parent.ty.arrayLenIncludingSentinel(mod); if (elem_ptr.index >= check_len) { // TODO have the parent include the decl so we can say "declared here" return sema.fail(block, src, "comptime store of index {d} out of bounds of array length {d}", .{ elem_ptr.index, check_len, }); } const elem_ty = parent.ty.childType(mod); // We might have a pointer to multiple elements of the array (e.g. a pointer // to a sub-array). In this case, we just have to reinterpret the relevant // bytes of the whole array rather than any single element. const elem_abi_size_u64 = try sema.typeAbiSize(base_elem_ty); if (elem_abi_size_u64 < try sema.typeAbiSize(ptr_elem_ty)) { const elem_abi_size = try sema.usizeCast(block, src, elem_abi_size_u64); const elem_idx = try sema.usizeCast(block, src, elem_ptr.index); return .{ .mut_decl = parent.mut_decl, .pointee = .{ .reinterpret = .{ .val_ptr = val_ptr, .byte_offset = elem_abi_size * elem_idx, } }, .ty = parent.ty, }; } switch (val_ptr.ip_index) { .none => switch (val_ptr.tag()) { .bytes => { // An array is memory-optimized to store a slice of bytes, but we are about // to modify an individual field and the representation has to change. // If we wanted to avoid this, there would need to be special detection // elsewhere to identify when writing a value to an array element that is stored // using the `bytes` tag, and handle it without making a call to this function. const arena = mod.tmp_hack_arena.allocator(); const bytes = val_ptr.castTag(.bytes).?.data; const dest_len = parent.ty.arrayLenIncludingSentinel(mod); // bytes.len may be one greater than dest_len because of the case when // assigning `[N:S]T` to `[N]T`. This is allowed; the sentinel is omitted. assert(bytes.len >= dest_len); const elems = try arena.alloc(Value, @as(usize, @intCast(dest_len))); for (elems, 0..) |*elem, i| { elem.* = try mod.intValue(elem_ty, bytes[i]); } val_ptr.* = try Value.Tag.aggregate.create(arena, elems); return beginComptimePtrMutationInner( sema, block, src, elem_ty, &elems[@as(usize, @intCast(elem_ptr.index))], ptr_elem_ty, parent.mut_decl, ); }, .repeated => { // An array is memory-optimized to store only a single element value, and // that value is understood to be the same for the entire length of the array. // However, now we want to modify an individual field and so the // representation has to change. If we wanted to avoid this, there would // need to be special detection elsewhere to identify when writing a value to an // array element that is stored using the `repeated` tag, and handle it // without making a call to this function. const arena = mod.tmp_hack_arena.allocator(); const repeated_val = try val_ptr.castTag(.repeated).?.data.intern(parent.ty.childType(mod), mod); const array_len_including_sentinel = try sema.usizeCast(block, src, parent.ty.arrayLenIncludingSentinel(mod)); const elems = try arena.alloc(Value, array_len_including_sentinel); @memset(elems, repeated_val.toValue()); val_ptr.* = try Value.Tag.aggregate.create(arena, elems); return beginComptimePtrMutationInner( sema, block, src, elem_ty, &elems[@as(usize, @intCast(elem_ptr.index))], ptr_elem_ty, parent.mut_decl, ); }, .aggregate => return beginComptimePtrMutationInner( sema, block, src, elem_ty, &val_ptr.castTag(.aggregate).?.data[@as(usize, @intCast(elem_ptr.index))], ptr_elem_ty, parent.mut_decl, ), else => unreachable, }, else => switch (mod.intern_pool.indexToKey(val_ptr.toIntern())) { .undef => { // An array has been initialized to undefined at comptime and now we // are for the first time setting an element. We must change the representation // of the array from `undef` to `array`. const arena = mod.tmp_hack_arena.allocator(); const array_len_including_sentinel = try sema.usizeCast(block, src, parent.ty.arrayLenIncludingSentinel(mod)); const elems = try arena.alloc(Value, array_len_including_sentinel); @memset(elems, (try mod.intern(.{ .undef = elem_ty.toIntern() })).toValue()); val_ptr.* = try Value.Tag.aggregate.create(arena, elems); return beginComptimePtrMutationInner( sema, block, src, elem_ty, &elems[@as(usize, @intCast(elem_ptr.index))], ptr_elem_ty, parent.mut_decl, ); }, else => unreachable, }, } }, else => { if (elem_ptr.index != 0) { // TODO include a "declared here" note for the decl return sema.fail(block, src, "out of bounds comptime store of index {d}", .{ elem_ptr.index, }); } return beginComptimePtrMutationInner( sema, block, src, parent.ty, val_ptr, ptr_elem_ty, parent.mut_decl, ); }, }, .reinterpret => |reinterpret| { if (!base_elem_ty.hasWellDefinedLayout(mod)) { // Even though the parent value type has well-defined memory layout, our // pointer type does not. return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .bad_ptr_ty, .ty = base_elem_ty, }; } const elem_abi_size_u64 = try sema.typeAbiSize(base_elem_ty); const elem_abi_size = try sema.usizeCast(block, src, elem_abi_size_u64); const elem_idx = try sema.usizeCast(block, src, elem_ptr.index); return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .reinterpret = .{ .val_ptr = reinterpret.val_ptr, .byte_offset = reinterpret.byte_offset + elem_abi_size * elem_idx, } }, .ty = parent.ty, }; }, .bad_decl_ty, .bad_ptr_ty => return parent, } }, .field => |field_ptr| { const base_child_ty = mod.intern_pool.typeOf(field_ptr.base).toType().childType(mod); const field_index = @as(u32, @intCast(field_ptr.index)); var parent = try sema.beginComptimePtrMutation(block, src, field_ptr.base.toValue(), base_child_ty); switch (parent.pointee) { .direct => |val_ptr| switch (val_ptr.ip_index) { .empty_struct => { const duped = try sema.arena.create(Value); duped.* = val_ptr.*; return beginComptimePtrMutationInner( sema, block, src, parent.ty.structFieldType(field_index, mod), duped, ptr_elem_ty, parent.mut_decl, ); }, .none => switch (val_ptr.tag()) { .aggregate => return beginComptimePtrMutationInner( sema, block, src, parent.ty.structFieldType(field_index, mod), &val_ptr.castTag(.aggregate).?.data[field_index], ptr_elem_ty, parent.mut_decl, ), .repeated => { const arena = mod.tmp_hack_arena.allocator(); const elems = try arena.alloc(Value, parent.ty.structFieldCount(mod)); @memset(elems, val_ptr.castTag(.repeated).?.data); val_ptr.* = try Value.Tag.aggregate.create(arena, elems); return beginComptimePtrMutationInner( sema, block, src, parent.ty.structFieldType(field_index, mod), &elems[field_index], ptr_elem_ty, parent.mut_decl, ); }, .@"union" => { // We need to set the active field of the union. const union_tag_ty = base_child_ty.unionTagTypeHypothetical(mod); const payload = &val_ptr.castTag(.@"union").?.data; payload.tag = try mod.enumValueFieldIndex(union_tag_ty, field_index); return beginComptimePtrMutationInner( sema, block, src, parent.ty.structFieldType(field_index, mod), &payload.val, ptr_elem_ty, parent.mut_decl, ); }, .slice => switch (field_index) { Value.slice_ptr_index => return beginComptimePtrMutationInner( sema, block, src, parent.ty.slicePtrFieldType(mod), &val_ptr.castTag(.slice).?.data.ptr, ptr_elem_ty, parent.mut_decl, ), Value.slice_len_index => return beginComptimePtrMutationInner( sema, block, src, Type.usize, &val_ptr.castTag(.slice).?.data.len, ptr_elem_ty, parent.mut_decl, ), else => unreachable, }, else => unreachable, }, else => switch (mod.intern_pool.indexToKey(val_ptr.toIntern())) { .undef => { // A struct or union has been initialized to undefined at comptime and now we // are for the first time setting a field. We must change the representation // of the struct/union from `undef` to `struct`/`union`. const arena = mod.tmp_hack_arena.allocator(); switch (parent.ty.zigTypeTag(mod)) { .Struct => { const fields = try arena.alloc(Value, parent.ty.structFieldCount(mod)); for (fields, 0..) |*field, i| field.* = (try mod.intern(.{ .undef = parent.ty.structFieldType(i, mod).toIntern(), })).toValue(); val_ptr.* = try Value.Tag.aggregate.create(arena, fields); return beginComptimePtrMutationInner( sema, block, src, parent.ty.structFieldType(field_index, mod), &fields[field_index], ptr_elem_ty, parent.mut_decl, ); }, .Union => { const payload = try arena.create(Value.Payload.Union); const tag_ty = parent.ty.unionTagTypeHypothetical(mod); const payload_ty = parent.ty.structFieldType(field_index, mod); payload.* = .{ .data = .{ .tag = try mod.enumValueFieldIndex(tag_ty, field_index), .val = (try mod.intern(.{ .undef = payload_ty.toIntern() })).toValue(), } }; val_ptr.* = Value.initPayload(&payload.base); return beginComptimePtrMutationInner( sema, block, src, payload_ty, &payload.data.val, ptr_elem_ty, parent.mut_decl, ); }, .Pointer => { assert(parent.ty.isSlice(mod)); const ptr_ty = parent.ty.slicePtrFieldType(mod); val_ptr.* = try Value.Tag.slice.create(arena, .{ .ptr = (try mod.intern(.{ .undef = ptr_ty.toIntern() })).toValue(), .len = (try mod.intern(.{ .undef = .usize_type })).toValue(), }); switch (field_index) { Value.slice_ptr_index => return beginComptimePtrMutationInner( sema, block, src, ptr_ty, &val_ptr.castTag(.slice).?.data.ptr, ptr_elem_ty, parent.mut_decl, ), Value.slice_len_index => return beginComptimePtrMutationInner( sema, block, src, Type.usize, &val_ptr.castTag(.slice).?.data.len, ptr_elem_ty, parent.mut_decl, ), else => unreachable, } }, else => unreachable, } }, else => unreachable, }, }, .reinterpret => |reinterpret| { const field_offset_u64 = base_child_ty.structFieldOffset(field_index, mod); const field_offset = try sema.usizeCast(block, src, field_offset_u64); return ComptimePtrMutationKit{ .mut_decl = parent.mut_decl, .pointee = .{ .reinterpret = .{ .val_ptr = reinterpret.val_ptr, .byte_offset = reinterpret.byte_offset + field_offset, } }, .ty = parent.ty, }; }, .bad_decl_ty, .bad_ptr_ty => return parent, } }, } } fn beginComptimePtrMutationInner( sema: *Sema, block: *Block, src: LazySrcLoc, decl_ty: Type, decl_val: *Value, ptr_elem_ty: Type, mut_decl: InternPool.Key.Ptr.Addr.MutDecl, ) CompileError!ComptimePtrMutationKit { const mod = sema.mod; const target = mod.getTarget(); const coerce_ok = (try sema.coerceInMemoryAllowed(block, ptr_elem_ty, decl_ty, true, target, src, src)) == .ok; decl_val.* = try decl_val.unintern(sema.arena, mod); if (coerce_ok) { return ComptimePtrMutationKit{ .mut_decl = mut_decl, .pointee = .{ .direct = decl_val }, .ty = decl_ty, }; } // Handle the case that the decl is an array and we're actually trying to point to an element. if (decl_ty.isArrayOrVector(mod)) { const decl_elem_ty = decl_ty.childType(mod); if ((try sema.coerceInMemoryAllowed(block, ptr_elem_ty, decl_elem_ty, true, target, src, src)) == .ok) { return ComptimePtrMutationKit{ .mut_decl = mut_decl, .pointee = .{ .direct = decl_val }, .ty = decl_ty, }; } } if (!decl_ty.hasWellDefinedLayout(mod)) { return ComptimePtrMutationKit{ .mut_decl = mut_decl, .pointee = .bad_decl_ty, .ty = decl_ty, }; } if (!ptr_elem_ty.hasWellDefinedLayout(mod)) { return ComptimePtrMutationKit{ .mut_decl = mut_decl, .pointee = .bad_ptr_ty, .ty = ptr_elem_ty, }; } return ComptimePtrMutationKit{ .mut_decl = mut_decl, .pointee = .{ .reinterpret = .{ .val_ptr = decl_val, .byte_offset = 0, } }, .ty = decl_ty, }; } const TypedValueAndOffset = struct { tv: TypedValue, byte_offset: usize, }; const ComptimePtrLoadKit = struct { /// The Value and Type corresponding to the pointee of the provided pointer. /// If a direct dereference is not possible, this is null. pointee: ?TypedValue, /// The largest parent Value containing `pointee` and having a well-defined memory layout. /// This is used for bitcasting, if direct dereferencing failed (i.e. `pointee` is null). parent: ?TypedValueAndOffset, /// Whether the `pointee` could be mutated by further /// semantic analysis and a copy must be performed. is_mutable: bool, /// If the root decl could not be used as `parent`, this is the type that /// caused that by not having a well-defined layout ty_without_well_defined_layout: ?Type, }; const ComptimePtrLoadError = CompileError || error{ RuntimeLoad, }; /// If `maybe_array_ty` is provided, it will be used to directly dereference an /// .elem_ptr of type T to a value of [N]T, if necessary. fn beginComptimePtrLoad( sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, maybe_array_ty: ?Type, ) ComptimePtrLoadError!ComptimePtrLoadKit { const mod = sema.mod; const target = mod.getTarget(); var deref: ComptimePtrLoadKit = switch (mod.intern_pool.indexToKey(ptr_val.toIntern())) { .ptr => |ptr| switch (ptr.addr) { .decl, .mut_decl => blk: { const decl_index = switch (ptr.addr) { .decl => |decl| decl, .mut_decl => |mut_decl| mut_decl.decl, else => unreachable, }; const is_mutable = ptr.addr == .mut_decl; const decl = mod.declPtr(decl_index); const decl_tv = try decl.typedValue(); if (decl.val.getVariable(mod) != null) return error.RuntimeLoad; const layout_defined = decl.ty.hasWellDefinedLayout(mod); break :blk ComptimePtrLoadKit{ .parent = if (layout_defined) .{ .tv = decl_tv, .byte_offset = 0 } else null, .pointee = decl_tv, .is_mutable = is_mutable, .ty_without_well_defined_layout = if (!layout_defined) decl.ty else null, }; }, .int => return error.RuntimeLoad, .eu_payload, .opt_payload => |container_ptr| blk: { const container_ty = mod.intern_pool.typeOf(container_ptr).toType().childType(mod); const payload_ty = switch (ptr.addr) { .eu_payload => container_ty.errorUnionPayload(mod), .opt_payload => container_ty.optionalChild(mod), else => unreachable, }; var deref = try sema.beginComptimePtrLoad(block, src, container_ptr.toValue(), container_ty); // eu_payload and opt_payload never have a well-defined layout if (deref.parent != null) { deref.parent = null; deref.ty_without_well_defined_layout = container_ty; } if (deref.pointee) |*tv| { const coerce_in_mem_ok = (try sema.coerceInMemoryAllowed(block, container_ty, tv.ty, false, target, src, src)) == .ok or (try sema.coerceInMemoryAllowed(block, tv.ty, container_ty, false, target, src, src)) == .ok; if (coerce_in_mem_ok) { const payload_val = switch (tv.val.ip_index) { .none => tv.val.cast(Value.Payload.SubValue).?.data, .null_value => return sema.fail(block, src, "attempt to use null value", .{}), else => switch (mod.intern_pool.indexToKey(tv.val.toIntern())) { .error_union => |error_union| switch (error_union.val) { .err_name => |err_name| return sema.fail( block, src, "attempt to unwrap error: {}", .{err_name.fmt(&mod.intern_pool)}, ), .payload => |payload| payload, }, .opt => |opt| switch (opt.val) { .none => return sema.fail(block, src, "attempt to use null value", .{}), else => |payload| payload, }, else => unreachable, }.toValue(), }; tv.* = TypedValue{ .ty = payload_ty, .val = payload_val }; break :blk deref; } } deref.pointee = null; break :blk deref; }, .comptime_field => |comptime_field| blk: { const field_ty = mod.intern_pool.typeOf(comptime_field).toType(); break :blk ComptimePtrLoadKit{ .parent = null, .pointee = .{ .ty = field_ty, .val = comptime_field.toValue() }, .is_mutable = false, .ty_without_well_defined_layout = field_ty, }; }, .elem => |elem_ptr| blk: { const elem_ty = mod.intern_pool.typeOf(elem_ptr.base).toType().elemType2(mod); var deref = try sema.beginComptimePtrLoad(block, src, elem_ptr.base.toValue(), null); // This code assumes that elem_ptrs have been "flattened" in order for direct dereference // to succeed, meaning that elem ptrs of the same elem_ty are coalesced. Here we check that // our parent is not an elem_ptr with the same elem_ty, since that would be "unflattened" switch (mod.intern_pool.indexToKey(elem_ptr.base)) { .ptr => |base_ptr| switch (base_ptr.addr) { .elem => |base_elem| assert(!mod.intern_pool.typeOf(base_elem.base).toType().elemType2(mod).eql(elem_ty, mod)), else => {}, }, else => {}, } if (elem_ptr.index != 0) { if (elem_ty.hasWellDefinedLayout(mod)) { if (deref.parent) |*parent| { // Update the byte offset (in-place) const elem_size = try sema.typeAbiSize(elem_ty); const offset = parent.byte_offset + elem_size * elem_ptr.index; parent.byte_offset = try sema.usizeCast(block, src, offset); } } else { deref.parent = null; deref.ty_without_well_defined_layout = elem_ty; } } // If we're loading an elem that was derived from a different type // than the true type of the underlying decl, we cannot deref directly const ty_matches = if (deref.pointee != null and deref.pointee.?.ty.isArrayOrVector(mod)) x: { const deref_elem_ty = deref.pointee.?.ty.childType(mod); break :x (try sema.coerceInMemoryAllowed(block, deref_elem_ty, elem_ty, false, target, src, src)) == .ok or (try sema.coerceInMemoryAllowed(block, elem_ty, deref_elem_ty, false, target, src, src)) == .ok; } else false; if (!ty_matches) { deref.pointee = null; break :blk deref; } var array_tv = deref.pointee.?; const check_len = array_tv.ty.arrayLenIncludingSentinel(mod); if (maybe_array_ty) |load_ty| { // It's possible that we're loading a [N]T, in which case we'd like to slice // the pointee array directly from our parent array. if (load_ty.isArrayOrVector(mod) and load_ty.childType(mod).eql(elem_ty, mod)) { const len = try sema.usizeCast(block, src, load_ty.arrayLenIncludingSentinel(mod)); const elem_idx = try sema.usizeCast(block, src, elem_ptr.index); deref.pointee = if (elem_ptr.index + len <= check_len) TypedValue{ .ty = try mod.arrayType(.{ .len = len, .child = elem_ty.toIntern(), }), .val = try array_tv.val.sliceArray(mod, sema.arena, elem_idx, elem_idx + len), } else null; break :blk deref; } } if (elem_ptr.index >= check_len) { deref.pointee = null; break :blk deref; } if (elem_ptr.index == check_len - 1) { if (array_tv.ty.sentinel(mod)) |sent| { deref.pointee = TypedValue{ .ty = elem_ty, .val = sent, }; break :blk deref; } } deref.pointee = TypedValue{ .ty = elem_ty, .val = try array_tv.val.elemValue(mod, @as(usize, @intCast(elem_ptr.index))), }; break :blk deref; }, .field => |field_ptr| blk: { const field_index = @as(u32, @intCast(field_ptr.index)); const container_ty = mod.intern_pool.typeOf(field_ptr.base).toType().childType(mod); var deref = try sema.beginComptimePtrLoad(block, src, field_ptr.base.toValue(), container_ty); if (container_ty.hasWellDefinedLayout(mod)) { const struct_obj = mod.typeToStruct(container_ty); if (struct_obj != null and struct_obj.?.layout == .Packed) { // packed structs are not byte addressable deref.parent = null; } else if (deref.parent) |*parent| { // Update the byte offset (in-place) try sema.resolveTypeLayout(container_ty); const field_offset = container_ty.structFieldOffset(field_index, mod); parent.byte_offset = try sema.usizeCast(block, src, parent.byte_offset + field_offset); } } else { deref.parent = null; deref.ty_without_well_defined_layout = container_ty; } const tv = deref.pointee orelse { deref.pointee = null; break :blk deref; }; const coerce_in_mem_ok = (try sema.coerceInMemoryAllowed(block, container_ty, tv.ty, false, target, src, src)) == .ok or (try sema.coerceInMemoryAllowed(block, tv.ty, container_ty, false, target, src, src)) == .ok; if (!coerce_in_mem_ok) { deref.pointee = null; break :blk deref; } if (container_ty.isSlice(mod)) { deref.pointee = switch (field_index) { Value.slice_ptr_index => TypedValue{ .ty = container_ty.slicePtrFieldType(mod), .val = tv.val.slicePtr(mod), }, Value.slice_len_index => TypedValue{ .ty = Type.usize, .val = mod.intern_pool.indexToKey(try tv.val.intern(tv.ty, mod)).ptr.len.toValue(), }, else => unreachable, }; } else { const field_ty = container_ty.structFieldType(field_index, mod); deref.pointee = TypedValue{ .ty = field_ty, .val = try tv.val.fieldValue(mod, field_index), }; } break :blk deref; }, }, .opt => |opt| switch (opt.val) { .none => return sema.fail(block, src, "attempt to use null value", .{}), else => |payload| try sema.beginComptimePtrLoad(block, src, payload.toValue(), null), }, else => unreachable, }; if (deref.pointee) |tv| { if (deref.parent == null and tv.ty.hasWellDefinedLayout(mod)) { deref.parent = .{ .tv = tv, .byte_offset = 0 }; } } return deref; } fn bitCast( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, operand_src: ?LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; try sema.resolveTypeLayout(dest_ty); const old_ty = sema.typeOf(inst); try sema.resolveTypeLayout(old_ty); const dest_bits = dest_ty.bitSize(mod); const old_bits = old_ty.bitSize(mod); if (old_bits != dest_bits) { return sema.fail(block, inst_src, "@bitCast size mismatch: destination type '{}' has {d} bits but source type '{}' has {d} bits", .{ dest_ty.fmt(mod), dest_bits, old_ty.fmt(mod), old_bits, }); } if (try sema.resolveMaybeUndefVal(inst)) |val| { if (try sema.bitCastVal(block, inst_src, val, old_ty, dest_ty, 0)) |result_val| { return Air.internedToRef(result_val.toIntern()); } } try sema.requireRuntimeBlock(block, inst_src, operand_src); return block.addBitCast(dest_ty, inst); } fn bitCastVal( sema: *Sema, block: *Block, src: LazySrcLoc, val: Value, old_ty: Type, new_ty: Type, buffer_offset: usize, ) !?Value { const mod = sema.mod; if (old_ty.eql(new_ty, mod)) return val; // For types with well-defined memory layouts, we serialize them a byte buffer, // then deserialize to the new type. const abi_size = try sema.usizeCast(block, src, old_ty.abiSize(mod)); const buffer = try sema.gpa.alloc(u8, abi_size); defer sema.gpa.free(buffer); val.writeToMemory(old_ty, mod, buffer) catch |err| switch (err) { error.OutOfMemory => return error.OutOfMemory, error.ReinterpretDeclRef => return null, error.IllDefinedMemoryLayout => unreachable, // Sema was supposed to emit a compile error already error.Unimplemented => return sema.fail(block, src, "TODO: implement writeToMemory for type '{}'", .{old_ty.fmt(mod)}), }; return try Value.readFromMemory(new_ty, mod, buffer[buffer_offset..], sema.arena); } fn coerceArrayPtrToSlice( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; if (try sema.resolveMaybeUndefVal(inst)) |val| { const ptr_array_ty = sema.typeOf(inst); const array_ty = ptr_array_ty.childType(mod); const slice_val = try mod.intern(.{ .ptr = .{ .ty = dest_ty.toIntern(), .addr = switch (mod.intern_pool.indexToKey(val.toIntern())) { .undef => .{ .int = try mod.intern(.{ .undef = .usize_type }) }, .ptr => |ptr| ptr.addr, else => unreachable, }, .len = (try mod.intValue(Type.usize, array_ty.arrayLen(mod))).toIntern(), } }); return Air.internedToRef(slice_val); } try sema.requireRuntimeBlock(block, inst_src, null); return block.addTyOp(.array_to_slice, dest_ty, inst); } fn checkPtrAttributes(sema: *Sema, dest_ty: Type, inst_ty: Type, in_memory_result: *InMemoryCoercionResult) bool { const mod = sema.mod; const dest_info = dest_ty.ptrInfo(mod); const inst_info = inst_ty.ptrInfo(mod); const len0 = (inst_info.child.toType().zigTypeTag(mod) == .Array and (inst_info.child.toType().arrayLenIncludingSentinel(mod) == 0 or (inst_info.child.toType().arrayLen(mod) == 0 and dest_info.sentinel == .none and dest_info.flags.size != .C and dest_info.flags.size != .Many))) or (inst_info.child.toType().isTuple(mod) and inst_info.child.toType().structFieldCount(mod) == 0); const ok_cv_qualifiers = ((!inst_info.flags.is_const or dest_info.flags.is_const) or len0) and (!inst_info.flags.is_volatile or dest_info.flags.is_volatile); if (!ok_cv_qualifiers) { in_memory_result.* = .{ .ptr_qualifiers = .{ .actual_const = inst_info.flags.is_const, .wanted_const = dest_info.flags.is_const, .actual_volatile = inst_info.flags.is_volatile, .wanted_volatile = dest_info.flags.is_volatile, } }; return false; } if (dest_info.flags.address_space != inst_info.flags.address_space) { in_memory_result.* = .{ .ptr_addrspace = .{ .actual = inst_info.flags.address_space, .wanted = dest_info.flags.address_space, } }; return false; } if (inst_info.flags.alignment == .none and dest_info.flags.alignment == .none) return true; if (len0) return true; const inst_align = inst_info.flags.alignment.toByteUnitsOptional() orelse inst_info.child.toType().abiAlignment(mod); const dest_align = dest_info.flags.alignment.toByteUnitsOptional() orelse dest_info.child.toType().abiAlignment(mod); if (dest_align > inst_align) { in_memory_result.* = .{ .ptr_alignment = .{ .actual = inst_align, .wanted = dest_align, } }; return false; } return true; } fn coerceCompatiblePtrs( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const inst_ty = sema.typeOf(inst); if (try sema.resolveMaybeUndefVal(inst)) |val| { if (!val.isUndef(mod) and val.isNull(mod) and !dest_ty.isAllowzeroPtr(mod)) { return sema.fail(block, inst_src, "null pointer casted to type '{}'", .{dest_ty.fmt(sema.mod)}); } // The comptime Value representation is compatible with both types. return Air.internedToRef( (try mod.getCoerced((try val.intern(inst_ty, mod)).toValue(), dest_ty)).toIntern(), ); } try sema.requireRuntimeBlock(block, inst_src, null); const inst_allows_zero = inst_ty.zigTypeTag(mod) != .Pointer or inst_ty.ptrAllowsZero(mod); if (block.wantSafety() and inst_allows_zero and !dest_ty.ptrAllowsZero(mod) and (try sema.typeHasRuntimeBits(dest_ty.elemType2(mod)) or dest_ty.elemType2(mod).zigTypeTag(mod) == .Fn)) { const actual_ptr = if (inst_ty.isSlice(mod)) try sema.analyzeSlicePtr(block, inst_src, inst, inst_ty) else inst; const ptr_int = try block.addUnOp(.int_from_ptr, actual_ptr); const is_non_zero = try block.addBinOp(.cmp_neq, ptr_int, .zero_usize); const ok = if (inst_ty.isSlice(mod)) ok: { const len = try sema.analyzeSliceLen(block, inst_src, inst); const len_zero = try block.addBinOp(.cmp_eq, len, .zero_usize); break :ok try block.addBinOp(.bit_or, len_zero, is_non_zero); } else is_non_zero; try sema.addSafetyCheck(block, inst_src, ok, .cast_to_null); } return sema.bitCast(block, dest_ty, inst, inst_src, null); } fn coerceEnumToUnion( sema: *Sema, block: *Block, union_ty: Type, union_ty_src: LazySrcLoc, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const inst_ty = sema.typeOf(inst); const tag_ty = union_ty.unionTagType(mod) orelse { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{ union_ty.fmt(sema.mod), inst_ty.fmt(sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, union_ty_src, msg, "cannot coerce enum to untagged union", .{}); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; const enum_tag = try sema.coerce(block, tag_ty, inst, inst_src); if (try sema.resolveDefinedValue(block, inst_src, enum_tag)) |val| { const field_index = union_ty.unionTagFieldIndex(val, sema.mod) orelse { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "union '{}' has no tag with value '{}'", .{ union_ty.fmt(sema.mod), val.fmtValue(tag_ty, sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; const union_obj = mod.typeToUnion(union_ty).?; const field = union_obj.fields.values()[field_index]; try sema.resolveTypeFields(field.ty); if (field.ty.zigTypeTag(mod) == .NoReturn) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "cannot initialize 'noreturn' field of union", .{}); errdefer msg.destroy(sema.gpa); const field_name = union_obj.fields.keys()[field_index]; try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{ field_name.fmt(ip), }); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const opv = (try sema.typeHasOnePossibleValue(field.ty)) orelse { const msg = msg: { const field_name = union_obj.fields.keys()[field_index]; const msg = try sema.errMsg(block, inst_src, "coercion from enum '{}' to union '{}' must initialize '{}' field '{}'", .{ inst_ty.fmt(sema.mod), union_ty.fmt(sema.mod), field.ty.fmt(sema.mod), field_name.fmt(ip), }); errdefer msg.destroy(sema.gpa); try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' declared here", .{ field_name.fmt(ip), }); try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; return Air.internedToRef((try mod.unionValue(union_ty, val, opv)).toIntern()); } try sema.requireRuntimeBlock(block, inst_src, null); if (tag_ty.isNonexhaustiveEnum(mod)) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "runtime coercion to union '{}' from non-exhaustive enum", .{ union_ty.fmt(sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, tag_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const union_obj = mod.typeToUnion(union_ty).?; { var msg: ?*Module.ErrorMsg = null; errdefer if (msg) |some| some.destroy(sema.gpa); for (union_obj.fields.values(), 0..) |field, i| { if (field.ty.zigTypeTag(mod) == .NoReturn) { const err_msg = msg orelse try sema.errMsg( block, inst_src, "runtime coercion from enum '{}' to union '{}' which has a 'noreturn' field", .{ tag_ty.fmt(sema.mod), union_ty.fmt(sema.mod) }, ); msg = err_msg; try sema.addFieldErrNote(union_ty, i, err_msg, "'noreturn' field here", .{}); } } if (msg) |some| { msg = null; try sema.addDeclaredHereNote(some, union_ty); return sema.failWithOwnedErrorMsg(some); } } // If the union has all fields 0 bits, the union value is just the enum value. if (union_ty.unionHasAllZeroBitFieldTypes(mod)) { return block.addBitCast(union_ty, enum_tag); } const msg = msg: { const msg = try sema.errMsg( block, inst_src, "runtime coercion from enum '{}' to union '{}' which has non-void fields", .{ tag_ty.fmt(sema.mod), union_ty.fmt(sema.mod) }, ); errdefer msg.destroy(sema.gpa); var it = union_obj.fields.iterator(); var field_index: usize = 0; while (it.next()) |field| : (field_index += 1) { const field_name = field.key_ptr.*; const field_ty = field.value_ptr.ty; if (!(try sema.typeHasRuntimeBits(field_ty))) continue; try sema.addFieldErrNote(union_ty, field_index, msg, "field '{}' has type '{}'", .{ field_name.fmt(ip), field_ty.fmt(sema.mod), }); } try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn coerceAnonStructToUnion( sema: *Sema, block: *Block, union_ty: Type, union_ty_src: LazySrcLoc, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const inst_ty = sema.typeOf(inst); const field_info: union(enum) { name: InternPool.NullTerminatedString, count: usize, } = switch (mod.intern_pool.indexToKey(inst_ty.toIntern())) { .anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len == 1) .{ .name = anon_struct_type.names[0] } else .{ .count = anon_struct_type.names.len }, .struct_type => |struct_type| name: { const field_names = mod.structPtrUnwrap(struct_type.index).?.fields.keys(); break :name if (field_names.len == 1) .{ .name = field_names[0] } else .{ .count = field_names.len }; }, else => unreachable, }; switch (field_info) { .name => |field_name| { const init = try sema.structFieldVal(block, inst_src, inst, field_name, inst_src, inst_ty); return sema.unionInit(block, init, inst_src, union_ty, union_ty_src, field_name, inst_src); }, .count => |field_count| { assert(field_count != 1); const msg = msg: { const msg = if (field_count > 1) try sema.errMsg( block, inst_src, "cannot initialize multiple union fields at once; unions can only have one active field", .{}, ) else try sema.errMsg( block, inst_src, "union initializer must initialize one field", .{}, ); errdefer msg.destroy(sema.gpa); // TODO add notes for where the anon struct was created to point out // the extra fields. try sema.addDeclaredHereNote(msg, union_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }, } } fn coerceAnonStructToUnionPtrs( sema: *Sema, block: *Block, ptr_union_ty: Type, union_ty_src: LazySrcLoc, ptr_anon_struct: Air.Inst.Ref, anon_struct_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const union_ty = ptr_union_ty.childType(mod); const anon_struct = try sema.analyzeLoad(block, anon_struct_src, ptr_anon_struct, anon_struct_src); const union_inst = try sema.coerceAnonStructToUnion(block, union_ty, union_ty_src, anon_struct, anon_struct_src); return sema.analyzeRef(block, union_ty_src, union_inst); } fn coerceAnonStructToStructPtrs( sema: *Sema, block: *Block, ptr_struct_ty: Type, struct_ty_src: LazySrcLoc, ptr_anon_struct: Air.Inst.Ref, anon_struct_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const struct_ty = ptr_struct_ty.childType(mod); const anon_struct = try sema.analyzeLoad(block, anon_struct_src, ptr_anon_struct, anon_struct_src); const struct_inst = try sema.coerceTupleToStruct(block, struct_ty, anon_struct, anon_struct_src); return sema.analyzeRef(block, struct_ty_src, struct_inst); } /// If the lengths match, coerces element-wise. fn coerceArrayLike( sema: *Sema, block: *Block, dest_ty: Type, dest_ty_src: LazySrcLoc, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const inst_ty = sema.typeOf(inst); const target = mod.getTarget(); // try coercion of the whole array const in_memory_result = try sema.coerceInMemoryAllowed(block, dest_ty, inst_ty, false, target, dest_ty_src, inst_src); if (in_memory_result == .ok) { if (try sema.resolveMaybeUndefVal(inst)) |inst_val| { // These types share the same comptime value representation. return sema.coerceInMemory(inst_val, dest_ty); } try sema.requireRuntimeBlock(block, inst_src, null); return block.addBitCast(dest_ty, inst); } // otherwise, try element by element const inst_len = inst_ty.arrayLen(mod); const dest_len = try sema.usizeCast(block, dest_ty_src, dest_ty.arrayLen(mod)); if (dest_len != inst_len) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(mod), inst_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, dest_ty_src, msg, "destination has length {d}", .{dest_len}); try sema.errNote(block, inst_src, msg, "source has length {d}", .{inst_len}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const dest_elem_ty = dest_ty.childType(mod); const element_vals = try sema.arena.alloc(InternPool.Index, dest_len); const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_len); var runtime_src: ?LazySrcLoc = null; for (element_vals, element_refs, 0..) |*val, *ref, i| { const index_ref = Air.internedToRef((try mod.intValue(Type.usize, i)).toIntern()); const src = inst_src; // TODO better source location const elem_src = inst_src; // TODO better source location const elem_ref = try sema.elemValArray(block, src, inst_src, inst, elem_src, index_ref, true); const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src); ref.* = coerced; if (runtime_src == null) { if (try sema.resolveMaybeUndefVal(coerced)) |elem_val| { val.* = try elem_val.intern(dest_elem_ty, mod); } else { runtime_src = elem_src; } } } if (runtime_src) |rs| { try sema.requireRuntimeBlock(block, inst_src, rs); return block.addAggregateInit(dest_ty, element_refs); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = dest_ty.toIntern(), .storage = .{ .elems = element_vals }, } }))); } /// If the lengths match, coerces element-wise. fn coerceTupleToArray( sema: *Sema, block: *Block, dest_ty: Type, dest_ty_src: LazySrcLoc, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const inst_ty = sema.typeOf(inst); const inst_len = inst_ty.arrayLen(mod); const dest_len = dest_ty.arrayLen(mod); if (dest_len != inst_len) { const msg = msg: { const msg = try sema.errMsg(block, inst_src, "expected type '{}', found '{}'", .{ dest_ty.fmt(sema.mod), inst_ty.fmt(sema.mod), }); errdefer msg.destroy(sema.gpa); try sema.errNote(block, dest_ty_src, msg, "destination has length {d}", .{dest_len}); try sema.errNote(block, inst_src, msg, "source has length {d}", .{inst_len}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } const dest_elems = try sema.usizeCast(block, dest_ty_src, dest_len); const element_vals = try sema.arena.alloc(InternPool.Index, dest_elems); const element_refs = try sema.arena.alloc(Air.Inst.Ref, dest_elems); const dest_elem_ty = dest_ty.childType(mod); var runtime_src: ?LazySrcLoc = null; for (element_vals, element_refs, 0..) |*val, *ref, i_usize| { const i = @as(u32, @intCast(i_usize)); if (i_usize == inst_len) { const sentinel_val = dest_ty.sentinel(mod).?; val.* = sentinel_val.toIntern(); ref.* = Air.internedToRef(sentinel_val.toIntern()); break; } const elem_src = inst_src; // TODO better source location const elem_ref = try sema.tupleField(block, inst_src, inst, elem_src, i); const coerced = try sema.coerce(block, dest_elem_ty, elem_ref, elem_src); ref.* = coerced; if (runtime_src == null) { if (try sema.resolveMaybeUndefVal(coerced)) |elem_val| { val.* = try elem_val.intern(dest_elem_ty, mod); } else { runtime_src = elem_src; } } } if (runtime_src) |rs| { try sema.requireRuntimeBlock(block, inst_src, rs); return block.addAggregateInit(dest_ty, element_refs); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = dest_ty.toIntern(), .storage = .{ .elems = element_vals }, } }))); } /// If the lengths match, coerces element-wise. fn coerceTupleToSlicePtrs( sema: *Sema, block: *Block, slice_ty: Type, slice_ty_src: LazySrcLoc, ptr_tuple: Air.Inst.Ref, tuple_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const tuple_ty = sema.typeOf(ptr_tuple).childType(mod); const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src); const slice_info = slice_ty.ptrInfo(mod); const array_ty = try mod.arrayType(.{ .len = tuple_ty.structFieldCount(mod), .sentinel = slice_info.sentinel, .child = slice_info.child, }); const array_inst = try sema.coerceTupleToArray(block, array_ty, slice_ty_src, tuple, tuple_src); if (slice_info.flags.alignment != .none) { return sema.fail(block, slice_ty_src, "TODO: override the alignment of the array decl we create here", .{}); } const ptr_array = try sema.analyzeRef(block, slice_ty_src, array_inst); return sema.coerceArrayPtrToSlice(block, slice_ty, ptr_array, slice_ty_src); } /// If the lengths match, coerces element-wise. fn coerceTupleToArrayPtrs( sema: *Sema, block: *Block, ptr_array_ty: Type, array_ty_src: LazySrcLoc, ptr_tuple: Air.Inst.Ref, tuple_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const tuple = try sema.analyzeLoad(block, tuple_src, ptr_tuple, tuple_src); const ptr_info = ptr_array_ty.ptrInfo(mod); const array_ty = ptr_info.child.toType(); const array_inst = try sema.coerceTupleToArray(block, array_ty, array_ty_src, tuple, tuple_src); if (ptr_info.flags.alignment != .none) { return sema.fail(block, array_ty_src, "TODO: override the alignment of the array decl we create here", .{}); } const ptr_array = try sema.analyzeRef(block, array_ty_src, array_inst); return ptr_array; } /// Handles both tuples and anon struct literals. Coerces field-wise. Reports /// errors for both extra fields and missing fields. fn coerceTupleToStruct( sema: *Sema, block: *Block, struct_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; try sema.resolveTypeFields(struct_ty); if (struct_ty.isTupleOrAnonStruct(mod)) { return sema.coerceTupleToTuple(block, struct_ty, inst, inst_src); } const fields = struct_ty.structFields(mod); const field_vals = try sema.arena.alloc(InternPool.Index, fields.count()); const field_refs = try sema.arena.alloc(Air.Inst.Ref, field_vals.len); @memset(field_refs, .none); const inst_ty = sema.typeOf(inst); var runtime_src: ?LazySrcLoc = null; const field_count = switch (ip.indexToKey(inst_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.types.len, .struct_type => |struct_type| if (mod.structPtrUnwrap(struct_type.index)) |struct_obj| struct_obj.fields.count() else 0, else => unreachable, }; for (0..field_count) |field_index_usize| { const field_i = @as(u32, @intCast(field_index_usize)); const field_src = inst_src; // TODO better source location // https://github.com/ziglang/zig/issues/15709 const field_name: InternPool.NullTerminatedString = switch (ip.indexToKey(inst_ty.toIntern())) { .anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len > 0) anon_struct_type.names[field_i] else try ip.getOrPutStringFmt(sema.gpa, "{d}", .{field_i}), .struct_type => |struct_type| mod.structPtrUnwrap(struct_type.index).?.fields.keys()[field_i], else => unreachable, }; const field_index = try sema.structFieldIndex(block, struct_ty, field_name, field_src); const field = fields.values()[field_index]; const elem_ref = try sema.tupleField(block, inst_src, inst, field_src, field_i); const coerced = try sema.coerce(block, field.ty, elem_ref, field_src); field_refs[field_index] = coerced; if (field.is_comptime) { const init_val = (try sema.resolveMaybeUndefVal(coerced)) orelse { return sema.failWithNeededComptime(block, field_src, "value stored in comptime field must be comptime-known"); }; if (!init_val.eql(field.default_val.toValue(), field.ty, sema.mod)) { return sema.failWithInvalidComptimeFieldStore(block, field_src, inst_ty, field_i); } } if (runtime_src == null) { if (try sema.resolveMaybeUndefVal(coerced)) |field_val| { field_vals[field_index] = field_val.toIntern(); } else { runtime_src = field_src; } } } // Populate default field values and report errors for missing fields. var root_msg: ?*Module.ErrorMsg = null; errdefer if (root_msg) |msg| msg.destroy(sema.gpa); for (field_refs, 0..) |*field_ref, i| { if (field_ref.* != .none) continue; const field_name = fields.keys()[i]; const field = fields.values()[i]; const field_src = inst_src; // TODO better source location if (field.default_val == .none) { const template = "missing struct field: {}"; const args = .{field_name.fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, field_src, msg, template, args); } else { root_msg = try sema.errMsg(block, field_src, template, args); } continue; } if (runtime_src == null) { field_vals[i] = field.default_val; } else { field_ref.* = Air.internedToRef(field.default_val); } } if (root_msg) |msg| { try sema.addDeclaredHereNote(msg, struct_ty); root_msg = null; return sema.failWithOwnedErrorMsg(msg); } if (runtime_src) |rs| { try sema.requireRuntimeBlock(block, inst_src, rs); return block.addAggregateInit(struct_ty, field_refs); } const struct_val = try mod.intern(.{ .aggregate = .{ .ty = struct_ty.toIntern(), .storage = .{ .elems = field_vals }, } }); // TODO: figure out InternPool removals for incremental compilation //errdefer ip.remove(struct_val); return Air.internedToRef(struct_val); } fn coerceTupleToTuple( sema: *Sema, block: *Block, tuple_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const dest_field_count = switch (ip.indexToKey(tuple_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.types.len, .struct_type => |struct_type| if (mod.structPtrUnwrap(struct_type.index)) |struct_obj| struct_obj.fields.count() else 0, else => unreachable, }; const field_vals = try sema.arena.alloc(InternPool.Index, dest_field_count); const field_refs = try sema.arena.alloc(Air.Inst.Ref, field_vals.len); @memset(field_refs, .none); const inst_ty = sema.typeOf(inst); const src_field_count = switch (ip.indexToKey(inst_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.types.len, .struct_type => |struct_type| if (mod.structPtrUnwrap(struct_type.index)) |struct_obj| struct_obj.fields.count() else 0, else => unreachable, }; if (src_field_count > dest_field_count) return error.NotCoercible; var runtime_src: ?LazySrcLoc = null; for (0..dest_field_count) |field_index_usize| { const field_i = @as(u32, @intCast(field_index_usize)); const field_src = inst_src; // TODO better source location // https://github.com/ziglang/zig/issues/15709 const field_name: InternPool.NullTerminatedString = switch (ip.indexToKey(inst_ty.toIntern())) { .anon_struct_type => |anon_struct_type| if (anon_struct_type.names.len > 0) anon_struct_type.names[field_i] else try ip.getOrPutStringFmt(sema.gpa, "{d}", .{field_i}), .struct_type => |struct_type| mod.structPtrUnwrap(struct_type.index).?.fields.keys()[field_i], else => unreachable, }; if (ip.stringEqlSlice(field_name, "len")) return sema.fail(block, field_src, "cannot assign to 'len' field of tuple", .{}); const field_ty = switch (ip.indexToKey(tuple_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.types[field_index_usize].toType(), .struct_type => |struct_type| mod.structPtrUnwrap(struct_type.index).?.fields.values()[field_index_usize].ty, else => unreachable, }; const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.values[field_index_usize], .struct_type => |struct_type| mod.structPtrUnwrap(struct_type.index).?.fields.values()[field_index_usize].default_val, else => unreachable, }; const field_index = try sema.tupleFieldIndex(block, tuple_ty, field_name, field_src); const elem_ref = try sema.tupleField(block, inst_src, inst, field_src, field_i); const coerced = try sema.coerce(block, field_ty, elem_ref, field_src); field_refs[field_index] = coerced; if (default_val != .none) { const init_val = (try sema.resolveMaybeUndefVal(coerced)) orelse { return sema.failWithNeededComptime(block, field_src, "value stored in comptime field must be comptime-known"); }; if (!init_val.eql(default_val.toValue(), field_ty, sema.mod)) { return sema.failWithInvalidComptimeFieldStore(block, field_src, inst_ty, field_i); } } if (runtime_src == null) { if (try sema.resolveMaybeUndefVal(coerced)) |field_val| { field_vals[field_index] = field_val.toIntern(); } else { runtime_src = field_src; } } } // Populate default field values and report errors for missing fields. var root_msg: ?*Module.ErrorMsg = null; errdefer if (root_msg) |msg| msg.destroy(sema.gpa); for (field_refs, 0..) |*field_ref, i| { if (field_ref.* != .none) continue; const default_val = switch (ip.indexToKey(tuple_ty.toIntern())) { .anon_struct_type => |anon_struct_type| anon_struct_type.values[i], .struct_type => |struct_type| mod.structPtrUnwrap(struct_type.index).?.fields.values()[i].default_val, else => unreachable, }; const field_src = inst_src; // TODO better source location if (default_val == .none) { if (tuple_ty.isTuple(mod)) { const template = "missing tuple field: {d}"; if (root_msg) |msg| { try sema.errNote(block, field_src, msg, template, .{i}); } else { root_msg = try sema.errMsg(block, field_src, template, .{i}); } continue; } const template = "missing struct field: {}"; const args = .{tuple_ty.structFieldName(i, mod).fmt(ip)}; if (root_msg) |msg| { try sema.errNote(block, field_src, msg, template, args); } else { root_msg = try sema.errMsg(block, field_src, template, args); } continue; } if (runtime_src == null) { field_vals[i] = default_val; } else { field_ref.* = Air.internedToRef(default_val); } } if (root_msg) |msg| { try sema.addDeclaredHereNote(msg, tuple_ty); root_msg = null; return sema.failWithOwnedErrorMsg(msg); } if (runtime_src) |rs| { try sema.requireRuntimeBlock(block, inst_src, rs); return block.addAggregateInit(tuple_ty, field_refs); } return Air.internedToRef((try mod.intern(.{ .aggregate = .{ .ty = tuple_ty.toIntern(), .storage = .{ .elems = field_vals }, } }))); } fn analyzeDeclVal( sema: *Sema, block: *Block, src: LazySrcLoc, decl_index: Decl.Index, ) CompileError!Air.Inst.Ref { try sema.addReferencedBy(block, src, decl_index); if (sema.decl_val_table.get(decl_index)) |result| { return result; } const decl_ref = try sema.analyzeDeclRefInner(decl_index, false); const result = try sema.analyzeLoad(block, src, decl_ref, src); if (Air.refToInterned(result) != null) { if (!block.is_typeof) { try sema.decl_val_table.put(sema.gpa, decl_index, result); } } return result; } fn addReferencedBy( sema: *Sema, block: *Block, src: LazySrcLoc, decl_index: Decl.Index, ) !void { if (sema.mod.comp.reference_trace == 0) return; if (src == .unneeded) { // We can't use NeededSourceLocation, since sites handling that assume it means a compile // error. Our long-term strategy here is to gradually transition from NeededSourceLocation // into having more LazySrcLoc tags. In the meantime, let release compilers just ignore this // reference (a slightly-incomplete error is better than a crash!), but trigger a panic in // debug so we can fix this case. if (std.debug.runtime_safety) unreachable else return; } try sema.mod.reference_table.put(sema.gpa, decl_index, .{ .referencer = block.src_decl, .src = src, }); } fn ensureDeclAnalyzed(sema: *Sema, decl_index: Decl.Index) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; const decl = mod.declPtr(decl_index); if (decl.analysis == .in_progress) { const msg = try Module.ErrorMsg.create(sema.gpa, decl.srcLoc(mod), "dependency loop detected", .{}); return sema.failWithOwnedErrorMsg(msg); } mod.ensureDeclAnalyzed(decl_index) catch |err| { if (sema.owner_func_index != .none) { ip.funcAnalysis(sema.owner_func_index).state = .dependency_failure; } else { sema.owner_decl.analysis = .dependency_failure; } return err; }; } fn ensureFuncBodyAnalyzed(sema: *Sema, func: InternPool.Index) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; mod.ensureFuncBodyAnalyzed(func) catch |err| { if (sema.owner_func_index != .none) { ip.funcAnalysis(sema.owner_func_index).state = .dependency_failure; } else { sema.owner_decl.analysis = .dependency_failure; } return err; }; } fn refValue(sema: *Sema, block: *Block, ty: Type, val: Value) !Value { const mod = sema.mod; var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const decl = try anon_decl.finish( ty, val, .none, // default alignment ); try sema.maybeQueueFuncBodyAnalysis(decl); try mod.declareDeclDependency(sema.owner_decl_index, decl); const result = try mod.intern(.{ .ptr = .{ .ty = (try mod.singleConstPtrType(ty)).toIntern(), .addr = .{ .decl = decl }, } }); return result.toValue(); } fn optRefValue(sema: *Sema, block: *Block, ty: Type, opt_val: ?Value) !Value { const mod = sema.mod; const ptr_anyopaque_ty = try mod.singleConstPtrType(Type.anyopaque); return (try mod.intern(.{ .opt = .{ .ty = (try mod.optionalType(ptr_anyopaque_ty.toIntern())).toIntern(), .val = if (opt_val) |val| (try mod.getCoerced( try sema.refValue(block, ty, val), ptr_anyopaque_ty, )).toIntern() else .none, } })).toValue(); } fn analyzeDeclRef(sema: *Sema, decl_index: Decl.Index) CompileError!Air.Inst.Ref { return sema.analyzeDeclRefInner(decl_index, true); } /// Analyze a reference to the decl at the given index. Ensures the underlying decl is analyzed, but /// only triggers analysis for function bodies if `analyze_fn_body` is true. If it's possible for a /// decl_ref to end up in runtime code, the function body must be analyzed: `analyzeDeclRef` wraps /// this function with `analyze_fn_body` set to true. fn analyzeDeclRefInner(sema: *Sema, decl_index: Decl.Index, analyze_fn_body: bool) CompileError!Air.Inst.Ref { const mod = sema.mod; try mod.declareDeclDependency(sema.owner_decl_index, decl_index); try sema.ensureDeclAnalyzed(decl_index); const decl = mod.declPtr(decl_index); const decl_tv = try decl.typedValue(); const ptr_ty = try mod.ptrType(.{ .child = decl_tv.ty.toIntern(), .flags = .{ .alignment = decl.alignment, .is_const = if (decl.val.getVariable(mod)) |variable| variable.is_const else true, .address_space = decl.@"addrspace", }, }); if (analyze_fn_body) { try sema.maybeQueueFuncBodyAnalysis(decl_index); } return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_ty.toIntern(), .addr = .{ .decl = decl_index }, } }))); } fn maybeQueueFuncBodyAnalysis(sema: *Sema, decl_index: Decl.Index) !void { const mod = sema.mod; const decl = mod.declPtr(decl_index); const tv = try decl.typedValue(); if (tv.ty.zigTypeTag(mod) != .Fn) return; if (!try sema.fnHasRuntimeBits(tv.ty)) return; const func_index = tv.val.toIntern(); if (!mod.intern_pool.isFuncBody(func_index)) return; // undef or extern function try mod.ensureFuncBodyAnalysisQueued(func_index); } fn analyzeRef( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const operand_ty = sema.typeOf(operand); if (try sema.resolveMaybeUndefVal(operand)) |val| { switch (mod.intern_pool.indexToKey(val.toIntern())) { .extern_func => |extern_func| return sema.analyzeDeclRef(extern_func.decl), .func => |func| return sema.analyzeDeclRef(func.owner_decl), else => {}, } var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); return sema.analyzeDeclRef(try anon_decl.finish( operand_ty, val, .none, // default alignment )); } try sema.requireRuntimeBlock(block, src, null); const address_space = target_util.defaultAddressSpace(mod.getTarget(), .local); const ptr_type = try mod.ptrType(.{ .child = operand_ty.toIntern(), .flags = .{ .is_const = true, .address_space = address_space, }, }); const mut_ptr_type = try mod.ptrType(.{ .child = operand_ty.toIntern(), .flags = .{ .address_space = address_space }, }); const alloc = try block.addTy(.alloc, mut_ptr_type); try sema.storePtr(block, src, alloc, operand); // TODO: Replace with sema.coerce when that supports adding pointer constness. return sema.bitCast(block, ptr_type, alloc, src, null); } fn analyzeLoad( sema: *Sema, block: *Block, src: LazySrcLoc, ptr: Air.Inst.Ref, ptr_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ptr_ty = sema.typeOf(ptr); const elem_ty = switch (ptr_ty.zigTypeTag(mod)) { .Pointer => ptr_ty.childType(mod), else => return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ty.fmt(sema.mod)}), }; if (try sema.typeHasOnePossibleValue(elem_ty)) |opv| { return Air.internedToRef(opv.toIntern()); } if (try sema.resolveDefinedValue(block, ptr_src, ptr)) |ptr_val| { if (try sema.pointerDeref(block, src, ptr_val, ptr_ty)) |elem_val| { return Air.internedToRef(elem_val.toIntern()); } } if (ptr_ty.ptrInfo(mod).flags.vector_index == .runtime) { const ptr_inst = Air.refToIndex(ptr).?; const air_tags = sema.air_instructions.items(.tag); if (air_tags[ptr_inst] == .ptr_elem_ptr) { const ty_pl = sema.air_instructions.items(.data)[ptr_inst].ty_pl; const bin_op = sema.getTmpAir().extraData(Air.Bin, ty_pl.payload).data; return block.addBinOp(.ptr_elem_val, bin_op.lhs, bin_op.rhs); } return sema.fail(block, ptr_src, "unable to determine vector element index of type '{}'", .{ ptr_ty.fmt(sema.mod), }); } return block.addTyOp(.load, elem_ty, ptr); } fn analyzeSlicePtr( sema: *Sema, block: *Block, slice_src: LazySrcLoc, slice: Air.Inst.Ref, slice_ty: Type, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const result_ty = slice_ty.slicePtrFieldType(mod); if (try sema.resolveMaybeUndefVal(slice)) |val| { if (val.isUndef(mod)) return mod.undefRef(result_ty); return Air.internedToRef(val.slicePtr(mod).toIntern()); } try sema.requireRuntimeBlock(block, slice_src, null); return block.addTyOp(.slice_ptr, result_ty, slice); } fn analyzeSliceLen( sema: *Sema, block: *Block, src: LazySrcLoc, slice_inst: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; if (try sema.resolveMaybeUndefVal(slice_inst)) |slice_val| { if (slice_val.isUndef(mod)) { return mod.undefRef(Type.usize); } return mod.intRef(Type.usize, slice_val.sliceLen(sema.mod)); } try sema.requireRuntimeBlock(block, src, null); return block.addTyOp(.slice_len, Type.usize, slice_inst); } fn analyzeIsNull( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, invert_logic: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const result_ty = Type.bool; if (try sema.resolveMaybeUndefVal(operand)) |opt_val| { if (opt_val.isUndef(mod)) { return mod.undefRef(result_ty); } const is_null = opt_val.isNull(mod); const bool_value = if (invert_logic) !is_null else is_null; if (bool_value) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } const inverted_non_null_res = if (invert_logic) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false; const operand_ty = sema.typeOf(operand); if (operand_ty.zigTypeTag(mod) == .Optional and operand_ty.optionalChild(mod).zigTypeTag(mod) == .NoReturn) { return inverted_non_null_res; } if (operand_ty.zigTypeTag(mod) != .Optional and !operand_ty.isPtrLikeOptional(mod)) { return inverted_non_null_res; } try sema.requireRuntimeBlock(block, src, null); const air_tag: Air.Inst.Tag = if (invert_logic) .is_non_null else .is_null; return block.addUnOp(air_tag, operand); } fn analyzePtrIsNonErrComptimeOnly( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ptr_ty = sema.typeOf(operand); assert(ptr_ty.zigTypeTag(mod) == .Pointer); const child_ty = ptr_ty.childType(mod); const child_tag = child_ty.zigTypeTag(mod); if (child_tag != .ErrorSet and child_tag != .ErrorUnion) return Air.Inst.Ref.bool_true; if (child_tag == .ErrorSet) return Air.Inst.Ref.bool_false; assert(child_tag == .ErrorUnion); _ = block; _ = src; return Air.Inst.Ref.none; } fn analyzeIsNonErrComptimeOnly( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const operand_ty = sema.typeOf(operand); const ot = operand_ty.zigTypeTag(mod); if (ot != .ErrorSet and ot != .ErrorUnion) return .bool_true; if (ot == .ErrorSet) return .bool_false; assert(ot == .ErrorUnion); const payload_ty = operand_ty.errorUnionPayload(mod); if (payload_ty.zigTypeTag(mod) == .NoReturn) { return .bool_false; } if (Air.refToIndex(operand)) |operand_inst| { switch (sema.air_instructions.items(.tag)[operand_inst]) { .wrap_errunion_payload => return .bool_true, .wrap_errunion_err => return .bool_false, else => {}, } } else if (operand == .undef) { return mod.undefRef(Type.bool); } else if (@intFromEnum(operand) < InternPool.static_len) { // None of the ref tags can be errors. return .bool_true; } const maybe_operand_val = try sema.resolveMaybeUndefVal(operand); // exception if the error union error set is known to be empty, // we allow the comparison but always make it comptime-known. const set_ty = ip.errorUnionSet(operand_ty.toIntern()); switch (set_ty) { .anyerror_type => {}, .adhoc_inferred_error_set_type => if (sema.fn_ret_ty_ies) |ies| blk: { // If the error set is empty, we must return a comptime true or false. // However we want to avoid unnecessarily resolving an inferred error set // in case it is already non-empty. switch (ies.resolved) { .anyerror_type => break :blk, .none => {}, else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk, } if (maybe_operand_val != null) break :blk; // Try to avoid resolving inferred error set if possible. if (ies.errors.count() != 0) return .none; switch (ies.resolved) { .anyerror_type => return .none, .none => {}, else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) { 0 => return .bool_true, else => return .none, }, } // We do not have a comptime answer because this inferred error // set is not resolved, and an instruction later in this function // body may or may not cause an error to be added to this set. return .none; }, else => switch (ip.indexToKey(set_ty)) { .error_set_type => |error_set_type| { if (error_set_type.names.len == 0) return .bool_true; }, .inferred_error_set_type => |func_index| blk: { // If the error set is empty, we must return a comptime true or false. // However we want to avoid unnecessarily resolving an inferred error set // in case it is already non-empty. switch (ip.funcIesResolved(func_index).*) { .anyerror_type => break :blk, .none => {}, else => |i| if (ip.indexToKey(i).error_set_type.names.len != 0) break :blk, } if (maybe_operand_val != null) break :blk; if (sema.fn_ret_ty_ies) |ies| { if (ies.func == func_index) { // Try to avoid resolving inferred error set if possible. if (ies.errors.count() != 0) return .none; switch (ies.resolved) { .anyerror_type => return .none, .none => {}, else => switch (ip.indexToKey(ies.resolved).error_set_type.names.len) { 0 => return .bool_true, else => return .none, }, } // We do not have a comptime answer because this inferred error // set is not resolved, and an instruction later in this function // body may or may not cause an error to be added to this set. return .none; } } const resolved_ty = try sema.resolveInferredErrorSet(block, src, set_ty); if (resolved_ty == .anyerror_type) break :blk; if (ip.indexToKey(resolved_ty).error_set_type.names.len == 0) return .bool_true; }, else => unreachable, }, } if (maybe_operand_val) |err_union| { if (err_union.isUndef(mod)) { return mod.undefRef(Type.bool); } if (err_union.getErrorName(mod) == .none) { return .bool_true; } else { return .bool_false; } } return .none; } fn analyzeIsNonErr( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const result = try sema.analyzeIsNonErrComptimeOnly(block, src, operand); if (result == .none) { try sema.requireRuntimeBlock(block, src, null); return block.addUnOp(.is_non_err, operand); } else { return result; } } fn analyzePtrIsNonErr( sema: *Sema, block: *Block, src: LazySrcLoc, operand: Air.Inst.Ref, ) CompileError!Air.Inst.Ref { const result = try sema.analyzePtrIsNonErrComptimeOnly(block, src, operand); if (result == .none) { try sema.requireRuntimeBlock(block, src, null); return block.addUnOp(.is_non_err_ptr, operand); } else { return result; } } fn analyzeSlice( sema: *Sema, block: *Block, src: LazySrcLoc, ptr_ptr: Air.Inst.Ref, uncasted_start: Air.Inst.Ref, uncasted_end_opt: Air.Inst.Ref, sentinel_opt: Air.Inst.Ref, sentinel_src: LazySrcLoc, ptr_src: LazySrcLoc, start_src: LazySrcLoc, end_src: LazySrcLoc, by_length: bool, ) CompileError!Air.Inst.Ref { const mod = sema.mod; // Slice expressions can operate on a variable whose type is an array. This requires // the slice operand to be a pointer. In the case of a non-array, it will be a double pointer. const ptr_ptr_ty = sema.typeOf(ptr_ptr); const ptr_ptr_child_ty = switch (ptr_ptr_ty.zigTypeTag(mod)) { .Pointer => ptr_ptr_ty.childType(mod), else => return sema.fail(block, ptr_src, "expected pointer, found '{}'", .{ptr_ptr_ty.fmt(mod)}), }; var array_ty = ptr_ptr_child_ty; var slice_ty = ptr_ptr_ty; var ptr_or_slice = ptr_ptr; var elem_ty: Type = undefined; var ptr_sentinel: ?Value = null; switch (ptr_ptr_child_ty.zigTypeTag(mod)) { .Array => { ptr_sentinel = ptr_ptr_child_ty.sentinel(mod); elem_ty = ptr_ptr_child_ty.childType(mod); }, .Pointer => switch (ptr_ptr_child_ty.ptrSize(mod)) { .One => { const double_child_ty = ptr_ptr_child_ty.childType(mod); if (double_child_ty.zigTypeTag(mod) == .Array) { ptr_sentinel = double_child_ty.sentinel(mod); ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src); slice_ty = ptr_ptr_child_ty; array_ty = double_child_ty; elem_ty = double_child_ty.childType(mod); } else { return sema.fail(block, src, "slice of single-item pointer", .{}); } }, .Many, .C => { ptr_sentinel = ptr_ptr_child_ty.sentinel(mod); ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src); slice_ty = ptr_ptr_child_ty; array_ty = ptr_ptr_child_ty; elem_ty = ptr_ptr_child_ty.childType(mod); if (ptr_ptr_child_ty.ptrSize(mod) == .C) { if (try sema.resolveDefinedValue(block, ptr_src, ptr_or_slice)) |ptr_val| { if (ptr_val.isNull(mod)) { return sema.fail(block, src, "slice of null pointer", .{}); } } } }, .Slice => { ptr_sentinel = ptr_ptr_child_ty.sentinel(mod); ptr_or_slice = try sema.analyzeLoad(block, src, ptr_ptr, ptr_src); slice_ty = ptr_ptr_child_ty; array_ty = ptr_ptr_child_ty; elem_ty = ptr_ptr_child_ty.childType(mod); }, }, else => return sema.fail(block, src, "slice of non-array type '{}'", .{ptr_ptr_child_ty.fmt(mod)}), } const ptr = if (slice_ty.isSlice(mod)) try sema.analyzeSlicePtr(block, ptr_src, ptr_or_slice, slice_ty) else if (array_ty.zigTypeTag(mod) == .Array) ptr: { var manyptr_ty_key = mod.intern_pool.indexToKey(slice_ty.toIntern()).ptr_type; assert(manyptr_ty_key.child == array_ty.toIntern()); assert(manyptr_ty_key.flags.size == .One); manyptr_ty_key.child = elem_ty.toIntern(); manyptr_ty_key.flags.size = .Many; break :ptr try sema.coerceCompatiblePtrs(block, try mod.ptrType(manyptr_ty_key), ptr_or_slice, ptr_src); } else ptr_or_slice; const start = try sema.coerce(block, Type.usize, uncasted_start, start_src); const new_ptr = try sema.analyzePtrArithmetic(block, src, ptr, start, .ptr_add, ptr_src, start_src); const new_ptr_ty = sema.typeOf(new_ptr); // true if and only if the end index of the slice, implicitly or explicitly, equals // the length of the underlying object being sliced. we might learn the length of the // underlying object because it is an array (which has the length in the type), or // we might learn of the length because it is a comptime-known slice value. var end_is_len = uncasted_end_opt == .none; const end = e: { if (array_ty.zigTypeTag(mod) == .Array) { const len_val = try mod.intValue(Type.usize, array_ty.arrayLen(mod)); if (!end_is_len) { const end = if (by_length) end: { const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false); break :end try sema.coerce(block, Type.usize, uncasted_end, end_src); } else try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); if (try sema.resolveMaybeUndefVal(end)) |end_val| { const len_s_val = try mod.intValue( Type.usize, array_ty.arrayLenIncludingSentinel(mod), ); if (!(try sema.compareAll(end_val, .lte, len_s_val, Type.usize))) { const sentinel_label: []const u8 = if (array_ty.sentinel(mod) != null) " +1 (sentinel)" else ""; return sema.fail( block, end_src, "end index {} out of bounds for array of length {}{s}", .{ end_val.fmtValue(Type.usize, mod), len_val.fmtValue(Type.usize, mod), sentinel_label, }, ); } // end_is_len is only true if we are NOT using the sentinel // length. For sentinel-length, we don't want the type to // contain the sentinel. if (end_val.eql(len_val, Type.usize, mod)) { end_is_len = true; } } break :e end; } break :e Air.internedToRef(len_val.toIntern()); } else if (slice_ty.isSlice(mod)) { if (!end_is_len) { const end = if (by_length) end: { const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false); break :end try sema.coerce(block, Type.usize, uncasted_end, end_src); } else try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| { if (try sema.resolveMaybeUndefVal(ptr_or_slice)) |slice_val| { if (slice_val.isUndef(mod)) { return sema.fail(block, src, "slice of undefined", .{}); } const has_sentinel = slice_ty.sentinel(mod) != null; const slice_len = slice_val.sliceLen(mod); const len_plus_sent = slice_len + @intFromBool(has_sentinel); const slice_len_val_with_sentinel = try mod.intValue(Type.usize, len_plus_sent); if (!(try sema.compareAll(end_val, .lte, slice_len_val_with_sentinel, Type.usize))) { const sentinel_label: []const u8 = if (has_sentinel) " +1 (sentinel)" else ""; return sema.fail( block, end_src, "end index {} out of bounds for slice of length {d}{s}", .{ end_val.fmtValue(Type.usize, mod), slice_val.sliceLen(mod), sentinel_label, }, ); } // If the slice has a sentinel, we consider end_is_len // is only true if it equals the length WITHOUT the // sentinel, so we don't add a sentinel type. const slice_len_val = try mod.intValue(Type.usize, slice_len); if (end_val.eql(slice_len_val, Type.usize, mod)) { end_is_len = true; } } } break :e end; } break :e try sema.analyzeSliceLen(block, src, ptr_or_slice); } if (!end_is_len) { if (by_length) { const len = try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); const uncasted_end = try sema.analyzeArithmetic(block, .add, start, len, src, start_src, end_src, false); break :e try sema.coerce(block, Type.usize, uncasted_end, end_src); } else break :e try sema.coerce(block, Type.usize, uncasted_end_opt, end_src); } return sema.fail(block, src, "slice of pointer must include end value", .{}); }; const sentinel = s: { if (sentinel_opt != .none) { const casted = try sema.coerce(block, elem_ty, sentinel_opt, sentinel_src); break :s try sema.resolveConstValue(block, sentinel_src, casted, "slice sentinel must be comptime-known"); } // If we are slicing to the end of something that is sentinel-terminated // then the resulting slice type is also sentinel-terminated. if (end_is_len) { if (ptr_sentinel) |sent| { break :s sent; } } break :s null; }; const slice_sentinel = if (sentinel_opt != .none) sentinel else null; var checked_start_lte_end = by_length; var runtime_src: ?LazySrcLoc = null; // requirement: start <= end if (try sema.resolveDefinedValue(block, end_src, end)) |end_val| { if (try sema.resolveDefinedValue(block, start_src, start)) |start_val| { if (!by_length and !(try sema.compareAll(start_val, .lte, end_val, Type.usize))) { return sema.fail( block, start_src, "start index {} is larger than end index {}", .{ start_val.fmtValue(Type.usize, mod), end_val.fmtValue(Type.usize, mod), }, ); } checked_start_lte_end = true; if (try sema.resolveMaybeUndefVal(new_ptr)) |ptr_val| sentinel_check: { const expected_sentinel = sentinel orelse break :sentinel_check; const start_int = start_val.getUnsignedInt(mod).?; const end_int = end_val.getUnsignedInt(mod).?; const sentinel_index = try sema.usizeCast(block, end_src, end_int - start_int); const many_ptr_ty = try mod.manyConstPtrType(elem_ty); const many_ptr_val = try mod.getCoerced(ptr_val, many_ptr_ty); const elem_ptr_ty = try mod.singleConstPtrType(elem_ty); const elem_ptr = try many_ptr_val.elemPtr(elem_ptr_ty, sentinel_index, mod); const res = try sema.pointerDerefExtra(block, src, elem_ptr, elem_ty); const actual_sentinel = switch (res) { .runtime_load => break :sentinel_check, .val => |v| v, .needed_well_defined => |ty| return sema.fail( block, src, "comptime dereference requires '{}' to have a well-defined layout, but it does not.", .{ty.fmt(mod)}, ), .out_of_bounds => |ty| return sema.fail( block, end_src, "slice end index {d} exceeds bounds of containing decl of type '{}'", .{ end_int, ty.fmt(mod) }, ), }; if (!actual_sentinel.eql(expected_sentinel, elem_ty, mod)) { const msg = msg: { const msg = try sema.errMsg(block, src, "value in memory does not match slice sentinel", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "expected '{}', found '{}'", .{ expected_sentinel.fmtValue(elem_ty, mod), actual_sentinel.fmtValue(elem_ty, mod), }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } else { runtime_src = ptr_src; } } else { runtime_src = start_src; } } else { runtime_src = end_src; } if (!checked_start_lte_end and block.wantSafety() and !block.is_comptime) { // requirement: start <= end assert(!block.is_comptime); try sema.requireRuntimeBlock(block, src, runtime_src.?); const ok = try block.addBinOp(.cmp_lte, start, end); if (!sema.mod.comp.formatted_panics) { try sema.addSafetyCheck(block, src, ok, .start_index_greater_than_end); } else { try sema.safetyCheckFormatted(block, src, ok, "panicStartGreaterThanEnd", &.{ start, end }); } } const new_len = if (by_length) try sema.coerce(block, Type.usize, uncasted_end_opt, end_src) else try sema.analyzeArithmetic(block, .sub, end, start, src, end_src, start_src, false); const opt_new_len_val = try sema.resolveDefinedValue(block, src, new_len); const new_ptr_ty_info = new_ptr_ty.ptrInfo(mod); const new_allowzero = new_ptr_ty_info.flags.is_allowzero and sema.typeOf(ptr).ptrSize(mod) != .C; if (opt_new_len_val) |new_len_val| { const new_len_int = new_len_val.toUnsignedInt(mod); const return_ty = try mod.ptrType(.{ .child = (try mod.arrayType(.{ .len = new_len_int, .sentinel = if (sentinel) |s| s.toIntern() else .none, .child = elem_ty.toIntern(), })).toIntern(), .flags = .{ .alignment = new_ptr_ty_info.flags.alignment, .is_const = new_ptr_ty_info.flags.is_const, .is_allowzero = new_allowzero, .is_volatile = new_ptr_ty_info.flags.is_volatile, .address_space = new_ptr_ty_info.flags.address_space, }, }); const opt_new_ptr_val = try sema.resolveMaybeUndefVal(new_ptr); const new_ptr_val = opt_new_ptr_val orelse { const result = try block.addBitCast(return_ty, new_ptr); if (block.wantSafety()) { // requirement: slicing C ptr is non-null if (ptr_ptr_child_ty.isCPtr(mod)) { const is_non_null = try sema.analyzeIsNull(block, ptr_src, ptr, true); try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null); } if (slice_ty.isSlice(mod)) { const slice_len_inst = try block.addTyOp(.slice_len, Type.usize, ptr_or_slice); const actual_len = if (slice_ty.sentinel(mod) == null) slice_len_inst else try sema.analyzeArithmetic(block, .add, slice_len_inst, .one, src, end_src, end_src, true); const actual_end = if (slice_sentinel != null) try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true) else end; try sema.panicIndexOutOfBounds(block, src, actual_end, actual_len, .cmp_lte); } // requirement: result[new_len] == slice_sentinel try sema.panicSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len); } return result; }; if (!new_ptr_val.isUndef(mod)) { return Air.internedToRef((try mod.getCoerced( (try new_ptr_val.intern(new_ptr_ty, mod)).toValue(), return_ty, )).toIntern()); } // Special case: @as([]i32, undefined)[x..x] if (new_len_int == 0) { return mod.undefRef(return_ty); } return sema.fail(block, src, "non-zero length slice of undefined pointer", .{}); } const return_ty = try mod.ptrType(.{ .child = elem_ty.toIntern(), .sentinel = if (sentinel) |s| s.toIntern() else .none, .flags = .{ .size = .Slice, .alignment = new_ptr_ty_info.flags.alignment, .is_const = new_ptr_ty_info.flags.is_const, .is_volatile = new_ptr_ty_info.flags.is_volatile, .is_allowzero = new_allowzero, .address_space = new_ptr_ty_info.flags.address_space, }, }); try sema.requireRuntimeBlock(block, src, runtime_src.?); if (block.wantSafety()) { // requirement: slicing C ptr is non-null if (ptr_ptr_child_ty.isCPtr(mod)) { const is_non_null = try sema.analyzeIsNull(block, ptr_src, ptr, true); try sema.addSafetyCheck(block, src, is_non_null, .unwrap_null); } // requirement: end <= len const opt_len_inst = if (array_ty.zigTypeTag(mod) == .Array) try mod.intRef(Type.usize, array_ty.arrayLenIncludingSentinel(mod)) else if (slice_ty.isSlice(mod)) blk: { if (try sema.resolveDefinedValue(block, src, ptr_or_slice)) |slice_val| { // we don't need to add one for sentinels because the // underlying value data includes the sentinel break :blk try mod.intRef(Type.usize, slice_val.sliceLen(mod)); } const slice_len_inst = try block.addTyOp(.slice_len, Type.usize, ptr_or_slice); if (slice_ty.sentinel(mod) == null) break :blk slice_len_inst; // we have to add one because slice lengths don't include the sentinel break :blk try sema.analyzeArithmetic(block, .add, slice_len_inst, .one, src, end_src, end_src, true); } else null; if (opt_len_inst) |len_inst| { const actual_end = if (slice_sentinel != null) try sema.analyzeArithmetic(block, .add, end, .one, src, end_src, end_src, true) else end; try sema.panicIndexOutOfBounds(block, src, actual_end, len_inst, .cmp_lte); } // requirement: start <= end try sema.panicIndexOutOfBounds(block, src, start, end, .cmp_lte); } const result = try block.addInst(.{ .tag = .slice, .data = .{ .ty_pl = .{ .ty = Air.internedToRef(return_ty.toIntern()), .payload = try sema.addExtra(Air.Bin{ .lhs = new_ptr, .rhs = new_len, }), } }, }); if (block.wantSafety()) { // requirement: result[new_len] == slice_sentinel try sema.panicSentinelMismatch(block, src, slice_sentinel, elem_ty, result, new_len); } return result; } /// Asserts that lhs and rhs types are both numeric. fn cmpNumeric( sema: *Sema, block: *Block, src: LazySrcLoc, uncasted_lhs: Air.Inst.Ref, uncasted_rhs: Air.Inst.Ref, op: std.math.CompareOperator, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const lhs_ty = sema.typeOf(uncasted_lhs); const rhs_ty = sema.typeOf(uncasted_rhs); assert(lhs_ty.isNumeric(mod)); assert(rhs_ty.isNumeric(mod)); const lhs_ty_tag = lhs_ty.zigTypeTag(mod); const rhs_ty_tag = rhs_ty.zigTypeTag(mod); const target = mod.getTarget(); // One exception to heterogeneous comparison: comptime_float needs to // coerce to fixed-width float. const lhs = if (lhs_ty_tag == .ComptimeFloat and rhs_ty_tag == .Float) try sema.coerce(block, rhs_ty, uncasted_lhs, lhs_src) else uncasted_lhs; const rhs = if (lhs_ty_tag == .Float and rhs_ty_tag == .ComptimeFloat) try sema.coerce(block, lhs_ty, uncasted_rhs, rhs_src) else uncasted_rhs; const runtime_src: LazySrcLoc = src: { if (try sema.resolveMaybeUndefVal(lhs)) |lhs_val| { if (try sema.resolveMaybeUndefVal(rhs)) |rhs_val| { // Compare ints: const vs. undefined (or vice versa) if (!lhs_val.isUndef(mod) and (lhs_ty.isInt(mod) or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt(mod) and rhs_val.isUndef(mod)) { if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(lhs_val), op, rhs_ty)) |res| { return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false; } } else if (!rhs_val.isUndef(mod) and (rhs_ty.isInt(mod) or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt(mod) and lhs_val.isUndef(mod)) { if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(rhs_val), op.reverse(), lhs_ty)) |res| { return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false; } } if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) { return mod.undefRef(Type.bool); } if (lhs_val.isNan(mod) or rhs_val.isNan(mod)) { if (op == std.math.CompareOperator.neq) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } if (try Value.compareHeteroAdvanced(lhs_val, op, rhs_val, mod, sema)) { return Air.Inst.Ref.bool_true; } else { return Air.Inst.Ref.bool_false; } } else { if (!lhs_val.isUndef(mod) and (lhs_ty.isInt(mod) or lhs_ty_tag == .ComptimeInt) and rhs_ty.isInt(mod)) { // Compare ints: const vs. var if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(lhs_val), op, rhs_ty)) |res| { return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false; } } break :src rhs_src; } } else { if (try sema.resolveMaybeUndefLazyVal(rhs)) |rhs_val| { if (!rhs_val.isUndef(mod) and (rhs_ty.isInt(mod) or rhs_ty_tag == .ComptimeInt) and lhs_ty.isInt(mod)) { // Compare ints: var vs. const if (try sema.compareIntsOnlyPossibleResult(try sema.resolveLazyValue(rhs_val), op.reverse(), lhs_ty)) |res| { return if (res) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false; } } } break :src lhs_src; } }; // TODO handle comparisons against lazy zero values // Some values can be compared against zero without being runtime-known or without forcing // a full resolution of their value, for example `@sizeOf(@Frame(function))` is known to // always be nonzero, and we benefit from not forcing the full evaluation and stack frame layout // of this function if we don't need to. try sema.requireRuntimeBlock(block, src, runtime_src); // For floats, emit a float comparison instruction. const lhs_is_float = switch (lhs_ty_tag) { .Float, .ComptimeFloat => true, else => false, }; const rhs_is_float = switch (rhs_ty_tag) { .Float, .ComptimeFloat => true, else => false, }; if (lhs_is_float and rhs_is_float) { // Smaller fixed-width floats coerce to larger fixed-width floats. // comptime_float coerces to fixed-width float. const dest_ty = x: { if (lhs_ty_tag == .ComptimeFloat) { break :x rhs_ty; } else if (rhs_ty_tag == .ComptimeFloat) { break :x lhs_ty; } if (lhs_ty.floatBits(target) >= rhs_ty.floatBits(target)) { break :x lhs_ty; } else { break :x rhs_ty; } }; const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src); const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src); return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .Optimized), casted_lhs, casted_rhs); } // For mixed unsigned integer sizes, implicit cast both operands to the larger integer. // For mixed signed and unsigned integers, implicit cast both operands to a signed // integer with + 1 bit. // For mixed floats and integers, extract the integer part from the float, cast that to // a signed integer with mantissa bits + 1, and if there was any non-integral part of the float, // add/subtract 1. const lhs_is_signed = if (try sema.resolveDefinedValue(block, lhs_src, lhs)) |lhs_val| !(try lhs_val.compareAllWithZeroAdvanced(.gte, sema)) else (lhs_ty.isRuntimeFloat() or lhs_ty.isSignedInt(mod)); const rhs_is_signed = if (try sema.resolveDefinedValue(block, rhs_src, rhs)) |rhs_val| !(try rhs_val.compareAllWithZeroAdvanced(.gte, sema)) else (rhs_ty.isRuntimeFloat() or rhs_ty.isSignedInt(mod)); const dest_int_is_signed = lhs_is_signed or rhs_is_signed; var dest_float_type: ?Type = null; var lhs_bits: usize = undefined; if (try sema.resolveMaybeUndefLazyVal(lhs)) |lhs_val| { if (lhs_val.isUndef(mod)) return mod.undefRef(Type.bool); if (lhs_val.isNan(mod)) switch (op) { .neq => return Air.Inst.Ref.bool_true, else => return Air.Inst.Ref.bool_false, }; if (lhs_val.isInf(mod)) switch (op) { .neq => return Air.Inst.Ref.bool_true, .eq => return Air.Inst.Ref.bool_false, .gt, .gte => return if (lhs_val.isNegativeInf(mod)) Air.Inst.Ref.bool_false else Air.Inst.Ref.bool_true, .lt, .lte => return if (lhs_val.isNegativeInf(mod)) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false, }; if (!rhs_is_signed) { switch (lhs_val.orderAgainstZero(mod)) { .gt => {}, .eq => switch (op) { // LHS = 0, RHS is unsigned .lte => return Air.Inst.Ref.bool_true, .gt => return Air.Inst.Ref.bool_false, else => {}, }, .lt => switch (op) { // LHS < 0, RHS is unsigned .neq, .lt, .lte => return Air.Inst.Ref.bool_true, .eq, .gt, .gte => return Air.Inst.Ref.bool_false, }, } } if (lhs_is_float) { if (lhs_val.floatHasFraction(mod)) { switch (op) { .eq => return Air.Inst.Ref.bool_false, .neq => return Air.Inst.Ref.bool_true, else => {}, } } var bigint = try float128IntPartToBigInt(sema.gpa, lhs_val.toFloat(f128, mod)); defer bigint.deinit(); if (lhs_val.floatHasFraction(mod)) { if (lhs_is_signed) { try bigint.addScalar(&bigint, -1); } else { try bigint.addScalar(&bigint, 1); } } lhs_bits = bigint.toConst().bitCountTwosComp(); } else { lhs_bits = lhs_val.intBitCountTwosComp(mod); } lhs_bits += @intFromBool(!lhs_is_signed and dest_int_is_signed); } else if (lhs_is_float) { dest_float_type = lhs_ty; } else { const int_info = lhs_ty.intInfo(mod); lhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed); } var rhs_bits: usize = undefined; if (try sema.resolveMaybeUndefLazyVal(rhs)) |rhs_val| { if (rhs_val.isUndef(mod)) return mod.undefRef(Type.bool); if (rhs_val.isNan(mod)) switch (op) { .neq => return Air.Inst.Ref.bool_true, else => return Air.Inst.Ref.bool_false, }; if (rhs_val.isInf(mod)) switch (op) { .neq => return Air.Inst.Ref.bool_true, .eq => return Air.Inst.Ref.bool_false, .gt, .gte => return if (rhs_val.isNegativeInf(mod)) Air.Inst.Ref.bool_true else Air.Inst.Ref.bool_false, .lt, .lte => return if (rhs_val.isNegativeInf(mod)) Air.Inst.Ref.bool_false else Air.Inst.Ref.bool_true, }; if (!lhs_is_signed) { switch (rhs_val.orderAgainstZero(mod)) { .gt => {}, .eq => switch (op) { // RHS = 0, LHS is unsigned .gte => return Air.Inst.Ref.bool_true, .lt => return Air.Inst.Ref.bool_false, else => {}, }, .lt => switch (op) { // RHS < 0, LHS is unsigned .neq, .gt, .gte => return Air.Inst.Ref.bool_true, .eq, .lt, .lte => return Air.Inst.Ref.bool_false, }, } } if (rhs_is_float) { if (rhs_val.floatHasFraction(mod)) { switch (op) { .eq => return Air.Inst.Ref.bool_false, .neq => return Air.Inst.Ref.bool_true, else => {}, } } var bigint = try float128IntPartToBigInt(sema.gpa, rhs_val.toFloat(f128, mod)); defer bigint.deinit(); if (rhs_val.floatHasFraction(mod)) { if (rhs_is_signed) { try bigint.addScalar(&bigint, -1); } else { try bigint.addScalar(&bigint, 1); } } rhs_bits = bigint.toConst().bitCountTwosComp(); } else { rhs_bits = rhs_val.intBitCountTwosComp(mod); } rhs_bits += @intFromBool(!rhs_is_signed and dest_int_is_signed); } else if (rhs_is_float) { dest_float_type = rhs_ty; } else { const int_info = rhs_ty.intInfo(mod); rhs_bits = int_info.bits + @intFromBool(int_info.signedness == .unsigned and dest_int_is_signed); } const dest_ty = if (dest_float_type) |ft| ft else blk: { const max_bits = @max(lhs_bits, rhs_bits); const casted_bits = std.math.cast(u16, max_bits) orelse return sema.fail(block, src, "{d} exceeds maximum integer bit count", .{max_bits}); const signedness: std.builtin.Signedness = if (dest_int_is_signed) .signed else .unsigned; break :blk try mod.intType(signedness, casted_bits); }; const casted_lhs = try sema.coerce(block, dest_ty, lhs, lhs_src); const casted_rhs = try sema.coerce(block, dest_ty, rhs, rhs_src); return block.addBinOp(Air.Inst.Tag.fromCmpOp(op, block.float_mode == .Optimized), casted_lhs, casted_rhs); } /// Asserts that LHS value is an int or comptime int and not undefined, and /// that RHS type is an int. Given a const LHS and an unknown RHS, attempt to /// determine whether `op` has a guaranteed result. /// If it cannot be determined, returns null. /// Otherwise returns a bool for the guaranteed comparison operation. fn compareIntsOnlyPossibleResult( sema: *Sema, lhs_val: Value, op: std.math.CompareOperator, rhs_ty: Type, ) Allocator.Error!?bool { const mod = sema.mod; const rhs_info = rhs_ty.intInfo(mod); const vs_zero = lhs_val.orderAgainstZeroAdvanced(mod, sema) catch unreachable; const is_zero = vs_zero == .eq; const is_negative = vs_zero == .lt; const is_positive = vs_zero == .gt; // Anything vs. zero-sized type has guaranteed outcome. if (rhs_info.bits == 0) return switch (op) { .eq, .lte, .gte => is_zero, .neq, .lt, .gt => !is_zero, }; // Special case for i1, which can only be 0 or -1. // Zero and positive ints have guaranteed outcome. if (rhs_info.bits == 1 and rhs_info.signedness == .signed) { if (is_positive) return switch (op) { .gt, .gte, .neq => true, .lt, .lte, .eq => false, }; if (is_zero) return switch (op) { .gte => true, .lt => false, .gt, .lte, .eq, .neq => null, }; } // Negative vs. unsigned has guaranteed outcome. if (rhs_info.signedness == .unsigned and is_negative) return switch (op) { .eq, .gt, .gte => false, .neq, .lt, .lte => true, }; const sign_adj = @intFromBool(!is_negative and rhs_info.signedness == .signed); const req_bits = lhs_val.intBitCountTwosComp(mod) + sign_adj; // No sized type can have more than 65535 bits. // The RHS type operand is either a runtime value or sized (but undefined) constant. if (req_bits > 65535) return switch (op) { .lt, .lte => is_negative, .gt, .gte => is_positive, .eq => false, .neq => true, }; const fits = req_bits <= rhs_info.bits; // Oversized int has guaranteed outcome. switch (op) { .eq => return if (!fits) false else null, .neq => return if (!fits) true else null, .lt, .lte => if (!fits) return is_negative, .gt, .gte => if (!fits) return !is_negative, } // For any other comparison, we need to know if the LHS value is // equal to the maximum or minimum possible value of the RHS type. const edge: struct { min: bool, max: bool } = edge: { if (is_zero and rhs_info.signedness == .unsigned) break :edge .{ .min = true, .max = false, }; if (req_bits != rhs_info.bits) break :edge .{ .min = false, .max = false, }; const ty = try mod.intType( if (is_negative) .signed else .unsigned, @as(u16, @intCast(req_bits)), ); const pop_count = lhs_val.popCount(ty, mod); if (is_negative) { break :edge .{ .min = pop_count == 1, .max = false, }; } else { break :edge .{ .min = false, .max = pop_count == req_bits - sign_adj, }; } }; assert(fits); return switch (op) { .lt => if (edge.max) false else null, .lte => if (edge.min) true else null, .gt => if (edge.min) false else null, .gte => if (edge.max) true else null, .eq, .neq => unreachable, }; } /// Asserts that lhs and rhs types are both vectors. fn cmpVector( sema: *Sema, block: *Block, src: LazySrcLoc, lhs: Air.Inst.Ref, rhs: Air.Inst.Ref, op: std.math.CompareOperator, lhs_src: LazySrcLoc, rhs_src: LazySrcLoc, ) CompileError!Air.Inst.Ref { const mod = sema.mod; const lhs_ty = sema.typeOf(lhs); const rhs_ty = sema.typeOf(rhs); assert(lhs_ty.zigTypeTag(mod) == .Vector); assert(rhs_ty.zigTypeTag(mod) == .Vector); try sema.checkVectorizableBinaryOperands(block, src, lhs_ty, rhs_ty, lhs_src, rhs_src); const resolved_ty = try sema.resolvePeerTypes(block, src, &.{ lhs, rhs }, .{ .override = &.{ lhs_src, rhs_src } }); const casted_lhs = try sema.coerce(block, resolved_ty, lhs, lhs_src); const casted_rhs = try sema.coerce(block, resolved_ty, rhs, rhs_src); const result_ty = try mod.vectorType(.{ .len = lhs_ty.vectorLen(mod), .child = .bool_type, }); const runtime_src: LazySrcLoc = src: { if (try sema.resolveMaybeUndefVal(casted_lhs)) |lhs_val| { if (try sema.resolveMaybeUndefVal(casted_rhs)) |rhs_val| { if (lhs_val.isUndef(mod) or rhs_val.isUndef(mod)) { return mod.undefRef(result_ty); } const cmp_val = try sema.compareVector(lhs_val, op, rhs_val, resolved_ty); return Air.internedToRef(cmp_val.toIntern()); } else { break :src rhs_src; } } else { break :src lhs_src; } }; try sema.requireRuntimeBlock(block, src, runtime_src); return block.addCmpVector(casted_lhs, casted_rhs, op); } fn wrapOptional( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { if (try sema.resolveMaybeUndefVal(inst)) |val| { return Air.internedToRef((try sema.mod.intern(.{ .opt = .{ .ty = dest_ty.toIntern(), .val = val.toIntern(), } }))); } try sema.requireRuntimeBlock(block, inst_src, null); return block.addTyOp(.wrap_optional, dest_ty, inst); } fn wrapErrorUnionPayload( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const dest_payload_ty = dest_ty.errorUnionPayload(mod); const coerced = try sema.coerceExtra(block, dest_payload_ty, inst, inst_src, .{ .report_err = false }); if (try sema.resolveMaybeUndefVal(coerced)) |val| { return Air.internedToRef((try mod.intern(.{ .error_union = .{ .ty = dest_ty.toIntern(), .val = .{ .payload = try val.intern(dest_payload_ty, mod) }, } }))); } try sema.requireRuntimeBlock(block, inst_src, null); try sema.queueFullTypeResolution(dest_payload_ty); return block.addTyOp(.wrap_errunion_payload, dest_ty, coerced); } fn wrapErrorUnionSet( sema: *Sema, block: *Block, dest_ty: Type, inst: Air.Inst.Ref, inst_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; const ip = &mod.intern_pool; const inst_ty = sema.typeOf(inst); const dest_err_set_ty = dest_ty.errorUnionSet(mod); if (try sema.resolveMaybeUndefVal(inst)) |val| { const expected_name = mod.intern_pool.indexToKey(val.toIntern()).err.name; switch (dest_err_set_ty.toIntern()) { .anyerror_type => {}, .adhoc_inferred_error_set_type => ok: { const ies = sema.fn_ret_ty_ies.?; switch (ies.resolved) { .anyerror_type => break :ok, .none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) { break :ok; }, else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) { break :ok; }, } return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty); }, else => switch (ip.indexToKey(dest_err_set_ty.toIntern())) { .error_set_type => |error_set_type| ok: { if (error_set_type.nameIndex(ip, expected_name) != null) break :ok; return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty); }, .inferred_error_set_type => |func_index| ok: { // We carefully do this in an order that avoids unnecessarily // resolving the destination error set type. switch (ip.funcIesResolved(func_index).*) { .anyerror_type => break :ok, .none => if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, dest_err_set_ty, inst_ty, inst_src, inst_src)) { break :ok; }, else => |i| if (ip.indexToKey(i).error_set_type.nameIndex(ip, expected_name) != null) { break :ok; }, } return sema.failWithErrorSetCodeMissing(block, inst_src, dest_err_set_ty, inst_ty); }, else => unreachable, }, } return Air.internedToRef((try mod.intern(.{ .error_union = .{ .ty = dest_ty.toIntern(), .val = .{ .err_name = expected_name }, } }))); } try sema.requireRuntimeBlock(block, inst_src, null); const coerced = try sema.coerce(block, dest_err_set_ty, inst, inst_src); return block.addTyOp(.wrap_errunion_err, dest_ty, coerced); } fn unionToTag( sema: *Sema, block: *Block, enum_ty: Type, un: Air.Inst.Ref, un_src: LazySrcLoc, ) !Air.Inst.Ref { const mod = sema.mod; if ((try sema.typeHasOnePossibleValue(enum_ty))) |opv| { return Air.internedToRef(opv.toIntern()); } if (try sema.resolveMaybeUndefVal(un)) |un_val| { return Air.internedToRef(un_val.unionTag(mod).toIntern()); } try sema.requireRuntimeBlock(block, un_src, null); return block.addTyOp(.get_union_tag, enum_ty, un); } const PeerResolveStrategy = enum { /// The type is not known. /// If refined no further, this is equivalent to `exact`. unknown, /// The type may be an error set or error union. /// If refined no further, it is an error set. error_set, /// The type must be some error union. error_union, /// The type may be @TypeOf(null), an optional or a C pointer. /// If refined no further, it is @TypeOf(null). nullable, /// The type must be some optional or a C pointer. /// If refined no further, it is an optional. optional, /// The type must be either an array or a vector. /// If refined no further, it is an array. array, /// The type must be a vector. vector, /// The type must be a C pointer. c_ptr, /// The type must be a pointer (C or not). /// If refined no further, it is a non-C pointer. ptr, /// The type must be a function or a pointer to a function. /// If refined no further, it is a function. func, /// The type must be an enum literal, or some specific enum or union. Which one is decided /// afterwards based on the types in question. enum_or_union, /// The type must be some integer or float type. /// If refined no further, it is `comptime_int`. comptime_int, /// The type must be some float type. /// If refined no further, it is `comptime_float`. comptime_float, /// The type must be some float or fixed-width integer type. /// If refined no further, it is some fixed-width integer type. fixed_int, /// The type must be some fixed-width float type. fixed_float, /// The type must be a struct literal or tuple type. coercible_struct, /// The peers must all be of the same type. exact, /// Given two strategies, find a strategy that satisfies both, if one exists. If no such /// strategy exists, any strategy may be returned; an error will be emitted when the caller /// attempts to use the strategy to resolve the type. /// Strategy `a` comes from the peer in `reason_peer`, while strategy `b` comes from the peer at /// index `b_peer_idx`. `reason_peer` is updated to reflect the reason for the new strategy. fn merge(a: PeerResolveStrategy, b: PeerResolveStrategy, reason_peer: *usize, b_peer_idx: usize) PeerResolveStrategy { // Our merging should be order-independent. Thus, even though the union order is arbitrary, // by sorting the tags and switching first on the smaller, we have half as many cases to // worry about (since we avoid the duplicates). const s0_is_a = @intFromEnum(a) <= @intFromEnum(b); const s0 = if (s0_is_a) a else b; const s1 = if (s0_is_a) b else a; const ReasonMethod = enum { all_s0, all_s1, either, }; const res: struct { ReasonMethod, PeerResolveStrategy } = switch (s0) { .unknown => .{ .all_s1, s1 }, .error_set => switch (s1) { .error_set => .{ .either, .error_set }, else => .{ .all_s0, .error_union }, }, .error_union => switch (s1) { .error_union => .{ .either, .error_union }, else => .{ .all_s0, .error_union }, }, .nullable => switch (s1) { .nullable => .{ .either, .nullable }, .c_ptr => .{ .all_s1, .c_ptr }, else => .{ .all_s0, .optional }, }, .optional => switch (s1) { .optional => .{ .either, .optional }, .c_ptr => .{ .all_s1, .c_ptr }, else => .{ .all_s0, .optional }, }, .array => switch (s1) { .array => .{ .either, .array }, .vector => .{ .all_s1, .vector }, else => .{ .all_s0, .array }, }, .vector => switch (s1) { .vector => .{ .either, .vector }, else => .{ .all_s0, .vector }, }, .c_ptr => switch (s1) { .c_ptr => .{ .either, .c_ptr }, else => .{ .all_s0, .c_ptr }, }, .ptr => switch (s1) { .ptr => .{ .either, .ptr }, else => .{ .all_s0, .ptr }, }, .func => switch (s1) { .func => .{ .either, .func }, else => .{ .all_s1, s1 }, // doesn't override anything later }, .enum_or_union => switch (s1) { .enum_or_union => .{ .either, .enum_or_union }, else => .{ .all_s0, .enum_or_union }, }, .comptime_int => switch (s1) { .comptime_int => .{ .either, .comptime_int }, else => .{ .all_s1, s1 }, // doesn't override anything later }, .comptime_float => switch (s1) { .comptime_float => .{ .either, .comptime_float }, else => .{ .all_s1, s1 }, // doesn't override anything later }, .fixed_int => switch (s1) { .fixed_int => .{ .either, .fixed_int }, else => .{ .all_s1, s1 }, // doesn't override anything later }, .fixed_float => switch (s1) { .fixed_float => .{ .either, .fixed_float }, else => .{ .all_s1, s1 }, // doesn't override anything later }, .coercible_struct => switch (s1) { .exact => .{ .all_s1, .exact }, else => .{ .all_s0, .coercible_struct }, }, .exact => .{ .all_s0, .exact }, }; switch (res[0]) { .all_s0 => { if (!s0_is_a) { reason_peer.* = b_peer_idx; } }, .all_s1 => { if (s0_is_a) { reason_peer.* = b_peer_idx; } }, .either => { // Prefer the earliest peer reason_peer.* = @min(reason_peer.*, b_peer_idx); }, } return res[1]; } fn select(ty: Type, mod: *Module) PeerResolveStrategy { return switch (ty.zigTypeTag(mod)) { .Type, .Void, .Bool, .Opaque, .Frame, .AnyFrame => .exact, .NoReturn, .Undefined => .unknown, .Null => .nullable, .ComptimeInt => .comptime_int, .Int => .fixed_int, .ComptimeFloat => .comptime_float, .Float => .fixed_float, .Pointer => if (ty.ptrInfo(mod).flags.size == .C) .c_ptr else .ptr, .Array => .array, .Vector => .vector, .Optional => .optional, .ErrorSet => .error_set, .ErrorUnion => .error_union, .EnumLiteral, .Enum, .Union => .enum_or_union, .Struct => if (ty.isTupleOrAnonStruct(mod)) .coercible_struct else .exact, .Fn => .func, }; } }; const PeerResolveResult = union(enum) { /// The peer type resolution was successful, and resulted in the given type. success: Type, /// There was some generic conflict between two peers. conflict: struct { peer_idx_a: usize, peer_idx_b: usize, }, /// There was an error when resolving the type of a struct or tuple field. field_error: struct { /// The name of the field which caused the failure. field_name: []const u8, /// The type of this field in each peer. field_types: []Type, /// The error from resolving the field type. Guaranteed not to be `success`. sub_result: *PeerResolveResult, }, fn report( result: PeerResolveResult, sema: *Sema, block: *Block, src: LazySrcLoc, instructions: []const Air.Inst.Ref, candidate_srcs: Module.PeerTypeCandidateSrc, ) !*Module.ErrorMsg { const mod = sema.mod; const decl_ptr = mod.declPtr(block.src_decl); var opt_msg: ?*Module.ErrorMsg = null; errdefer if (opt_msg) |msg| msg.destroy(sema.gpa); // If we mention fields we'll want to include field types, so put peer types in a buffer var peer_tys = try sema.arena.alloc(Type, instructions.len); for (peer_tys, instructions) |*ty, inst| { ty.* = sema.typeOf(inst); } var cur = result; while (true) { var conflict_idx: [2]usize = undefined; switch (cur) { .success => unreachable, .conflict => |conflict| { // Fall through to two-peer conflict handling below conflict_idx = .{ conflict.peer_idx_a, conflict.peer_idx_b, }; }, .field_error => |field_error| { const fmt = "struct field '{s}' has conflicting types"; const args = .{field_error.field_name}; if (opt_msg) |msg| { try sema.errNote(block, src, msg, fmt, args); } else { opt_msg = try sema.errMsg(block, src, fmt, args); } // Continue on to child error cur = field_error.sub_result.*; peer_tys = field_error.field_types; continue; }, } // This is the path for reporting a generic conflict between two peers. if (conflict_idx[1] < conflict_idx[0]) { // b comes first in source, so it's better if it comes first in the error std.mem.swap(usize, &conflict_idx[0], &conflict_idx[1]); } const conflict_tys: [2]Type = .{ peer_tys[conflict_idx[0]], peer_tys[conflict_idx[1]], }; const conflict_srcs: [2]?LazySrcLoc = .{ candidate_srcs.resolve(mod, decl_ptr, conflict_idx[0]), candidate_srcs.resolve(mod, decl_ptr, conflict_idx[1]), }; const fmt = "incompatible types: '{}' and '{}'"; const args = .{ conflict_tys[0].fmt(mod), conflict_tys[1].fmt(mod), }; const msg = if (opt_msg) |msg| msg: { try sema.errNote(block, src, msg, fmt, args); break :msg msg; } else msg: { const msg = try sema.errMsg(block, src, fmt, args); opt_msg = msg; break :msg msg; }; if (conflict_srcs[0]) |src_loc| try sema.errNote(block, src_loc, msg, "type '{}' here", .{conflict_tys[0].fmt(mod)}); if (conflict_srcs[1]) |src_loc| try sema.errNote(block, src_loc, msg, "type '{}' here", .{conflict_tys[1].fmt(mod)}); // No child error break; } return opt_msg.?; } }; fn resolvePeerTypes( sema: *Sema, block: *Block, src: LazySrcLoc, instructions: []const Air.Inst.Ref, candidate_srcs: Module.PeerTypeCandidateSrc, ) !Type { switch (instructions.len) { 0 => return Type.noreturn, 1 => return sema.typeOf(instructions[0]), else => {}, } var peer_tys = try sema.arena.alloc(?Type, instructions.len); var peer_vals = try sema.arena.alloc(?Value, instructions.len); for (instructions, peer_tys, peer_vals) |inst, *ty, *val| { ty.* = sema.typeOf(inst); val.* = try sema.resolveMaybeUndefVal(inst); } switch (try sema.resolvePeerTypesInner(block, src, peer_tys, peer_vals)) { .success => |ty| return ty, else => |result| { const msg = try result.report(sema, block, src, instructions, candidate_srcs); return sema.failWithOwnedErrorMsg(msg); }, } } fn resolvePeerTypesInner( sema: *Sema, block: *Block, src: LazySrcLoc, peer_tys: []?Type, peer_vals: []?Value, ) !PeerResolveResult { const mod = sema.mod; var strat_reason: usize = 0; var s: PeerResolveStrategy = .unknown; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; s = s.merge(PeerResolveStrategy.select(ty, mod), &strat_reason, i); } if (s == .unknown) { // The whole thing was noreturn or undefined - try to do an exact match s = .exact; } else { // There was something other than noreturn and undefined, so we can ignore those peers for (peer_tys) |*ty_ptr| { const ty = ty_ptr.* orelse continue; switch (ty.zigTypeTag(mod)) { .NoReturn, .Undefined => ty_ptr.* = null, else => {}, } } } const target = mod.getTarget(); switch (s) { .unknown => unreachable, .error_set => { var final_set: ?Type = null; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; if (ty.zigTypeTag(mod) != .ErrorSet) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; if (final_set) |cur_set| { final_set = try sema.maybeMergeErrorSets(block, src, cur_set, ty); } else { final_set = ty; } } return .{ .success = final_set.? }; }, .error_union => { var final_set: ?Type = null; for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| { const ty = ty_ptr.* orelse continue; const set_ty = switch (ty.zigTypeTag(mod)) { .ErrorSet => blk: { ty_ptr.* = null; // no payload to decide on val_ptr.* = null; break :blk ty; }, .ErrorUnion => blk: { const set_ty = ty.errorUnionSet(mod); ty_ptr.* = ty.errorUnionPayload(mod); if (val_ptr.*) |eu_val| switch (mod.intern_pool.indexToKey(eu_val.toIntern())) { .error_union => |eu| switch (eu.val) { .payload => |payload_ip| val_ptr.* = payload_ip.toValue(), .err_name => val_ptr.* = null, }, .undef => val_ptr.* = (try sema.mod.intern(.{ .undef = ty_ptr.*.?.toIntern() })).toValue(), else => unreachable, }; break :blk set_ty; }, else => continue, // whole type is the payload }; if (final_set) |cur_set| { final_set = try sema.maybeMergeErrorSets(block, src, cur_set, set_ty); } else { final_set = set_ty; } } assert(final_set != null); const final_payload = switch (try sema.resolvePeerTypesInner( block, src, peer_tys, peer_vals, )) { .success => |ty| ty, else => |result| return result, }; return .{ .success = try mod.errorUnionType(final_set.?, final_payload) }; }, .nullable => { for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; if (!ty.eql(Type.null, mod)) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; } return .{ .success = Type.null }; }, .optional => { for (peer_tys, peer_vals) |*ty_ptr, *val_ptr| { const ty = ty_ptr.* orelse continue; switch (ty.zigTypeTag(mod)) { .Null => { ty_ptr.* = null; val_ptr.* = null; }, .Optional => { ty_ptr.* = ty.optionalChild(mod); if (val_ptr.*) |opt_val| val_ptr.* = if (!opt_val.isUndef(mod)) opt_val.optionalValue(mod) else null; }, else => {}, } } const child_ty = switch (try sema.resolvePeerTypesInner( block, src, peer_tys, peer_vals, )) { .success => |ty| ty, else => |result| return result, }; return .{ .success = try mod.optionalType(child_ty.toIntern()) }; }, .array => { // Index of the first non-null peer var opt_first_idx: ?usize = null; // Index of the first array or vector peer (i.e. not a tuple) var opt_first_arr_idx: ?usize = null; // Set to non-null once we see any peer, even a tuple var len: u64 = undefined; var sentinel: ?Value = undefined; // Only set once we see a non-tuple peer var elem_ty: Type = undefined; for (peer_tys, 0..) |*ty_ptr, i| { const ty = ty_ptr.* orelse continue; if (!ty.isArrayOrVector(mod)) { // We allow tuples of the correct length. We won't validate their elem type, since the elements can be coerced. const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; if (opt_first_idx) |first_idx| { if (arr_like.len != len) return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } else { opt_first_idx = i; len = arr_like.len; } sentinel = null; continue; } const first_arr_idx = opt_first_arr_idx orelse { if (opt_first_idx == null) { opt_first_idx = i; len = ty.arrayLen(mod); sentinel = ty.sentinel(mod); } opt_first_arr_idx = i; elem_ty = ty.childType(mod); continue; }; if (ty.arrayLen(mod) != len) return .{ .conflict = .{ .peer_idx_a = first_arr_idx, .peer_idx_b = i, } }; if (!ty.childType(mod).eql(elem_ty, mod)) { return .{ .conflict = .{ .peer_idx_a = first_arr_idx, .peer_idx_b = i, } }; } if (sentinel) |cur_sent| { if (ty.sentinel(mod)) |peer_sent| { if (!peer_sent.eql(cur_sent, elem_ty, mod)) sentinel = null; } else { sentinel = null; } } } // There should always be at least one array or vector peer assert(opt_first_arr_idx != null); return .{ .success = try mod.arrayType(.{ .len = len, .child = elem_ty.toIntern(), .sentinel = if (sentinel) |sent_val| sent_val.toIntern() else .none, }) }; }, .vector => { var len: ?u64 = null; var first_idx: usize = undefined; for (peer_tys, peer_vals, 0..) |*ty_ptr, *val_ptr, i| { const ty = ty_ptr.* orelse continue; if (!ty.isArrayOrVector(mod)) { // Allow tuples of the correct length const arr_like = sema.typeIsArrayLike(ty) orelse return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; if (len) |expect_len| { if (arr_like.len != expect_len) return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } else { len = arr_like.len; first_idx = i; } // Tuples won't participate in the child type resolution. We'll resolve without // them, and if the tuples have a bad type, we'll get a coercion error later. ty_ptr.* = null; val_ptr.* = null; continue; } if (len) |expect_len| { if (ty.arrayLen(mod) != expect_len) return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } else { len = ty.arrayLen(mod); first_idx = i; } ty_ptr.* = ty.childType(mod); val_ptr.* = null; // multiple child vals, so we can't easily use them in PTR } const child_ty = switch (try sema.resolvePeerTypesInner( block, src, peer_tys, peer_vals, )) { .success => |ty| ty, else => |result| return result, }; return .{ .success = try mod.vectorType(.{ .len = @as(u32, @intCast(len.?)), .child = child_ty.toIntern(), }) }; }, .c_ptr => { var opt_ptr_info: ?InternPool.Key.PtrType = null; var first_idx: usize = undefined; for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| { const ty = opt_ty orelse continue; switch (ty.zigTypeTag(mod)) { .ComptimeInt => continue, // comptime-known integers can always coerce to C pointers .Int => { if (opt_val != null) { // Always allow the coercion for comptime-known ints continue; } else { // Runtime-known, so check if the type is no bigger than a usize const ptr_bits = target.ptrBitWidth(); const bits = ty.intInfo(mod).bits; if (bits <= ptr_bits) continue; } }, .Null => continue, else => {}, } if (!ty.isPtrAtRuntime(mod)) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; // Goes through optionals const peer_info = ty.ptrInfo(mod); var ptr_info = opt_ptr_info orelse { opt_ptr_info = peer_info; opt_ptr_info.?.flags.size = .C; first_idx = i; continue; }; // Try peer -> cur, then cur -> peer ptr_info.child = ((try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), peer_info.child.toType())) orelse { return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; }).toIntern(); if (ptr_info.sentinel != .none and peer_info.sentinel != .none) { const peer_sent = try mod.intern_pool.getCoerced(sema.gpa, ptr_info.sentinel, ptr_info.child); const ptr_sent = try mod.intern_pool.getCoerced(sema.gpa, peer_info.sentinel, ptr_info.child); if (ptr_sent == peer_sent) { ptr_info.sentinel = ptr_sent; } else { ptr_info.sentinel = .none; } } else { ptr_info.sentinel = .none; } // Note that the align can be always non-zero; Module.ptrType will canonicalize it ptr_info.flags.alignment = Alignment.fromByteUnits(@min( ptr_info.flags.alignment.toByteUnitsOptional() orelse ptr_info.child.toType().abiAlignment(mod), peer_info.flags.alignment.toByteUnitsOptional() orelse peer_info.child.toType().abiAlignment(mod), )); if (ptr_info.flags.address_space != peer_info.flags.address_space) { return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size) { return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const; ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile; opt_ptr_info = ptr_info; } return .{ .success = try mod.ptrType(opt_ptr_info.?) }; }, .ptr => { // If we've resolved to a `[]T` but then see a `[*]T`, we can resolve to a `[*]T` only // if there were no actual slices. Else, we want the slice index to report a conflict. var opt_slice_idx: ?usize = null; var opt_ptr_info: ?InternPool.Key.PtrType = null; var first_idx: usize = undefined; var other_idx: usize = undefined; // We sometimes need a second peer index to report a generic error for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; const peer_info: InternPool.Key.PtrType = switch (ty.zigTypeTag(mod)) { .Pointer => ty.ptrInfo(mod), .Fn => .{ .child = ty.toIntern(), .flags = .{ .address_space = target_util.defaultAddressSpace(target, .global_constant), }, }, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, }; switch (peer_info.flags.size) { .One, .Many => {}, .Slice => opt_slice_idx = i, .C => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } var ptr_info = opt_ptr_info orelse { opt_ptr_info = peer_info; first_idx = i; continue; }; other_idx = i; // We want to return this in a lot of cases, so alias it here for convenience const generic_err: PeerResolveResult = .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; // Note that the align can be always non-zero; Type.ptr will canonicalize it ptr_info.flags.alignment = Alignment.fromByteUnits(@min( ptr_info.flags.alignment.toByteUnitsOptional() orelse ptr_info.child.toType().abiAlignment(mod), peer_info.flags.alignment.toByteUnitsOptional() orelse peer_info.child.toType().abiAlignment(mod), )); if (ptr_info.flags.address_space != peer_info.flags.address_space) { return generic_err; } if (ptr_info.packed_offset.bit_offset != peer_info.packed_offset.bit_offset or ptr_info.packed_offset.host_size != peer_info.packed_offset.host_size) { return generic_err; } ptr_info.flags.is_const = ptr_info.flags.is_const or peer_info.flags.is_const; ptr_info.flags.is_volatile = ptr_info.flags.is_volatile or peer_info.flags.is_volatile; const peer_sentinel: InternPool.Index = switch (peer_info.flags.size) { .One => switch (mod.intern_pool.indexToKey(peer_info.child)) { .array_type => |array_type| array_type.sentinel, else => .none, }, .Many, .Slice => peer_info.sentinel, .C => unreachable, }; const cur_sentinel: InternPool.Index = switch (ptr_info.flags.size) { .One => switch (mod.intern_pool.indexToKey(ptr_info.child)) { .array_type => |array_type| array_type.sentinel, else => .none, }, .Many, .Slice => ptr_info.sentinel, .C => unreachable, }; // We abstract array handling slightly so that tuple pointers can work like array pointers const peer_pointee_array = sema.typeIsArrayLike(peer_info.child.toType()); const cur_pointee_array = sema.typeIsArrayLike(ptr_info.child.toType()); // This switch is just responsible for deciding the size and pointee (not including // single-pointer array sentinel). good: { switch (peer_info.flags.size) { .One => switch (ptr_info.flags.size) { .One => { if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), peer_info.child.toType())) |pointee| { ptr_info.child = pointee.toIntern(); break :good; } const cur_arr = cur_pointee_array orelse return generic_err; const peer_arr = peer_pointee_array orelse return generic_err; if (try sema.resolvePairInMemoryCoercible(block, src, cur_arr.elem_ty, peer_arr.elem_ty)) |elem_ty| { // *[n:x]T + *[n:y]T = *[n]T if (cur_arr.len == peer_arr.len) { ptr_info.child = (try mod.arrayType(.{ .len = cur_arr.len, .child = elem_ty.toIntern(), })).toIntern(); break :good; } // *[a]T + *[b]T = []T ptr_info.flags.size = .Slice; ptr_info.child = elem_ty.toIntern(); break :good; } if (peer_arr.elem_ty.toIntern() == .noreturn_type) { // *struct{} + *[a]T = []T ptr_info.flags.size = .Slice; ptr_info.child = cur_arr.elem_ty.toIntern(); break :good; } if (cur_arr.elem_ty.toIntern() == .noreturn_type) { // *[a]T + *struct{} = []T ptr_info.flags.size = .Slice; ptr_info.child = peer_arr.elem_ty.toIntern(); break :good; } return generic_err; }, .Many => { // Only works for *[n]T + [*]T -> [*]T const arr = peer_pointee_array orelse return generic_err; if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), arr.elem_ty)) |pointee| { ptr_info.child = pointee.toIntern(); break :good; } if (arr.elem_ty.toIntern() == .noreturn_type) { // *struct{} + [*]T -> [*]T break :good; } return generic_err; }, .Slice => { // Only works for *[n]T + []T -> []T const arr = peer_pointee_array orelse return generic_err; if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), arr.elem_ty)) |pointee| { ptr_info.child = pointee.toIntern(); break :good; } if (arr.elem_ty.toIntern() == .noreturn_type) { // *struct{} + []T -> []T break :good; } return generic_err; }, .C => unreachable, }, .Many => switch (ptr_info.flags.size) { .One => { // Only works for [*]T + *[n]T -> [*]T const arr = cur_pointee_array orelse return generic_err; if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, peer_info.child.toType())) |pointee| { ptr_info.flags.size = .Many; ptr_info.child = pointee.toIntern(); break :good; } if (arr.elem_ty.toIntern() == .noreturn_type) { // [*]T + *struct{} -> [*]T ptr_info.flags.size = .Many; ptr_info.child = peer_info.child; break :good; } return generic_err; }, .Many => { if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), peer_info.child.toType())) |pointee| { ptr_info.child = pointee.toIntern(); break :good; } return generic_err; }, .Slice => { // Only works if no peers are actually slices if (opt_slice_idx) |slice_idx| { return .{ .conflict = .{ .peer_idx_a = slice_idx, .peer_idx_b = i, } }; } // Okay, then works for [*]T + "[]T" -> [*]T if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), peer_info.child.toType())) |pointee| { ptr_info.flags.size = .Many; ptr_info.child = pointee.toIntern(); break :good; } return generic_err; }, .C => unreachable, }, .Slice => switch (ptr_info.flags.size) { .One => { // Only works for []T + *[n]T -> []T const arr = cur_pointee_array orelse return generic_err; if (try sema.resolvePairInMemoryCoercible(block, src, arr.elem_ty, peer_info.child.toType())) |pointee| { ptr_info.flags.size = .Slice; ptr_info.child = pointee.toIntern(); break :good; } if (arr.elem_ty.toIntern() == .noreturn_type) { // []T + *struct{} -> []T ptr_info.flags.size = .Slice; ptr_info.child = peer_info.child; break :good; } return generic_err; }, .Many => { // Impossible! (current peer is an actual slice) return generic_err; }, .Slice => { if (try sema.resolvePairInMemoryCoercible(block, src, ptr_info.child.toType(), peer_info.child.toType())) |pointee| { ptr_info.child = pointee.toIntern(); break :good; } return generic_err; }, .C => unreachable, }, .C => unreachable, } } const sentinel_ty = switch (ptr_info.flags.size) { .One => switch (mod.intern_pool.indexToKey(ptr_info.child)) { .array_type => |array_type| array_type.child, else => ptr_info.child, }, .Many, .Slice, .C => ptr_info.child, }; sentinel: { no_sentinel: { if (peer_sentinel == .none) break :no_sentinel; if (cur_sentinel == .none) break :no_sentinel; const peer_sent_coerced = try mod.intern_pool.getCoerced(sema.gpa, peer_sentinel, sentinel_ty); const cur_sent_coerced = try mod.intern_pool.getCoerced(sema.gpa, cur_sentinel, sentinel_ty); if (peer_sent_coerced != cur_sent_coerced) break :no_sentinel; // Sentinels match if (ptr_info.flags.size == .One) switch (mod.intern_pool.indexToKey(ptr_info.child)) { .array_type => |array_type| ptr_info.child = (try mod.arrayType(.{ .len = array_type.len, .child = array_type.child, .sentinel = cur_sent_coerced, })).toIntern(), else => unreachable, } else { ptr_info.sentinel = cur_sent_coerced; } break :sentinel; } // Clear existing sentinel ptr_info.sentinel = .none; switch (mod.intern_pool.indexToKey(ptr_info.child)) { .array_type => |array_type| ptr_info.child = (try mod.arrayType(.{ .len = array_type.len, .child = array_type.child, .sentinel = .none, })).toIntern(), else => {}, } } opt_ptr_info = ptr_info; } // Before we succeed, check the pointee type. If we tried to apply PTR to (for instance) // &.{} and &.{}, we'll currently have a pointer type of `*[0]noreturn` - we wanted to // coerce the empty struct to a specific type, but no peer provided one. We need to // detect this case and emit an error. const pointee = opt_ptr_info.?.child; switch (pointee) { .noreturn_type => return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = other_idx, } }, else => switch (mod.intern_pool.indexToKey(pointee)) { .array_type => |array_type| if (array_type.child == .noreturn_type) return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = other_idx, } }, else => {}, }, } return .{ .success = try mod.ptrType(opt_ptr_info.?) }; }, .func => { var opt_cur_ty: ?Type = null; var first_idx: usize = undefined; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; const cur_ty = opt_cur_ty orelse { opt_cur_ty = ty; first_idx = i; continue; }; if (ty.zigTypeTag(mod) != .Fn) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; // ty -> cur_ty if (.ok == try sema.coerceInMemoryAllowedFns(block, cur_ty, ty, target, src, src)) { continue; } // cur_ty -> ty if (.ok == try sema.coerceInMemoryAllowedFns(block, ty, cur_ty, target, src, src)) { opt_cur_ty = ty; continue; } return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } return .{ .success = opt_cur_ty.? }; }, .enum_or_union => { var opt_cur_ty: ?Type = null; // The peer index which gave the current type var cur_ty_idx: usize = undefined; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; switch (ty.zigTypeTag(mod)) { .EnumLiteral, .Enum, .Union => {}, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } const cur_ty = opt_cur_ty orelse { opt_cur_ty = ty; cur_ty_idx = i; continue; }; // We want to return this in a lot of cases, so alias it here for convenience const generic_err: PeerResolveResult = .{ .conflict = .{ .peer_idx_a = cur_ty_idx, .peer_idx_b = i, } }; switch (cur_ty.zigTypeTag(mod)) { .EnumLiteral => { opt_cur_ty = ty; cur_ty_idx = i; }, .Enum => switch (ty.zigTypeTag(mod)) { .EnumLiteral => {}, .Enum => { if (!ty.eql(cur_ty, mod)) return generic_err; }, .Union => { const tag_ty = ty.unionTagTypeHypothetical(mod); if (!tag_ty.eql(cur_ty, mod)) return generic_err; opt_cur_ty = ty; cur_ty_idx = i; }, else => unreachable, }, .Union => switch (ty.zigTypeTag(mod)) { .EnumLiteral => {}, .Enum => { const cur_tag_ty = cur_ty.unionTagTypeHypothetical(mod); if (!ty.eql(cur_tag_ty, mod)) return generic_err; }, .Union => { if (!ty.eql(cur_ty, mod)) return generic_err; }, else => unreachable, }, else => unreachable, } } return .{ .success = opt_cur_ty.? }; }, .comptime_int => { for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; switch (ty.zigTypeTag(mod)) { .ComptimeInt => {}, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } } return .{ .success = Type.comptime_int }; }, .comptime_float => { for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; switch (ty.zigTypeTag(mod)) { .ComptimeInt, .ComptimeFloat => {}, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } } return .{ .success = Type.comptime_float }; }, .fixed_int => { var idx_unsigned: ?usize = null; var idx_signed: ?usize = null; // TODO: this is for compatibility with legacy behavior. See beneath the loop. var any_comptime_known = false; for (peer_tys, peer_vals, 0..) |opt_ty, *ptr_opt_val, i| { const ty = opt_ty orelse continue; const opt_val = ptr_opt_val.*; const peer_tag = ty.zigTypeTag(mod); switch (peer_tag) { .ComptimeInt => { // If the value is undefined, we can't refine to a fixed-width int if (opt_val == null or opt_val.?.isUndef(mod)) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; any_comptime_known = true; ptr_opt_val.* = try sema.resolveLazyValue(opt_val.?); continue; }, .Int => {}, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } if (opt_val != null) any_comptime_known = true; const info = ty.intInfo(mod); const idx_ptr = switch (info.signedness) { .unsigned => &idx_unsigned, .signed => &idx_signed, }; const largest_idx = idx_ptr.* orelse { idx_ptr.* = i; continue; }; const cur_info = peer_tys[largest_idx].?.intInfo(mod); if (info.bits > cur_info.bits) { idx_ptr.* = i; } } if (idx_signed == null) { return .{ .success = peer_tys[idx_unsigned.?].? }; } if (idx_unsigned == null) { return .{ .success = peer_tys[idx_signed.?].? }; } const unsigned_info = peer_tys[idx_unsigned.?].?.intInfo(mod); const signed_info = peer_tys[idx_signed.?].?.intInfo(mod); if (signed_info.bits > unsigned_info.bits) { return .{ .success = peer_tys[idx_signed.?].? }; } // TODO: this is for compatibility with legacy behavior. Before this version of PTR was // implemented, the algorithm very often returned false positives, with the expectation // that you'd just hit a coercion error later. One of these was that for integers, the // largest type would always be returned, even if it couldn't fit everything. This had // an unintentional consequence to semantics, which is that if values were known at // comptime, they would be coerced down to the smallest type where possible. This // behavior is unintuitive and order-dependent, so in my opinion should be eliminated, // but for now we'll retain compatibility. if (any_comptime_known) { if (unsigned_info.bits > signed_info.bits) { return .{ .success = peer_tys[idx_unsigned.?].? }; } const idx = @min(idx_unsigned.?, idx_signed.?); return .{ .success = peer_tys[idx].? }; } return .{ .conflict = .{ .peer_idx_a = idx_unsigned.?, .peer_idx_b = idx_signed.?, } }; }, .fixed_float => { var opt_cur_ty: ?Type = null; for (peer_tys, peer_vals, 0..) |opt_ty, opt_val, i| { const ty = opt_ty orelse continue; switch (ty.zigTypeTag(mod)) { .ComptimeFloat, .ComptimeInt => {}, .Int => { if (opt_val == null) return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; }, .Float => { if (opt_cur_ty) |cur_ty| { if (cur_ty.eql(ty, mod)) continue; // Recreate the type so we eliminate any c_longdouble const bits = @max(cur_ty.floatBits(target), ty.floatBits(target)); opt_cur_ty = switch (bits) { 16 => Type.f16, 32 => Type.f32, 64 => Type.f64, 80 => Type.f80, 128 => Type.f128, else => unreachable, }; } else { opt_cur_ty = ty; } }, else => return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }, } } // Note that fixed_float is only chosen if there is at least one fixed-width float peer, // so opt_cur_ty must be non-null. return .{ .success = opt_cur_ty.? }; }, .coercible_struct => { // First, check that every peer has the same approximate structure (field count and names) var opt_first_idx: ?usize = null; var is_tuple: bool = undefined; var field_count: usize = undefined; // Only defined for non-tuples. var field_names: []InternPool.NullTerminatedString = undefined; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; if (!ty.isTupleOrAnonStruct(mod)) { return .{ .conflict = .{ .peer_idx_a = strat_reason, .peer_idx_b = i, } }; } const first_idx = opt_first_idx orelse { opt_first_idx = i; is_tuple = ty.isTuple(mod); field_count = ty.structFieldCount(mod); if (!is_tuple) { const names = mod.intern_pool.indexToKey(ty.toIntern()).anon_struct_type.names; field_names = try sema.arena.dupe(InternPool.NullTerminatedString, names); } continue; }; if (ty.isTuple(mod) != is_tuple or ty.structFieldCount(mod) != field_count) { return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } if (!is_tuple) { for (field_names, 0..) |expected, field_idx| { const actual = ty.structFieldName(field_idx, mod); if (actual == expected) continue; return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } } } assert(opt_first_idx != null); // Now, we'll recursively resolve the field types const field_types = try sema.arena.alloc(InternPool.Index, field_count); // Values for `comptime` fields - `.none` used for non-comptime fields const field_vals = try sema.arena.alloc(InternPool.Index, field_count); const sub_peer_tys = try sema.arena.alloc(?Type, peer_tys.len); const sub_peer_vals = try sema.arena.alloc(?Value, peer_vals.len); for (field_types, field_vals, 0..) |*field_ty, *field_val, field_idx| { // Fill buffers with types and values of the field for (peer_tys, peer_vals, sub_peer_tys, sub_peer_vals) |opt_ty, opt_val, *peer_field_ty, *peer_field_val| { const ty = opt_ty orelse { peer_field_ty.* = null; peer_field_val.* = null; continue; }; peer_field_ty.* = ty.structFieldType(field_idx, mod); peer_field_val.* = if (opt_val) |val| try val.fieldValue(mod, field_idx) else null; } // Resolve field type recursively field_ty.* = switch (try sema.resolvePeerTypesInner(block, src, sub_peer_tys, sub_peer_vals)) { .success => |ty| ty.toIntern(), else => |result| { const result_buf = try sema.arena.create(PeerResolveResult); result_buf.* = result; const field_name = if (is_tuple) name: { break :name try std.fmt.allocPrint(sema.arena, "{d}", .{field_idx}); } else try sema.arena.dupe(u8, mod.intern_pool.stringToSlice(field_names[field_idx])); // The error info needs the field types, but we can't reuse sub_peer_tys // since the recursive call may have clobbered it. const peer_field_tys = try sema.arena.alloc(Type, peer_tys.len); for (peer_tys, peer_field_tys) |opt_ty, *peer_field_ty| { // Already-resolved types won't be referenced by the error so it's fine // to leave them undefined. const ty = opt_ty orelse continue; peer_field_ty.* = ty.structFieldType(field_idx, mod); } return .{ .field_error = .{ .field_name = field_name, .field_types = peer_field_tys, .sub_result = result_buf, } }; }, }; // Decide if this is a comptime field. If it is comptime in all peers, and the // coerced comptime values are all the same, we say it is comptime, else not. var comptime_val: ?Value = null; for (peer_tys) |opt_ty| { const struct_ty = opt_ty orelse continue; const uncoerced_field_val = try struct_ty.structFieldValueComptime(mod, field_idx) orelse { comptime_val = null; break; }; const uncoerced_field = Air.internedToRef(uncoerced_field_val.toIntern()); const coerced_inst = sema.coerceExtra(block, field_ty.toType(), uncoerced_field, src, .{ .report_err = false }) catch |err| switch (err) { // It's possible for PTR to give false positives. Just give up on making this a comptime field, we'll get an error later anyway error.NotCoercible => { comptime_val = null; break; }, else => |e| return e, }; const coerced_val = (try sema.resolveMaybeUndefVal(coerced_inst)) orelse continue; const existing = comptime_val orelse { comptime_val = coerced_val; continue; }; if (!coerced_val.eql(existing, field_ty.toType(), mod)) { comptime_val = null; break; } } field_val.* = if (comptime_val) |v| v.toIntern() else .none; } const final_ty = try mod.intern(.{ .anon_struct_type = .{ .types = field_types, .names = if (is_tuple) &.{} else field_names, .values = field_vals, } }); return .{ .success = final_ty.toType() }; }, .exact => { var expect_ty: ?Type = null; var first_idx: usize = undefined; for (peer_tys, 0..) |opt_ty, i| { const ty = opt_ty orelse continue; if (expect_ty) |expect| { if (!ty.eql(expect, mod)) return .{ .conflict = .{ .peer_idx_a = first_idx, .peer_idx_b = i, } }; } else { expect_ty = ty; first_idx = i; } } return .{ .success = expect_ty.? }; }, } } fn maybeMergeErrorSets(sema: *Sema, block: *Block, src: LazySrcLoc, e0: Type, e1: Type) !Type { // e0 -> e1 if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e1, e0, src, src)) { return e1; } // e1 -> e0 if (.ok == try sema.coerceInMemoryAllowedErrorSets(block, e0, e1, src, src)) { return e0; } return sema.errorSetMerge(e0, e1); } fn resolvePairInMemoryCoercible(sema: *Sema, block: *Block, src: LazySrcLoc, ty_a: Type, ty_b: Type) !?Type { // ty_b -> ty_a if (.ok == try sema.coerceInMemoryAllowed(block, ty_a, ty_b, true, sema.mod.getTarget(), src, src)) { return ty_a; } // ty_a -> ty_b if (.ok == try sema.coerceInMemoryAllowed(block, ty_b, ty_a, true, sema.mod.getTarget(), src, src)) { return ty_b; } return null; } const ArrayLike = struct { len: u64, /// `noreturn` indicates that this type is `struct{}` so can coerce to anything elem_ty: Type, }; fn typeIsArrayLike(sema: *Sema, ty: Type) ?ArrayLike { const mod = sema.mod; return switch (ty.zigTypeTag(mod)) { .Array => .{ .len = ty.arrayLen(mod), .elem_ty = ty.childType(mod), }, .Struct => { const field_count = ty.structFieldCount(mod); if (field_count == 0) return .{ .len = 0, .elem_ty = Type.noreturn, }; if (!ty.isTuple(mod)) return null; const elem_ty = ty.structFieldType(0, mod); for (1..field_count) |i| { if (!ty.structFieldType(i, mod).eql(elem_ty, mod)) { return null; } } return .{ .len = field_count, .elem_ty = elem_ty, }; }, else => null, }; } pub fn resolveIes(sema: *Sema, block: *Block, src: LazySrcLoc) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; if (sema.fn_ret_ty_ies) |ies| { try sema.resolveInferredErrorSetPtr(block, src, ies); assert(ies.resolved != .none); ip.funcIesResolved(sema.func_index).* = ies.resolved; } } pub fn resolveFnTypes(sema: *Sema, fn_ty: Type) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; const fn_ty_info = mod.typeToFunc(fn_ty).?; try sema.resolveTypeFully(fn_ty_info.return_type.toType()); if (mod.comp.bin_file.options.error_return_tracing and fn_ty_info.return_type.toType().isError(mod)) { // Ensure the type exists so that backends can assume that. _ = try sema.getBuiltinType("StackTrace"); } for (0..fn_ty_info.param_types.len) |i| { try sema.resolveTypeFully(fn_ty_info.param_types.get(ip)[i].toType()); } } /// Make it so that calling hash() and eql() on `val` will not assert due /// to a type not having its layout resolved. fn resolveLazyValue(sema: *Sema, val: Value) CompileError!Value { const mod = sema.mod; switch (mod.intern_pool.indexToKey(val.toIntern())) { .int => |int| switch (int.storage) { .u64, .i64, .big_int => return val, .lazy_align, .lazy_size => return (try mod.intern(.{ .int = .{ .ty = int.ty, .storage = .{ .u64 = (try val.getUnsignedIntAdvanced(mod, sema)).? }, } })).toValue(), }, .ptr => |ptr| { const resolved_len = switch (ptr.len) { .none => .none, else => (try sema.resolveLazyValue(ptr.len.toValue())).toIntern(), }; switch (ptr.addr) { .decl, .mut_decl => return if (resolved_len == ptr.len) val else (try mod.intern(.{ .ptr = .{ .ty = ptr.ty, .addr = switch (ptr.addr) { .decl => |decl| .{ .decl = decl }, .mut_decl => |mut_decl| .{ .mut_decl = mut_decl }, else => unreachable, }, .len = resolved_len, } })).toValue(), .comptime_field => |field_val| { const resolved_field_val = (try sema.resolveLazyValue(field_val.toValue())).toIntern(); return if (resolved_field_val == field_val and resolved_len == ptr.len) val else (try mod.intern(.{ .ptr = .{ .ty = ptr.ty, .addr = .{ .comptime_field = resolved_field_val }, .len = resolved_len, } })).toValue(); }, .int => |int| { const resolved_int = (try sema.resolveLazyValue(int.toValue())).toIntern(); return if (resolved_int == int and resolved_len == ptr.len) val else (try mod.intern(.{ .ptr = .{ .ty = ptr.ty, .addr = .{ .int = resolved_int }, .len = resolved_len, } })).toValue(); }, .eu_payload, .opt_payload => |base| { const resolved_base = (try sema.resolveLazyValue(base.toValue())).toIntern(); return if (resolved_base == base and resolved_len == ptr.len) val else (try mod.intern(.{ .ptr = .{ .ty = ptr.ty, .addr = switch (ptr.addr) { .eu_payload => .{ .eu_payload = resolved_base }, .opt_payload => .{ .opt_payload = resolved_base }, else => unreachable, }, .len = ptr.len, } })).toValue(); }, .elem, .field => |base_index| { const resolved_base = (try sema.resolveLazyValue(base_index.base.toValue())).toIntern(); return if (resolved_base == base_index.base and resolved_len == ptr.len) val else (try mod.intern(.{ .ptr = .{ .ty = ptr.ty, .addr = switch (ptr.addr) { .elem => .{ .elem = .{ .base = resolved_base, .index = base_index.index, } }, .field => .{ .field = .{ .base = resolved_base, .index = base_index.index, } }, else => unreachable, }, .len = ptr.len, } })).toValue(); }, } }, .aggregate => |aggregate| switch (aggregate.storage) { .bytes => return val, .elems => |elems| { var resolved_elems: []InternPool.Index = &.{}; for (elems, 0..) |elem, i| { const resolved_elem = (try sema.resolveLazyValue(elem.toValue())).toIntern(); if (resolved_elems.len == 0 and resolved_elem != elem) { resolved_elems = try sema.arena.alloc(InternPool.Index, elems.len); @memcpy(resolved_elems[0..i], elems[0..i]); } if (resolved_elems.len > 0) resolved_elems[i] = resolved_elem; } return if (resolved_elems.len == 0) val else (try mod.intern(.{ .aggregate = .{ .ty = aggregate.ty, .storage = .{ .elems = resolved_elems }, } })).toValue(); }, .repeated_elem => |elem| { const resolved_elem = (try sema.resolveLazyValue(elem.toValue())).toIntern(); return if (resolved_elem == elem) val else (try mod.intern(.{ .aggregate = .{ .ty = aggregate.ty, .storage = .{ .repeated_elem = resolved_elem }, } })).toValue(); }, }, .un => |un| { const resolved_tag = (try sema.resolveLazyValue(un.tag.toValue())).toIntern(); const resolved_val = (try sema.resolveLazyValue(un.val.toValue())).toIntern(); return if (resolved_tag == un.tag and resolved_val == un.val) val else (try mod.intern(.{ .un = .{ .ty = un.ty, .tag = resolved_tag, .val = resolved_val, } })).toValue(); }, else => return val, } } pub fn resolveTypeLayout(sema: *Sema, ty: Type) CompileError!void { const mod = sema.mod; switch (mod.intern_pool.indexToKey(ty.toIntern())) { .simple_type => |simple_type| return sema.resolveSimpleType(simple_type), else => {}, } switch (ty.zigTypeTag(mod)) { .Struct => return sema.resolveStructLayout(ty), .Union => return sema.resolveUnionLayout(ty), .Array => { if (ty.arrayLenIncludingSentinel(mod) == 0) return; const elem_ty = ty.childType(mod); return sema.resolveTypeLayout(elem_ty); }, .Optional => { const payload_ty = ty.optionalChild(mod); // In case of querying the ABI alignment of this optional, we will ask // for hasRuntimeBits() of the payload type, so we need "requires comptime" // to be known already before this function returns. _ = try sema.typeRequiresComptime(payload_ty); return sema.resolveTypeLayout(payload_ty); }, .ErrorUnion => { const payload_ty = ty.errorUnionPayload(mod); return sema.resolveTypeLayout(payload_ty); }, .Fn => { const info = mod.typeToFunc(ty).?; if (info.is_generic) { // Resolving of generic function types is deferred to when // the function is instantiated. return; } const ip = &mod.intern_pool; for (0..info.param_types.len) |i| { const param_ty = info.param_types.get(ip)[i]; try sema.resolveTypeLayout(param_ty.toType()); } try sema.resolveTypeLayout(info.return_type.toType()); }, else => {}, } } fn resolveStructLayout(sema: *Sema, ty: Type) CompileError!void { const mod = sema.mod; try sema.resolveTypeFields(ty); if (mod.typeToStruct(ty)) |struct_obj| { switch (struct_obj.status) { .none, .have_field_types => {}, .field_types_wip, .layout_wip => { const msg = try Module.ErrorMsg.create( sema.gpa, struct_obj.srcLoc(mod), "struct '{}' depends on itself", .{ty.fmt(mod)}, ); return sema.failWithOwnedErrorMsg(msg); }, .have_layout, .fully_resolved_wip, .fully_resolved => return, } const prev_status = struct_obj.status; errdefer if (struct_obj.status == .layout_wip) { struct_obj.status = prev_status; }; struct_obj.status = .layout_wip; for (struct_obj.fields.values(), 0..) |field, i| { sema.resolveTypeLayout(field.ty) catch |err| switch (err) { error.AnalysisFail => { const msg = sema.err orelse return err; try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{}); return err; }, else => return err, }; } if (struct_obj.layout == .Packed) { try semaBackingIntType(mod, struct_obj); } struct_obj.status = .have_layout; _ = try sema.resolveTypeRequiresComptime(ty); if (struct_obj.assumed_runtime_bits and !(try sema.typeHasRuntimeBits(ty))) { const msg = try Module.ErrorMsg.create( sema.gpa, struct_obj.srcLoc(mod), "struct layout depends on it having runtime bits", .{}, ); return sema.failWithOwnedErrorMsg(msg); } if (struct_obj.layout == .Auto and !struct_obj.is_tuple and mod.backendSupportsFeature(.field_reordering)) { const optimized_order = try mod.tmp_hack_arena.allocator().alloc(u32, struct_obj.fields.count()); for (struct_obj.fields.values(), 0..) |field, i| { optimized_order[i] = if (try sema.typeHasRuntimeBits(field.ty)) @as(u32, @intCast(i)) else Module.Struct.omitted_field; } const AlignSortContext = struct { struct_obj: *Module.Struct, sema: *Sema, fn lessThan(ctx: @This(), a: u32, b: u32) bool { const m = ctx.sema.mod; if (a == Module.Struct.omitted_field) return false; if (b == Module.Struct.omitted_field) return true; return ctx.struct_obj.fields.values()[a].ty.abiAlignment(m) > ctx.struct_obj.fields.values()[b].ty.abiAlignment(m); } }; mem.sort(u32, optimized_order, AlignSortContext{ .struct_obj = struct_obj, .sema = sema, }, AlignSortContext.lessThan); struct_obj.optimized_order = optimized_order.ptr; } } // otherwise it's a tuple; no need to resolve anything } fn semaBackingIntType(mod: *Module, struct_obj: *Module.Struct) CompileError!void { const gpa = mod.gpa; var fields_bit_sum: u64 = 0; for (struct_obj.fields.values()) |field| { fields_bit_sum += field.ty.bitSize(mod); } const decl_index = struct_obj.owner_decl; const decl = mod.declPtr(decl_index); const zir = mod.namespacePtr(struct_obj.namespace).file_scope.zir; const extended = zir.instructions.items(.data)[struct_obj.zir_index].extended; assert(extended.opcode == .struct_decl); const small = @as(Zir.Inst.StructDecl.Small, @bitCast(extended.small)); if (small.has_backing_int) { var extra_index: usize = extended.operand; extra_index += @intFromBool(small.has_src_node); extra_index += @intFromBool(small.has_fields_len); extra_index += @intFromBool(small.has_decls_len); const backing_int_body_len = zir.extra[extra_index]; extra_index += 1; var analysis_arena = std.heap.ArenaAllocator.init(gpa); defer analysis_arena.deinit(); var comptime_mutable_decls = std.ArrayList(Decl.Index).init(gpa); defer comptime_mutable_decls.deinit(); var sema: Sema = .{ .mod = mod, .gpa = gpa, .arena = analysis_arena.allocator(), .code = zir, .owner_decl = decl, .owner_decl_index = decl_index, .func_index = .none, .func_is_naked = false, .fn_ret_ty = Type.void, .fn_ret_ty_ies = null, .owner_func_index = .none, .comptime_mutable_decls = &comptime_mutable_decls, }; defer sema.deinit(); var wip_captures = try WipCaptureScope.init(gpa, decl.src_scope); defer wip_captures.deinit(); var block: Block = .{ .parent = null, .sema = &sema, .src_decl = decl_index, .namespace = struct_obj.namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer assert(block.instructions.items.len == 0); const backing_int_src: LazySrcLoc = .{ .node_offset_container_tag = 0 }; const backing_int_ty = blk: { if (backing_int_body_len == 0) { const backing_int_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); break :blk try sema.resolveType(&block, backing_int_src, backing_int_ref); } else { const body = zir.extra[extra_index..][0..backing_int_body_len]; const ty_ref = try sema.resolveBody(&block, body, struct_obj.zir_index); break :blk try sema.analyzeAsType(&block, backing_int_src, ty_ref); } }; try sema.checkBackingIntType(&block, backing_int_src, backing_int_ty, fields_bit_sum); struct_obj.backing_int_ty = backing_int_ty; try wip_captures.finalize(); for (comptime_mutable_decls.items) |ct_decl_index| { const ct_decl = mod.declPtr(ct_decl_index); _ = try ct_decl.internValue(mod); } } else { if (fields_bit_sum > std.math.maxInt(u16)) { var sema: Sema = .{ .mod = mod, .gpa = gpa, .arena = undefined, .code = zir, .owner_decl = decl, .owner_decl_index = decl_index, .func_index = .none, .func_is_naked = false, .fn_ret_ty = Type.void, .fn_ret_ty_ies = null, .owner_func_index = .none, .comptime_mutable_decls = undefined, }; defer sema.deinit(); var block: Block = .{ .parent = null, .sema = &sema, .src_decl = decl_index, .namespace = struct_obj.namespace, .wip_capture_scope = undefined, .instructions = .{}, .inlining = null, .is_comptime = true, }; return sema.fail(&block, LazySrcLoc.nodeOffset(0), "size of packed struct '{d}' exceeds maximum bit width of 65535", .{fields_bit_sum}); } struct_obj.backing_int_ty = try mod.intType(.unsigned, @as(u16, @intCast(fields_bit_sum))); } } fn checkBackingIntType(sema: *Sema, block: *Block, src: LazySrcLoc, backing_int_ty: Type, fields_bit_sum: u64) CompileError!void { const mod = sema.mod; if (!backing_int_ty.isInt(mod)) { return sema.fail(block, src, "expected backing integer type, found '{}'", .{backing_int_ty.fmt(sema.mod)}); } if (backing_int_ty.bitSize(mod) != fields_bit_sum) { return sema.fail( block, src, "backing integer type '{}' has bit size {} but the struct fields have a total bit size of {}", .{ backing_int_ty.fmt(sema.mod), backing_int_ty.bitSize(mod), fields_bit_sum }, ); } } fn checkIndexable(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void { const mod = sema.mod; if (!ty.isIndexable(mod)) { const msg = msg: { const msg = try sema.errMsg(block, src, "type '{}' does not support indexing", .{ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "operand must be an array, slice, tuple, or vector", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } fn checkMemOperand(sema: *Sema, block: *Block, src: LazySrcLoc, ty: Type) !void { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Pointer) { switch (ty.ptrSize(mod)) { .Slice, .Many, .C => return, .One => { const elem_ty = ty.childType(mod); if (elem_ty.zigTypeTag(mod) == .Array) return; // TODO https://github.com/ziglang/zig/issues/15479 // if (elem_ty.isTuple()) return; }, } } const msg = msg: { const msg = try sema.errMsg(block, src, "type '{}' is not an indexable pointer", .{ty.fmt(sema.mod)}); errdefer msg.destroy(sema.gpa); try sema.errNote(block, src, msg, "operand must be a slice, a many pointer or a pointer to an array", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } fn resolveUnionLayout(sema: *Sema, ty: Type) CompileError!void { const mod = sema.mod; try sema.resolveTypeFields(ty); const union_obj = mod.typeToUnion(ty).?; switch (union_obj.status) { .none, .have_field_types => {}, .field_types_wip, .layout_wip => { const msg = try Module.ErrorMsg.create( sema.gpa, union_obj.srcLoc(sema.mod), "union '{}' depends on itself", .{ty.fmt(sema.mod)}, ); return sema.failWithOwnedErrorMsg(msg); }, .have_layout, .fully_resolved_wip, .fully_resolved => return, } const prev_status = union_obj.status; errdefer if (union_obj.status == .layout_wip) { union_obj.status = prev_status; }; union_obj.status = .layout_wip; for (union_obj.fields.values(), 0..) |field, i| { sema.resolveTypeLayout(field.ty) catch |err| switch (err) { error.AnalysisFail => { const msg = sema.err orelse return err; try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{}); return err; }, else => return err, }; } union_obj.status = .have_layout; _ = try sema.resolveTypeRequiresComptime(ty); if (union_obj.assumed_runtime_bits and !(try sema.typeHasRuntimeBits(ty))) { const msg = try Module.ErrorMsg.create( sema.gpa, union_obj.srcLoc(sema.mod), "union layout depends on it having runtime bits", .{}, ); return sema.failWithOwnedErrorMsg(msg); } } // In case of querying the ABI alignment of this struct, we will ask // for hasRuntimeBits() of each field, so we need "requires comptime" // to be known already before this function returns. pub fn resolveTypeRequiresComptime(sema: *Sema, ty: Type) CompileError!bool { const mod = sema.mod; return switch (ty.toIntern()) { .empty_struct_type => false, else => switch (mod.intern_pool.indexToKey(ty.toIntern())) { .int_type => false, .ptr_type => |ptr_type| { const child_ty = ptr_type.child.toType(); if (child_ty.zigTypeTag(mod) == .Fn) { return mod.typeToFunc(child_ty).?.is_generic; } else { return sema.resolveTypeRequiresComptime(child_ty); } }, .anyframe_type => |child| { if (child == .none) return false; return sema.resolveTypeRequiresComptime(child.toType()); }, .array_type => |array_type| return sema.resolveTypeRequiresComptime(array_type.child.toType()), .vector_type => |vector_type| return sema.resolveTypeRequiresComptime(vector_type.child.toType()), .opt_type => |child| return sema.resolveTypeRequiresComptime(child.toType()), .error_union_type => |error_union_type| return sema.resolveTypeRequiresComptime(error_union_type.payload_type.toType()), .error_set_type, .inferred_error_set_type => false, .func_type => true, .simple_type => |t| switch (t) { .f16, .f32, .f64, .f80, .f128, .usize, .isize, .c_char, .c_short, .c_ushort, .c_int, .c_uint, .c_long, .c_ulong, .c_longlong, .c_ulonglong, .c_longdouble, .anyopaque, .bool, .void, .anyerror, .adhoc_inferred_error_set, .noreturn, .generic_poison, .atomic_order, .atomic_rmw_op, .calling_convention, .address_space, .float_mode, .reduce_op, .call_modifier, .prefetch_options, .export_options, .extern_options, => false, .type, .comptime_int, .comptime_float, .null, .undefined, .enum_literal, .type_info, => true, }, .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index) orelse return false; switch (struct_obj.requires_comptime) { .no, .wip => return false, .yes => return true, .unknown => { var requires_comptime = false; struct_obj.requires_comptime = .wip; for (struct_obj.fields.values()) |field| { if (try sema.resolveTypeRequiresComptime(field.ty)) requires_comptime = true; } if (requires_comptime) { struct_obj.requires_comptime = .yes; } else { struct_obj.requires_comptime = .no; } return requires_comptime; }, } }, .anon_struct_type => |tuple| { for (tuple.types, tuple.values) |field_ty, field_val| { const have_comptime_val = field_val != .none; if (!have_comptime_val and try sema.resolveTypeRequiresComptime(field_ty.toType())) { return true; } } return false; }, .union_type => |union_type| { const union_obj = mod.unionPtr(union_type.index); switch (union_obj.requires_comptime) { .no, .wip => return false, .yes => return true, .unknown => { var requires_comptime = false; union_obj.requires_comptime = .wip; for (union_obj.fields.values()) |field| { if (try sema.resolveTypeRequiresComptime(field.ty)) requires_comptime = true; } if (requires_comptime) { union_obj.requires_comptime = .yes; } else { union_obj.requires_comptime = .no; } return requires_comptime; }, } }, .opaque_type => false, .enum_type => |enum_type| try sema.resolveTypeRequiresComptime(enum_type.tag_ty.toType()), // values, not types .undef, .runtime_value, .simple_value, .variable, .extern_func, .func, .int, .err, .error_union, .enum_literal, .enum_tag, .empty_enum_value, .float, .ptr, .opt, .aggregate, .un, // memoization, not types .memoized_call, => unreachable, }, }; } /// Returns `error.AnalysisFail` if any of the types (recursively) failed to /// be resolved. pub fn resolveTypeFully(sema: *Sema, ty: Type) CompileError!void { const mod = sema.mod; switch (ty.zigTypeTag(mod)) { .Pointer => { return sema.resolveTypeFully(ty.childType(mod)); }, .Struct => switch (mod.intern_pool.indexToKey(ty.toIntern())) { .struct_type => return sema.resolveStructFully(ty), .anon_struct_type => |tuple| { for (tuple.types) |field_ty| { try sema.resolveTypeFully(field_ty.toType()); } }, .simple_type => |simple_type| try sema.resolveSimpleType(simple_type), else => {}, }, .Union => return sema.resolveUnionFully(ty), .Array => return sema.resolveTypeFully(ty.childType(mod)), .Optional => { return sema.resolveTypeFully(ty.optionalChild(mod)); }, .ErrorUnion => return sema.resolveTypeFully(ty.errorUnionPayload(mod)), .Fn => { const info = mod.typeToFunc(ty).?; if (info.is_generic) { // Resolving of generic function types is deferred to when // the function is instantiated. return; } const ip = &mod.intern_pool; for (0..info.param_types.len) |i| { const param_ty = info.param_types.get(ip)[i]; try sema.resolveTypeFully(param_ty.toType()); } try sema.resolveTypeFully(info.return_type.toType()); }, else => {}, } } fn resolveStructFully(sema: *Sema, ty: Type) CompileError!void { try sema.resolveStructLayout(ty); const mod = sema.mod; try sema.resolveTypeFields(ty); const struct_obj = mod.typeToStruct(ty).?; switch (struct_obj.status) { .none, .have_field_types, .field_types_wip, .layout_wip, .have_layout => {}, .fully_resolved_wip, .fully_resolved => return, } { // After we have resolve struct layout we have to go over the fields again to // make sure pointer fields get their child types resolved as well. // See also similar code for unions. const prev_status = struct_obj.status; errdefer struct_obj.status = prev_status; struct_obj.status = .fully_resolved_wip; for (struct_obj.fields.values()) |field| { try sema.resolveTypeFully(field.ty); } struct_obj.status = .fully_resolved; } // And let's not forget comptime-only status. _ = try sema.typeRequiresComptime(ty); } fn resolveUnionFully(sema: *Sema, ty: Type) CompileError!void { try sema.resolveUnionLayout(ty); const mod = sema.mod; try sema.resolveTypeFields(ty); const union_obj = mod.typeToUnion(ty).?; switch (union_obj.status) { .none, .have_field_types, .field_types_wip, .layout_wip, .have_layout => {}, .fully_resolved_wip, .fully_resolved => return, } { // After we have resolve union layout we have to go over the fields again to // make sure pointer fields get their child types resolved as well. // See also similar code for structs. const prev_status = union_obj.status; errdefer union_obj.status = prev_status; union_obj.status = .fully_resolved_wip; for (union_obj.fields.values()) |field| { try sema.resolveTypeFully(field.ty); } union_obj.status = .fully_resolved; } // And let's not forget comptime-only status. _ = try sema.typeRequiresComptime(ty); } pub fn resolveTypeFields(sema: *Sema, ty: Type) CompileError!void { const mod = sema.mod; switch (ty.toIntern()) { .var_args_param_type => unreachable, .none => unreachable, .u0_type, .i0_type, .u1_type, .u8_type, .i8_type, .u16_type, .i16_type, .u29_type, .u32_type, .i32_type, .u64_type, .i64_type, .u80_type, .u128_type, .i128_type, .usize_type, .isize_type, .c_char_type, .c_short_type, .c_ushort_type, .c_int_type, .c_uint_type, .c_long_type, .c_ulong_type, .c_longlong_type, .c_ulonglong_type, .c_longdouble_type, .f16_type, .f32_type, .f64_type, .f80_type, .f128_type, .anyopaque_type, .bool_type, .void_type, .type_type, .anyerror_type, .adhoc_inferred_error_set_type, .comptime_int_type, .comptime_float_type, .noreturn_type, .anyframe_type, .null_type, .undefined_type, .enum_literal_type, .manyptr_u8_type, .manyptr_const_u8_type, .manyptr_const_u8_sentinel_0_type, .single_const_pointer_to_comptime_int_type, .slice_const_u8_type, .slice_const_u8_sentinel_0_type, .optional_noreturn_type, .anyerror_void_error_union_type, .generic_poison_type, .empty_struct_type, => {}, .undef => unreachable, .zero => unreachable, .zero_usize => unreachable, .zero_u8 => unreachable, .one => unreachable, .one_usize => unreachable, .one_u8 => unreachable, .four_u8 => unreachable, .negative_one => unreachable, .calling_convention_c => unreachable, .calling_convention_inline => unreachable, .void_value => unreachable, .unreachable_value => unreachable, .null_value => unreachable, .bool_true => unreachable, .bool_false => unreachable, .empty_struct => unreachable, .generic_poison => unreachable, else => switch (mod.intern_pool.items.items(.tag)[@intFromEnum(ty.toIntern())]) { .type_struct, .type_struct_ns, .type_union_tagged, .type_union_untagged, .type_union_safety, .simple_type, => switch (mod.intern_pool.indexToKey(ty.toIntern())) { .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index) orelse return; try sema.resolveTypeFieldsStruct(ty, struct_obj); }, .union_type => |union_type| { const union_obj = mod.unionPtr(union_type.index); try sema.resolveTypeFieldsUnion(ty, union_obj); }, .simple_type => |simple_type| try sema.resolveSimpleType(simple_type), else => unreachable, }, else => {}, }, } } /// Fully resolves a simple type. This is usually a nop, but for builtin types with /// special InternPool indices (such as std.builtin.Type) it will analyze and fully /// resolve the container type. fn resolveSimpleType(sema: *Sema, simple_type: InternPool.SimpleType) CompileError!void { const builtin_type_name: []const u8 = switch (simple_type) { .atomic_order => "AtomicOrder", .atomic_rmw_op => "AtomicRmwOp", .calling_convention => "CallingConvention", .address_space => "AddressSpace", .float_mode => "FloatMode", .reduce_op => "ReduceOp", .call_modifier => "CallModifer", .prefetch_options => "PrefetchOptions", .export_options => "ExportOptions", .extern_options => "ExternOptions", .type_info => "Type", else => return, }; // This will fully resolve the type. _ = try sema.getBuiltinType(builtin_type_name); } fn resolveTypeFieldsStruct( sema: *Sema, ty: Type, struct_obj: *Module.Struct, ) CompileError!void { switch (sema.mod.declPtr(struct_obj.owner_decl).analysis) { .file_failure, .dependency_failure, .sema_failure, .sema_failure_retryable, => { sema.owner_decl.analysis = .dependency_failure; sema.owner_decl.generation = sema.mod.generation; return error.AnalysisFail; }, else => {}, } switch (struct_obj.status) { .none => {}, .field_types_wip => { const msg = try Module.ErrorMsg.create( sema.gpa, struct_obj.srcLoc(sema.mod), "struct '{}' depends on itself", .{ty.fmt(sema.mod)}, ); return sema.failWithOwnedErrorMsg(msg); }, .have_field_types, .have_layout, .layout_wip, .fully_resolved_wip, .fully_resolved, => return, } struct_obj.status = .field_types_wip; errdefer struct_obj.status = .none; try semaStructFields(sema.mod, struct_obj); } fn resolveTypeFieldsUnion(sema: *Sema, ty: Type, union_obj: *Module.Union) CompileError!void { switch (sema.mod.declPtr(union_obj.owner_decl).analysis) { .file_failure, .dependency_failure, .sema_failure, .sema_failure_retryable, => { sema.owner_decl.analysis = .dependency_failure; sema.owner_decl.generation = sema.mod.generation; return error.AnalysisFail; }, else => {}, } switch (union_obj.status) { .none => {}, .field_types_wip => { const msg = try Module.ErrorMsg.create( sema.gpa, union_obj.srcLoc(sema.mod), "union '{}' depends on itself", .{ty.fmt(sema.mod)}, ); return sema.failWithOwnedErrorMsg(msg); }, .have_field_types, .have_layout, .layout_wip, .fully_resolved_wip, .fully_resolved, => return, } union_obj.status = .field_types_wip; errdefer union_obj.status = .none; try semaUnionFields(sema.mod, union_obj); union_obj.status = .have_field_types; } /// Returns a normal error set corresponding to the fully populated inferred /// error set. fn resolveInferredErrorSet( sema: *Sema, block: *Block, src: LazySrcLoc, ies_index: InternPool.Index, ) CompileError!InternPool.Index { const mod = sema.mod; const ip = &mod.intern_pool; const func_index = ip.iesFuncIndex(ies_index); const func = mod.funcInfo(func_index); const resolved_ty = func.resolvedErrorSet(ip).*; if (resolved_ty != .none) return resolved_ty; if (func.analysis(ip).state == .in_progress) return sema.fail(block, src, "unable to resolve inferred error set", .{}); // In order to ensure that all dependencies are properly added to the set, // we need to ensure the function body is analyzed of the inferred error // set. However, in the case of comptime/inline function calls with // inferred error sets, each call gets an adhoc InferredErrorSet object, which // has no corresponding function body. const ies_func_owner_decl = mod.declPtr(func.owner_decl); const ies_func_info = mod.typeToFunc(ies_func_owner_decl.ty).?; // if ies declared by a inline function with generic return type, the return_type should be generic_poison, // because inline function does not create a new declaration, and the ies has been filled with analyzeCall, // so here we can simply skip this case. if (ies_func_info.return_type == .generic_poison_type) { assert(ies_func_info.cc == .Inline); } else if (ip.errorUnionSet(ies_func_info.return_type) == ies_index) { if (ies_func_info.is_generic) { const msg = msg: { const msg = try sema.errMsg(block, src, "unable to resolve inferred error set of generic function", .{}); errdefer msg.destroy(sema.gpa); try sema.mod.errNoteNonLazy(ies_func_owner_decl.srcLoc(mod), msg, "generic function declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } // In this case we are dealing with the actual InferredErrorSet object that // corresponds to the function, not one created to track an inline/comptime call. try sema.ensureFuncBodyAnalyzed(func_index); } // This will now have been resolved by the logic at the end of `Module.analyzeFnBody` // which calls `resolveInferredErrorSetPtr`. const final_resolved_ty = func.resolvedErrorSet(ip).*; assert(final_resolved_ty != .none); return final_resolved_ty; } pub fn resolveInferredErrorSetPtr( sema: *Sema, block: *Block, src: LazySrcLoc, ies: *InferredErrorSet, ) CompileError!void { const mod = sema.mod; const ip = &mod.intern_pool; if (ies.resolved != .none) return; const ies_index = ip.errorUnionSet(sema.fn_ret_ty.toIntern()); for (ies.inferred_error_sets.keys()) |other_ies_index| { if (ies_index == other_ies_index) continue; switch (try sema.resolveInferredErrorSet(block, src, other_ies_index)) { .anyerror_type => { ies.resolved = .anyerror_type; return; }, else => |error_set_ty_index| { const names = ip.indexToKey(error_set_ty_index).error_set_type.names; for (names.get(ip)) |name| { try ies.errors.put(sema.arena, name, {}); } }, } } const resolved_error_set_ty = try mod.errorSetFromUnsortedNames(ies.errors.keys()); ies.resolved = resolved_error_set_ty.toIntern(); } fn resolveAdHocInferredErrorSet( sema: *Sema, block: *Block, src: LazySrcLoc, value: InternPool.Index, ) CompileError!InternPool.Index { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const new_ty = try resolveAdHocInferredErrorSetTy(sema, block, src, ip.typeOf(value)); if (new_ty == .none) return value; return ip.getCoerced(gpa, value, new_ty); } fn resolveAdHocInferredErrorSetTy( sema: *Sema, block: *Block, src: LazySrcLoc, ty: InternPool.Index, ) CompileError!InternPool.Index { const ies = sema.fn_ret_ty_ies orelse return .none; const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const error_union_info = switch (ip.indexToKey(ty)) { .error_union_type => |x| x, else => return .none, }; if (error_union_info.error_set_type != .adhoc_inferred_error_set_type) return .none; try sema.resolveInferredErrorSetPtr(block, src, ies); const new_ty = try ip.get(gpa, .{ .error_union_type = .{ .error_set_type = ies.resolved, .payload_type = error_union_info.payload_type, } }); return new_ty; } fn resolveInferredErrorSetTy( sema: *Sema, block: *Block, src: LazySrcLoc, ty: InternPool.Index, ) CompileError!InternPool.Index { const mod = sema.mod; const ip = &mod.intern_pool; if (ty == .anyerror_type) return ty; switch (ip.indexToKey(ty)) { .error_set_type => return ty, .inferred_error_set_type => return sema.resolveInferredErrorSet(block, src, ty), else => unreachable, } } fn semaStructFields(mod: *Module, struct_obj: *Module.Struct) CompileError!void { const gpa = mod.gpa; const ip = &mod.intern_pool; const decl_index = struct_obj.owner_decl; const zir = mod.namespacePtr(struct_obj.namespace).file_scope.zir; const extended = zir.instructions.items(.data)[struct_obj.zir_index].extended; assert(extended.opcode == .struct_decl); const small = @as(Zir.Inst.StructDecl.Small, @bitCast(extended.small)); var extra_index: usize = extended.operand; const src = LazySrcLoc.nodeOffset(0); extra_index += @intFromBool(small.has_src_node); const fields_len = if (small.has_fields_len) blk: { const fields_len = zir.extra[extra_index]; extra_index += 1; break :blk fields_len; } else 0; const decls_len = if (small.has_decls_len) decls_len: { const decls_len = zir.extra[extra_index]; extra_index += 1; break :decls_len decls_len; } else 0; // The backing integer cannot be handled until `resolveStructLayout()`. if (small.has_backing_int) { const backing_int_body_len = zir.extra[extra_index]; extra_index += 1; // backing_int_body_len if (backing_int_body_len == 0) { extra_index += 1; // backing_int_ref } else { extra_index += backing_int_body_len; // backing_int_body_inst } } // Skip over decls. var decls_it = zir.declIteratorInner(extra_index, decls_len); while (decls_it.next()) |_| {} extra_index = decls_it.extra_index; if (fields_len == 0) { if (struct_obj.layout == .Packed) { try semaBackingIntType(mod, struct_obj); } struct_obj.status = .have_layout; return; } const decl = mod.declPtr(decl_index); var analysis_arena = std.heap.ArenaAllocator.init(gpa); defer analysis_arena.deinit(); var comptime_mutable_decls = std.ArrayList(Decl.Index).init(gpa); defer comptime_mutable_decls.deinit(); var sema: Sema = .{ .mod = mod, .gpa = gpa, .arena = analysis_arena.allocator(), .code = zir, .owner_decl = decl, .owner_decl_index = decl_index, .func_index = .none, .func_is_naked = false, .fn_ret_ty = Type.void, .fn_ret_ty_ies = null, .owner_func_index = .none, .comptime_mutable_decls = &comptime_mutable_decls, }; defer sema.deinit(); var wip_captures = try WipCaptureScope.init(gpa, decl.src_scope); defer wip_captures.deinit(); var block_scope: Block = .{ .parent = null, .sema = &sema, .src_decl = decl_index, .namespace = struct_obj.namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer assert(block_scope.instructions.items.len == 0); struct_obj.fields = .{}; try struct_obj.fields.ensureTotalCapacity(mod.tmp_hack_arena.allocator(), fields_len); const Field = struct { type_body_len: u32 = 0, align_body_len: u32 = 0, init_body_len: u32 = 0, type_ref: Zir.Inst.Ref = .none, }; const fields = try sema.arena.alloc(Field, fields_len); var any_inits = false; { const bits_per_field = 4; const fields_per_u32 = 32 / bits_per_field; const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable; const flags_index = extra_index; var bit_bag_index: usize = flags_index; extra_index += bit_bags_count; var cur_bit_bag: u32 = undefined; var field_i: u32 = 0; while (field_i < fields_len) : (field_i += 1) { if (field_i % fields_per_u32 == 0) { cur_bit_bag = zir.extra[bit_bag_index]; bit_bag_index += 1; } const has_align = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const has_init = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const is_comptime = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const has_type_body = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; var field_name_zir: ?[:0]const u8 = null; if (!small.is_tuple) { field_name_zir = zir.nullTerminatedString(zir.extra[extra_index]); extra_index += 1; } extra_index += 1; // doc_comment fields[field_i] = .{}; if (has_type_body) { fields[field_i].type_body_len = zir.extra[extra_index]; } else { fields[field_i].type_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); } extra_index += 1; // This string needs to outlive the ZIR code. const field_name = try ip.getOrPutString(gpa, if (field_name_zir) |s| s else try std.fmt.allocPrint(sema.arena, "{d}", .{field_i})); const gop = struct_obj.fields.getOrPutAssumeCapacity(field_name); if (gop.found_existing) { const msg = msg: { const field_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i }).lazy; const msg = try sema.errMsg(&block_scope, field_src, "duplicate struct field: '{}'", .{field_name.fmt(ip)}); errdefer msg.destroy(gpa); const prev_field_index = struct_obj.fields.getIndex(field_name).?; const prev_field_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = prev_field_index }); try mod.errNoteNonLazy(prev_field_src, msg, "other field here", .{}); try sema.errNote(&block_scope, src, msg, "struct declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } gop.value_ptr.* = .{ .ty = Type.noreturn, .abi_align = .none, .default_val = .none, .is_comptime = is_comptime, .offset = undefined, }; if (has_align) { fields[field_i].align_body_len = zir.extra[extra_index]; extra_index += 1; } if (has_init) { fields[field_i].init_body_len = zir.extra[extra_index]; extra_index += 1; any_inits = true; } } } // Next we do only types and alignments, saving the inits for a second pass, // so that init values may depend on type layout. const bodies_index = extra_index; for (fields, 0..) |zir_field, field_i| { const field_ty: Type = ty: { if (zir_field.type_ref != .none) { break :ty sema.resolveType(&block_scope, .unneeded, zir_field.type_ref) catch |err| switch (err) { error.NeededSourceLocation => { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; _ = try sema.resolveType(&block_scope, ty_src, zir_field.type_ref); unreachable; }, else => |e| return e, }; } assert(zir_field.type_body_len != 0); const body = zir.extra[extra_index..][0..zir_field.type_body_len]; extra_index += body.len; const ty_ref = try sema.resolveBody(&block_scope, body, struct_obj.zir_index); break :ty sema.analyzeAsType(&block_scope, .unneeded, ty_ref) catch |err| switch (err) { error.NeededSourceLocation => { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; _ = try sema.analyzeAsType(&block_scope, ty_src, ty_ref); unreachable; }, else => |e| return e, }; }; if (field_ty.isGenericPoison()) { return error.GenericPoison; } const field = &struct_obj.fields.values()[field_i]; field.ty = field_ty; if (field_ty.zigTypeTag(mod) == .Opaque) { const msg = msg: { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; const msg = try sema.errMsg(&block_scope, ty_src, "opaque types have unknown size and therefore cannot be directly embedded in structs", .{}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (field_ty.zigTypeTag(mod) == .NoReturn) { const msg = msg: { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; const msg = try sema.errMsg(&block_scope, ty_src, "struct fields cannot be 'noreturn'", .{}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (struct_obj.layout == .Extern and !try sema.validateExternType(field.ty, .struct_field)) { const msg = msg: { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }); const msg = try sema.errMsg(&block_scope, ty_src.lazy, "extern structs cannot contain fields of type '{}'", .{field.ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); try sema.explainWhyTypeIsNotExtern(msg, ty_src, field.ty, .struct_field); try sema.addDeclaredHereNote(msg, field.ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (struct_obj.layout == .Packed and !(validatePackedType(field.ty, mod))) { const msg = msg: { const ty_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .type, }); const msg = try sema.errMsg(&block_scope, ty_src.lazy, "packed structs cannot contain fields of type '{}'", .{field.ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); try sema.explainWhyTypeIsNotPacked(msg, ty_src, field.ty); try sema.addDeclaredHereNote(msg, field.ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (zir_field.align_body_len > 0) { const body = zir.extra[extra_index..][0..zir_field.align_body_len]; extra_index += body.len; const align_ref = try sema.resolveBody(&block_scope, body, struct_obj.zir_index); field.abi_align = sema.analyzeAsAlign(&block_scope, .unneeded, align_ref) catch |err| switch (err) { error.NeededSourceLocation => { const align_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .alignment, }).lazy; _ = try sema.analyzeAsAlign(&block_scope, align_src, align_ref); unreachable; }, else => |e| return e, }; } extra_index += zir_field.init_body_len; } struct_obj.status = .have_field_types; if (any_inits) { extra_index = bodies_index; for (fields, 0..) |zir_field, field_i| { extra_index += zir_field.type_body_len; extra_index += zir_field.align_body_len; if (zir_field.init_body_len > 0) { const body = zir.extra[extra_index..][0..zir_field.init_body_len]; extra_index += body.len; const init = try sema.resolveBody(&block_scope, body, struct_obj.zir_index); const field = &struct_obj.fields.values()[field_i]; const coerced = sema.coerce(&block_scope, field.ty, init, .unneeded) catch |err| switch (err) { error.NeededSourceLocation => { const init_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .value, }).lazy; _ = try sema.coerce(&block_scope, field.ty, init, init_src); unreachable; }, else => |e| return e, }; const default_val = (try sema.resolveMaybeUndefVal(coerced)) orelse { const init_src = mod.fieldSrcLoc(struct_obj.owner_decl, .{ .index = field_i, .range = .value, }).lazy; return sema.failWithNeededComptime(&block_scope, init_src, "struct field default value must be comptime-known"); }; field.default_val = try default_val.intern(field.ty, mod); } } } try wip_captures.finalize(); for (comptime_mutable_decls.items) |ct_decl_index| { const ct_decl = mod.declPtr(ct_decl_index); _ = try ct_decl.internValue(mod); } struct_obj.have_field_inits = true; } fn semaUnionFields(mod: *Module, union_obj: *Module.Union) CompileError!void { const tracy = trace(@src()); defer tracy.end(); const gpa = mod.gpa; const ip = &mod.intern_pool; const decl_index = union_obj.owner_decl; const zir = mod.namespacePtr(union_obj.namespace).file_scope.zir; const extended = zir.instructions.items(.data)[union_obj.zir_index].extended; assert(extended.opcode == .union_decl); const small = @as(Zir.Inst.UnionDecl.Small, @bitCast(extended.small)); var extra_index: usize = extended.operand; const src = LazySrcLoc.nodeOffset(0); extra_index += @intFromBool(small.has_src_node); const tag_type_ref: Zir.Inst.Ref = if (small.has_tag_type) blk: { const ty_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); extra_index += 1; break :blk ty_ref; } else .none; const body_len = if (small.has_body_len) blk: { const body_len = zir.extra[extra_index]; extra_index += 1; break :blk body_len; } else 0; const fields_len = if (small.has_fields_len) blk: { const fields_len = zir.extra[extra_index]; extra_index += 1; break :blk fields_len; } else 0; const decls_len = if (small.has_decls_len) decls_len: { const decls_len = zir.extra[extra_index]; extra_index += 1; break :decls_len decls_len; } else 0; // Skip over decls. var decls_it = zir.declIteratorInner(extra_index, decls_len); while (decls_it.next()) |_| {} extra_index = decls_it.extra_index; const body = zir.extra[extra_index..][0..body_len]; extra_index += body.len; const decl = mod.declPtr(decl_index); var analysis_arena = std.heap.ArenaAllocator.init(gpa); defer analysis_arena.deinit(); var comptime_mutable_decls = std.ArrayList(Decl.Index).init(gpa); defer comptime_mutable_decls.deinit(); var sema: Sema = .{ .mod = mod, .gpa = gpa, .arena = analysis_arena.allocator(), .code = zir, .owner_decl = decl, .owner_decl_index = decl_index, .func_index = .none, .func_is_naked = false, .fn_ret_ty = Type.void, .fn_ret_ty_ies = null, .owner_func_index = .none, .comptime_mutable_decls = &comptime_mutable_decls, }; defer sema.deinit(); var wip_captures = try WipCaptureScope.init(gpa, decl.src_scope); defer wip_captures.deinit(); var block_scope: Block = .{ .parent = null, .sema = &sema, .src_decl = decl_index, .namespace = union_obj.namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer assert(block_scope.instructions.items.len == 0); if (body.len != 0) { try sema.analyzeBody(&block_scope, body); } try wip_captures.finalize(); for (comptime_mutable_decls.items) |ct_decl_index| { const ct_decl = mod.declPtr(ct_decl_index); _ = try ct_decl.internValue(mod); } try union_obj.fields.ensureTotalCapacity(mod.tmp_hack_arena.allocator(), fields_len); var int_tag_ty: Type = undefined; var enum_field_names: []InternPool.NullTerminatedString = &.{}; var enum_field_vals: std.AutoArrayHashMapUnmanaged(InternPool.Index, void) = .{}; var explicit_tags_seen: []bool = &.{}; if (tag_type_ref != .none) { const tag_ty_src: LazySrcLoc = .{ .node_offset_container_tag = src.node_offset.x }; const provided_ty = try sema.resolveType(&block_scope, tag_ty_src, tag_type_ref); if (small.auto_enum_tag) { // The provided type is an integer type and we must construct the enum tag type here. int_tag_ty = provided_ty; if (int_tag_ty.zigTypeTag(mod) != .Int and int_tag_ty.zigTypeTag(mod) != .ComptimeInt) { return sema.fail(&block_scope, tag_ty_src, "expected integer tag type, found '{}'", .{int_tag_ty.fmt(mod)}); } if (fields_len > 0) { const field_count_val = try mod.intValue(Type.comptime_int, fields_len - 1); if (!(try sema.intFitsInType(field_count_val, int_tag_ty, null))) { const msg = msg: { const msg = try sema.errMsg(&block_scope, tag_ty_src, "specified integer tag type cannot represent every field", .{}); errdefer msg.destroy(sema.gpa); try sema.errNote(&block_scope, tag_ty_src, msg, "type '{}' cannot fit values in range 0...{d}", .{ int_tag_ty.fmt(mod), fields_len - 1, }); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len); try enum_field_vals.ensureTotalCapacity(sema.arena, fields_len); } } else { // The provided type is the enum tag type. union_obj.tag_ty = provided_ty; const enum_type = switch (ip.indexToKey(union_obj.tag_ty.toIntern())) { .enum_type => |x| x, else => return sema.fail(&block_scope, tag_ty_src, "expected enum tag type, found '{}'", .{union_obj.tag_ty.fmt(mod)}), }; // The fields of the union must match the enum exactly. // A flag per field is used to check for missing and extraneous fields. explicit_tags_seen = try sema.arena.alloc(bool, enum_type.names.len); @memset(explicit_tags_seen, false); } } else { // If auto_enum_tag is false, this is an untagged union. However, for semantic analysis // purposes, we still auto-generate an enum tag type the same way. That the union is // untagged is represented by the Type tag (union vs union_tagged). enum_field_names = try sema.arena.alloc(InternPool.NullTerminatedString, fields_len); } const bits_per_field = 4; const fields_per_u32 = 32 / bits_per_field; const bit_bags_count = std.math.divCeil(usize, fields_len, fields_per_u32) catch unreachable; var bit_bag_index: usize = extra_index; extra_index += bit_bags_count; var cur_bit_bag: u32 = undefined; var field_i: u32 = 0; var last_tag_val: ?Value = null; while (field_i < fields_len) : (field_i += 1) { if (field_i % fields_per_u32 == 0) { cur_bit_bag = zir.extra[bit_bag_index]; bit_bag_index += 1; } const has_type = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const has_align = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const has_tag = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; const unused = @as(u1, @truncate(cur_bit_bag)) != 0; cur_bit_bag >>= 1; _ = unused; const field_name_zir = zir.nullTerminatedString(zir.extra[extra_index]); extra_index += 1; // doc_comment extra_index += 1; const field_type_ref: Zir.Inst.Ref = if (has_type) blk: { const field_type_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); extra_index += 1; break :blk field_type_ref; } else .none; const align_ref: Zir.Inst.Ref = if (has_align) blk: { const align_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); extra_index += 1; break :blk align_ref; } else .none; const tag_ref: Air.Inst.Ref = if (has_tag) blk: { const tag_ref = @as(Zir.Inst.Ref, @enumFromInt(zir.extra[extra_index])); extra_index += 1; break :blk try sema.resolveInst(tag_ref); } else .none; if (enum_field_vals.capacity() > 0) { const enum_tag_val = if (tag_ref != .none) blk: { const val = sema.semaUnionFieldVal(&block_scope, .unneeded, int_tag_ty, tag_ref) catch |err| switch (err) { error.NeededSourceLocation => { const val_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .value, }).lazy; _ = try sema.semaUnionFieldVal(&block_scope, val_src, int_tag_ty, tag_ref); unreachable; }, else => |e| return e, }; last_tag_val = val; break :blk val; } else blk: { const val = if (last_tag_val) |val| try sema.intAdd(val, Value.one_comptime_int, int_tag_ty, undefined) else try mod.intValue(int_tag_ty, 0); last_tag_val = val; break :blk val; }; const gop = enum_field_vals.getOrPutAssumeCapacity(enum_tag_val.toIntern()); if (gop.found_existing) { const field_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i }).lazy; const other_field_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = gop.index }).lazy; const msg = msg: { const msg = try sema.errMsg(&block_scope, field_src, "enum tag value {} already taken", .{enum_tag_val.fmtValue(int_tag_ty, mod)}); errdefer msg.destroy(gpa); try sema.errNote(&block_scope, other_field_src, msg, "other occurrence here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } // This string needs to outlive the ZIR code. const field_name = try ip.getOrPutString(gpa, field_name_zir); if (enum_field_names.len != 0) { enum_field_names[field_i] = field_name; } const field_ty: Type = if (!has_type) Type.void else if (field_type_ref == .none) Type.noreturn else sema.resolveType(&block_scope, .unneeded, field_type_ref) catch |err| switch (err) { error.NeededSourceLocation => { const ty_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; _ = try sema.resolveType(&block_scope, ty_src, field_type_ref); unreachable; }, else => |e| return e, }; if (field_ty.isGenericPoison()) { return error.GenericPoison; } const gop = union_obj.fields.getOrPutAssumeCapacity(field_name); if (gop.found_existing) { const msg = msg: { const field_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i }).lazy; const msg = try sema.errMsg(&block_scope, field_src, "duplicate union field: '{}'", .{ field_name.fmt(ip), }); errdefer msg.destroy(gpa); const prev_field_index = union_obj.fields.getIndex(field_name).?; const prev_field_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = prev_field_index }).lazy; try mod.errNoteNonLazy(prev_field_src.toSrcLoc(decl, mod), msg, "other field here", .{}); try sema.errNote(&block_scope, src, msg, "union declared here", .{}); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (explicit_tags_seen.len > 0) { const tag_info = ip.indexToKey(union_obj.tag_ty.toIntern()).enum_type; const enum_index = tag_info.nameIndex(ip, field_name) orelse { const msg = msg: { const ty_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; const msg = try sema.errMsg(&block_scope, ty_src, "no field named '{}' in enum '{}'", .{ field_name.fmt(ip), union_obj.tag_ty.fmt(mod), }); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, union_obj.tag_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); }; // No check for duplicate because the check already happened in order // to create the enum type in the first place. assert(!explicit_tags_seen[enum_index]); explicit_tags_seen[enum_index] = true; } if (field_ty.zigTypeTag(mod) == .Opaque) { const msg = msg: { const ty_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .type, }).lazy; const msg = try sema.errMsg(&block_scope, ty_src, "opaque types have unknown size and therefore cannot be directly embedded in unions", .{}); errdefer msg.destroy(sema.gpa); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } if (union_obj.layout == .Extern and !try sema.validateExternType(field_ty, .union_field)) { const msg = msg: { const ty_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .type, }); const msg = try sema.errMsg(&block_scope, ty_src.lazy, "extern unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); try sema.explainWhyTypeIsNotExtern(msg, ty_src, field_ty, .union_field); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } else if (union_obj.layout == .Packed and !(validatePackedType(field_ty, mod))) { const msg = msg: { const ty_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .type, }); const msg = try sema.errMsg(&block_scope, ty_src.lazy, "packed unions cannot contain fields of type '{}'", .{field_ty.fmt(mod)}); errdefer msg.destroy(sema.gpa); try sema.explainWhyTypeIsNotPacked(msg, ty_src, field_ty); try sema.addDeclaredHereNote(msg, field_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } gop.value_ptr.* = .{ .ty = field_ty, .abi_align = .none, }; if (align_ref != .none) { gop.value_ptr.abi_align = sema.resolveAlign(&block_scope, .unneeded, align_ref) catch |err| switch (err) { error.NeededSourceLocation => { const align_src = mod.fieldSrcLoc(union_obj.owner_decl, .{ .index = field_i, .range = .alignment, }).lazy; _ = try sema.resolveAlign(&block_scope, align_src, align_ref); unreachable; }, else => |e| return e, }; } else { gop.value_ptr.abi_align = .none; } } if (explicit_tags_seen.len > 0) { const tag_info = ip.indexToKey(union_obj.tag_ty.toIntern()).enum_type; if (tag_info.names.len > fields_len) { const msg = msg: { const msg = try sema.errMsg(&block_scope, src, "enum field(s) missing in union", .{}); errdefer msg.destroy(sema.gpa); const enum_ty = union_obj.tag_ty; for (tag_info.names.get(ip), 0..) |field_name, field_index| { if (explicit_tags_seen[field_index]) continue; try sema.addFieldErrNote(enum_ty, field_index, msg, "field '{}' missing, declared here", .{ field_name.fmt(ip), }); } try sema.addDeclaredHereNote(msg, union_obj.tag_ty); break :msg msg; }; return sema.failWithOwnedErrorMsg(msg); } } else if (enum_field_vals.count() > 0) { union_obj.tag_ty = try sema.generateUnionTagTypeNumbered(&block_scope, enum_field_names, enum_field_vals.keys(), union_obj); } else { union_obj.tag_ty = try sema.generateUnionTagTypeSimple(&block_scope, enum_field_names, union_obj); } } fn semaUnionFieldVal(sema: *Sema, block: *Block, src: LazySrcLoc, int_tag_ty: Type, tag_ref: Air.Inst.Ref) CompileError!Value { const coerced = try sema.coerce(block, int_tag_ty, tag_ref, src); return sema.resolveConstValue(block, src, coerced, "enum tag value must be comptime-known"); } fn generateUnionTagTypeNumbered( sema: *Sema, block: *Block, enum_field_names: []const InternPool.NullTerminatedString, enum_field_vals: []const InternPool.Index, union_obj: *Module.Union, ) !Type { const mod = sema.mod; const gpa = sema.gpa; const ip = &mod.intern_pool; const src_decl = mod.declPtr(block.src_decl); const new_decl_index = try mod.allocateNewDecl(block.namespace, src_decl.src_node, block.wip_capture_scope); errdefer mod.destroyDecl(new_decl_index); const fqn = try union_obj.getFullyQualifiedName(mod); const name = try ip.getOrPutStringFmt(gpa, "@typeInfo({}).Union.tag_type.?", .{fqn.fmt(ip)}); try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name); errdefer mod.abortAnonDecl(new_decl_index); const new_decl = mod.declPtr(new_decl_index); new_decl.name_fully_qualified = true; new_decl.owns_tv = true; new_decl.name_fully_qualified = true; const enum_ty = try ip.getEnum(gpa, .{ .decl = new_decl_index, .namespace = .none, .tag_ty = if (enum_field_vals.len == 0) (try mod.intType(.unsigned, 0)).toIntern() else ip.typeOf(enum_field_vals[0]), .names = enum_field_names, .values = enum_field_vals, .tag_mode = .explicit, }); new_decl.ty = Type.type; new_decl.val = enum_ty.toValue(); try mod.finalizeAnonDecl(new_decl_index); return enum_ty.toType(); } fn generateUnionTagTypeSimple( sema: *Sema, block: *Block, enum_field_names: []const InternPool.NullTerminatedString, maybe_union_obj: ?*Module.Union, ) !Type { const mod = sema.mod; const ip = &mod.intern_pool; const gpa = sema.gpa; const new_decl_index = new_decl_index: { const union_obj = maybe_union_obj orelse { break :new_decl_index try mod.createAnonymousDecl(block, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }); }; const src_decl = mod.declPtr(block.src_decl); const new_decl_index = try mod.allocateNewDecl(block.namespace, src_decl.src_node, block.wip_capture_scope); errdefer mod.destroyDecl(new_decl_index); const fqn = try union_obj.getFullyQualifiedName(mod); const name = try ip.getOrPutStringFmt(gpa, "@typeInfo({}).Union.tag_type.?", .{fqn.fmt(ip)}); try mod.initNewAnonDecl(new_decl_index, src_decl.src_line, .{ .ty = Type.noreturn, .val = Value.@"unreachable", }, name); mod.declPtr(new_decl_index).name_fully_qualified = true; break :new_decl_index new_decl_index; }; errdefer mod.abortAnonDecl(new_decl_index); const enum_ty = try ip.getEnum(gpa, .{ .decl = new_decl_index, .namespace = .none, .tag_ty = if (enum_field_names.len == 0) (try mod.intType(.unsigned, 0)).toIntern() else (try mod.smallestUnsignedInt(enum_field_names.len - 1)).toIntern(), .names = enum_field_names, .values = &.{}, .tag_mode = .auto, }); const new_decl = mod.declPtr(new_decl_index); new_decl.owns_tv = true; new_decl.ty = Type.type; new_decl.val = enum_ty.toValue(); try mod.finalizeAnonDecl(new_decl_index); return enum_ty.toType(); } fn getBuiltin(sema: *Sema, name: []const u8) CompileError!Air.Inst.Ref { const gpa = sema.gpa; const src = LazySrcLoc.nodeOffset(0); var wip_captures = try WipCaptureScope.init(gpa, sema.owner_decl.src_scope); defer wip_captures.deinit(); var block: Block = .{ .parent = null, .sema = sema, .src_decl = sema.owner_decl_index, .namespace = sema.owner_decl.src_namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer block.instructions.deinit(gpa); const decl_index = try getBuiltinDecl(sema, &block, name); return sema.analyzeDeclVal(&block, src, decl_index); } fn getBuiltinDecl(sema: *Sema, block: *Block, name: []const u8) CompileError!Module.Decl.Index { const gpa = sema.gpa; const src = LazySrcLoc.nodeOffset(0); const mod = sema.mod; const ip = &mod.intern_pool; const std_pkg = mod.main_pkg.table.get("std").?; const std_file = (mod.importPkg(std_pkg) catch unreachable).file; const opt_builtin_inst = (try sema.namespaceLookupRef( block, src, mod.declPtr(std_file.root_decl.unwrap().?).src_namespace, try ip.getOrPutString(gpa, "builtin"), )) orelse @panic("lib/std.zig is corrupt and missing 'builtin'"); const builtin_inst = try sema.analyzeLoad(block, src, opt_builtin_inst, src); const builtin_ty = sema.analyzeAsType(block, src, builtin_inst) catch |err| switch (err) { error.AnalysisFail => std.debug.panic("std.builtin is corrupt", .{}), else => |e| return e, }; const decl_index = (try sema.namespaceLookup( block, src, builtin_ty.getNamespaceIndex(mod).unwrap().?, try ip.getOrPutString(gpa, name), )) orelse std.debug.panic("lib/std/builtin.zig is corrupt and missing '{s}'", .{name}); return decl_index; } fn getBuiltinType(sema: *Sema, name: []const u8) CompileError!Type { const ty_inst = try sema.getBuiltin(name); var wip_captures = try WipCaptureScope.init(sema.gpa, sema.owner_decl.src_scope); defer wip_captures.deinit(); var block: Block = .{ .parent = null, .sema = sema, .src_decl = sema.owner_decl_index, .namespace = sema.owner_decl.src_namespace, .wip_capture_scope = wip_captures.scope, .instructions = .{}, .inlining = null, .is_comptime = true, }; defer block.instructions.deinit(sema.gpa); const src = LazySrcLoc.nodeOffset(0); const result_ty = sema.analyzeAsType(&block, src, ty_inst) catch |err| switch (err) { error.AnalysisFail => std.debug.panic("std.builtin.{s} is corrupt", .{name}), else => |e| return e, }; try sema.resolveTypeFully(result_ty); // Should not fail return result_ty; } /// There is another implementation of this in `Type.onePossibleValue`. This one /// in `Sema` is for calling during semantic analysis, and performs field resolution /// to get the answer. The one in `Type` is for calling during codegen and asserts /// that the types are already resolved. /// TODO assert the return value matches `ty.onePossibleValue` pub fn typeHasOnePossibleValue(sema: *Sema, ty: Type) CompileError!?Value { const mod = sema.mod; const ip = &mod.intern_pool; return switch (ty.toIntern()) { .u0_type, .i0_type, => try mod.intValue(ty, 0), .u1_type, .u8_type, .i8_type, .u16_type, .i16_type, .u29_type, .u32_type, .i32_type, .u64_type, .i64_type, .u80_type, .u128_type, .i128_type, .usize_type, .isize_type, .c_char_type, .c_short_type, .c_ushort_type, .c_int_type, .c_uint_type, .c_long_type, .c_ulong_type, .c_longlong_type, .c_ulonglong_type, .c_longdouble_type, .f16_type, .f32_type, .f64_type, .f80_type, .f128_type, .anyopaque_type, .bool_type, .type_type, .anyerror_type, .adhoc_inferred_error_set_type, .comptime_int_type, .comptime_float_type, .enum_literal_type, .atomic_order_type, .atomic_rmw_op_type, .calling_convention_type, .address_space_type, .float_mode_type, .reduce_op_type, .call_modifier_type, .prefetch_options_type, .export_options_type, .extern_options_type, .type_info_type, .manyptr_u8_type, .manyptr_const_u8_type, .manyptr_const_u8_sentinel_0_type, .single_const_pointer_to_comptime_int_type, .slice_const_u8_type, .slice_const_u8_sentinel_0_type, .anyerror_void_error_union_type, => null, .void_type => Value.void, .noreturn_type => Value.@"unreachable", .anyframe_type => unreachable, .null_type => Value.null, .undefined_type => Value.undef, .optional_noreturn_type => try mod.nullValue(ty), .generic_poison_type => error.GenericPoison, .empty_struct_type => Value.empty_struct, // values, not types .undef, .zero, .zero_usize, .zero_u8, .one, .one_usize, .one_u8, .four_u8, .negative_one, .calling_convention_c, .calling_convention_inline, .void_value, .unreachable_value, .null_value, .bool_true, .bool_false, .empty_struct, .generic_poison, // invalid .var_args_param_type, .none, => unreachable, _ => switch (ip.items.items(.tag)[@intFromEnum(ty.toIntern())]) { .type_int_signed, // i0 handled above .type_int_unsigned, // u0 handled above .type_pointer, .type_slice, .type_optional, // ?noreturn handled above .type_anyframe, .type_error_union, .type_anyerror_union, .type_error_set, .type_inferred_error_set, .type_opaque, .type_function, => null, .simple_type, // handled above // values, not types .undef, .runtime_value, .simple_value, .ptr_decl, .ptr_mut_decl, .ptr_comptime_field, .ptr_int, .ptr_eu_payload, .ptr_opt_payload, .ptr_elem, .ptr_field, .ptr_slice, .opt_payload, .opt_null, .int_u8, .int_u16, .int_u32, .int_i32, .int_usize, .int_comptime_int_u32, .int_comptime_int_i32, .int_small, .int_positive, .int_negative, .int_lazy_align, .int_lazy_size, .error_set_error, .error_union_error, .error_union_payload, .enum_literal, .enum_tag, .float_f16, .float_f32, .float_f64, .float_f80, .float_f128, .float_c_longdouble_f80, .float_c_longdouble_f128, .float_comptime_float, .variable, .extern_func, .func_decl, .func_instance, .func_coerced, .only_possible_value, .union_value, .bytes, .aggregate, .repeated, // memoized value, not types .memoized_call, => unreachable, .type_array_big, .type_array_small, .type_vector, .type_enum_auto, .type_enum_explicit, .type_enum_nonexhaustive, .type_struct, .type_struct_ns, .type_struct_anon, .type_tuple_anon, .type_union_tagged, .type_union_untagged, .type_union_safety, => switch (ip.indexToKey(ty.toIntern())) { inline .array_type, .vector_type => |seq_type, seq_tag| { const has_sentinel = seq_tag == .array_type and seq_type.sentinel != .none; if (seq_type.len + @intFromBool(has_sentinel) == 0) return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = &.{} }, } })).toValue(); if (try sema.typeHasOnePossibleValue(seq_type.child.toType())) |opv| { return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .repeated_elem = opv.toIntern() }, } })).toValue(); } return null; }, .struct_type => |struct_type| { try sema.resolveTypeFields(ty); if (mod.structPtrUnwrap(struct_type.index)) |s| { const field_vals = try sema.arena.alloc(InternPool.Index, s.fields.count()); for (field_vals, s.fields.values(), 0..) |*field_val, field, i| { if (field.is_comptime) { field_val.* = field.default_val; continue; } if (field.ty.eql(ty, sema.mod)) { const msg = try Module.ErrorMsg.create( sema.gpa, s.srcLoc(sema.mod), "struct '{}' depends on itself", .{ty.fmt(sema.mod)}, ); try sema.addFieldErrNote(ty, i, msg, "while checking this field", .{}); return sema.failWithOwnedErrorMsg(msg); } if (try sema.typeHasOnePossibleValue(field.ty)) |field_opv| { field_val.* = try field_opv.intern(field.ty, mod); } else return null; } // In this case the struct has no runtime-known fields and // therefore has one possible value. return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = field_vals }, } })).toValue(); } // In this case the struct has no fields at all and // therefore has one possible value. return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = &.{} }, } })).toValue(); }, .anon_struct_type => |tuple| { for (tuple.values) |val| { if (val == .none) return null; } // In this case the struct has all comptime-known fields and // therefore has one possible value. // TODO: write something like getCoercedInts to avoid needing to dupe return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = try sema.arena.dupe(InternPool.Index, tuple.values) }, } })).toValue(); }, .union_type => |union_type| { try sema.resolveTypeFields(ty); const union_obj = mod.unionPtr(union_type.index); const tag_val = (try sema.typeHasOnePossibleValue(union_obj.tag_ty)) orelse return null; const fields = union_obj.fields.values(); if (fields.len == 0) { const only = try mod.intern(.{ .empty_enum_value = ty.toIntern() }); return only.toValue(); } const only_field = fields[0]; if (only_field.ty.eql(ty, sema.mod)) { const msg = try Module.ErrorMsg.create( sema.gpa, union_obj.srcLoc(sema.mod), "union '{}' depends on itself", .{ty.fmt(sema.mod)}, ); try sema.addFieldErrNote(ty, 0, msg, "while checking this field", .{}); return sema.failWithOwnedErrorMsg(msg); } const val_val = (try sema.typeHasOnePossibleValue(only_field.ty)) orelse return null; const only = try mod.intern(.{ .un = .{ .ty = ty.toIntern(), .tag = tag_val.toIntern(), .val = val_val.toIntern(), } }); return only.toValue(); }, .enum_type => |enum_type| switch (enum_type.tag_mode) { .nonexhaustive => { if (enum_type.tag_ty == .comptime_int_type) return null; if (try sema.typeHasOnePossibleValue(enum_type.tag_ty.toType())) |int_opv| { const only = try mod.intern(.{ .enum_tag = .{ .ty = ty.toIntern(), .int = int_opv.toIntern(), } }); return only.toValue(); } return null; }, .auto, .explicit => { if (enum_type.tag_ty.toType().hasRuntimeBits(mod)) return null; switch (enum_type.names.len) { 0 => { const only = try mod.intern(.{ .empty_enum_value = ty.toIntern() }); return only.toValue(); }, 1 => return try mod.getCoerced((if (enum_type.values.len == 0) try mod.intern(.{ .int = .{ .ty = enum_type.tag_ty, .storage = .{ .u64 = 0 }, } }) else enum_type.values.get(ip)[0]).toValue(), ty), else => return null, } }, }, else => unreachable, }, }, }; } /// Returns the type of the AIR instruction. fn typeOf(sema: *Sema, inst: Air.Inst.Ref) Type { return sema.getTmpAir().typeOf(inst, &sema.mod.intern_pool); } pub fn getTmpAir(sema: Sema) Air { return .{ .instructions = sema.air_instructions.slice(), .extra = sema.air_extra.items, }; } pub fn addExtra(sema: *Sema, extra: anytype) Allocator.Error!u32 { const fields = std.meta.fields(@TypeOf(extra)); try sema.air_extra.ensureUnusedCapacity(sema.gpa, fields.len); return sema.addExtraAssumeCapacity(extra); } pub fn addExtraAssumeCapacity(sema: *Sema, extra: anytype) u32 { const fields = std.meta.fields(@TypeOf(extra)); const result = @as(u32, @intCast(sema.air_extra.items.len)); inline for (fields) |field| { sema.air_extra.appendAssumeCapacity(switch (field.type) { u32 => @field(extra, field.name), Air.Inst.Ref => @intFromEnum(@field(extra, field.name)), i32 => @as(u32, @bitCast(@field(extra, field.name))), InternPool.Index => @intFromEnum(@field(extra, field.name)), else => @compileError("bad field type: " ++ @typeName(field.type)), }); } return result; } fn appendRefsAssumeCapacity(sema: *Sema, refs: []const Air.Inst.Ref) void { const coerced = @as([]const u32, @ptrCast(refs)); sema.air_extra.appendSliceAssumeCapacity(coerced); } fn getBreakBlock(sema: *Sema, inst_index: Air.Inst.Index) ?Air.Inst.Index { const air_datas = sema.air_instructions.items(.data); const air_tags = sema.air_instructions.items(.tag); switch (air_tags[inst_index]) { .br => return air_datas[inst_index].br.block_inst, else => return null, } } fn isComptimeKnown( sema: *Sema, inst: Air.Inst.Ref, ) !bool { return (try sema.resolveMaybeUndefVal(inst)) != null; } fn analyzeComptimeAlloc( sema: *Sema, block: *Block, var_type: Type, alignment: Alignment, ) CompileError!Air.Inst.Ref { const mod = sema.mod; // Needed to make an anon decl with type `var_type` (the `finish()` call below). _ = try sema.typeHasOnePossibleValue(var_type); const ptr_type = try mod.ptrType(.{ .child = var_type.toIntern(), .flags = .{ .alignment = alignment, .address_space = target_util.defaultAddressSpace(mod.getTarget(), .global_constant), }, }); var anon_decl = try block.startAnonDecl(); defer anon_decl.deinit(); const decl_index = try anon_decl.finish( var_type, // There will be stores before the first load, but they may be to sub-elements or // sub-fields. So we need to initialize with undef to allow the mechanism to expand // into fields/elements and have those overridden with stored values. (try mod.intern(.{ .undef = var_type.toIntern() })).toValue(), alignment, ); const decl = mod.declPtr(decl_index); decl.alignment = alignment; try sema.comptime_mutable_decls.append(decl_index); try mod.declareDeclDependency(sema.owner_decl_index, decl_index); return Air.internedToRef((try mod.intern(.{ .ptr = .{ .ty = ptr_type.toIntern(), .addr = .{ .mut_decl = .{ .decl = decl_index, .runtime_index = block.runtime_index, } }, } }))); } /// The places where a user can specify an address space attribute pub const AddressSpaceContext = enum { /// A function is specified to be placed in a certain address space. function, /// A (global) variable is specified to be placed in a certain address space. /// In contrast to .constant, these values (and thus the address space they will be /// placed in) are required to be mutable. variable, /// A (global) constant value is specified to be placed in a certain address space. /// In contrast to .variable, values placed in this address space are not required to be mutable. constant, /// A pointer is ascripted to point into a certain address space. pointer, }; pub fn analyzeAddressSpace( sema: *Sema, block: *Block, src: LazySrcLoc, zir_ref: Zir.Inst.Ref, ctx: AddressSpaceContext, ) !std.builtin.AddressSpace { const mod = sema.mod; const addrspace_tv = try sema.resolveInstConst(block, src, zir_ref, "address space must be comptime-known"); const address_space = mod.toEnum(std.builtin.AddressSpace, addrspace_tv.val); const target = sema.mod.getTarget(); const arch = target.cpu.arch; const is_nv = arch == .nvptx or arch == .nvptx64; const is_amd = arch == .amdgcn; const is_spirv = arch == .spirv32 or arch == .spirv64; const is_gpu = is_nv or is_amd or is_spirv; const supported = switch (address_space) { // TODO: on spir-v only when os is opencl. .generic => true, .gs, .fs, .ss => (arch == .x86 or arch == .x86_64) and ctx == .pointer, // TODO: check that .shared and .local are left uninitialized .param => is_nv, .global, .shared, .local => is_gpu, .constant => is_gpu and (ctx == .constant), // TODO this should also check how many flash banks the cpu has .flash, .flash1, .flash2, .flash3, .flash4, .flash5 => arch == .avr, }; if (!supported) { // TODO error messages could be made more elaborate here const entity = switch (ctx) { .function => "functions", .variable => "mutable values", .constant => "constant values", .pointer => "pointers", }; return sema.fail( block, src, "{s} with address space '{s}' are not supported on {s}", .{ entity, @tagName(address_space), arch.genericName() }, ); } return address_space; } /// Asserts the value is a pointer and dereferences it. /// Returns `null` if the pointer contents cannot be loaded at comptime. fn pointerDeref(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, ptr_ty: Type) CompileError!?Value { const mod = sema.mod; const load_ty = ptr_ty.childType(mod); const res = try sema.pointerDerefExtra(block, src, ptr_val, load_ty); switch (res) { .runtime_load => return null, .val => |v| return v, .needed_well_defined => |ty| return sema.fail( block, src, "comptime dereference requires '{}' to have a well-defined layout, but it does not.", .{ty.fmt(sema.mod)}, ), .out_of_bounds => |ty| return sema.fail( block, src, "dereference of '{}' exceeds bounds of containing decl of type '{}'", .{ ptr_ty.fmt(sema.mod), ty.fmt(sema.mod) }, ), } } const DerefResult = union(enum) { runtime_load, val: Value, needed_well_defined: Type, out_of_bounds: Type, }; fn pointerDerefExtra(sema: *Sema, block: *Block, src: LazySrcLoc, ptr_val: Value, load_ty: Type) CompileError!DerefResult { const mod = sema.mod; const target = mod.getTarget(); const deref = sema.beginComptimePtrLoad(block, src, ptr_val, load_ty) catch |err| switch (err) { error.RuntimeLoad => return DerefResult{ .runtime_load = {} }, else => |e| return e, }; if (deref.pointee) |tv| { const coerce_in_mem_ok = (try sema.coerceInMemoryAllowed(block, load_ty, tv.ty, false, target, src, src)) == .ok or (try sema.coerceInMemoryAllowed(block, tv.ty, load_ty, false, target, src, src)) == .ok; if (coerce_in_mem_ok) { // We have a Value that lines up in virtual memory exactly with what we want to load, // and it is in-memory coercible to load_ty. It may be returned without modifications. // Move mutable decl values to the InternPool and assert other decls are already in // the InternPool. const uncoerced_val = if (deref.is_mutable) try tv.val.intern(tv.ty, mod) else tv.val.toIntern(); const coerced_val = try mod.getCoerced(uncoerced_val.toValue(), load_ty); return .{ .val = coerced_val }; } } // The type is not in-memory coercible or the direct dereference failed, so it must // be bitcast according to the pointer type we are performing the load through. if (!load_ty.hasWellDefinedLayout(mod)) { return DerefResult{ .needed_well_defined = load_ty }; } const load_sz = try sema.typeAbiSize(load_ty); // Try the smaller bit-cast first, since that's more efficient than using the larger `parent` if (deref.pointee) |tv| if (load_sz <= try sema.typeAbiSize(tv.ty)) return DerefResult{ .val = (try sema.bitCastVal(block, src, tv.val, tv.ty, load_ty, 0)) orelse return .runtime_load }; // If that fails, try to bit-cast from the largest parent value with a well-defined layout if (deref.parent) |parent| if (load_sz + parent.byte_offset <= try sema.typeAbiSize(parent.tv.ty)) return DerefResult{ .val = (try sema.bitCastVal(block, src, parent.tv.val, parent.tv.ty, load_ty, parent.byte_offset)) orelse return .runtime_load }; if (deref.ty_without_well_defined_layout) |bad_ty| { // We got no parent for bit-casting, or the parent we got was too small. Either way, the problem // is that some type we encountered when de-referencing does not have a well-defined layout. return DerefResult{ .needed_well_defined = bad_ty }; } else { // If all encountered types had well-defined layouts, the parent is the root decl and it just // wasn't big enough for the load. return DerefResult{ .out_of_bounds = deref.parent.?.tv.ty }; } } /// Used to convert a u64 value to a usize value, emitting a compile error if the number /// is too big to fit. fn usizeCast(sema: *Sema, block: *Block, src: LazySrcLoc, int: u64) CompileError!usize { if (@bitSizeOf(u64) <= @bitSizeOf(usize)) return int; return std.math.cast(usize, int) orelse return sema.fail(block, src, "expression produces integer value '{d}' which is too big for this compiler implementation to handle", .{int}); } /// For pointer-like optionals, it returns the pointer type. For pointers, /// the type is returned unmodified. /// This can return `error.AnalysisFail` because it sometimes requires resolving whether /// a type has zero bits, which can cause a "foo depends on itself" compile error. /// This logic must be kept in sync with `Type.isPtrLikeOptional`. fn typePtrOrOptionalPtrTy(sema: *Sema, ty: Type) !?Type { const mod = sema.mod; return switch (mod.intern_pool.indexToKey(ty.toIntern())) { .ptr_type => |ptr_type| switch (ptr_type.flags.size) { .One, .Many, .C => ty, .Slice => null, }, .opt_type => |opt_child| switch (mod.intern_pool.indexToKey(opt_child)) { .ptr_type => |ptr_type| switch (ptr_type.flags.size) { .Slice, .C => null, .Many, .One => { if (ptr_type.flags.is_allowzero) return null; // optionals of zero sized types behave like bools, not pointers const payload_ty = opt_child.toType(); if ((try sema.typeHasOnePossibleValue(payload_ty)) != null) { return null; } return payload_ty; }, }, else => null, }, else => null, }; } /// `generic_poison` will return false. /// This function returns false negatives when structs and unions are having their /// field types resolved. /// TODO assert the return value matches `ty.comptimeOnly` /// TODO merge these implementations together with the "advanced"/opt_sema pattern seen /// elsewhere in value.zig pub fn typeRequiresComptime(sema: *Sema, ty: Type) CompileError!bool { const mod = sema.mod; return switch (ty.toIntern()) { .empty_struct_type => false, else => switch (mod.intern_pool.indexToKey(ty.toIntern())) { .int_type => return false, .ptr_type => |ptr_type| { const child_ty = ptr_type.child.toType(); switch (child_ty.zigTypeTag(mod)) { .Fn => return mod.typeToFunc(child_ty).?.is_generic, .Opaque => return false, else => return sema.typeRequiresComptime(child_ty), } }, .anyframe_type => |child| { if (child == .none) return false; return sema.typeRequiresComptime(child.toType()); }, .array_type => |array_type| return sema.typeRequiresComptime(array_type.child.toType()), .vector_type => |vector_type| return sema.typeRequiresComptime(vector_type.child.toType()), .opt_type => |child| return sema.typeRequiresComptime(child.toType()), .error_union_type => |error_union_type| { return sema.typeRequiresComptime(error_union_type.payload_type.toType()); }, .error_set_type, .inferred_error_set_type => false, .func_type => true, .simple_type => |t| return switch (t) { .f16, .f32, .f64, .f80, .f128, .usize, .isize, .c_char, .c_short, .c_ushort, .c_int, .c_uint, .c_long, .c_ulong, .c_longlong, .c_ulonglong, .c_longdouble, .bool, .void, .anyerror, .noreturn, .generic_poison, .atomic_order, .atomic_rmw_op, .calling_convention, .address_space, .float_mode, .reduce_op, .call_modifier, .prefetch_options, .export_options, .extern_options, .adhoc_inferred_error_set, => false, .anyopaque, .type, .comptime_int, .comptime_float, .null, .undefined, .enum_literal, .type_info, => true, }, .struct_type => |struct_type| { const struct_obj = mod.structPtrUnwrap(struct_type.index) orelse return false; switch (struct_obj.requires_comptime) { .no, .wip => return false, .yes => return true, .unknown => { if (struct_obj.status == .field_types_wip) return false; try sema.resolveTypeFieldsStruct(ty, struct_obj); struct_obj.requires_comptime = .wip; for (struct_obj.fields.values()) |field| { if (field.is_comptime) continue; if (try sema.typeRequiresComptime(field.ty)) { struct_obj.requires_comptime = .yes; return true; } } struct_obj.requires_comptime = .no; return false; }, } }, .anon_struct_type => |tuple| { for (tuple.types, tuple.values) |field_ty, val| { const have_comptime_val = val != .none; if (!have_comptime_val and try sema.typeRequiresComptime(field_ty.toType())) { return true; } } return false; }, .union_type => |union_type| { const union_obj = mod.unionPtr(union_type.index); switch (union_obj.requires_comptime) { .no, .wip => return false, .yes => return true, .unknown => { if (union_obj.status == .field_types_wip) return false; try sema.resolveTypeFieldsUnion(ty, union_obj); union_obj.requires_comptime = .wip; for (union_obj.fields.values()) |field| { if (try sema.typeRequiresComptime(field.ty)) { union_obj.requires_comptime = .yes; return true; } } union_obj.requires_comptime = .no; return false; }, } }, .opaque_type => true, .enum_type => |enum_type| try sema.typeRequiresComptime(enum_type.tag_ty.toType()), // values, not types .undef, .runtime_value, .simple_value, .variable, .extern_func, .func, .int, .err, .error_union, .enum_literal, .enum_tag, .empty_enum_value, .float, .ptr, .opt, .aggregate, .un, // memoization, not types .memoized_call, => unreachable, }, }; } pub fn typeHasRuntimeBits(sema: *Sema, ty: Type) CompileError!bool { const mod = sema.mod; return ty.hasRuntimeBitsAdvanced(mod, false, .{ .sema = sema }) catch |err| switch (err) { error.NeedLazy => unreachable, else => |e| return e, }; } fn typeAbiSize(sema: *Sema, ty: Type) !u64 { try sema.resolveTypeLayout(ty); return ty.abiSize(sema.mod); } fn typeAbiAlignment(sema: *Sema, ty: Type) CompileError!u32 { return (try ty.abiAlignmentAdvanced(sema.mod, .{ .sema = sema })).scalar; } /// Not valid to call for packed unions. /// Keep implementation in sync with `Module.Union.Field.normalAlignment`. fn unionFieldAlignment(sema: *Sema, field: Module.Union.Field) !u32 { return @as(u32, @intCast(if (field.ty.isNoReturn(sema.mod)) 0 else field.abi_align.toByteUnitsOptional() orelse try sema.typeAbiAlignment(field.ty))); } /// Keep implementation in sync with `Module.Struct.Field.alignment`. fn structFieldAlignment(sema: *Sema, field: Module.Struct.Field, layout: std.builtin.Type.ContainerLayout) !u32 { const mod = sema.mod; if (field.abi_align.toByteUnitsOptional()) |a| { assert(layout != .Packed); return @as(u32, @intCast(a)); } switch (layout) { .Packed => return 0, .Auto => if (mod.getTarget().ofmt != .c) { return sema.typeAbiAlignment(field.ty); }, .Extern => {}, } // extern const ty_abi_align = try sema.typeAbiAlignment(field.ty); if (field.ty.isAbiInt(mod) and field.ty.intInfo(mod).bits >= 128) { return @max(ty_abi_align, 16); } return ty_abi_align; } /// Synchronize logic with `Type.isFnOrHasRuntimeBits`. pub fn fnHasRuntimeBits(sema: *Sema, ty: Type) CompileError!bool { const mod = sema.mod; const fn_info = mod.typeToFunc(ty).?; if (fn_info.is_generic) return false; if (fn_info.is_var_args) return true; switch (fn_info.cc) { // If there was a comptime calling convention, it should also return false here. .Inline => return false, else => {}, } if (try sema.typeRequiresComptime(fn_info.return_type.toType())) { return false; } return true; } fn unionFieldIndex( sema: *Sema, block: *Block, union_ty: Type, field_name: InternPool.NullTerminatedString, field_src: LazySrcLoc, ) !u32 { const mod = sema.mod; try sema.resolveTypeFields(union_ty); const union_obj = mod.typeToUnion(union_ty).?; const field_index_usize = union_obj.fields.getIndex(field_name) orelse return sema.failWithBadUnionFieldAccess(block, union_obj, field_src, field_name); return @as(u32, @intCast(field_index_usize)); } fn structFieldIndex( sema: *Sema, block: *Block, struct_ty: Type, field_name: InternPool.NullTerminatedString, field_src: LazySrcLoc, ) !u32 { const mod = sema.mod; try sema.resolveTypeFields(struct_ty); if (struct_ty.isAnonStruct(mod)) { return sema.anonStructFieldIndex(block, struct_ty, field_name, field_src); } else { const struct_obj = mod.typeToStruct(struct_ty).?; const field_index_usize = struct_obj.fields.getIndex(field_name) orelse return sema.failWithBadStructFieldAccess(block, struct_obj, field_src, field_name); return @as(u32, @intCast(field_index_usize)); } } fn anonStructFieldIndex( sema: *Sema, block: *Block, struct_ty: Type, field_name: InternPool.NullTerminatedString, field_src: LazySrcLoc, ) !u32 { const mod = sema.mod; switch (mod.intern_pool.indexToKey(struct_ty.toIntern())) { .anon_struct_type => |anon_struct_type| for (anon_struct_type.names, 0..) |name, i| { if (name == field_name) return @as(u32, @intCast(i)); }, .struct_type => |struct_type| if (mod.structPtrUnwrap(struct_type.index)) |struct_obj| { for (struct_obj.fields.keys(), 0..) |name, i| { if (name == field_name) { return @as(u32, @intCast(i)); } } }, else => unreachable, } return sema.fail(block, field_src, "no field named '{}' in anonymous struct '{}'", .{ field_name.fmt(&mod.intern_pool), struct_ty.fmt(sema.mod), }); } fn queueFullTypeResolution(sema: *Sema, ty: Type) !void { try sema.types_to_resolve.put(sema.gpa, ty.toIntern(), {}); } /// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting /// overflow_idx to the vector index the overflow was at (or 0 for a scalar). fn intAdd(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize) !Value { var overflow: usize = undefined; return sema.intAddInner(lhs, rhs, ty, &overflow) catch |err| switch (err) { error.Overflow => { const is_vec = ty.isVector(sema.mod); overflow_idx.* = if (is_vec) overflow else 0; const safe_ty = if (is_vec) try sema.mod.vectorType(.{ .len = ty.vectorLen(sema.mod), .child = .comptime_int_type, }) else Type.comptime_int; return sema.intAddInner(lhs, rhs, safe_ty, undefined) catch |err1| switch (err1) { error.Overflow => unreachable, else => |e| return e, }; }, else => |e| return e, }; } fn intAddInner(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize) !Value { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod)); const scalar_ty = ty.scalarType(mod); for (result_data, 0..) |*scalar, i| { const lhs_elem = try lhs.elemValue(mod, i); const rhs_elem = try rhs.elemValue(mod, i); const val = sema.intAddScalar(lhs_elem, rhs_elem, scalar_ty) catch |err| switch (err) { error.Overflow => { overflow_idx.* = i; return error.Overflow; }, else => |e| return e, }; scalar.* = try val.intern(scalar_ty, mod); } return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(); } return sema.intAddScalar(lhs, rhs, ty); } fn intAddScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) !Value { const mod = sema.mod; if (scalar_ty.toIntern() != .comptime_int_type) { const res = try sema.intAddWithOverflowScalar(lhs, rhs, scalar_ty); if (res.overflow_bit.compareAllWithZero(.neq, mod)) return error.Overflow; return res.wrapped_result; } // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema); const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema); const limbs = try sema.arena.alloc( std.math.big.Limb, @max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1, ); var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined }; result_bigint.add(lhs_bigint, rhs_bigint); return mod.intValue_big(scalar_ty, result_bigint.toConst()); } /// Supports both floats and ints; handles undefined. fn numberAddWrapScalar( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value { const mod = sema.mod; if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.undef; if (ty.zigTypeTag(mod) == .ComptimeInt) { return sema.intAdd(lhs, rhs, ty, undefined); } if (ty.isAnyFloat()) { return Value.floatAdd(lhs, rhs, ty, sema.arena, mod); } const overflow_result = try sema.intAddWithOverflow(lhs, rhs, ty); return overflow_result.wrapped_result; } /// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting /// overflow_idx to the vector index the overflow was at (or 0 for a scalar). fn intSub(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize) !Value { var overflow: usize = undefined; return sema.intSubInner(lhs, rhs, ty, &overflow) catch |err| switch (err) { error.Overflow => { const is_vec = ty.isVector(sema.mod); overflow_idx.* = if (is_vec) overflow else 0; const safe_ty = if (is_vec) try sema.mod.vectorType(.{ .len = ty.vectorLen(sema.mod), .child = .comptime_int_type, }) else Type.comptime_int; return sema.intSubInner(lhs, rhs, safe_ty, undefined) catch |err1| switch (err1) { error.Overflow => unreachable, else => |e| return e, }; }, else => |e| return e, }; } fn intSubInner(sema: *Sema, lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize) !Value { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod)); const scalar_ty = ty.scalarType(mod); for (result_data, 0..) |*scalar, i| { const lhs_elem = try lhs.elemValue(sema.mod, i); const rhs_elem = try rhs.elemValue(sema.mod, i); const val = sema.intSubScalar(lhs_elem, rhs_elem, scalar_ty) catch |err| switch (err) { error.Overflow => { overflow_idx.* = i; return error.Overflow; }, else => |e| return e, }; scalar.* = try val.intern(scalar_ty, mod); } return (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(); } return sema.intSubScalar(lhs, rhs, ty); } fn intSubScalar(sema: *Sema, lhs: Value, rhs: Value, scalar_ty: Type) !Value { const mod = sema.mod; if (scalar_ty.toIntern() != .comptime_int_type) { const res = try sema.intSubWithOverflowScalar(lhs, rhs, scalar_ty); if (res.overflow_bit.compareAllWithZero(.neq, mod)) return error.Overflow; return res.wrapped_result; } // TODO is this a performance issue? maybe we should try the operation without // resorting to BigInt first. var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema); const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema); const limbs = try sema.arena.alloc( std.math.big.Limb, @max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1, ); var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined }; result_bigint.sub(lhs_bigint, rhs_bigint); return mod.intValue_big(scalar_ty, result_bigint.toConst()); } /// Supports both floats and ints; handles undefined. fn numberSubWrapScalar( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value { const mod = sema.mod; if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.undef; if (ty.zigTypeTag(mod) == .ComptimeInt) { return sema.intSub(lhs, rhs, ty, undefined); } if (ty.isAnyFloat()) { return Value.floatSub(lhs, rhs, ty, sema.arena, mod); } const overflow_result = try sema.intSubWithOverflow(lhs, rhs, ty); return overflow_result.wrapped_result; } fn intSubWithOverflow( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value.OverflowArithmeticResult { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { const vec_len = ty.vectorLen(mod); const overflowed_data = try sema.arena.alloc(InternPool.Index, vec_len); const result_data = try sema.arena.alloc(InternPool.Index, vec_len); const scalar_ty = ty.scalarType(mod); for (overflowed_data, result_data, 0..) |*of, *scalar, i| { const lhs_elem = try lhs.elemValue(sema.mod, i); const rhs_elem = try rhs.elemValue(sema.mod, i); const of_math_result = try sema.intSubWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty); of.* = try of_math_result.overflow_bit.intern(Type.u1, mod); scalar.* = try of_math_result.wrapped_result.intern(scalar_ty, mod); } return Value.OverflowArithmeticResult{ .overflow_bit = (try mod.intern(.{ .aggregate = .{ .ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(), .storage = .{ .elems = overflowed_data }, } })).toValue(), .wrapped_result = (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(), }; } return sema.intSubWithOverflowScalar(lhs, rhs, ty); } fn intSubWithOverflowScalar( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value.OverflowArithmeticResult { const mod = sema.mod; const info = ty.intInfo(mod); var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema); const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema); const limbs = try sema.arena.alloc( std.math.big.Limb, std.math.big.int.calcTwosCompLimbCount(info.bits), ); var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined }; const overflowed = result_bigint.subWrap(lhs_bigint, rhs_bigint, info.signedness, info.bits); const wrapped_result = try mod.intValue_big(ty, result_bigint.toConst()); return Value.OverflowArithmeticResult{ .overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)), .wrapped_result = wrapped_result, }; } fn intFromFloat( sema: *Sema, block: *Block, src: LazySrcLoc, val: Value, float_ty: Type, int_ty: Type, ) CompileError!Value { const mod = sema.mod; if (float_ty.zigTypeTag(mod) == .Vector) { const elem_ty = float_ty.scalarType(mod); const result_data = try sema.arena.alloc(InternPool.Index, float_ty.vectorLen(mod)); const scalar_ty = int_ty.scalarType(mod); for (result_data, 0..) |*scalar, i| { const elem_val = try val.elemValue(sema.mod, i); scalar.* = try (try sema.intFromFloatScalar(block, src, elem_val, elem_ty, int_ty.scalarType(mod))).intern(scalar_ty, mod); } return (try mod.intern(.{ .aggregate = .{ .ty = int_ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(); } return sema.intFromFloatScalar(block, src, val, float_ty, int_ty); } // float is expected to be finite and non-NaN fn float128IntPartToBigInt( arena: Allocator, float: f128, ) !std.math.big.int.Managed { const is_negative = std.math.signbit(float); const floored = @floor(@fabs(float)); var rational = try std.math.big.Rational.init(arena); defer rational.q.deinit(); rational.setFloat(f128, floored) catch |err| switch (err) { error.NonFiniteFloat => unreachable, error.OutOfMemory => return error.OutOfMemory, }; // The float is reduced in rational.setFloat, so we assert that denominator is equal to one const big_one = std.math.big.int.Const{ .limbs = &.{1}, .positive = true }; assert(rational.q.toConst().eqlAbs(big_one)); if (is_negative) { rational.negate(); } return rational.p; } fn intFromFloatScalar( sema: *Sema, block: *Block, src: LazySrcLoc, val: Value, float_ty: Type, int_ty: Type, ) CompileError!Value { const mod = sema.mod; const float = val.toFloat(f128, mod); if (std.math.isNan(float)) { return sema.fail(block, src, "float value NaN cannot be stored in integer type '{}'", .{ int_ty.fmt(sema.mod), }); } if (std.math.isInf(float)) { return sema.fail(block, src, "float value Inf cannot be stored in integer type '{}'", .{ int_ty.fmt(sema.mod), }); } var big_int = try float128IntPartToBigInt(sema.arena, float); defer big_int.deinit(); const cti_result = try mod.intValue_big(Type.comptime_int, big_int.toConst()); if (!(try sema.intFitsInType(cti_result, int_ty, null))) { return sema.fail(block, src, "float value '{}' cannot be stored in integer type '{}'", .{ val.fmtValue(float_ty, sema.mod), int_ty.fmt(sema.mod), }); } return mod.getCoerced(cti_result, int_ty); } /// Asserts the value is an integer, and the destination type is ComptimeInt or Int. /// Vectors are also accepted. Vector results are reduced with AND. /// /// If provided, `vector_index` reports the first element that failed the range check. fn intFitsInType( sema: *Sema, val: Value, ty: Type, vector_index: ?*usize, ) CompileError!bool { const mod = sema.mod; if (ty.toIntern() == .comptime_int_type) return true; const info = ty.intInfo(mod); switch (val.toIntern()) { .zero_usize, .zero_u8 => return true, else => switch (mod.intern_pool.indexToKey(val.toIntern())) { .undef => return true, .variable, .extern_func, .func, .ptr => { const target = mod.getTarget(); const ptr_bits = target.ptrBitWidth(); return switch (info.signedness) { .signed => info.bits > ptr_bits, .unsigned => info.bits >= ptr_bits, }; }, .int => |int| switch (int.storage) { .u64, .i64, .big_int => { var buffer: InternPool.Key.Int.Storage.BigIntSpace = undefined; const big_int = int.storage.toBigInt(&buffer); return big_int.fitsInTwosComp(info.signedness, info.bits); }, .lazy_align => |lazy_ty| { const max_needed_bits = @as(u16, 16) + @intFromBool(info.signedness == .signed); // If it is u16 or bigger we know the alignment fits without resolving it. if (info.bits >= max_needed_bits) return true; const x = try sema.typeAbiAlignment(lazy_ty.toType()); if (x == 0) return true; const actual_needed_bits = std.math.log2(x) + 1 + @intFromBool(info.signedness == .signed); return info.bits >= actual_needed_bits; }, .lazy_size => |lazy_ty| { const max_needed_bits = @as(u16, 64) + @intFromBool(info.signedness == .signed); // If it is u64 or bigger we know the size fits without resolving it. if (info.bits >= max_needed_bits) return true; const x = try sema.typeAbiSize(lazy_ty.toType()); if (x == 0) return true; const actual_needed_bits = std.math.log2(x) + 1 + @intFromBool(info.signedness == .signed); return info.bits >= actual_needed_bits; }, }, .aggregate => |aggregate| { assert(ty.zigTypeTag(mod) == .Vector); return switch (aggregate.storage) { .bytes => |bytes| for (bytes, 0..) |byte, i| { if (byte == 0) continue; const actual_needed_bits = std.math.log2(byte) + 1 + @intFromBool(info.signedness == .signed); if (info.bits >= actual_needed_bits) continue; if (vector_index) |vi| vi.* = i; break false; } else true, .elems, .repeated_elem => for (switch (aggregate.storage) { .bytes => unreachable, .elems => |elems| elems, .repeated_elem => |elem| @as(*const [1]InternPool.Index, &elem), }, 0..) |elem, i| { if (try sema.intFitsInType(elem.toValue(), ty.scalarType(mod), null)) continue; if (vector_index) |vi| vi.* = i; break false; } else true, }; }, else => unreachable, }, } } fn intInRange(sema: *Sema, tag_ty: Type, int_val: Value, end: usize) !bool { const mod = sema.mod; if (!(try int_val.compareAllWithZeroAdvanced(.gte, sema))) return false; const end_val = try mod.intValue(tag_ty, end); if (!(try sema.compareAll(int_val, .lt, end_val, tag_ty))) return false; return true; } /// Asserts the type is an enum. fn enumHasInt(sema: *Sema, ty: Type, int: Value) CompileError!bool { const mod = sema.mod; const enum_type = mod.intern_pool.indexToKey(ty.toIntern()).enum_type; assert(enum_type.tag_mode != .nonexhaustive); // The `tagValueIndex` function call below relies on the type being the integer tag type. // `getCoerced` assumes the value will fit the new type. if (!(try sema.intFitsInType(int, enum_type.tag_ty.toType(), null))) return false; const int_coerced = try mod.getCoerced(int, enum_type.tag_ty.toType()); return enum_type.tagValueIndex(&mod.intern_pool, int_coerced.toIntern()) != null; } fn intAddWithOverflow( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value.OverflowArithmeticResult { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { const vec_len = ty.vectorLen(mod); const overflowed_data = try sema.arena.alloc(InternPool.Index, vec_len); const result_data = try sema.arena.alloc(InternPool.Index, vec_len); const scalar_ty = ty.scalarType(mod); for (overflowed_data, result_data, 0..) |*of, *scalar, i| { const lhs_elem = try lhs.elemValue(sema.mod, i); const rhs_elem = try rhs.elemValue(sema.mod, i); const of_math_result = try sema.intAddWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty); of.* = try of_math_result.overflow_bit.intern(Type.u1, mod); scalar.* = try of_math_result.wrapped_result.intern(scalar_ty, mod); } return Value.OverflowArithmeticResult{ .overflow_bit = (try mod.intern(.{ .aggregate = .{ .ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(), .storage = .{ .elems = overflowed_data }, } })).toValue(), .wrapped_result = (try mod.intern(.{ .aggregate = .{ .ty = ty.toIntern(), .storage = .{ .elems = result_data }, } })).toValue(), }; } return sema.intAddWithOverflowScalar(lhs, rhs, ty); } fn intAddWithOverflowScalar( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) !Value.OverflowArithmeticResult { const mod = sema.mod; const info = ty.intInfo(mod); var lhs_space: Value.BigIntSpace = undefined; var rhs_space: Value.BigIntSpace = undefined; const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_space, mod, sema); const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_space, mod, sema); const limbs = try sema.arena.alloc( std.math.big.Limb, std.math.big.int.calcTwosCompLimbCount(info.bits), ); var result_bigint = std.math.big.int.Mutable{ .limbs = limbs, .positive = undefined, .len = undefined }; const overflowed = result_bigint.addWrap(lhs_bigint, rhs_bigint, info.signedness, info.bits); const result = try mod.intValue_big(ty, result_bigint.toConst()); return Value.OverflowArithmeticResult{ .overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)), .wrapped_result = result, }; } /// Asserts the values are comparable. Both operands have type `ty`. /// For vectors, returns true if the comparison is true for ALL elements. /// /// Note that `!compareAll(.eq, ...) != compareAll(.neq, ...)` fn compareAll( sema: *Sema, lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, ) CompileError!bool { const mod = sema.mod; if (ty.zigTypeTag(mod) == .Vector) { var i: usize = 0; while (i < ty.vectorLen(mod)) : (i += 1) { const lhs_elem = try lhs.elemValue(sema.mod, i); const rhs_elem = try rhs.elemValue(sema.mod, i); if (!(try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(mod)))) { return false; } } return true; } return sema.compareScalar(lhs, op, rhs, ty); } /// Asserts the values are comparable. Both operands have type `ty`. fn compareScalar( sema: *Sema, lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, ) CompileError!bool { const mod = sema.mod; const coerced_lhs = try mod.getCoerced(lhs, ty); const coerced_rhs = try mod.getCoerced(rhs, ty); switch (op) { .eq => return sema.valuesEqual(coerced_lhs, coerced_rhs, ty), .neq => return !(try sema.valuesEqual(coerced_lhs, coerced_rhs, ty)), else => return Value.compareHeteroAdvanced(coerced_lhs, op, coerced_rhs, mod, sema), } } fn valuesEqual( sema: *Sema, lhs: Value, rhs: Value, ty: Type, ) CompileError!bool { return lhs.eql(rhs, ty, sema.mod); } /// Asserts the values are comparable vectors of type `ty`. fn compareVector( sema: *Sema, lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, ) !Value { const mod = sema.mod; assert(ty.zigTypeTag(mod) == .Vector); const result_data = try sema.arena.alloc(InternPool.Index, ty.vectorLen(mod)); for (result_data, 0..) |*scalar, i| { const lhs_elem = try lhs.elemValue(sema.mod, i); const rhs_elem = try rhs.elemValue(sema.mod, i); const res_bool = try sema.compareScalar(lhs_elem, op, rhs_elem, ty.scalarType(mod)); scalar.* = try Value.makeBool(res_bool).intern(Type.bool, mod); } return (try mod.intern(.{ .aggregate = .{ .ty = (try mod.vectorType(.{ .len = ty.vectorLen(mod), .child = .bool_type })).toIntern(), .storage = .{ .elems = result_data }, } })).toValue(); } /// Returns the type of a pointer to an element. /// Asserts that the type is a pointer, and that the element type is indexable. /// For *[N]T, return *T /// For [*]T, returns *T /// For []T, returns *T /// Handles const-ness and address spaces in particular. /// This code is duplicated in `analyzePtrArithmetic`. fn elemPtrType(sema: *Sema, ptr_ty: Type, offset: ?usize) !Type { const mod = sema.mod; const ptr_info = ptr_ty.ptrInfo(mod); const elem_ty = ptr_ty.elemType2(mod); const is_allowzero = ptr_info.flags.is_allowzero and (offset orelse 0) == 0; const parent_ty = ptr_ty.childType(mod); const VI = InternPool.Key.PtrType.VectorIndex; const vector_info: struct { host_size: u16 = 0, alignment: u32 = 0, vector_index: VI = .none, } = if (parent_ty.isVector(mod) and ptr_info.flags.size == .One) blk: { const elem_bits = elem_ty.bitSize(mod); if (elem_bits == 0) break :blk .{}; const is_packed = elem_bits < 8 or !std.math.isPowerOfTwo(elem_bits); if (!is_packed) break :blk .{}; break :blk .{ .host_size = @as(u16, @intCast(parent_ty.arrayLen(mod))), .alignment = @as(u32, @intCast(parent_ty.abiAlignment(mod))), .vector_index = if (offset) |some| @as(VI, @enumFromInt(some)) else .runtime, }; } else .{}; const alignment: Alignment = a: { // Calculate the new pointer alignment. if (ptr_info.flags.alignment == .none) { if (vector_info.alignment != 0) break :a Alignment.fromNonzeroByteUnits(vector_info.alignment); // ABI-aligned pointer. Any pointer arithmetic maintains the same ABI-alignedness. break :a .none; } // If the addend is not a comptime-known value we can still count on // it being a multiple of the type size. const elem_size = try sema.typeAbiSize(elem_ty); const addend = if (offset) |off| elem_size * off else elem_size; // The resulting pointer is aligned to the lcd between the offset (an // arbitrary number) and the alignment factor (always a power of two, // non zero). const new_align = @as(Alignment, @enumFromInt(@min( @ctz(addend), @intFromEnum(ptr_info.flags.alignment), ))); assert(new_align != .none); break :a new_align; }; return mod.ptrType(.{ .child = elem_ty.toIntern(), .flags = .{ .alignment = alignment, .is_const = ptr_info.flags.is_const, .is_volatile = ptr_info.flags.is_volatile, .is_allowzero = is_allowzero, .address_space = ptr_info.flags.address_space, .vector_index = vector_info.vector_index, }, .packed_offset = .{ .host_size = vector_info.host_size, .bit_offset = 0, }, }); } /// Merge lhs with rhs. /// Asserts that lhs and rhs are both error sets and are resolved. fn errorSetMerge(sema: *Sema, lhs: Type, rhs: Type) !Type { const mod = sema.mod; const arena = sema.arena; const lhs_names = lhs.errorSetNames(mod); const rhs_names = rhs.errorSetNames(mod); var names: InferredErrorSet.NameMap = .{}; try names.ensureUnusedCapacity(arena, lhs_names.len); for (lhs_names) |name| { names.putAssumeCapacityNoClobber(name, {}); } for (rhs_names) |name| { try names.put(arena, name, {}); } return mod.errorSetFromUnsortedNames(names.keys()); } /// Avoids crashing the compiler when asking if inferred allocations are noreturn. fn isNoReturn(sema: *Sema, ref: Air.Inst.Ref) bool { if (ref == .unreachable_value) return true; if (Air.refToIndex(ref)) |inst| switch (sema.air_instructions.items(.tag)[inst]) { .inferred_alloc, .inferred_alloc_comptime => return false, else => {}, }; return sema.typeOf(ref).isNoReturn(sema.mod); } /// Avoids crashing the compiler when asking if inferred allocations are known to be a certain zig type. fn isKnownZigType(sema: *Sema, ref: Air.Inst.Ref, tag: std.builtin.TypeId) bool { if (Air.refToIndex(ref)) |inst| switch (sema.air_instructions.items(.tag)[inst]) { .inferred_alloc, .inferred_alloc_comptime => return false, else => {}, }; return sema.typeOf(ref).zigTypeTag(sema.mod) == tag; }